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Elementary Proofs of Generalized Properties of
Relational Traces Represented by Boolean Matrices

HASHIMOTO, Hiroshi

Abstract

We examine generalized properties of traces of a binary relation using Boolean matrices.
Relational traces are relations obtained from a given relation, which are reflexive and
transitive. There exist two traces for a relation, the right and left traces. Traces of a given
relation can be represented by Boolean matrices. Starting with a well-known fact about
relations or Boolean matrices we show some Boolean matrix inequalities and obtain

Boolean matrices which represent transitive relations.

1 Introduction

Some properties of relational traces are examined by using Boolean matrices
over the two element Boolean algebra [12]. Traces of a relation are binary re-
lations which are associated with it. There exist two traces for a given relation,
which are reflexive and transitive. Relational traces appear in various areas of
application, and have some interesting properties [4-11, 14, 15]. We start with
well-known results on binary relations or Boolean matrices, and show some ine-
qualities related to Boolean matrices. Then using matrix representations of rela-

tional traces we construct Boolean matrices which represent transitive relations.

2 Notation and definitions |
For x,y € 10,1} we define x V y=max (x,y), x A y=min (x,y), and x
=1— x. Futhermore we define matrix operations and notation as follows : For

Boolean matrices over {0,1} 4= [a,;]1(m Xn), B=[b,;,1mXn), C=[c,](n
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Xp), D= [d,;] (nXn),

AVB=la,;Vb;],

AAB=[a; N\b,;],

4=Tla;],

A'= la;l,

AXC= [V, (aulcy)],

AOC = [Ny (@iVew) ],

D*=DXD,

A=B if and only if a; = b, for all i, j.

As special matrices, we denote the identity matrix by 7=1[6,] (&, is the
Kronecker delta), and the zero matrix by O. For a Boolean matrix 4, 4'<
Aand 4 A correspond to the left and right traces of a relation represented

by A, respectively [7].

3 Results

We show properties of relational traces of a binary relation using Boolean
matrices. First from well-known results on relations or Boolean matrices we ob-
tain some inequalities related to Boolean matrices. Then we construct Boolean
matrices which represent transitive relations using relational traces. Throughout
this paper we deal with Boolean matrices over {0,1} . We start with the follow-
ing fact about Boolean matrix inequalities.

Lemma 1 [1-3, 13, 17, 18]. For any Boolean Matrices 4 (m X n), B (n
X p), and C (m X p), the following conditions are equivalent.

(1) AXB=cC.

(2) 4=CcO B

3) B=4'OC.

Proposition 1 [18]. For any Boolean matrices 4 (m X n) and B (pXn),
(UOB)XB= 4.
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Proof. Since A B'< A B’', using Lemma 1 we have (4<>B') XB=< 4.

[]

Proposition 2 [18, 20]. For any Boolean matrices 4 (m X n) and B (p X n),
(U4OB)XB) OB =4B.

Proof. Since (A< B’) XB<(A<>B’) XB, using Lemma 1 we have 4 B’
< ((4<OB’) XB)<B'. Then by Proposition 1, ((4<OB')XB) OB' =4O
B'. Thus ((4OB)XB)OB' =408 . [

Proposition 3. For any Boolean matrices 4 (m X n), B (p X n), and C (g
Xn), (4OB)X(BOC)XC=A.

Proof. By Proposition 1, (4 <OB') XB=<4 and (B C’) XC = B. Therefore
UOBIX(BOC)XC=UOB)XB=4. [

Proposition 4. For any Boolean matrices 4 (m X n), B (p X n), and F (n
Xq), UOB)XBOF)SAOF.

Proof. By Lemma 1 and Proposition 3 we have the result. []

Proposition 5. For any Boolean matrices 4 (m X n), B (p X n), and F (n
Xn), AOBIXBABOF)SANUAUOF).

Proof. By Proposition 1 we have

(UOB)XBABOF))=(UOB)XB= A
By Proposition 4 we have

UOB)XBABOF))=UOB)XBOF)Z4OF.

Therefore .
UOB)XBABOF)=AANUSOH. O

Proposition 6. For any Boolean matrices 4 (m X n), B (p X n), C (pXn),

D (mXn), E(pXn), and F(nXn), if ASD, CZB, and EX B, then
UOB)X(CNANECF)EDAUOE).

Proof. By Proposition 5. [

Proposition 7. For any Boolean matﬁces AmXn), B(pXn), C(pXn),
DmXn), E(pXn), F(nXn), and G(mXp),if ASD, C<B, and E
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= B, then

(GAUCB))X(CAEOCF))=DA(UOF).

Proof. By Proposition 6 we have

(GAUOCB))X(CAEOH)=UAOB)X(CAEOR)=SDAUO
F). 1

Proposition 8. For any n X n Boolean matrices 4, B, and C, if AS C< B,
then

(1) (cAUSB))'=CcAUOB),

2) (CA(B'CA))'=CA(B'OA).

Proof. (1) By Proposition 7 we have the result.

(2) Since 4'= C'=< B', using (1) above, we have (C'A(4'OB))*<C
A (4'<B). Taking transposes on both sides of the above inequality, we obtain
(CABOC4A))*SCcNBTA). O

Proposition 9. For any n X n Boolean matrices 4 and B, if A< B, then

(1) UAUOB))*=ANUOBY,

(2) UNBOA)) SANBOA).

Proof. By Proposition 8. []

Proposition 10. For any n X n Boolean matrices 4 and B, if A =B, then

1) BA(4OB))*=BA(4OB),

2) (BA(B'O4)*<BA(B'OA).

Proof. By Proposition 8. []

Proposition 11 [9, 10]. For any n X n Boolean matrix A,

(1) UA(4O4)) = AN (44,

2) UN(L'OA))P=AN(A'TA).

Proof. By Propositions 9 or 10. []

Proposition 12. For any Boolean matrices 4 (mXn), B (pXn), C (p Xn),
and F (n X q), if C=B, then UOB)X(COF)=AOF.

Proof. By Proposition 4, we have (4B') X(COF) = (4 OB) X (BOF)
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<4AOF. U

Proposition 13. For any Boolean matrices 4 (m X n), B (m X n), and F (n
Xgq), if ASB, then UOB) X(UAOF)=AOF.

Proof. By Proposition 12. []

Proposition 14. For any m X n Boolean matrices 4 and B, if 4 < B, then
UOB) =408

Proof. From Proposition 13 we have the result by setting F =R []

Proposition 15 [16]. For any m X n Boolean matrix 4, (4<A") =44

Proof. By Proposition 14, (4<O4") <A< A", Since I <A< A’, we have
UCA) =404 O

Proposition 16. For any Boolean matrices 4 (m X n), F (nXgq),

1) UOA)XUOF)=4OF,

2) UXANVOUXF)=AXF. |

Proof. (1) Setting B=2A in Proposition 13, we have (4<4") X UOF) =
AOF. Since I=4O A, it follows that (AOA) X (4O F) =AOF.

(2) Replacing 4 by 4 and F by F in (1) above, (A A4) X U OF) =4
F. Then taking complements on both sides of the above equation, we get
UXANVOUXF)=4XF. []

Proposition 17. For any Boolean matrices 4 (m X n), F (g X m),

(D (FOAHXU O =FOA4,

(2) FXAHOMU XA)=FXA4.

Proof. (1) By Proposition 16 (1), (4’ 4) X ('O F)=4' F'. Taking
transposes on both sides of the above equation, we get (FOA4) X (4O A) =F
oA

(2) Using an argument as in the proof of (1) above we get the result from
Proposition 16 (2). []

Proposition 18 [18]. For any m X n Boolean matrix 4,

(1) UOA')XA4=A,
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(2) UXANOa4=4.

Proof. (1) Putting F=1 in Proposition 16 (1), since 4 <OI=4, we have
AOA)XA4=4.

(2) Putting F=1 in Proposition 16 (2), since 4 X 1= A, we have (4 X A")
OCAa=4. 0

Proposition 19 [18]. For any m X n Boolean matrix 4,

(1) 4X (4O a)=4,

(2) AO(4'X 4)=4.

Proof. By Proposition 17. []

Proposition 20. For any Boolean matrices 4 (n X n) and B (n X p), if R=4
ANAOA)AN(BOB), then RP =R,

Proof. By Propositions 11 (1) and 15. []

Proposition 21. For any » X n Boolean matrix 4, if R=AAN (U A) A4
OA'), then R <R.

Proof, By Proposition 20. []

Proposition 22. For any n X n Boolean matrix 4, if R=ANUA) AN (4
OA4'), then R <R

Proof. Replacing 4 by A4 in Proposition 21 we have the result. []

Proposition 23. For any n X n Boolean matrix 4, if 4’=4 and R=AN (4
OA)N(UAOA), then R =R,

Proof. By Proposition 22 and symmetry of R. [ ]

Proposition 24. For any n X n Boolean matrix S, if R=SAS'A ({S§VS')
CISASNAU(SAS)O(SV SY)), then R =R.

Proof. Letting 4 =S8 VS’ in Proposition 23 we have the result. []

Proposition 25 [19]. For any »n X n Boolean matrix S, if P=SV [(3‘/\5’)
A((SAS)XS)V(SX(SAS)))] and R=P AP’, then R* =R

Proof. Obviously ‘

P=SALVS)V{((EVSIOS) AGOS VSN,
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P=SALISVS)IVEOEVE)NAUSVSIOS)].
Then
R=PAP'
=SAF AL VSV ((sVS)IOS) ABOSVSNIALEVS) VI((E
OEVSNAUSVS)IOCS))] |

=SASA((SVSIOCS)A(SCEVSNAEOEVS))ASVS)IO
S’)

=SATAUSVS)IOS) A ((SVS)OF) A BSOSV A FO(SVS))

=SASA((SVS)O(SAS))ASAS)O(SVS)).

Thus by Proposition 24 we have R° =R. []
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