Some Generalized Properties of Preference Relations

HASHIMOTO, Hiroshi

Abstract

By using Boolean matrices, well-known properties of preference relations are extended and the necessary conditions for the properties are clarified. In particular, properties of the asymmetric part and the symmetric part of a relation are examined. These properties are related to quasi transitivity.

Keywords: Preference relation; Quasi transitivity

1 Introduction

We generalize well-known properties of preference relations and clarify the necessary conditions for the properties. In particular, properties of the asymmetric part and the symmetric part of a relation are examined. These properties are related to quasi transitivity. In the following, binary relations are represented by Boolean matrices.

2 Definitions and results

Let $R = [r_{ij}]$, $S = [s_{ij}]$, and $T = [t_{ij}]$ be $n \times n$ Boolean matrices over $\{0, 1\}$. We define operations as follows.

$$R \lor S = [r_{ij} \lor s_{ij}] = [\max (r_{ij}, s_{ij})]$$

$$R \land S = [r_{ij} \land s_{ij}] = [\min (r_{ij}, s_{ij})]$$

$$R \lor S = [(r_{i1} \land s_{1j}) \lor \cdots \lor (r_{in} \land s_{nj})]$$

$$\overline{R} = [\overline{r_{ij}}] = [1 - r_{ij}]$$

 $R' = [r_{ji}]$ (transpose)

We denote the unit matrix by $I = [\delta_{ij}]$ (δ_{ij} is the Kronecker delta), the zero matrix by O, and the universal matrix, in which all elements are one, by J.

Proposition 1. $R \lor R' \lor S = J$, $R \land \overline{R'} \land S = O \Leftrightarrow R \land \overline{R'} = \overline{R'} \land \overline{S}$

Proof. The Proof is immediate.

Proposition 2. If $R \lor R' \lor S = J$, $R \land \overline{R'} \land S = O$, then $(R \land \overline{R'}) \times R \leq \overline{T'} \Leftrightarrow R \times T$ $\leq R \lor S'$

Proof. Since $(\overline{R'} \wedge \overline{S}) \times R \leq \overline{T'} \Leftrightarrow R \times T \leq R \vee S'$, we obtain the result by Proposition 1.

Proposition 3. If $R \lor R' \lor S = J$, $R \land \overline{R'} \land S = O$, then $R \times (R \land \overline{R'}) \le \overline{T'} \Leftrightarrow T \times R$ $\le R \lor S'$

Proof. The proof is similar to that of Proposition 2.

Proposition 4. If $R \vee R' \vee I = J$, then $(R \wedge \overline{R'}) \times R \leq \overline{R'} \Leftrightarrow R \times R \leq R \vee I$

Proof. This proposition follows immediately from Proposition 2.

Proposition 5. If $R \vee R' = J$, then $(R \wedge \overline{R'}) \times R \leq \overline{R'} \Leftrightarrow R \times R \leq R$

Proof. This proposition follows immediately from Proposition 4.

Proposition 6. If $R \vee R' = J$, then $(R \wedge \overline{R'}) \times R \leq R \wedge \overline{R'} \Leftrightarrow R \times R \leq R$

Proof. Since $R \vee R' = J \Leftrightarrow \overline{R'} = R \wedge \overline{R'}$, we have the result by Proposition 5.

Proposition 7. $(R \wedge \overline{R'}) \times R \leq R \wedge \overline{R'} \Leftrightarrow (R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}, (R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'}$

Proof. Since $R = (R \wedge \overline{R'}) \vee (R \wedge R')$, the proof is immediate.

Proposition 8 (Sen, 1969; Sen, 1970). $R \vee R' = J$, $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$, $(R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'} \Rightarrow R \times R \leq R$

Proof. This proposition follows immediately from Propositions 6 and 7. \square Proposition 9. $R \vee R' \vee I = J$, $(R \wedge \overline{R'}) \times (R \wedge R') \leq \overline{R'} \Rightarrow (R \wedge R') \times (R \wedge \overline{R'})$ $\leq R \wedge \overline{R'}$

Proof. Suppose that $r_{ik} \wedge r_{ki} \wedge r_{kj} \wedge \overline{r_{jk}} = 1$. Then $i \neq j$. It will be shown that

 $r_{ij} \wedge \overline{r_{ji}} = 1$. Assume, by way of contradiction, $r_{ij} \wedge \overline{r_{ji}} = 0$.

Case 1. $r_{ij}=0$. Then $r_{ji}=1$. Since $r_{ji}\wedge \overline{r_{ij}}\wedge r_{ik}\wedge r_{ki}=1$, we have $\overline{r_{kj}}=1$, which is a contradiction.

Case 2. $r_{ii}=1$, $r_{ij}=1$. Since $r_{kj}\wedge \overline{r_{jk}}\wedge r_{ji}\wedge r_{ij}=1$, we have $\overline{r_{ik}}=1$, which is a contradiction.

Proposition 10. $R \vee R' \vee I = J$, $(R \wedge R') \times (R \wedge \overline{R'}) \leq \overline{R'} \Rightarrow (R \wedge \overline{R'}) \times (R \wedge R')$ $\leq R \wedge \overline{R'}$

Proof. The proof is similar to that of Proposition 9.

Proposition 11. $(R \wedge \overline{R'}) \times (R \wedge R') \leq \overline{R'} \Leftrightarrow (R \wedge R') \times (R \wedge \overline{R'}) \leq \overline{R'}$

Proof. (\Rightarrow). Suppose that $r_{ik} \wedge r_{ki} \wedge r_{kj} \wedge \overline{r_{jk}} = 1$. It will be shown that $r_{ji} = 0$. Assume, by way of contradiction, $r_{ji} = 1$.

Case 1. $r_{ij}=0$. Since $r_{ji}\wedge \overline{r_{ij}}\wedge r_{ik}\wedge r_{ki}=1$, we have $\overline{r_{kj}}=1$, which is a contradiction.

Case 2. $r_{ij}=1$. Since $r_{kj}\wedge \overline{r_{jk}}\wedge r_{ji}\wedge r_{ij}=1$, we have $\overline{r_{ik}}=1$, which is a contradiction.

Thus we have $(R \wedge R') \times (R \wedge \overline{R'}) \leq \overline{R'}$

(\Leftarrow). By the same arguments used in (\Rightarrow), we have $(R \land \overline{R'}) \times (R \land R') \leq \overline{R'}$. \square Proposition 12. If $R \lor R' \lor I = J$, then the following are equivalent.

- $(1) (R \wedge \overline{R'}) \times (R \wedge R') \leq \overline{R'}$
- $(2) (R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'}$
- (3) $(R \wedge R') \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$

Proof. This proposition follows immediately from Propositions 9 and $10.\Box$

Proposition 13 (Sonnenschein, 1965; Lorimer, 1967; Sen, 1970). If $R \vee R'$

 $\vee I = J$, then $(R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'} \Leftrightarrow (R \wedge R') \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$

Proof. This proposition follows immediately from Proposition 12.

Proposition 14. $R \lor R' \lor I = J$, $(R \land \overline{R'}) \times (R \land R') \le \overline{R'} \Rightarrow (R \land R') \times (R \land R')$

 $\leq (R \wedge R') \vee I$

Proof. Suppose that $r_{ik} \wedge r_{ki} \wedge r_{kj} \wedge r_{jk} = 1$. It will be shown that $(r_{ij} \wedge r_{ji}) \vee$

 $\delta_{ij}=1$. For i=j, the proof is trivial. We consider the case $i \neq j$. Assume, by way of contradiction, $r_{ij} \wedge r_{ji} = 0$.

Case 1. $r_{ij}=0$. Then $r_{ji}=1$. Since $r_{ji}\wedge \overline{r_{ij}}\wedge r_{ik}\wedge r_{ki}=1$, we have $\overline{r_{kj}}=1$, which is a contradiction.

Case 2. $r_{ii}=0$. Then $r_{ij}=1$. Since $r_{ij}\wedge \overline{r_{ji}}\wedge r_{jk}\wedge r_{kj}=1$, we have $\overline{r_{ki}}=1$, which is a contradiction.

Proposition 15. $R \vee R' = J$, $(R \wedge \overline{R'}) \times (R \wedge R') \leq \overline{R'} \Rightarrow (R \wedge R') \times (R \wedge R') = R \wedge R'$

Proof. This proposition follows immediately from Proposition 14.

Proposition 16 (Sen, 1969; Sen, 1970). $R \vee R' = J$, $(R \wedge \overline{R'}) \times (R \wedge R') \le R \wedge \overline{R'} \Rightarrow (R \wedge R') \times (R \wedge R') = R \wedge R'$

Proof. This proposition follows immediately from Proposition 15.

Proposition 17. $R \vee R' \vee I = J$, $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq \overline{R'}$, $(R \wedge R') \times (R \wedge R') \leq R \Rightarrow R \times R \leq R$

Proof. Suppose that $r_{ik} \wedge r_{kj} = 1$. It will be shown that $r_{ij} = 1$. If i = k or k = j, then $r_{ij} = 1$. We consider the case where $i \neq k$ and $k \neq j$. Assume, by way of contradiction, $r_{ij} = 0$.

Case 1. $i \neq j$. Then $r_{ji}=1$.

Subcase 1.1. $r_{ki}=0$. Since $r_{ji}\wedge \overline{r_{kj}}\wedge r_{ik}\wedge \overline{r_{ki}}=1$, we have $\overline{r_{kj}}=1$, which is a contradiction.

Subcase 1.2. $r_{jk}=0$. Since $r_{kj}\wedge \overline{r_{jk}}\wedge r_{ji}\wedge \overline{r_{ij}}=1$, we have $\overline{r_{ik}}=1$, which is a contradiction.

Subcase 1.3. $r_{ki}=1$ and $r_{jk}=1$. Since $r_{ik} \wedge r_{ki} \wedge r_{kj} \wedge r_{jk}=1$, we have $r_{ij}=1$, which is a contradiction.

Case 2. i = j. Then $r_{ik} \wedge r_{ki} = 1$, $r_{ii} = 0$. Since $(r_{ik} \wedge r_{ki}) \wedge (r_{ki} \wedge r_{ik}) = 1$, we have $r_{ii} = 1$, which is a contradiction.

Proposition 18 (Sen, 1969; Sen, 1970; Roubens and Vincke, 1985). $R \vee R'$ $\vee I = J$, $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$, $(R \wedge R') \times (R \wedge R') \leq R \wedge R' \Rightarrow R \times R \leq R$

Proof. This proposition follows immediately from Proposition 17. Proposition 19 (Sen, 1969; Sen, 1970). $R \vee R' \vee I = J$, $(R \wedge \overline{R'}) \times (R \wedge \overline{R'})$ $\leq R \wedge \overline{R'}, (R \wedge R') \times (R \wedge R') \leq R \wedge R' \Rightarrow (R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'}$ Proof. Since $R \times R \leq R \Rightarrow (R \wedge \overline{R'}) \times (R \wedge R') \leq R \wedge \overline{R'}$, we have the result by Proposition 18. Proposition 20. If $R \vee S' \vee I = J$ and $T \leq R$, then $(S \wedge \overline{R'}) \times (S \wedge \overline{R'}) \leq \overline{T'} \Leftrightarrow$ $(S \wedge \overline{R'}) \times T \leq R$ Proof. (\Rightarrow) . Suppose that $(s_{ik} \wedge \overline{r_{ki}}) \wedge t_{kj} = 1$. Then $i \neq j$. It will be shown that $r_{ij}=1$. Assume, by way of contradiction, $r_{ij}=0$. We have $s_{ji}=1$. Since s_{ji} $\wedge \overline{r_{ij}} \wedge S_{ik} \wedge \overline{r_{ki}} = 1$, we have $\overline{t_{kj}} = 1$, which is a contradiction. (\Leftarrow) . Suppose that $s_{ik} \wedge \overline{r_{ki}} \wedge s_{kj} \wedge \overline{r_{jk}} = 1$. It will be shown that $t_{ji} = 0$. Assume, by way of contradiction, $t_{ji}=1$. Since $s_{kj}\wedge \overline{r_{jk}}\wedge t_{ji}=1$, we have $r_{ki}=1$, which is a contradiction. Proposition 21. If $R \vee S' \vee I = J$ and $T \leq R$, then $(S \wedge \overline{R'}) \times (S \wedge \overline{R'}) \leq \overline{T'} \Leftrightarrow T$ $\times (S \wedge \overline{R'}) \leq R$ Proof. The proof is similar to that of Proposition 20. Proposition 22. If $R \vee R' \vee I = J$, then $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq \overline{R'} \Leftrightarrow (R \wedge \overline{R'}) \times R$ $\leq R$ Proof. This proposition follows immediately from Proposition 20. Proposition 23. If $R \vee R' \vee I = J$, then $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq \overline{R'} \Leftrightarrow R \times (R \wedge \overline{R'})$ $\leq R$ Proof. This proposition follows immediately from Proposition 21. Proposition 24. $(S \land \overline{R'}) \times S \leq R \Rightarrow (S \land \overline{R'}) \times (S \land \overline{R'}) \leq R \land \overline{S'}$ Proof. Suppose that $s_{ik} \wedge \overline{r_{ki}} \wedge s_{kj} \wedge \overline{r_{jk}} = 1$. It will be shown that $r_{ij} \wedge \overline{s_{ji}} = 1$. Since $s_{ik} \wedge \overline{r_{ki}} \wedge s_{kj} = 1$, we have $r_{ij} = 1$. Assume, by way of contradiction, $s_{ij} = 1$. Since $s_{kj} \wedge \overline{r_{jk}} \wedge s_{ji} = 1$, we have $r_{ki} = 1$, which is a contradiction. Proposition 25. $S \times (S \wedge \overline{R'}) \leq R \Rightarrow (S \wedge \overline{R'}) \times (S \wedge \overline{R'}) \leq R \wedge \overline{S'}$

Proof. The proof is similar to that of Proposition 24.

Proposition 26. $(R \wedge \overline{R'}) \times R \leq R \Rightarrow (R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$

Proof. This proposition follows immediately from Proposition 24.

Proposition 27. $R \times (R \wedge \overline{R'}) \leq R \Rightarrow (R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$

Proof. This proposition follows immediately from Proposition 25.

Proposition 28. If $R \lor R' \lor I = J$, then the following are equivalent.

- $(1) (R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'}$
- $(2) (R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq \overline{R'}$
- (3) $(R \wedge \overline{R'}) \times R \leq R$
- (4) $R \times (R \wedge \overline{R'}) \leq R$

Proof. This proposition follows immediately from Propositions 22, 23, 26, and $27.\square$

Proposition 29 (Sen, 1969). If $R \vee R' \vee I = J$, then $(R \wedge \overline{R'}) \times (R \wedge \overline{R'}) \leq R \wedge \overline{R'} \Leftrightarrow (R \wedge \overline{R'}) \times R \leq R$

Proof. This proposition follows immediately from Proposition 28.

References

Lorimer, P., 1967. A note on orderings, Econometrica 35, 537-539.

Roubens, M., Vincke, Ph., 1985. Preference Modelling (Springer-Verlag, Berlin).

Sen, A., 1969. Quasi-transitivity, rational choice and collective decisions, Review of Economic Studies 36, 381-393.

Sen, A. K., 1970. Collective choice and social welfare (Holden-Day, San Francisco).

Sonnenschein, H., 1965. The relationship between transitive preference and the structure of the choice space, Econometrica 33, 624-634.