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Abstract

We solve Chandrasekhar’s integration equation for radiative transfer in the plane-
parallel atmosphere by iterative integration. The primary thrust in radiative trans-
fer has been to solve the forward problem, i.e., to evaluate the radiance, given the
optical thickness and the scattering phase function. In the area of satellite remote
sensing, our problem is the inverse problem: to retrieve the surface reflectance and
the optical thickness of the atmosphere from the radiance measured by satellites. In
order to retrieve the optical thickness and the surface reflectance from the radiance
at the top-of-the atmosphere(TOA), we should express the radiance at TOA ”ex-
plicitly” in the optical thickness and the surface reflectance. Chandrasekhar formal-
ized radiative transfer in the plane-parallel atmosphere in a simultaneous integral
equation, and he obtained the second approximation. Since then no higher approx-
imation has been reported. In this paper we obtain the third approximation of the
scattering function. We integrate functions derived from the second approximation
in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can
obtain the indefinite integral rather easily in the form of a series expansion. How-
ever the integrals at the upper limit, ∞, are not yet known to us. We can assess the
converged values of those series expansions at ∞ through calculus. For integration
we choose coupling pairs to avoid unnecessary terms in the outcome of integral and
discover that the simultaneous integral equation can be deduced to the mere inte-
gral equation. Through algebratic calculation, we obtain the third approximation
as a polynomial of the third degree in the atmospheric optical thickness.
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1 Introduction

Radiative transfer in a plane parallel atmosphere has been a major scientific
and mathematical subject for many years. Chandrasekhar’s historical work1

in 1960 formulated the radiative transfer process and derived the simultaneous
integral equation for the scattering function and transmitted functions.

Since then, there have been various methods to calculate scattered radiance
at the top of the atmosphere. Hansen2 and Gaudy3 summarized the pros and
cons of those calculating schemes. The primary thrust for those method has
been to solve the forward problem, that is, to evaluate the radiance at the
top of atmosphere, given an optical thickness and a surface reflectance. In the
forward problem we need algorithms, not an explicit expression of radiance.

From a space remote-sensing viewpoint, our concern is the inverse problem,
i.e., to retrieve both the optical thickness and the surface reflectance from
satellite observed data. The conventional method is to make a look-up ta-
ble prepared with calculations of the forward problem and to interpolate the
solutions using the look-up table.

Since the launch of the Coastal Zone Color Scanner(CZCS), aboard Nimbus-
7, in 1987, many algorithms in the visible and near-infrared bands have been
developed to retrieve chlorophyll concentration in the ocean4. Nearly ninety
percent of satellite observed radiance comes from light scattered by the atmo-
sphere and from the remaining ten percent comes from the ocean, from which
chlorophyll concentration is retrieved.

Hence the atmospheric correction is the essential part of the retrieval algorithm
for ocean color. The observed target is measured from only one direction in
current satellite observations. From this single observed data we must retrieve
two parameters: surface reflectance and atmospheric optical thickness.

Recently, multi-directional observation data from Polarization and Direction-
ality of the Earth’s Reflectances (POLDER)5 or Multi-angle Imaging Spectro
Radiometer(MISR) have become available. Using these data we can, in princi-
ple retrieve the two unknown parameters i.e., the optical thickness and surface
reflectance, in a single band from multi-directional observations. If we solve
this problem with look-up tables and interpolations, the look-up tables might
be enormously large.

So we have to seek the analytical solution, or explicit expressions of radiance
at the top of the atmosphere in terms of both optical thickness and surface
reflectance.

Chandrasekhar gave the second approximation to the simultaneous integral
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equation in an isotropic, plane-parallel atmosphere. Since then no further work
has been provided on higher-order approximations.

In this paper, as the first step, we solve the simultaneous integral equation in
an isotropic, plane-parallel atmosphere up to the third order approximation.
The solution entails iterative analytical integration (not numerical integration)
of the scattered and transmitted functions on a unit semi-sphere surface. The
scattered and transmitted functions are then expanded in a series expansion
of the optical thickness.

Chandrasekhar’s Simultaneous Integral Equation is introduced, and the iter-
ation scheme for the scattering and transmitted functions are given in section
two. The peculiar characteristics of integration in radiative transfer are dis-
cussed in section three. The second and third approximations are given in
section four, and the conclusion is given in section five.

2 Chandrasekhar’s Integral Equation

2.1 Scattering and Transmission Function

Radiance I(0, i1), emerging from the top of the atmosphere (TOA), in the
direction i1 is expressed below.

I(0, i1) =
1

4π cos θ1

∫
S(τ, i1, i0)I(0, i0)dΩ0. (1)

Here I(0, i0)is the incident radiance to TOA in the direction i0, 0 is the vertical
coordinate of the TOA, θ1 is the zenith angle of the direction of the scattered
intensity, Ω0 is the solid angle subtended by the incident radiance, τ is the
optical thickness of the layer, S(τ, i1, i0) is the scattering function, and the
integral domain is an upper half of a unit sphere. In the above equation, it is
assumed that no radiance is given from the bottom. In the same manner, the
radiance transmitted to the bottom of the atmosphere, I(τ, i4) in the direction
i4 is expressed as

I(τ, i4) =
1

4π cos θ4

∫
T (τ, i4, i0)I(0, i0)dΩ0 + exp(− τ

cos θ4

)I(0, i4). (2)

here θ2 is the zenith angle of the direction of the transmitted radiance, and
T (τ, i5, i0) is the transmitted function. The scattering function S(τ, i1, i0) and
transmitted function T (τ, i4, i0) satisfy a set of simultaneous integral equations
that were first introduced by Chandrasekhar1.
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S(τ, i1, i0) = µ10[1 − exp(− τ

µ10

)]P (i1, i0)

+ µ10

∫
P (i1, i3)S(τ, i3, i0)

dΩ3

4πµ3

− µ10e
− τ

µ0

∫
T (τ, i1, i3)P (i3, i0)

dΩ3

4πµ3

+ µ10

∫
S(τ, i1, i2)P (i2, i0)

dΩ2

4πµ2

− µ10e
− τ

µ1

∫
P (i1, i2)T (τ, i2, i0)

dΩ2

4πµ2

+ µ10

∫ ∫
S(τ, i1, i2)P (i2, i3)S(τ, i3, i0)

dΩ2

4πµ2

dΩ3

4πµ3

−µ10

∫ ∫
T (τ, i1, i3)P (i3, i2)T (τ, i2, i0)

dΩ2

4πµ2

dΩ3

4πµ3

(3)

T (τ, i4, i0) = µ̄40[exp(− τ

µ0

) − exp(− τ

µ4

)]P (i4, i0)

+ µ̄40

∫
P (i4, i2)T (τ, i2, i0)

dΩ2

4πµ2

− µ̄40e
− τ

µ4

∫
P (i4, i3)S(τ, i3, i0)

dΩ3

4πµ3

+ µ̄40e
− τ

µ0

∫
S(τ, i4, i3)P (i3, i0)

dΩ3

4πµ3

− µ̄40

∫
T (τ, i4, i2)P (i2, i0)

dΩ2

4πµ2

+ µ̄40

∫ ∫
S(τ, i4, i3)P (i3, i2)T (τ, i2, i0)

dΩ2

4πµ2

dΩ3

4πµ3

− µ̄40

∫ ∫
T (τ, i4, i2)P (i2, i3)S(τ, i3, i0)

dΩ2

4πµ2

dΩ3

4πµ3

(4)

Here, 1
µ10

= 1
µ1

+ 1
µ0

and 1
¯µ40

= 1
µ4

− 1
µ0

and µn is cos of the zenith angle of the
direction in.

2.2 Iteration Scheme and Approximation

The simultaneous integral equations of scattering and transmission can be
solved by successive iteration. The first iterations are the first terms on the
right-hand side in equations (3) and (4), expressed below.

S1(τ, i1, i0) = µ10(1 − exp(− τ

µ10

))P (i1, i0) (5)

T1(τ, i4, i0) = µ̄40[exp(− τ

µ0

) − exp(− τ

µ4

)]P (i4, i0) (6)

These first iterations become the first approximation for the scattering and
transmitted functions.

Inserting the first iterations into the integrals in the original integral equations,
the second approximations, S2(τ, i1, i0) and T2(τ, i4, i0) are obtained.
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S2(τ, i1, i0) = S1(τ, i1, i0)

+ µ10

∫
P (i1, i3)S1(τ, i3, i0)

dΩ3

4πµ3

− µ10e
− τ

µ0

∫
T1(τ, i1, i3)P (i3, i0)

dΩ3

4πµ3

+ µ10

∫
S1(τ, i1, i2)P (i2, i0)

dΩ2

4πµ2

− µ10e
− τ

µ1

∫
P (i1, i2)T1(τ, i2, i0)

dΩ2

4πµ2

+ µ10

∫ ∫
S1(τ, i1, i2)P (i2, i3)S1(τ, i3, i0)

dΩ2

4πµ2

dΩ3

4πµ3

−µ10

∫ ∫
T1(τ, i1, i3)P (i3, i2)T1(τ, i2, i0)

dΩ2

4πµ2

dΩ3

4πµ3

= S1(τ, i1, i0) + ∆S2(τ, i1, i0) (7)

T2(τ, i4, i0) = T1(τ, i4, i0) +

µ̄40

∫
P (i4, i2)T1(τ, i2, i0)

dΩ2

4πµ2

− µ̄40e−
τ

µ4

∫
P (i4, i3)S1(τ, i3, i0)

dΩ3

4πµ3

+ µ̄40e
− τ

µ0

∫
S1(τ, i4, i3)P (i3, i0)

dΩ3

4πµ3

− µ̄40

∫
T1(τ, i4, i2)P (i2, i0)

dΩ2

4πµ2

+ µ̄40

∫ ∫
S1(τ, i4, i3)P (i3, i2)T1(τ, i2, i0)

dΩ2

4πµ2

dΩ3

4πµ3

− µ̄40

∫ ∫
T1(τ, i4, i2)P (i2, i3)S1(τ, i3, i0)

dΩ2

4πµ2

dΩ3

4πµ3

= T1(τ, i4, i0) + ∆T2(τ, i4, i0) (8)

Here ∆S2(τ, i1, i0) and ∆T2(τ, i1, i0) are second iterations for the scattering
and transmitted functions respectively.

We assume isotropic scattering or P (i1, i0) = 1 and introduce two intermediate
functions U2(τ, i1) and V2(τ, i4) defined below.

U2(τ, i1) =

1∫
0

S1(τ, i3, i1)
dµ3

µ3

=

1∫
0

S1(τ, i1, i2)
dµ2

µ2

(9)

V2(τ, i4) =

1∫
0

T1(τ, i2, i4)
dµ2

µ2

=

1∫
0

T1(τ, i4, i3)
dµ3

µ3

(10)

Using U2(τ, i1) and V2(τ, i4), the second iterations are given below.

∆S2(τ, i1, i0) =
µ10

2
[U2(τ, i0) − exp(− τ

µ0

)V2(τ, i1) + U2(τ, i1)

− exp(− τ

µ1

)V2(τ, i0) + U2(τ, i0)U2(τ, i1) − V2(τ, i0)V2(τ, i1)] (11)
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∆T2(τ, i4, i0) =
µ̄40

2
[V2(τ, i0) − V2(τ, i4) + exp(− τ

µ0

)U(τ, i4)

− exp(− τ

µ4

)U2(τ, i0) + U2(τ, i4)V2(τ, i0) − V2(τ, i4)U2(τ, i0)] (12)

For the higher iterations, replacing 2 by n in the above equations, ∆Sn(τ, i1, i0)
and ∆Tn(τ, i4, i0) are expressed by Un(τ, i0) and Vn(τ, i0).

The functions Un(τ, i0) and Vn(τ, i0) satisfy the recurrence relationships of the
integral expressed below.

Un+1(τ, i6) =

1∫
0

[Un(τ, i6) − exp(− τ

µ6

)Vn(τ, i) + Un(τ, i) (13)

− exp(−τ

µ
)Vn(τ, i6) + Un(τ, i6)Un(τ, i) − Vn(τ, i6)Vn(τ, i)]

µ6

µ6 + µ
dµ

Vn+1(τ, i7) =

1∫
0

[Vn(τ, i7) − Vn(τ, i) + exp(− τ

µ7

)Un(τ, i) (14)

− exp(−τ

µ
)Un(τ, i7) + Un(τ, i)V2(τ, i7) − Vn(τ, i)Un(τ, i7)]

µ7

µ7 − µ
dµ

Owing to the iteration scheme, we obtain the iterations, ∆Sn(τ, i1, i0). The
scattering function S(τ, i1, i0) is approximated by the series of ∆Sn(τ, i1, i0).

S(τ, i1, i0) = S1(τ, i1, i0) + ∆S2(τ, i1, i0) + ∆S3(τ, i1, i0) + · · ·· (15)

In this paper, we approximate the scattering function by the third approx-
imation S3(τ, i1, i0). Expanding the approximated scattering function into a
series expansion in τ and truncating them up to the third degree, we obtain
algebratic equations with τ as a variable. The truncated first approximation
is given below.

S1(τ, i1, i0) = τ − (
1

µ1

+
1

µ0

)
τ 2

2!
+ (

1

µ1

+
1

µ0

)2 τ 3

3!
(16)

The first term of the first approximation corresponds to the single scatter-
ing function. In the section four we derive the truncated second and third
approximations for the scattering function.

In the following, the variable µi, i.e., cos of zenith angle θi is replaced by
pi = 1/µi.
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3 Consideration on Integration

3.1 Form of Integration

The integration that we perform to solve Chandrasekhar’s integration equation
has the form given by,

F (τ, p8, p9) =

∞∫
1

f(τp + τp8)

p(p + p9)
dp. (17)

The function f(p) is expressed as a power series expansion in p as below.

f(p) =
∞∑

n=1

(−1)nanpn

n!
(18)

If the integrand in equation (17)is O(1/pβ) (β > 1) as p = ∞, the integration
converges. All the functions in the second and third iterations satisfy this
condition. Hence they converge. To evaluate the integration for p9 6= 0 we
must decompose the equation (18) into partial fractions. The integrations
of decomposed partial fractions shown below do not necessarily converge by
themselves because the degrees in the denominators become 1 and they no
more satisfy the condition for convergence of integration mentioned above.
For these cases we must insert the identical upper limit into both integrals
and make it approach ∞ synchronously.

F (τ, p8, p9) = lim
p→∞

1

p9

[

p∫
1

f(τp + τp8)
dp

p
−

p+p9∫
1+p9

f(τp + τp8 − τp9)
dp

p
] (19)

As the integrals, shown above, have a same form, we use, at first, the second
integral for further calculation. Substituting equation (18) into equation(17),
the second integration is easily indefinitely integrated as below.

∞+p9∫
1+p9

f(τp + τ(p8 − p9))
dp

p
(20)

=
∞∑

n=1

(−τ)nan

n!
[
n−1∑
r=0

Cn
r pn−r(p8 − p9)

r

(n − r)
+ (log p)(p8 − p9)

n]∞+p9
1+p9
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Inserting p = 1 + p9 we obtain the value at the lower limit. But at the upper
limit the coefficient of τn, i,e, the term in the bracket does not converge as
p approaches ∞. Changing the order of summation, we obtain the form of
the power series expansion in (p8 − p9) with coefficients of −τ ( refer to the
Appendix 1):

∞+p9∫
1+p9

f(τp + τ(p8 − p9))
dp

p
= lim

p→∞
[
∞∑

r=0

Fr(τ, p + p9)
(−τ(p8 − p9))

r

r!
]

−
∞∑

n=1

fn(1 + p9, p8 − p9)
an(−τ)n

n!
− log(1 + p9)f(τ(p8 − p9)) (21)

Here, the two coefficients are expressed below.

fn(p1, p2) =
n−1∑
r=0

Cn
r pn−r

1 pr
2

(n − r)
=

n∑
r=1

Cn
r pr

1p
n−r
2

r

(22)

Fr(τ, p) =
∞∑

n=1

(−1)nan+r(τp)n

nn!
+ ar log(p). (23)

Here a0 is conventionally designated 0. The problem for the integration is to
evaluate the value of the function Fr(τ, p) as p approaches ∞.

Fr(τ,∞) = lim
p→∞

[
∞∑

n=1

an+r(−τp)n

nn!
+ ar log(p)]. (24)

(r = 0, 1, 2, · · ··)

Fr(τ,∞) except for r = 0 in the second and third approximations converge
and their converged values at ∞ are given in the following subsection.

Substituting p9 = 0 in equation (21) and then subtracting equation (21), we
obtain the function F (τ, p8, p9).

F (τ, p8, p9)

=
1

p9

[
∞∑

r=0

Fr(τ,∞)
(−τp8)

r

r!
−

∞∑
r=0

[Fr(τ,∞ + p9)
(−τ(p8 − p9))

r

r!
]

−
∞∑

n=1

{fn(1, p8) − fn(1 + p9, p8 − p9)}
an(−τ)n

n!

+ log(1 + p9)f(τ(p8 − p9)) (25)
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As the Fr(τ,∞), except for r = 0, converges in the second and third approx-
imation, Fr(τ,∞) = Fr(τ,∞ + p9) holds. The first term, F0(τ,∞), does not
necessarily converge by itself. However combined F0(τ, p)−F0(τ, p+p9) in the
synchronized approach of p to ∞ becomes 0, as shown below.

F0(τ, p) − F0(τ, p + p9) =
∞∑

n=1

(−1)nan(τp)n

nn!
]p=∞
p=∞+p9

= −
∞+p9∫
∞

f(τp)dp

p
(26)

This term becomes finite, even though the integration
∫ ∞
1

f(τp)dp
p

does not
converge. Because the integral interval is p9, or bounded, in the synchronous
approach of infinite integration, and the integrand f(τp)/p is also bounded.
In most cases f(τp)/p approaches to 0 as p approaches 0. Then the function
F (τ, p8, p9) has a reduced form shown below.

F (τ, p8, p9) =
1

p9

[
∞∑

r=1

Fr(τ,∞)(pr
8 − (p8 − p9)

r)
(−τ)r

r!

−
∞∑

n=1

{
n∑

r=1

Cn
r

r
(pn−r

8 − (1 + p9)
r(p8 − p9)

n−r)}an(−τ)n

n!
]

+
log(1 + p9)

p9

f(τ(p8 − p9)) (27)

We can eliminate the log terms in the equation above, by coupling terms
in the integrand. If the two terms fa(p, p7) and fb(p, p8) satisfy fa(−p9, p7) =
fb(−p9, p8), the coupling terms integration do not yield the log terms, as shown
below.

F (τ, p8, p9) =

∞∫
1

fa(τp + τp7)

p(p + p9)
dp −

∞∫
1

fb(τp + τp8)

p(p + p9)
dp

=
1

p9

[· · · − · · ·] +
log(1 + p9)

p9

fa(τ(p7 − p9)) −
log(1 + p9)

p9

fb(τ(p8 − p9))

=
1

p9

[· · · − · · ·] (28)

The the coefficient of (−τ)n is a finite polynomial in p9, the degree of which
is n − 1. Note that τ is included in the the coefficient Fr(τ,∞). The function
F (τ, p8, p9) has a form below.

F (τ, p8, p9) =
∞∑

n=1

{
n−1∑
r=0

Kr
n(p8, log τ)pr

9)}
an(−τ)n

n!
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+
log(1 + p9)

p9

f(τ(p8 − p9)) (29)

For the case of p9 = 0, the integration is reduced to integration by parts.

∞∫
1

f(τ(p8 + p))
dp

p2
=

f(τ(p8 + p))

−p
]∞1 −

∞∫
1

f ′(τ(p8 + p))
dp

−pτ

= f(τ(p8 + 1)) −
∞∫
1

(
∞∑

n=0

an+1(−(p + p8)τ)n

p
)dp (30)

The first term can be evaluated with knowledge of f(p), and the derivative of
f(p) has a easy form of integral.

3.2 Integrated Functions and Their Converged Values at Infinity

In this section several integrated functions, which are necessary for the second
and third iterations and their converged values at infinity, are discussed6 7 8.

(1) Function eax(p)

We define the function eax(p) as,

eax(p) =
∞∑

n=1

(−1)npn

nn!
. (31)

The function eax(p) is equal to the indefinite integral of (1 − exp(−p))/p.

∫ exp(−p) − 1

p
dp =

∫
(

∞∑
n=1

(−1)npn

n!
)
dp

p
=

∞∑
m=1

(−1)npn

nn!
(32)

The derivative of eax(p) is given below.

eax′(p) = (
∞∑

n=1

(−1)npn−1

n!
) =

exp(−p) − 1

p
(33)

In order to evaluate eax(p1) at p1 = ∞, we evaluate 1/1 + 1/2 + · · · + 1/n.
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n∑
r=1

1

r
=

1∫
0

(1 + x + x2 + + · · · +xn−1)dx =

+1∫
0

1 − xn

1 − x
dx

=

1∫
+0

1 − (1 − y)n

y
dy =

n∫
+0

1 − (1 − p
n
)n

p
dp (34)

Where variables are changed: y = 1− x, p = ny. Subtracting
∫ n
1

dp
p

from both
sides in the equation above, we obtain below.

n∑
r=1

1

r
−

n∫
1

dp

p
=

n∫
+0

1 − (1 − p
n
)n

p
dp − log n. (35)

As n → ∞, the term (1 − p
n
)n approaches to exp−p and the left hand side of

the above equation is γ. Here γ = 0.577216 is Euler’s constant.

γ = lim
n→∞

[

n∫
+0

1 − exp(−p)

p
dp − log n] (36)

The right hand side of equation above is equal to −
mathrmeax(n) − log n. Thus we obtain the value of eax(p) at p = ∞.

lim
p→∞

(eax(p) + log p) = −γ (37)

Using the function eax(p), we can evaluate the exponential integral function
E1(τ),

E1(τ) =

1∫
0

exp(− τ
µ
)

µ
dµ =

∞∫
τ

exp(−p)

p
dp =

∞∫
τ

eax′(p)dp +

∞∫
τ

dp

p
dp

= −γ − log τ −
∞∑

n=1

(−1)nτn

nn!
(38)

Henceforce, we designate C = γ + log τ .

(2)Function ebx(p)9

Similarly we define a function ebx(p) as

ebx(p) =
∫ eax(p)

p
dp =

∞∑
m=1

(−1)npn

nnn!
. (39)
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To evaluate ebx(p) at p = ∞, we begin the integration following, which is
analogous to the case of an = 1

1∫
0

[

t∫
0

1 − (1 − t′)n

t′
dt′]

dt

t
=

n∫
0

[

s∫
0

1 − (1 − s′/n)n

s′
ds′]

ds

s
(40)

As n → ∞, the integration above approaches to the −ebx(∞), for the same
reason as in the case of an = 1. The integration is performed by expanding
the integral(refer to appendix 2 for the derivation).

lim
p→∞

(ebx(p) +
1

2
(log p + γ)2) = −1

2
(
∞∑

r=1

1

r2
) = −π2

12
(41)

The function E
(2)
1 (τ) is defined as

E
(2)
1 (τ) =

∞∫
τ

E1(p)

p
dp. (42)

Using the function ebx(p), we can evaluate the function E
(2)
1 (τ)(refer to ap-

pendix 2 for the derivation).

E
(2)
1 (τ) =

(γ + log τ)2

2
+

π2

12
+

∞∑
m=1

(−1)nτn

nnn!
(43)

(3)Function Ar(p)

We define a function, Ar(p), as below,

Ar(p) =
∞∑

n=1

(−p)n

(r + n)n!
(44)

A1(p) is easily evaluated.

A1(p) =
∞∑

n=1

(−p)n

(n + 1)!
=

1

(−p)

∞∑
n=2

(−p)n

n!
=

exp(−p) − 1 − (−p)

(−p)
(45)

A2(p) is evaluated below,

12



A2(p) =
∞∑

n=1

(−p)n

(n + 2)n!
− A1(p) + A1(p)

=−
∞∑

n=1

(−p)n

(n + 2)(n + 1)n!
+ A1(p) = −A1(p) − A1,1(p)

(−p)
+ A1(p) (46)

Here A1,1(p) is the first term of A1(p) in the power series expansion in −p and
is equal to (−p)/2. Similarly we obtain Am(p) as below.

Ar(p) =
∞∑

n=1

(−p)n

(n + r)n!
= −

∞∑
n=1

(r − 1)(−p)n

(n + r)(n + 1)n!
+ A1(p)

=−r − 1

(−p)

∞∑
n=2

(−p)n

(n + r − 1)n!
+ A1(p) = −r − 1

(−p)
(Ar−1(p) − (−p)

r
) + A1(p)

(47)

Thus we obtain a recursive formula for Ar(p). As p approaches to ∞, Ar(∞)
is given below.

Ar(∞) = lim
p→∞

[−r − 1

(−p)
(Ar−1(p) − (−p)

r
)] + A1(∞)

=
(r − 1)

r
− 1 = −1

r
(48)

(4)Function eix(p)

We define a function eix(p) as below.

eix(p) = exp(−p)eax(−p). (49)

The function is a polynomial of p and given as

eix(p) = {
∞∑

n=0

(−1)npn

n!
}{

∞∑
n=1

pn

nn!
} =

∞∑
n=1

(
n∑

r=1

−1

r
)
(−1)npn

n!
(50)

The derivative of eix(p) is given below.

eix′(p) = −eix(p) + (−1) exp(−p)eax′(p) = −eix(p) +
1 − exp(−p)

p
(51)
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The value of eix(p) at p = ∞ is given below.

lim
p→∞

eix(p) = lim
p→∞

eax(−p)

ep
= lim

p→∞

(eax(−p))′

(ep)′
= lim

p→∞

ep − 1

pep
= 0 (52)

(5)Function ejx(p)

We define a function ejx(p) as the indefinite integration of the function eix(p),
divided by p.

ejx(p) =
∫ eix(p)

p
dp. (53)

The function is a polynomial of p and is given as

ejx(p) =
∞∑

n=1

(
n∑

r=1

1

r
)
(−1)n+1pn

nn!
(54)

The function is further derived below.

ejx(p) = −
∞∑

n=1

(
∞∑

r=1

(
1

r
− 1

r + n
)
(−p)n

nn!
= −

∞∑
n=1

(
∞∑

r=1

1

r(r + n)
)
(−p)n

n!

=−
∞∑

r=1

1

r
(

∞∑
n=1

(−p)n

(r + n)n!
) = −

∞∑
r=1

1

r
Ar(p) (55)

Finally we obtain eax(∞).

ejx(∞) =
∞∑

r=1

1

r2
=

π2

6
(56)

(6)Function Gr(τ, p)

We define a function Gr(τ, p) as below.

Gr(τ, p) =
∞∑

n=1

{ (−τ)npn

(n + r)nn!
} +

log p

r
(57)

(r = 1, 2, · · ··)
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Decomposing the fraction into two fractions, the function Gr(τ, p) is further
derived as below.

Gr(τ, p) =
1

r
[
∞∑

n=1

(−τ)npn

nn!
−

∞∑
n=1

(−τ)npn

(n + r)n!
] +

log p

r

=
1

r
(eax(τp) − Ar(τp) + log p) (58)

Finally we obtain Gr(τ,∞).

Gr(τ,∞) =
1

r
(−γ − log τ +

1

r
) =

1

r2
− C

r
(59)

(7)Function Hr(τ, p)

We define a function Hr(τ, p) as below.

Hr(τ, p) = −
∞∑

n=1

{(
n+r∑
q=1

1

q
)
(−τ)npn

nn!
} − (

r∑
q=1

1

q
)
log p

r
(60)

(r = 1, 2, · · ··)

The function Hr(τ, p) is further derived as below(refer to Appendix 3 for
derivation).

Hr(τ, p) = −
∞∑

n=1

[{
∞∑

q=1

(
1

q
− 1

n + r + q
)}(−τ)npn

nn!
] − (

r∑
q=1

1

q
)
log p

r

=−
∞∑

q=1

1

q
[Ar+q(τp) + rGr+q(τp) − r

r + q
log p] − (

r∑
q=1

1

q
)
log p

r
(61)

Finally we obtain Hr(τ,∞)(refer to Appendix 3 for derivation).

Hr(τ,∞)

=
∞∑

q=1

1

(r + q)2
+ C

r∑
q=1

1

q
=

π2

6
−

r∑
q=1

1

q2
+ C

r∑
q=1

1

q
(62)
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4 Integration of Iteration

4.1 Second Iteration

U2(τ, i6) is evaluated by the integral below.

U2(τ, i6) =

1∫
0

(1 − exp(−τ

µ
− τ

µ6

))
µ6dµ

µ6 + µ
=

∞∫
1

1 − e−τ(p+p6)

(p + p6)p
dp (63)

Since the integrand of the above equation approaches O(1/p2) as p approaches
∞, the integration converges. To perform the integration above, we apply
equation (27) for the case an = 1 and p8 = p9 = p6. The coefficient Fr(τ,∞)
is calculated below,

Fr(τ,∞) = lim
p→∞

[
∞∑

n=1

(−τp)n

nn!
+ log p] = lim

p→∞
(eax(τp) + log p) = −C. (64)

ar = 1(r =, 1, 2, · · ··)

Substituting Fr(τ,∞) into equation (27) we obtain

U2(τ, i6) =
−1

p6

[
∞∑

r=1

Fr(τ,∞)pr
6

(−τ)r

r!

−
∞∑

n=1

{
n∑

r=1

Cn
r

r
pn−r

6 − (1 + p6)
n

n
}(−τ)n

n!
]

=
1

p6

[
∞∑

n=1

{Cpn
6 + (

n∑
r=1

Cn
r

r
pn−r

6 ) − (1 + p6)
n

n
}(−τ)n

n!
]. (65)

There exists no further reduced, or concise expression for U2(τ, i6) as the func-
tion of the polynomial in τ . We can obtain the truncated U2(τ, i6) up to the
third degree.

U2(τ, i6) = (C − 1)(−τ) + (1 + (C − 1

2
)p6)

(−τ)2

2!

+ (
1

2
+ 2p6 + (C − 1

3
)p2

6)
(−τ)3

3!
(66)
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The summations in the above equation are expressed with a newly defined
function eax(p)( refer to subsection 3.2).

U2(τ, i6) =
1

p6

[
∞∑

n=1

{Cpn
6 + (

∞∑
r=1

(−τ)r

rr!
)pn

6 − 1 − (1 + p6)
n

n
}(−τ)n

n!
]

=
1

p6

[C(exp(−p6τ) − 1) + exp(−p6τ)eax(τ) − eax(1 + p6)τ)]

V2(τ, i7) is evaluated below.

V2(τ, i7) =

1∫
0

T1(τ, i, i7)
dµ

µ
=

1∫
0

1
1
µ7

− 1
µ

[exp(−τ

µ
) − exp(− τ

µ7

)]
dµ

µ

= e−τp7 [

p7−ε∫
1

⊕
∞∫

p7+ε

1 − exp(−τ(p − p7))

(p − p7)p
dp = exp(−τp7)U2(τ,−p7)

=
1

p7

[(exp(−τp7) − 1)C − eax(τ) + exp(−τp7)eax(τ(1 − p7))] (67)

Here the mark ⊕ designates the principal value integral. The integration of
V2(τ, i7) is a coupling integration described in the section three. The first
function is fa(p, p8) = 1 and the second function fb(p, p7) = exp(−τ(p −
p7)). Since these two functions satisfy fa(p7, p8) = fb(p7, p7), the outcome
integration does not have the log term. We can obtain the remaining terms
by inserting −p7 into p6 in the outcome integration of U2(p6). We call this
relationship between the function U2(p6) and V 2(p7) as ’dependence of V
function’. Hence, we do not need to discuss the V functions independently of
the U functions.

As U2(τ, i6) varies in the interval of 1 < p6 < ∞, we must know its value at
p6 = ∞.

lim
p6→∞

U2(τ, i6) = lim
p6→∞

−eax(τ(1 + p6))

p6

= lim
p6→∞

log(1 + p6)

p6

= 0 (68)

Substituting U2(τ, p) and V2(τ, p) into equation (11) we obtain the second
iteration of the scattering function S(τ, p1, p0).

∆S2(τ, i1, i0) = (
3

4
− C

2
)τ 2

+ (−C

4
+

5

12
+

C − 1

2
(p1 + p0))τ

3 (69)
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4.2 Third Iteration

For the third iteration, we need U3(τ, i6) and V3(τ, i7) functions.

U3(τ, i6) =

∞∫
1

[U2(p6) − exp(−τp)V2(p6) + U2(p) − exp(−τp6)V2(p)

+U2(p6)U2(p) − V2(p6)V2(p)]
dp

(p + p6)p
(70)

V3(τ, i7) =

∞∫
1

[V2(p7) − V2(p) − exp(−τp)U2(p7) + exp(−τp7)U2(p)

+U2(p)V2(p7) − V2(p)U2(p7)]
dp

(p − p7)p
(71)

Here we ignore the argument τ . All the terms in the bracket in the integrand
above approach 0(p0) and the denominator becomes 0(p2), as p approaches ∞.
Hence the integration above converges and, furthermore, each term converges
by itself.

Taking account of dependence of V function in the second iteration, we can
obtained dependence of V function in the third iteration.

V3(τ, i7) = exp(−τp7)

∞∫
1

[U2(−p7) − exp(τp7)V2(p) − exp(−τp)V2(−p7)

+ U2(p) + U2(p)U2(−p7) − V2(p)V2(−p7)]
dp

(p − p7)p
= exp(−τp7)U2(−p7)(72)

To integrate U3, we make pairs of terms in the integrand shown as below.

U3(τ, i6) =

∞∫
1

[U2(p6) − exp(−τp6)V2(p)]
dp

(p + p6)p

+

∞∫
1

[U2(p) − exp(−τp)V2(p6)]
dp

(p + p6)p

+

∞∫
1

[U2(p6)U2(p) − V2(p6)V2(p)]
dp

(p + p6)p
(73)
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The first pairing of the above equation satisfies the condition for coupling
shown below.

U2(p6) − exp(−τp6)V2(p) = U2(p6) − exp(−τ(p6 + p))U2(−p)

= U2(p6) − U2(−p) − (exp(−τ(p6 + p)) − 1)U2(−p) (74)

Inserting p = −p6 in the above equation, the first coupling term becomes 0.
Similarly the second and the third couplings also satisfy the condition.

The first integral is performed by substituting U2(p) into the integration and
decomposing the fraction.

∞∫
1

[U2(p) − exp(−τp)V2(p6)]
dp

(p + p6)p

=
1

p6

[(C + eax(τ(1 − p6)))U2(p6)

+

∞∫
1

{eax(τ(1 + p)) − eax(τ(1 − p6))}
dp

(p + p6)p

+

∞∫
1

(exp(−τp)) − 1)(C + eax(τ)) + eax(τ) − eax(τ(1 + p))
dp

p2
] (75)

To perform the first integral in the above equation, we apply the method given
in the section three.

∞∫
1

eax(τ(p + 1)) − eax(τ(1 − p6))

p(p + p6)
dp

=
1

p6

[
∞∑

r=1

Gr(τ,∞)(1 − (1 − p6)
r)

(−τ)r

r!

−
∞∑

n=1

(fn(1, 1) − fn(1 + p6, 1 − p6))
(−τ)n

nn!
] (76)

Here, Gr(τ,∞) is given below (refer to section 3.2).

Gr(τ,∞) =
1

r2
− C

r
(77)

The second term in equation (76) is further rearranged as below. (refer to
Appendix 2 for derivation )
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fn(1, 1) − fn(1 + p6, 1 − p6) =
n∑

r=1

2r(1 − (1 − p6)
n−r)

r

− (
n∑

r=1

1

r
)(1 − (1 − p6)

n) (78)

Gathering the coefficient of the power series expansion in τ , we obtain the
following.

∞∫
1

eax(τ(p + 1)) − eax(τ(1 − p6))

p(p + p6)
dp

=
∞∑

n=1

gn(1 − (1 − p6)
n) − Dn(1 − p6)

p6

(−τ)n

n!
(79)

Here gn and Dn(p) are given below.

gn =
1

n2
− C

n
+ (

n∑
r=1

1

r
)
1

n
(80)

Dn(p) =
1

n

n∑
r=1

2r(1 − pn−r)

r
(81)

The second integration in equation (75) is performed below.

∞∫
1

(exp(−τp)) − 1)(C + eax(τ)) + eax(τ) − eax(τ(1 + p))

p2
dp

= [−U2(p)]∞1 +

∞∫
1

{−τ(exp(−τp)))(C + eax(τ))

− exp(−τ(1 + p)) − 1

1 + p
}dp

p
= 2U2(1) + τ(C + eax(τ))2 (82)

Finally we obtain the integration in equation (75).

∞∫
1

[U2(p) − exp(−τp)V2(p6)]
dp

(p + p6)p

=
1

p6

[{C + τ(1 − p6))}U2(p6) + 2U2(1) + τ(C + eax(τ))2
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+
∞∑

n=1

gn(1 − (1 − p6)
n) − Dn(1 − p6)

p6

(−τ)n

n!
] (83)

In the same manner we integrate the second integration in equation(73).

∞∫
1

[U2(p6) − exp(−τp6)V2(p)]
dp

(p + p6)p
=

1

p6

[−CU2(p6) (84)

+

∞∫
1

exp(−τ(p + p6)eax(τ(1 − p)) − eax(τ(1 + p6))]
dp

(p + p6)p

−e−p6τ

∞∫
1

[(exp(−τp) − 1)C − eax(τ) + exp(−τp)eax(τ(1 − p))]
dp

p2

To perform the first integration in above equation, we also apply the method
in the section three.

∞∫
1

exp(−τ(p + p6)eax(τ(1 − p)) − eax(τ(1 + p6))]
dp

(p + p6)p

=
exp(−τ(1 + p6))

p6

[
∞∑

r=1

Hr(τ,∞){(−1)r − (−1 − p6)
r}(−τ)r

r!

−
∞∑

n=1

(fn(1,−1) − fn(1 + p6,−(1 + p6))(−
n∑

r=1

1

r
)
(−τ)n

n!
] (85)

Here Hr(τ,∞) and (fn(1,−1) − fn(1 + p7,−(1 + p7)) are given below.

Hr(τ,∞) =
π2

6
−

r∑
q=1

1

q2
+ C

r∑
q=1

1

q
(86)

(r = 1, 2, · · ··)

fn(1,−1) − fn(1 + p7,−(1 + p7)) = (−1)n+1(
n∑

r=1

1

r
)(1 − (1 + p7)

n) (87)

Gathering the coefficients of the power series expansion of the integration
above in τ , we obtain following.

∞∫
1

exp(−τ(p + p6))eax(τ(1 − p)) − eax(τ(1 + p6))

p(p + p6)
dp
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= exp(−τ(1 + p7))
∞∑

n=1

hn(1 − (1 + p6)
n)

p6

(−τ)n

n!
(88)

Here hn is given below.

hn = (−1)n[
π2

6
−

n∑
r=1

1

r2
+ C

n∑
r=1

1

r
− (

n∑
r=1

1

r
)2]

(89)

The second integration in equation(84) is performed as below.

∞∫
1

[(exp(−τp) − 1)C − eax(τ) + exp(−τp)eax(τ(1 − p))]
dp

p2

= [−V2(p)]∞1 +

∞∫
1

{−τ exp(−τp)C + exp(−τ)
d

dp
(eix(τ(p − 1))}dp

p
] (90)

= V2(1) + τC(C + eax(τ)) + exp(−τ){U2(τ,−1) − τ

∞∫
1

eix(p − τ)
dp

p
}

= 2V2(1) + τC(C + eax(τ)) − τ exp(−τ)(
π2

6
− ejx(τ) +

∞∑
n=1

hn
(−τ)r

r!
)

Finally we obtain the second integration in equation(73)

∞∫
1

[U2(p6) − exp(−τp6)V2(p)]
dp

(p + p6)p
(91)

=
1

p6

[−CU2(p6) − exp(−τp6)(2V2(1) + τC(C + eax(τ))

+ e−τ(p6+1){
∞∑

n=1

hn(1 − (1 + p6)
n)

p6

(−τ)n

n!
+ τ(

π2

6
+

∞∑
n=1

hn
(−τ)n

n!
)}]

The third integration in equation (73) can be expressed by the first and second
integration in equation(73).

∞∫
1

[U2(p6)U2(p) − V2(p6)V2(p)]
dp

(p + p6)p
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= exp(τp6)V2(p6)

∞∫
1

[U2(p6) − exp(−τp6)V2(p)]
dp

(p + p6)p
(92)

+ U2(p6)

∞∫
1

[U2(p) − exp(−τp)V2(p6)]
dp

(p + p6)p
− exp(τp6)V2(p6)U2(p6)

2

Thus we finish the integration U3(τ, p6).

U3(τ, p6) = (1/p6)[eax(τ(1 − p6))U2(p6) + 2(U2(1) − V2(1))

+ τ(C + eax(τ))eax(τ) − (exp(−τp6) − 1)(2V2(1) + τC(C + eax(τ)))

+ U2(−p6){−CU2(p6) − exp(−τp6)(2V2(1) + τC(C + τ(C + eax(τ))}
+ U2(p6){CU2(p6) + τ(1 − p6))U2(p6) + 2U2(1) + τ(C + eax(τ))2}

+ (1 + U2(p6))
∞∑

n=1

gn(1 − (1 − p6)
n) − Dn(1 − p6)

p6

(−τ)n

n!
+ e−τ(p6+1)

× (1 + U2(−p6)){
∞∑

n=1

hn(1 − (1 + p6)
n)

p6

(−τ)n

n!
+ τ(

π2

6
+

∞∑
n=1

hn
(−τ)n

n!
)}]

− exp(τp6)V2(p6)U2(p6)
2 (93)

The truncated U3(τ, p6) up to the third degree in τ is calculated.

U3(τ, p6) = (2C2 − 5C +
9

2
− π2

6
)
(−τ)2

2!

+{· · · + (3C2 − 15C + 7

2
− π2

3
)p0}

(−τ)3

3!
(94)

The third approximation is given below.

∆S3(τ, i1, i0) =
1

2(p1 + p0)
[U3(p0) − exp(−τp1)V3(p0)

+U3(p1) − exp(−τp0)V3(p1) + U3(p0)U3(p1) − V3(p0)V3(p1)]

(95)

Substituting U3(τ, p6) into equation above, we obtain the third approximation.

∆S3(τ, p1, p0) = (
C2

2
− 5C

4
+

5

3
− π2

36
)τ 3 (96)

We conclude the third approximation of the scattering function S3(τ, p1, p0).
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S3(τ, p1, p0) = τ + (− log τ

2
+

3

4
− γ

2
− p1 + p0

2
)τ 2

+ [(
(log τ)2

2
+ (γ − 3

2
+

p1 + p0

2
) log τ + (

γ2

2
− 3γ

2
+

35

12
− π2

36
)

+
(γ − 1)(p1 + p0)

2
+

(p1 + p0)
2

6
]τ 3 (97)

5 Conclusion

Chandrasekhar’s integral equation for the isotropic atmosphere is solved by
iterative integration up to the third approximation. The explicit form of the
scattered function, S3(τ, p1, p0), is given in equation (97), up to the third power
of τ . For the third approximation, we should integrate two new functions, in
equation (76) and (84). The possibility of the integration, or convergence of
integration, is obvious, because the integrand in both equations are O(1/pβ)
(β > 1) as p = ∞. Decomposing the fraction in the prototype integral into
partial fractions, we can easily obtain the indefinite integral. The key problem
is to assess the value of the integration at the upper limit, i.e., at ∞. With
changing the order of summation and rearranging series expansions, we can
obtain the converged value of the two integrations in equation (79) and (88). To
obtain the converged value of the integrations mentioned above, we must assess
several power series expansions at ∞. The traditional ’Exponential Integral
Function’ E1(τ) is modified as eax(p) and its converged value is assessed in
section 3.2. We can give a new proof of the converged value of the function
E

(2)
1 (τ).

In the third approximation, the scattering function is expressed as a ”quasi-
power series expansion” in τ , the coefficients of which include log τ . The term
τ 3(log τ)2is more significant than τ 3 but less significant than τ 2, which is
expressed below.

lim
τ→0

τ 3(log τ)2

τ 3
= ∞ (98)

lim
τ→0

τ 3(log τ)2

τ 2
= lim

τ→0

(log τ)2

1/τ
= lim

τ→0

2(log τ)

−1/τ
= lim

τ→0
τ = 0 (99)

Therefore the term τ 3 log τ does not affect the main term of the the second
approximation, τ 2. In the third approximation the order of significance, as τ
approaches to 0, is given as below.

τ , τ 2 log τ , τ 2, τ 3(log τ)2, τ 3 log τ , τ 3
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It is noted that the approximated solution of the scattering function can be
expanded not by a power series expansion in τ but by a series expansion in
τm(log τ)n, (m > n), which we called ”quasi-power series expansion”.

In the second iteration the lowest degree of the power in τ is 2, more precisely
τ 2 log τ and in the third approximation it is 3, or τ 3(log τ)2. It suggests that
the Nth iteration might be expressed as a power series in τ , whose lowest
degree is N, with coefficients which are a polynomial of log τ . This fact gives
us the validity of the iterative integral solution, but does not, by itself, give
us the mathematically rigorous proof that the approximation thus obtained
with the iterative integral could converge.

In the second and third approximations, we can select coupling pairs of terms
and, by integrating those pairs, we can avoid unnecessary terms of logarithm in
the outcome of integral. Owing to this coupling integral, the functionVn(τ, p)
is proved to become equal to e−τP Un(τ,−p). We do not need to integrate
Vn(τ, p) independently to Un(τ, p). Therefore the simultaneous integral equa-
tion is deduced to a mere integral equation. We can avoid complicated and
tedious algebra calculations, based on the coupling integral and dependency of
the function V , and then obtain the truncated approximation of the scattering
function.
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Appendix 1, Derivation of Series Expansion of Function Fm(τ · ∞)

∫
f(τq + τq1))

dq

q
=

∫ ∞∑
n=1

an(−τ)n (q + q1)
n

n!

dq

q

=
∞∑

n=1
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an(−τ)n

n!

∫ (q + q1)
n

q
dq] =
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n!

∫ n∑
r=0

Cn
r qn−rqr

1

q
dq]

=
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(log q)]qr
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qr
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Appendix 2, Derivation of eax(∞) and E
(2)
1 (τ)

1∫
0

[

t∫
0

1 − (1 − t′)n

t′
dt′]

dt

t
=

1∫
0

[

1∫
1−t

(1 + t′ + t′2 + · · · + t′n−1)dt′]
dt

t

=

1∫
0

[
n∑

r=1

1

r
−

n∑
r=1

(1 − t)r

r
]
dt

t
= (

n∑
r=1

1

r
)

1∫
+0

dt

t
+

n∑
r=1

1

r

1∫
0

[
1 − tr

1 − t
− 1

1 − t
]dt
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= (
n∑

r=1

1

r
)

1∫
+0

dt

t
+
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r=1

1

r
(

r∑
q=1

1

q
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r
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1

q
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) (100)

E
(2)
1 (τ) =

∞∫
τ

E1(p)

p
dp =

∞∫
τ

−γ − log p − eax(p)

p
dp

=−[γ log p +
(log p)2

2
+ ebx(p)]∞τ

=
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(101)

Appendix 3, Derivation of Hr(τ, p)
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∞∑
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(102)

Hr(τ,∞).
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Appendix 4, Derivation of Coefficient fn(p1, p2)
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