三軸圧縮試験における セメント安定処理土の圧密養生効果

藤本 哲生 (社会建設工学専攻) 鈴木 素之 (社会建設工学科) 山本 哲朗 (社会建設工学科) 岡林 茂生 (㈱宇部三菱セメント研究所)

Strength Property of Cement-Stabilized Soil Cured under Isotropic Confining Pressure in Triaxial Compression Test

Tetsuo FUJIMOTO (Graduate school of Civil Engineering) Motoyuki SUZUKI (Department of Civil Engineering) Tetsuro YAMAMOTO (ditto) Shigeo OKABAYASHI (Ube-Mitsubishi Cement Research Institute Co.)

Undrained shear strength of cement-stabilized soil can be changed by consolidation due to overburden pressure. Effect of isotropic consolidation stress during curing on undrained shear characteristic of cement-stabilized soil was examined using triaxial compression test apparatus. A stabilized soil used in a series of tests was a mixture of sandy soil and ordinary portland cement. Triaxial compression tests (\overline{CU}) were performed on the soil under conditions of different magnitudes and times of applying confining stress. The test results are compared with those of unconfined compression tests on the same soil obtained by another one-dimensionally consolidation device. Excess pore water pressure dissipates and volumetric strain becomes a constant value, as the consolidation time proceeds. Undrained shear strength of cement-stabilized soil increases with an increase in initial effective confining pressure and curing time, whereas it decreases with an increase in delayed loading time. Behavior of excess pore water pressure shows a similar tendency with that of overconsolidated clay. These exists a good correlation between triaxial compression and unconfined compression tests in terms of undrained shear strength and volumetric strain.

Key Words: triaxial compression test, cement stabilization, consolidation, curing, undrained shear strength

1.はじめに

安定処理地盤より採取した不撹乱供試体の一軸圧縮 強度の深度分布を調べると、初期材齢における圧密に 伴う強度増加の可能性が示唆される.著者らはセメン ト安定処理土の圧密養生効果を把握するために、開発 したモールド型圧密養生装置を用いて、上載圧下で養 生した安定処理土の一軸圧縮強度特性について検討し た¹⁾.この方法では、安定処理土供試体は圧密養生し た後、一旦大気圧下に置かれるという問題点がある. これを解消するために、三軸圧縮試験装置を用いて等 方圧密後の供試体を直ちに非排水せん断する試験を実 施した.本文では試験結果に基づいて非排水せん断強 度とその影響因子について検討しており,影響因子と して初期有効拘束圧,遅延載荷時間および養生時間に ついて取り上げている.また,モールド型圧密養生装 置を用いて作製した供試体に対する一軸圧縮試験の結 果との比較も併せて行っている.

2. 室内試験における安定処理土供試体の応力状 態

Fig.1に室内試験において安定処理直後の供試体に作用する鉛直有効応力σ^vの経時変化を示す²⁾.原位置に

おける土要素は、施工時に撹拌混合されるので有効応 力は初めほぼゼロであり、その後の圧密による排水に 伴って、一定値にまで増加すると考えられる.現行の 室内試験(主に一軸圧縮試験)の場合, Fig.1 の経路 OAB のように、養生時間 T。が経過する間、σ、はまったく 作用しておらず, 原位置の応力状態を再現していない. 著者ら¹⁾は、モールド型圧密養生装置を用いて一次元 的に圧密しながら養生したセメント安定処理土供試体 に対して一軸圧縮試験を実施し(以下,単に"一軸圧縮 試験"とする),その強度・変形特性に及ぼす養生時上 載圧の影響について検討した. その結果,養生時上載 圧の増加に伴い、一軸圧縮強度は直線的に増加するこ となどを示した. ただし, この試験では, Fig.1 の経路 OCAB のように、所定期間の養生後、モールドから供試 体を脱型する際に上載圧を除荷することから、圧密中 の応力状態のまま非排水せん断へとスムーズに移行す ることができない.本文では、この問題点を解消する ために、三軸圧縮試験装置を用いて安定処理土供試体 に対して等方圧密養生後、直ちに非排水せん断する試 験を実施した(以下,単に"三軸圧縮試験"とする). これまでに三軸圧縮試験による安定処理土の強度・変 形特性に関する研究は多数行われているが(たとえば, 文献 3), 4)), これらの場合, Fig.1 の経路 ODCB のよう に、安定処理後、供試体は大気圧下または水中で一定 の時間(図中の線分 0D で表される"遅延載荷時間 △T") 放置された後に圧密している点に注意する必要がある. 本文での三軸圧縮試験は, Fig.1 の経路 0CB のように, 安定処理した後、直ちに圧密しながら養生したセメン ト安定処理土の非排水せん断強度を求めることが目的 である.

Figs.2 (a)および(b)にそれぞれ圧密およびせん断過程 における一軸圧縮試験と三軸圧縮試験の応力状態を示 す.**Figs.2 (a)**では,一軸圧縮試験に用いる供試体は事 前にモールド型圧密養生装置で一次元的に圧密されて おり,そのときの応力状態はモール円で表される.他 方,三軸圧縮試験で用いる供試体は等方圧密されてお り,そのときの応力状態は一つの点で表される.**Figs.2** (b)では,一軸圧縮試験の破壊時の応力状態は軸方向主 応力 $\sigma_1(=q_u)$ および側方向主応力 $\sigma_3(=0)$ を直径の両端 とするモール円(全応力円)で表される.他方,三軸圧 縮試験の破壊時の応力状態は軸方向有効主応力 σ_1 、お よび側方向有効主応力 σ_3 、を直径の両端とするモール 円(有効応力円)で表される.試験結果の解釈では,以 上のように,両試験の圧密およびせん断過程における 供試体の応力状態が異なっている点に注意を要する.

Figure 1 Stress condition of cement-stabilized soil in laboratory tests (Revised figure in Reference 2)

Figures 2 Stress condition in unconfined compression and triaxial compression tests

3. 試験方法

3.1 土試料および安定材

試料は山口県吉敷郡阿知須町で採取した礫混じり細 粒分質砂(土粒子密度: $\rho_s=2.693$ g/cm³,最大粒 径: $D_{max}=4.75$ mm,自然含水比: $w_n=16.3$ %,細粒分含有 率: $F_c=18.9$ %)である.なお,三軸圧縮試験(CU)から得 られた土試料単体の内部摩擦角および粘着力は $\phi'=35.5^\circ$, c'=0 である.安定材は普通ポルトラン

				Table	I Test cas	ses and resi	ins in utax	iai complex	ssion test			
Test No.	Type and content of stabilizer Q _c (kg/m ³)		Initial water content w ₀ (%)	Pore pressure coefficient value of B	Initial effective confining pressure σ ₃₀ '(kPa)	Delayed loading time ΔT(min)	Curing time T _c (day)	Consolidation strain at end $\epsilon_{vT}^{*}(\%)$	At failure (q=q _{max})			Water content
									Deviator stress q _{max} (kPa)	Axial strain ε _{af} (%)	Excess pore water pressure $\Delta u_{sf}(kPa)$	after shearing w _s (%)
1-1-1			20.7	0.96	49	0	1	0.87	840	4.86	-53	20.1
1-1-2		50		0.79	98			1.29	1013	3.61	-21	18.6
1-1-3				0.84	147			1.88	1106	6.41	-37	18.3
1-2-1				0.74	49	0 60 120 240	. 3	0.88	1059	2.21	-23	20.0
1-2-2				0.77	98			1.32	1324	2.53	5	18.6
1-2-3	OPC			0.85	147			1.85	1662	2.74	7	18.8
1-2-4	OPC			0.63				1.29	1401	2.82	24	19.2
1-2-5				0.41	147			0.85	1280	2.89	24	19.3
1-2-6				0.35				0.25	1221	3.18	34	20.1
1-3-1				0.76	49	0	7	0.82	1318	0.81	34	19.9
1-3-2				0.78	98			1.38	1584	1.12	33	19.0
1 2 2				0.05	1.47			1.07	0111	1.00	20	10.0

 Table 2
 Test cases and results in unconfined compression test

Test No.	Type and content of stabilizer Q _c (kg/m ³)		Initial water content w ₀ (%)	Vertical consolidation stress σ _v (kPa)	Delayed loading time $\Delta T(min)$	Curing time T _c (day)	Consolidation strain at end $\epsilon_{vU}^{*}(\%)$	Water content after consolidation w _c (%)	Wet density after consolidation $\rho_{tc}(g/cm^3)$	Unconfined compressive strength q _u (kPa)	Axial strain at failure ε _f (%)	Modulos of deformation E ₅₀ (MPa)
2-1-1				49			0.50	18.7	2.04	484	1.4	59.0
2-1-2				98	0	1	1.00	18.3	2.07	553	1.1	74.7
2-1-3	OPC	50	20.7	147			1.34	17.9	2.06	643	0.9	82.4
2-2-1				49	0	3	0.47	19.1	2.03	802	0.8	160.4
2-2-2				98			1.00	18.5	2.05	965	0.8	172.4
2-2-3				147			1.30	18.1	2.06	1050	1.0	134.6
2-2-4					60 120 240		0.44	18.7	2.03	812	1.1	99.0
2-2-5				147			0.28	18.9	2.04	815	1.3	97.0
2-2-6							0.24	19.4	2.03	795	1.0	165.7
2-3-1				49			0.52	18.8	2.06	971	0.8	151.7
2-3-2				98	0	7	1.00	18.2	2.10	1197	1.0	146.0
2-3-3				147			1.26	18.1	2.07	1337	1.0	163.1

ドセメントであり、添加量は一律 50 kg/m³とした.土 試料と安定材の配合手順は JGS0821-20005)に準じてお り、スラリー添加(水安定材比160%)とした.

3.2 三軸圧縮試験

本試験は、油圧制御方式による中型三軸圧縮試験装 置を使用し、JGS0523-2000⁵⁾に準じている.本試験では、 供試体の圧密を開始するまでの時間をなるべく短くす るため、供試体の飽和化は背圧(up=49 kPa)の負荷のみ とし、安定処理から圧密開始までの時間を一律 50 min とした.以下に試験手順を簡単に記す.①土試料とス ラリー状の安定材をホバートミキサーで 10 分間撹拌 混合する. ②安定処理土を二つ割りモールド(直径:50 mm,高さ:100 mm)に充填する. このとき,モールドを軽 く打撃して気泡を除去する. ③供試体上面を直ナイフ で平滑化する. ④供試体をモールドから脱型し、ペデ スタルに設置後、三軸セル室を組み立てる. ⑤所定の 初期有効拘束圧になるように、側圧および背圧を負荷 し圧密を開始する.このとき、排水条件は上面のみの 片面排水とし、供試体下面において間隙水圧を測定す る. ⑥所定期間の圧密養生後、非排水条件において軸 ひずみ速度 0.05 %/min でせん断を行う.

3.3 一軸圧縮試験

本試験は、前述したように、モールド型圧密養生装 置を用いて一次元的に圧密・養生したセメント安定処 理十供試体に対して実施する一軸圧縮試験である.供 試体寸法は直径 50 mm,高さ 100 mm であり,軸ひずみ 速度 1.0 %/min である. その他の試験方法の詳細は文 献1)を参照されたい.なお、両試験とも恒温・恒湿条 件下(温度 20 ℃,相対湿度 95 %)で実施している.

3.4 試験ケース

Table1 および2 にそれぞれ三軸圧縮試験および一軸 圧縮試験の試験ケースと試験結果を示す. 初期有効拘 束圧σ₃₀、の影響を検討するために,遅延載荷時間ΔT=0 min および養生時間 T_c=3 days として σ₃₀'=49,98,147 kPaの3通りに、 Δ Tの影響を検討するために、 σ_{30} '=147 kPa および T_c=3 days として Δ T=0, 60, 120, 240 min の 4 通りに, T_cの影響を検討するために, Δ T=0 min および σ_{30} '=49, 98, 147 kPa として T_c=1, 3, 7 days の 3 通りに 変化させている.

4. 試験結果と考察

4.1 初期有効拘束圧の影響

本節では初期有効拘束圧 σ₃₀ が圧密および非排水せ ん断挙動に及ぼす影響について述べる. Fig.3 にσ₃₀, が 異なる場合の圧密過程における過剰間隙水圧Δu,およ び体積ひずみ ε , の経時変化を示す. ε , は圧密中の体 積変化量ΔV を供試体の初期状態の供試体体積 V₀で除 して百分率表示したものである(ただし, ε_vおよびΔV はそれぞれ圧縮および排水を正とする).また、Au,は 間隙水圧 u から背圧(up=49 kPa)を引いたものである. このときの試験条件は遅延載荷時間ΔT=0 min および 養生時間 T_c=3 days としている. σ₃₀'=49 kPa の場合(図 中の記号口), Δu_c は時間の経過とともに徐々に減少し, 経過時間 t=400 min 以降でほぼゼロになっている. こ のときの ε_{vT}も時間の経過とともに増加し、t=200 min 程度でほぼ一定になっている. ここで, 圧密開始時に おいて $\Delta u_{a}=36$ kPa($\Delta u_{a}/\sigma_{30}$ '=0.74)となったのは前述 した供試体の飽和過程を必ずしも十分に踏んでいない ことが原因であると考えられる. σ₃₀'=98,147 kPa の 場合(図中の記号 \blacktriangle , 〇)の Δu_c および ε_{vT} ~t 曲線はい ずれもσ₃₀'=49 kPa の場合とほぼ同様の傾向を示して いる. また, T_=3 days における最終的な体積ひずみ ε_v*はσ₃₀,が大きいほど大きくなっている.

Fig.4 に σ_{30} 'が異なる場合のせん断過程における軸 差応力q(= σ_1 - σ_3),過剰間隙水圧 Δu_s および軸ひずみ ε_a の関係を示す.なお,最大軸差応力q_{max}を示した軸 ひずみからさらに3%を超えた時点でせん断を打ち切っ た⁵⁾. σ_{30} '=49 kPa の場合,qは ε_a =0.5%程度まで急激 に増加した後,ほぼ一定値になっている.また, Δu_s は ε_a =1.5%程度で正から負に転じ,過圧密土と類似し た挙動を示している. σ_{30} '=98,147 kPa の場合のqお よび $\Delta u_s \sim \varepsilon_a$ 曲線はいずれも σ_{30} '=49 kPa の場合とほ ぼ同様の傾向を示している.総じて, σ_{30} 'が大きいほ ど,q_{max}は大きくなる.また,この他の特徴として, σ_{30} 'が大きいほど,q~ ε_a 曲線の初期変形係数 E_iが大 きくなるようである.

4.2 遅延載荷時間の影響

本節では遅延載荷時間 ΔT が圧密および非排水せん 断挙動に及ぼす影響について述べる. Fig.1 に示したよ

Figure 3 Relationships between excess pore water pressure, volumetric strain and consolidation time in the case of different initial effective confining pressures

Figure 5 Relationships between excess pore water pressure, volumetric strain and consolidation time in the case of different delayed loading times

うに、ΔT は安定処理した時点から圧密を開始するま でに大気圧下(σ=0)の下で放置される時間である.既 往の研究では、上ら³⁾の場合、 Δ T=1~28 days であり、 矢島ら⁴⁾の場合, Δ T=56 days である. **Fig.5** に Δ T が異 なる場合の圧密過程における Δu および ε τ の経時変 化を示す. このときの試験条件は σ₃₀'=147 kPa および T_=3 days である. ΔT=0 min の場合(図中の記号〇)は, Fig.3 および4に示した σ₃₀'=147 kPaの結果と同じであ る. ΔT=60min の場合(図中の記号△), 圧密開始時に おける Δu_c は $\Delta T=0$ min の場合のそれよりも小さく,時 間の経過に伴って徐々に減少し、t=1000 min 以降にお いてほぼゼロになっている. このときの E vi も時間の経 過に伴い徐々に増加し、t=1000 min 程度でほぼ一定に なっている. ここで注意すべき点として, t=1000 min 以降において一度消散したはずの∆u。が再増加してい ることである.このことは後述する応力緩和現象に起 因したものであると考える. ΔT=120,240 min の場合 (図中の記号■, \diamondsuit)においても、 Δu_{e} および ε_{vT} ~t曲 線はいずれもΔT=60 minの場合とほぼ同様の傾向を示 している. また、 ΔT が大きいほど、 $\epsilon_{\tau\tau}$ *が小さくなっ ているが、これはセメンテーションが発達した時点で の圧密は供試体に有意な密度変化を与えないことを意 味している1).

Fig.6 に ΔT が異なる場合のせん断過程における q, Δu_s および ε_a の関係を示す. ΔT =60 min の場合の q~ ε_a 曲線は ΔT =0 min の場合のそれよりも下方に位置し, E_i も若干小さくなっている. Δu_s が正から負に転じる ε_a は 4 %程度であり, ΔT =0 min よりも大きくなって いる. ΔT =120,240 min の場合, q および $\Delta u_s \sim \varepsilon_a$ 曲線 はいずれも ΔT =60 min の場合とほぼ同様の傾向を示し ている. 総じて, ΔT が大きいほど, q_{max} および E_i は小 さくなる. また, ΔT が大きいほど, 4 0の過剰間隙水 圧の発生が抑制される. 既往の研究では, セメンテー ションが発達してから安定処理土を圧密しているため, それによる密度変化は小さく, 結果として強度増加も 小さくなる. したがって, 遅延載荷時間が大きくなる と, 安定処理土の強度が過小評価される可能性がある.

4.3 養生時間の影響

本節では養生時間 T_cが圧密および非排水せん断挙動 に及ぼす影響について述べる.**Fig.7** に T_c=7 days の場 合の圧密過程における Δu_c および ε_{vT} の経時変化を示 す.このときの試験条件は $\Delta T=0$ min である.T_c=1, 3 days の場合の Δu_c および $\varepsilon_{vT} \sim t$ 曲線はいずれも T_c=7 days の場合とほぼ同様の経路を辿る(図中には T_c=1, 3 days における ε_{vT} の位置を矢印で示している).ここで,

Figure 6 Relationships between deviator stress, excess pore water pressure and axial strain in the case of different delayed loading times

Figure 7 Relationships between excess pore water pressure, volumetric strain and consolidation time in the case of different curing times

Figure 8 Relationships between consolidation strain at end and curing time

Figure 9 Relationships between deviator stress, excess pore water pressure and axial strain in the case of different curing times

Figure 10 Relationships between maximum deviator stress and curing time

t=4000 min 程度において、 σ_{30} の大きさによらず、一 度消散したはずの Δu_c が再び増加している.また、 t=200~1000 min 程度において ε_{vT} もほぼ一定になって いる.このことは、セメンテーションが発達してひず みの進行が抑制されたため、応力緩和現象が生じたも のと考えられる.すなわち、有効応力の立場からいえ ば、全応力一定条件における過剰間隙水圧の増加を意 味する.**Fig.8** に ε_{vT} と T_cの関係を示す. ε_{vT} *は、 σ_{30} によらず、T_cの増加に対してほぼ一定である.これよ り、初期材齢で生じた密度変化の影響は養生時間が経 過しても保持される.

Fig.9に T_cが異なる場合のせん断過程における q, Δ u_sおよび ϵ_a の関係を示す. 図には σ_{30} =147 kPa の場合の結果のみ示している. T_cが大きいほど, q_{max}および E_i

Figure 11 Relationships between ε_{vT}^* and ε_{vU}^*

Figure 12 Relationships between s_{uT} and s_{uU}

が大きくなり,総じて,破壊挙動は脆性的になる.また,T_cが大きいほど,負の過剰間隙水圧の発生が顕著となる.**Fig.10**に q_{max} とT_cの関係を示す. q_{max} は, σ_{30} によらず,T_cの増加に対して大きくなる.T_cの増加に よる q_{max} の増加は密度変化よりもセメントボンドの時 硬性⁶⁾によるものであると考えられる.

5. 一軸圧縮試験結果との比較

上記の三軸圧縮試験結果は著者らによる一軸圧縮試 験における試験上の問題点を解消するために検討した ものである.本節では三軸圧縮試験と一軸圧縮試験に よる圧密養生中の体積ひずみとそれに引き続く非排水 せん断強度を比較する. Figs.2 (a)に示したように,三

軸圧縮試験に用いる供試体は等方圧密状態にある. ま た、一軸圧縮試験に用いる供試体は一次元圧密状態に あり,ここではその最終体積ひずみを ε "*とする. Fig.11 に両試験における最終体積ひずみ ε_{ντ}*および ε μ*の関係を示す. ε μ*と ε μ*の間には, 若干ばらつき はあるものの、直線的な関係が認められ、その勾配は 1.47 である. つぎに, Fig.12 に三軸圧縮試験による非 排水せん断強度 suf(=qmax/2)と一軸圧縮試験による非排 水せん断強度 s_{ul}(=q_u/2)の関係を示す. s_{ul} と s_{ul}の間に は直線的な関係が認められ、その勾配は1.51 である. Fig.11 および 12 の内容をさらに詳しく検討するため, **Fig.13** に s_{ut}/s_{ut} と ϵ_{vt} *の関係を示す. 両者の間に は若干ばらつきはあるものの, s_{ut}/s_{ut}=1.3~1.8, ε_{vt}*/ ε μ*=1.0~1.9の範囲にデータが分布している. 両試験 における非排水せん断強度の比率と最終体積ひずみの 比率がほぼ同じである点は興味深い.

6. 結論

本文は、三軸圧縮試験において等方圧密養生したセ メント安定処理土の非排水せん断強度とその影響因子 (初期有効拘束圧、遅延載荷時間および養生時間)につ いて検討したものである.得られた知見は以下のとお りである.

- (1)等方圧密過程における過剰間隙水圧は時間の経過 に伴って減少し、最終的に消散する.このときの 体積ひずみは時間の経過に伴って増加し、最終的 に一定値となる.
- (2) 初期有効拘束圧が大きいほど、圧密開始時の過剰 間隙水圧および圧密打ち切り時の最終的な体積ひ ずみは大きくなる.
- (3) 初期有効拘束圧が大きいほど、せん断過程における最大軸差応力および初期変形係数は大きくなる. また、過剰間隙水圧の挙動は初期有効拘束圧によらず、過圧密土のそれと同様な傾向を示す.
- (4) 遅延載荷時間が大きいほど、圧密開始時の過剰間 隙水圧および最終体積ひずみは小さくなる.また、 遅延載荷時間によっては、一度消散した過剰間隙 水圧が再増加する応力緩和とおもわれる現象が観 測された.
- (5) 遅延載荷時間が大きいほど、せん断過程における 最大軸差応力および初期変形係数は小さくなり、 負の過剰間隙水圧の発生は抑制される.安定処理 した後、圧密を開始するまでの時間が大きい場合 には、安定処理土の強度が過小評価される可能性 がある.

Figure 13 Relationships between s_{uT}/s_{uU} and $\varepsilon_{vT}^*/\varepsilon_{vU}^*$

- (6) 圧密開始時の過剰間隙水圧および最終体積ひずみ は養生時間によらず一定である.また,養生時間 が大きくなると,上記(4)と同様に一度消散した過 剰間隙水圧が再増加する現象がみられた.
- (7)養生時間が大きいほど、せん断過程における最大 軸差応力および初期変形係数は大きくなり、破壊 挙動は脆性的になる.また、負の過剰間隙水圧の 発生も顕著になる.
- (8) 最終体積ひずみと非排水せん断強度はともに等方 圧密養生をする三軸圧縮試験の方が大きくなる. また,三軸圧縮試験と一軸圧縮試験における最終 体積ひずみの比率と非排水せん断強度の比率の間 にはある一定の関係が認められる.

謝辞:本研究を遂行する上で,宇部興産コンサルタン ト㈱・藤野秀利氏,㈱宇部三菱セメント研究所・田坂 行雄氏,江川本隆氏,丸屋英二氏,伊藤貴康氏,米田 修 氏,㈱藤井基礎設計事務所・田口岳志氏,九州大学大 学院・坊垣内 真氏,本研究室大学院生・笹西孝行氏, 宮崎晃一氏,同学生・河原陽子氏,國司光博氏の各氏 には多大なるご助力をいただいた.ここに記して,深 く感謝の意を表す次第である.

参考文献

- 山本哲朗,鈴木素之,岡林茂生,藤野秀利,田口岳志, 藤本哲生:上載圧下で養生したセメント安定処理 土の一軸圧縮強度特性,土木学会論文集,No. 701/ III-58, pp. 387-399, 2002.
- 小林 晃, 龍岡文夫:セメント混合により改良した 飽和軟弱粘性土の強度変形特性Ⅱ-非排水せん断 特性-, 生産研究, Vol. 34, No. 8, pp. 23-26, 1982.

74 (74)

- と 俊二,藤原東雄,竹内 潤,福田 靖,酒井敏明,柳 原勝也:セメント系固化材により安定処理された カオリン粘土の力学的性質,土木学会論文 集,No. 582/III-41, pp. 217-228, 1997.
- 4) 矢島寿一, 永岡 高, 谷崎誠二:正規・過圧密セメン ト改良土のせん断特性と破壊基準, 土木学会論文 集, No. 561/III-38, pp. 205-214, 1997.
- 5) 地盤工学会: 土質試験の方法と解説-第一回改訂版 -, 2000.
- 6) 澁谷 啓,三田地利之,小澤 裕:セメント混合砂の 変形・強度特性における時硬性および拘束圧履歴 依存性,土木学会論文集,No.687/Ⅲ -56,pp.249-257,2001.

(平成14年8月30日受理)