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1. INTRODUCTION

Knots are simple closed curves in the Euclidean 3-space R® and are often used to
represent nature : circular DNA | other polymers and so on. When knots are used to
describe macromolecules in chemistry and biology, it is convenient to regard knots as ones
constructed from a sequence of straight line segments rather than smooth and flexible ones.
Such a knot obtained from straight line segments is a polygon linearly embedded into R3,
called a polygonal knot. Usually, in the knot theory one studies the topological placement
problem of ( topological or flexible ) knots. When we consider polygonal knots, we are
interested in their geometric shapes and their polygonal structures. There are two kinds
of canonical shapes for polygonal knots. In this paper, we consider two basic questions
about polygonal knots associated with canonical shapes. The first question is the minimal
number of straight line segments required among polygonal representations for a given
knots. This number is a knot invariant, called the polygon index of a knot [5]. The
polygon index gives the elementary measure of complexity for knots, and it is also known
as the broken line number [9], the edge number {7, 10] or the stick number [1]. For
example, the polygon indices of the unknot, the trefoil knot and the figure-eight knot are
3, 6 and 7 respectively. However, since the polygon index is very geometric, it is difficult
to determine the polygon index of every knot as well as the crossing number. In this
paper, we consider how to determine the polygon indices of knots with small crossing
numbers.

The second question about polygonal knots is the topology of the space of polygonal
knots obtained from n-sided polygons embedded into R®. If two polygonal knots with n
segments are connected by a path in this conformation space of n-sided polygonal knots,
then the one can be deformed to the other via a piecewise-linear deformation preserving
the number of segments. Then such two polygonal knots are said to be geometrically
equivalent. That is to say, polygonal knots in a connected component of the conformation

space are geometrically equivalent. On the other hand, if there is a topological deformation
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between two (topological) knots, then we consider that they are topologically equivalent.
It is clear that if polygonal knots are geometrically equivalent, then they are topologically
equivalent. However, not much is known about the converse. Even if two pblygonal knots
are topologically equivalent, these knots may not be geometrically equivalent.

We can think that each connected component of the conformation space stands for the
geometric shape of polygonal knots. It is important to investigate the number of connected
components_of the conformation space. In this paper, we investigate the conformation
spaces for polygon knots with small number of straight line segments.

In §2, we define knots, polygonal knots and polygon index. There are some types of
polygon indices, and we discuss them. In §3, we discuss the relation between the polygon
index and other knot invariants. We calculate the polygon indices by making use of the
relation. In §4, we prove that the number of straight line segments required for polygonal
representations of a knot restricts the form of its Conway polynmial. We determine the
polygon indices of knots with crossing number < 6. In §5, we investigate the topologies

of the conformation spaces.

2. POLYGONAL KNOTS AND THE POLYGON INDICES

This section is devoted to definitions of knots (or links), polygonal knots (or links), the
polygon indices and so on.

A link is a disjoint union of a finite number of simply closed curves in R3, and in
particular, a link with only one component is called a knot. In the knot theory, we usually
treat a tame knot (or link), which is a knot (or link) with regular neighborhood and which
is a natural object. Suppose that every knot in this paper is tame. For two knots K, and
K5, an ambient isotopy of R3 between' K, and K is a continuous map H : R® x I — R3
such that H; is ahomeomorphism on R3 for any ¢ € I, H, is the identity map of R® and
H,(K,) = K,. Here I stands for the unit interval [0,1] and H,; : R* — R® is a map
defined by H(x) = H(z,t). Two knots K, and K, are said to be ambient isotopic if we
find an ambient isotopy of R® between K; and K,. This implies that we can deform K,
to K, continuously without crossing itself. It is a basic result of the knot theory that K,
is ambient isotopic to K, if and only if there is an orientation-preserving homeomorphism
h : R® — R® with h(K,) = K,. The set of all knots ambient isotopic to a knot K is called
the knot type of K. The set of all knots is the disjoint union of the family consisting of

all the knot types. Thus we can classify knots by topological equivalence.
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A knot K is said to be a trivial knot or an unknot if K is ambient istopic to the unit
circle in the zy-plane {(z,y,0) € R*|z,y € R} and equivalently if K bounds a 2-disk in
R3. (See [11] for the terminology of the knot theory.) A polygonal knot (or link) is a knot
(or link) obtained by joining a finite number of points in R?, called vertices, with straight
line ségrnents, called edges. We think of a polygonal knot with n edges as an n-sided
polygon embedded into R3 via a linear embedding. In particular, a polygonal knot with
n edges is called an n-sided polygonal knot. Furthermore, for a knot K, we say that a
polygonal knot K’ ambient isotopic to K is a polygonal representation of K. Two n-sided
polygonal knots K; and K are geometrically equivalent if the one can be deformed to the
other via a piecewise-linear deformation preserving the number of edges and the polygonal
structure, without crossing itself. It is clear that geometrically equivalent polygonal knots
are ambient isotopic. However, it is not known much whether there are polygonal knots
which are ambient isotopic but not geometrically equivalent.

Triangles are planar, and so triangular knots are only unknots. Quadrilateral are not
always on a plane but any polygonal knot with four edges is the unknot. Pentagonal
knots are also only unknots. Of course, if the number of edges is increased, then we can
construct polygonal knots of other knot type. In fact, by choosing sufficiently many points
on K and by connecting these points with straight line segments we obtain a polygonal
representation of K. For example, there are a hexagonal representation of the trefoil knot

and heptagonal representation of the figure-eight knot. See Fig. 2.1.

:
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Fig. 2.1
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However, it is not always possible to find an n-sided polygonal representation for a given
number n and a knot K. In fact, as we discuss in §§3 and 4, the crossing numbers of
knots restrict knot types with n-sided polygonal representations.

Thus we pay attention to the number of edges required to construct polygonal repre-
sentations of a given knot. If a knot K has an n-sided polygonal representation, then
it has an m-sided polygonal representation for any number m (m > n) by adding some

vertices on edges of the n-sided polygonal representation. See Fig. 2.2.

P

Fig. 2.2

Therefore, it is significant to determine the minimal number of edges among all polygoné,l
representations of a given knot K. The minimal number of edges is called the polygon
indez of K, denoted by p(K). We may think that the polygonal representation realizing
the polygon index p(K) is the most economical and it is a canonical shape of the knot
type of K. The lower and upper bounds of the crossing number are given by the polygon
index as follows (See §3) :

5+W < p(K) < 2¢(K),

where ¢(K) is the crossing number of K. The polygon index of a knot with small crossing
number will be not so big. We can determine the polygon indices of knots with small

crossing numbers as follows :

Theorem 2.1. 1. A knot with polygon index 3 is only the unknot.
2. Knots with polygon index 6 are only the right-handed trefoil knot and the left-handed
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trefoil knot.
3. A knot with polygon index 7 is only the figure-eight knot.

4. All prime knots with crossing number 5 or 6 have the polygon indez 8.

In §§3 and 4, we state the relation between the polygon index and other knot invariants
and show this theorem.

We can restrict our attention to some classes ; One is the class of equilateral knots
which are polygonal knots obtained from a linear embedding of a regular polygon with
unit-length edges. One of the others is the class of polygonal knots in a cubic lattice
where edges lie along the edges of the lattice. The polygon index will vary, depending
on the restriction placed on each class. Some kinds of polygon indices are treated in 1]
. s=(K),s.(K),ei(K) and so on. The index s-(K) is the minimal number of edges
among all equilateral representations of K, the index s, (K) is the minimal number of
edges among all polygonal representations in a cubic lattice of K and the index e, (K) is
the minimal number of edges among all equilateral representations in a unit-length cubic
lattice of K. Clearly, p(K) is less than or equal to all of the others. For the trefoil knot,
we have that p(trefoil knot) = s=(trefoil knot) = 6, but it is unknown whether the indices
p(K) and s are equal in general or not. It seems that an equilateral representation
realizing s— is another canonical shape.

" Next we discuss the properties of polygon indices about connected sums and mirror
images. We can obtain a new knot from some knots by taking a connected sum or the

mirror image ; Let K| and K> be knots. Remove a small arc from each of K, and K,. By

joining the resultant four endpoints with two “parallel” arcs we can obtain a new knot,
called a connected sum of K; and K;. The new knot is denoted by Ki3K,. Notice that
a connected sum is not always decided uniquely. If we give an orientation on each knots,
then these orientations decide a connected sum uniquely. A knot K is said to be prime if
for every connected sum decomposition K = K} K, either K, or K is trivial.

Choose a plane II away from a given knot K and take the orthogonal coordinates such
that II is the zy-plane. Then the reflection map r : R* — R3 defined by r(z,y,2) =
(z,y, —=2) is an orientation-reversing homeomorphism of R®. The image, rK, of K via the
reflection map r is a knot, called the mirror image of K.

A knot K is said to be amphicheiral if the mirror image r K is ambient isotopic to K.

Using the terminology of chemistry, we say also that K is achiralif K is amphicheiral, and
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K is chiral elsewhere. For example, the trefoil knot is chiral, that is, the right-handed
trefoil knot is not ambient isotopic to the left-handed trefoil knot which is the mirror
image of the right-handed one. But the figure-eight knot is achiral.

We have the followings about the polygon indices of a connected sum and the mirror

image.
Theorem 2.2 ([5], [1]). The inequality
p(KBK;) < p(Ky) + p(K2) -3

holds for any connected sum of two knots K; and K,.

Outline of the proof. If K; or K is trivial, then the equality holds.

Let K, and K, be nontrivial polygonal knots realizing the polygon indices. Let p(K,) =
n; and p(K,) = ny. Let e; and e; be edges of K; and K; respectively which we will use to
take a connected sum of K; and K,. We begin with the case where the édge e, is contained

‘in the boundary of the convex hull of K, called an ezternal edge in [5]. Let d;,e;, fi be
three con§ecutive edges of K; for « = 1,2. By Z-),_é?,ﬁ we denote the corresponding
vectors with their directions determined by an orientation of K; for + = 1,2. Assume
that det(z 2 —f—l)) > 0 and det(t_i;) 24 72)) > 0. We deform K, and K, via orientation-
preserving linear homeomorphisms of R3 obtained by Gram-Schmidt orthonormalizations
on {El), e, Tl)} and {_d_;, €3, 7;} respectively. Let the resultant polygonal knots be still
denoted by K; and K,. Using a parallel transformation and/or a rotation on R?, move

K, to K, so that e; and e, match and so that either d; Ud; or d; U f; becomes one straight

line segment. See Fig. 2.3.

Fig. 2.3
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Remove e; from K; for 1 = 1,2. Take a connected sum of K; and K. Then the number
of edges of K K, is n; + ny — 4. Hence, we have that p(K 1§K;) < ny +n, — 4 =
p(K1) + p(K2) — 4.

We turn back to the general case. Since K, is not trivial, we can find an edge e; of
K, such that three consecutive edges of K, containing e; can not lie on a common plane.
There is not always an external edge of K, but we can choose an external vertex of K,
say v. We consider the straight line segment obtained by joining a point on one of two
edges incident to v to a point on the other edge. Then we choose these points so that the
straight line segment obtained by joining them lies in a sufficiently small neighborhood of
v. Although we increase the number of edges of K; by one, we can get an external edge

e; on a polygonal knot ambient isotopic to K;. See Fig. 2.4.

Fig. 2.4
Thus it follows from the same argument as the preceding that p(K §K>) < (ny + 1) +

ng—4:n1+n2—3=p(K1)+p(K2)—3. O

It is shown in [1] that the similar inequalities hold for the indices s—, s, and e;.

Example 2.1. The square knot is the connected sum 3,§r3, of the left-handed trefoil
knot 3, and the right-handed trefoil knot r3,. The granny knot is the connected sum
31431 of two copies of the left-handed trefoil knot 3,. Since two types of the trefoil knot
have hexagonal representations with external edges, it follows from the proof of Theorem

2.2 that the square knot 3;§r3, and the granny knot 3,43, satisfy the inequalities
p(3:4r3,) < 6+6 —4 =8 and p(3,43,) <8.

In fact, it is shown in §4 that p(3,4r3,) = 8 and p(3,43,) = 8.
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Theorem 2.3. For any knot K, p(rK) = p(K). Furthermore, this property also holds

for other indices s—, s; and e} .

Proof. Let K be a polygonal representation realizing the polygon index p and let p(K) =
n. Since the reflection map r : R®> — R3 is linear, r(K) is an n-sided polygonal represen-
tation of the mirror image r K of K. Hence we have that p(rK) < n = p(K). Noting that
r(rK) = K, we have that p(K) < p(rK) and so that p(rK) = p(K). O

3. THE RELATION BETWEEN THE POLYGON INDEX AND OTHER KNOT INVARIANTS

In this section, we cqnsider the relation between the polygon index and other knot
invariants : the crossing number, the superbridge index and the bridge index. We will
introduce the way to estimate the polygon index, argumented in [5] and [1].

Recall that the crossing number of a knot K, denoted by ¢(K), is defined as the minimal
number of crossings taken over all the general position projections of K into a plane or
sphere. The crossing number is the most fundamental knot invariant and gives the most
elementary measure of complexity for knots. For example, the knot table in [11] gives us
the classification of prime knots with respect to their crossing numbers. In [9], Negami

proved that the following inequality holds for any nontrivial knot :

2V < pi) < 2.

In [3], Calvo improved this inequality and showed the following :

Theorem 3.1 ([3]). For any knot K,

7+ 1+ 8¢(K) < p(K)
5 <

Next we define the bridge indices and the superbridge indices of knots. Given a knot
K or a knot type, let K’ be a knot ambient isotopic to K. For a unit vector z in R3;
let b,(K') denote the number of local maxima of the orthogonal projection of K’ into the
axis Rz. Then we define the bridge indez of K, denoted by b(K), and the superbridge

indez of K, denoted by sb(K), as follows (see [12], [11], [6]) :
K = 1i i y / ( - ] B 4
b(K) = min min b,(K’) and sb(K) Jnin max b,(K"),

where the symbol “~” implies that two knots are ambient isotopic.

Proposition 3.1. For any knot K, 2sb(K) < p(K).
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Proof. Let K’ be any polygonal representation of K. Suppose that K’ consists of n edges.

Then K’ has n vertices. Since each edge is a straight line segment and each vertex is

incident to edges, we have that b,(K’) < n/2 for any z € 5%, and so max b.(K') < n/2.
z€

Hence, we have that

. n
sb(K) = min max b,(K") < max b,(K') < 5.

Since sb(K) is a constant independent of polygonal representations of K, we have that
sb(K) < (1/2)min {n | n is the number of edges of a polygonal representation of K} =
p(K)/2. O

In [5], the polygon indices of torus knots are treated. A torus knot is a knot which
is ambient isotopic to a simple closed curve on the unknotted torus 7% = {(z,y,2) €
R® | (/22 + 92 — 2)? + 2® = 1}. In particular, a knot K is called the torus knot of
type (p,q), denoted by T, ., if a simple closed curve on T? which is ambient isotopic to
K represents the homology class pl + qm € H;(T?;Z). Here, | is the homology class
represented by the longitude {(z,7,0) € T? | 22 + y* = 9} and m is the homology class
represented by the meridian {(z,0,2) € T? | (zx — 2)* + z* = 1}. For example, the trefoil
knot is the torus knot of type (2,3) but the figure-eight knot is not a torus knot. Notice
that if K is the torus knot of type (p, ¢), then integers p and g must be relatively prime
and that the torus knot T}, ) is ambient isotopic to T(, ).

For relatively prime integers p and ¢ satisfying 2 < p < ¢, we will construct the torus
knot T(,4) as a polygonal knot. Let C_ be the unit circle centered at (0,0,~1) in the
plane with equation z = —1 and let C, be the unit circle centered at (0,0,1) in the
plane with equation z = 1. We choose a number a with 7p/q < a < min(m,27p/q), and
we define X = (cos(27rpk/q),sin(27rpk/q),—1), X} = (cos(2mpk/q),sin(27pk/q),1) and
Yy = (cos(2mpk/q + a),sin(2mpk/q + ),1) for k = 0,1,... ,¢g — 1. Then the collection
of straight line segments, {XoYy, X;Y3, ..., X,_1Y,_1}, is obtained from ¢ vertical line
segments XoX,, X X1, ..., _X—;_—J—(Z: on the cylinder {(z,y,2) € R3 | 22+ y? = 1}
by rotating C, and ¢ points Xg, X{,...,X; | about the z-axis through the angle a and
by carrying these g vertical lines segments along while fixing their bottom endpoints
Xo, X1,.-. ,Xq-1 on C_. Thus the collection {XoYy, X,Yi, ..., X,_1Y, 1} lies on a
hyperboloid centered about the z-axis. Let H, be the annulus obtained from the part
|z| < 1 of this hyperboloid. Then XYy C H, for k = 0,1,...,¢ — 1. In the same
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manner, it is seen that the second collection {YX;, Y1 X3, ..., Y,_; Xo} lies on another
hyperboloid centered about the z-axis. If we let Hy be the annulus obtained from the
part |z| < 1 of this hyperboloid, then Y;Xy41 C Hp for k = 0,1,...,9 — 1. Here
X, = Xo. Thus the spatial polygon K,, = Ui;é(XkYk U Yka+1) lies on the torus
H,UHjg. The circle C_ is a longitude of the torus H,U Hg and the polygon K, , intersects

C_ at q points Xo, X1, ... ,X,4-1 transversely. Furthermore, the polygon K, , intersects
the half-plane {(z,0,z) € R® | z > 0} at p points, and so K,, intersects a meridian
(H, U Hp) N {(z,0,2z) € R*> | = > 0} of the torus Hy, U Hg at p points transversely.
Therefore, the polygon K,, is a polygonal representation of the torus knot T, , of type
(p, q), which has 2q edges. Thus we have the following :

Proposition 3.2 ([5]). For relatively prime integersp and g with2 < p < q, p(T,,) < 2q.

Kuiper showed in [6] that sb(7,,) = min(2p, q) for relatively prime integers p and ¢
with 2 < p < ¢. Hence it follows from Proposition 3.1 that p(7,,) > min(4p,2q). Thus

by combining with Proposition 3.2 we have the following :

Theorem 3.2 ([5]). If p and q are relatively prime integers with 2 < p < q < 2p, then
p(Trq) = 2q.

Next we will consider the way developed in [1], which uses the concept of the total cur-
vature of a knot. The total curvature of a polygonal knot K, denoted by «(K), is defined
as follows ( see [8] ) ; Let vo,v1,...,v, = vg be the vertices of K and let e;,e,,... ,e, be
the edges of K such that e; and e;4; are the adjacent edges joined at v; for: =1,2,... ,n.

Furthermore, let §; be the exterior angle at the vertex v;. See Fig. 3.1.

Fig. 3.1
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We define the total curvature of K by

i=1

Then Milnor proved in [8] that
k(K) > 2nb(K).

We generalize the result in [1] as follows. By the definitions of the bridge index and
the superbridg index it is clear that sb(K) > b(K), and so Theorem 3.3 follows from

Proposition 3.1. However, we give another proof using the total curvature.

Theorem 3.3. For a knot K, p(K) > 2(b(K) + 1).

Proof. Let b(K) = n and suppose that K is a polygonal knot with 2n 4 1 edges. We
choose an edge e of K and consider a plane II perpendicular to e. Let f : R> — II be the
orthogonal projection. Notice that f is linear and the image f(K) of K is a polygon in
IT which may intersect itself. Since the edge e projects to a single point, f(K) consists
of 2n edges. Since the exterior angle at each vertex of f(K) is less than m, we have
that x(f(K)) < 2nm. Let m be the number of self-intersections in f(K) and let ¢ be
an arbitrary positive number. Then at each self-intersection we choose the edge which
should be overpass and we bend it to get another representation of K. Cross it over up by
an angle of £/(8m) a small distance of d before the crossing, down by an angle of e/(4m)
just over the crossing, and then back up by angle of ¢/(8m) a distance of d beyond the
crossing. See Fig. 3.2.

Fig. 3.2
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The resultant knot K’ is another polygonal representation of K. This local operation at
each self-intersection contributes ¢/(2m) to the total curvature. Hence, we have that

€

ME)=s(FK)+ Y (55) = s +5 <s((K) +e.
z:self-intersection

By a Milnor’s theorem, it holds that x(K’) > 2rb(K’) = 2nw and so 2n7 < &(f(K))+e. If
€ — 0, then we have that x(f(K)) > 2nw. This contradicts the fact that «(f(K)) < 2nw.
Therefore, we need 2n + 2 straight line segments to construct a polygonal representation

of K. O

Schubert calculated the bridge indices of torus knots in [12] and proved that b(T,,) =
min(p, q). Hence it follows from Proposition 3.2 and Theorem 3.3 that p(7,_,,) = 2q.

More generally, we have

Corollary 3.1. If K is an (n — 1)-bridge knot and has a polygonal representation with
2n edges, then p(K) = 2n.

4. POLYGON INDICES AND CONWAY POLYNOMIALS

Polynomial invariants of knots are important ones to classify knots and they center in
the knot theory. The first polynomial invariant is the Alezander polynomial. It is known
that Alexander polynomials are defined in the vary ways using Fox’s free calculus on the

funadamental group of the knot complement, the homology group of the universal abelian

cover of the knot complement, the Seifert form or the recursive formula. Conway found
the way to calculate the Alexander polynomial by the recursive formula, called the skein
relation. We call the representation of the Alexander polynomial via the skein relation
the Conway polynomial. The Conway polinomial Vg(z) of K is a polynomial in Z[z] and
defined by the following relations : |

1. If K is ambient isotopic to K’, then Vg (z) = Vgi(2).

2. If K is the unknot, then Vg(z) = 1.

3. Vi, (2) = Vk_(2) = 2V, (2).
Here, by K, K_, Ky we denote the links differing only locally as shown :
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KX

Fig. 4.1

In {10], Randell showed that the Alexander polynomial of a polygonal knot with six or

fewer edges has a restricted form. Then we have the following :

Theorem 4.1. A polygonal knot with seven or fewer edges has the Conway polynomial
of the unknot, a trefoil knot or the figure-eight knot.

Proof. Let K be a polygonal knot with vertices vy, v,,... ,v7 and with edges e;,€3,... , €7
such that the edge e; connects v; and v, for 1 = 1,2,... |7, where vg = v;. We give K
an orientation according to the order of a sequence vy,v,,... ,v;. Let T be the triangle

spanned by three vertices v, v, v3 and let S be the quadrilateral spanned by four vertices
V4, Vs, Vg, V7.
Case 1: TNS=0.

We define the map h : I — R3 by

h(t) = (1 — t)os + %(vl + vs).

Then the map h gives the isotopy which moves v, in a straight line path across 7' to the
midpoint of the straight line segment v;v3 without changing the other six vertices. The
resultant polygonal knot K’ is ambient isotopic to K and we may assume that K’ consists
of five edges. Since a pentagonal knot is the unknot, K’ is the unknot and K is so. Hence

Vk(z) = 1. See Fig. 4.2.

Fig. 4.2
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Case 2: TN S # (. Let T be the triangle spanned by three vertices vy, vs,ve and let T}
be the triangle spanned by three vertices vy, vs,v7. The quadrilateral S consists of two
triangles T} and 7, hinged along the straight line segment v4vs. Then it is possible to
consider the following five cases essentially.

(2-1) eNT; £ 0 (5,7 =1,2).

(2ii) eaNTy, =0,e,NTy #Band e, NT; =0 (6 = 1,2).

(2-iii) e Oy #D,esNTo =0 and eoNT; # 0 (i =1,2).

2-iv) e NTi#0 (:=1,2) and e2NT; =0 (j =1,2).

(2-v) e NTy # Q,ez NT,=0,e;NTy =0 and e, NT, # 0.

See Fig. 4.3.

Vs

Fig. 4.3

Subcase (2-i) : In the same manner as Case 1, the isotopy obtained from the triangle T
deforms K to a pentagonal knot. Hence K is the unknot and Vg (2) = 1.

Subcase (2-i1) : We consider the skein relation. We assume that K is shown as Fig. 4.4
and K = K.
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It follows from Case 1 that K_ is the ﬁnknot and Vk_(z) = 1. By shrinking the new edges
z,y of Ky and by modifying Ko, we can regard Ky as a two-component polygonal link
which consists of a component with four edges and a component with five edges. Hence
K, is either the trivial link or the Hopf link. If K, is the trivial link, then Vg, (2) =0
and it follows from the skein relation that Vg (z) = Vi, (2) = Vk_(2) + 2Vi,(2) = 1.
If Ky is the Hopf link, then Vg, (z) = z and it follows from the skein relation that
Vi(z) = Vk_(2) + 2V, (2) = 1 + 22
Next we assume that K is shown as below and K = K_. See Fig. 4.5.

Fig. 4.5

Since K is the unknot, Vg, (z) = 1. Since Kj is either the trivial link or the Hopf link,
we have that either Vg, (z) = 0 or Vg, (z) = z. Hence, by the skein relation we have that
Vk(z) = Vk_(2) = Vi, (2) — 2Vk,(2) =1 or Vk(2) = Vi, (2) — 2Vg,(2) =1 — 2%

Subcase (2-iii) : Since the triangle T} intersects e; and ey, let w; be the intersection
between T and e; for 1 = 1,2. Slide v, on the triangle spanned by three vertices vy, wy, w,

and push v, through the triangle T;. See Fig. 4.6.

Fig. 4.6
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Thus we can result in Subcase (2-ii).
Subcase (2-iv) : We may assume that K is shown as below and K = K_, for we can prove

also the case where K is shown as K = K in the same manner. See Fig. 4.7.

Fig. 4.7

It follows from Subcase (2-ii) that Vg, (z) = 1 or 1 + z%. Since it is seen that K is
either the trivial link or the Hopf link, the Conway polynomial of K = K_ has the form
of 1,14 2% and 1 — 2%

Subcase (2-v) : By modifying K we can result in Subcase (2-iv). See Fig. 4.8.

Fie. 4.8

Since the Conway polynomials of the unknot, a trefoil knot and the figure-eight knot have
the forms of 1,1 + 22 and 1 — 22 respectively, this completes the proof. [

It follows from Theorem 4.1 that if K dose not have the Conway polynomial of the
unknot, a trefoil knot or the figure-eight knot, then p(K) > 8. Therefore, if K is a
prime knot with crossing number ¢(K) > 5, then p(K) > 8. A prime knot K with
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crossing number 5 or 6 has an octagonal representation, indicated in [7]. Thus Theorem
2.1(4) follows from Theorem 4.1. Since the square knot 3,4r3, and the granny knot 3,43,

have octagonal representation and their Conway polynomial have the form of (1 + 2?)?,

P(314r31) = p(3:431) = 8.

5. CONFORMATION SPACES OF POLYGONAL KNOTS

We will consider the set of all n-sided polygonal knots in R3. We may view an n -
sided polygonal knot K as a point of (R®)" = R by listing the triple of coordinates for
each of its n vertices. Given a point (v,v,,...,v,) € (R*)® = R | we can construct
a spatial polygon P by connecting vertices vy, v, ... ,v, with straight line segments, in
turn. We denote this polygon P by P =< v;,v,,...,v, >. All points in R*" do not
always correspond to n-sided polygonal knots. If P =< vy,ve,... ,v, > is an n-sided

polygon knot, then the point (vy,vs,... ,v,) € R® have to satisfy the followings :

(1) no two vertices v; and v; are equal, and

(2) no two edges v;v;41 and v;v;17 meet except at one common endpoint.

Let ©(® be the set of all points in R3" corresponding to spatial polygons with self-
intersections, called the discriminant. Set ®eo™ = R3 — £ and give Geo™ and
2™ the topologies coming from R®*. A point (v, vy,... ,v,) € ®eo(™ corresponds to an
n-sided polygonal knot, and so we call Beo(™ the conformation space of n-sided polygon
knots. A pathw : I — ®eo™ connecting two points (v1,v2,... ,vn) and (wy,wa,... ,wy,)
corresponds to an isotopy between K; =< vy,vz,... ,v, > and K; =< wy,ws,... ,w, ‘>.
Hence, if polygonal knots lie on the same path-component of Geo™, then they are ge-
ometrically equivalent. Thus it is important to investigate the topology of ®eo™, in
particular the connected components of &eo™. If we do so, then we will understand the
shape of polygonal knots.

Notice that every point of ®e0™ depends on a choice of a sequential labeling vy, vq,... , v,
for the vertices, that is , a different choice of labels lead to a different points in Geo™
corresponding to the same polygonal knot. Furthermore, rigid motions of R* which are
parallel transformations or rotations give also a different points in @eo(™. Hence the
dihedral group D, of order 2n and the group R® x S O(3) of rigid motions on R3 act on
®eo™. Here the dihedral group D,, is the symmetry group of regular n-sided polygon in a

plane and is generated by the shift s of its vertices and the reflection r along a symmetry
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axis. The action of D, on ®eo™ is defined by

S: < V,Vzy.. U > < UpyVpy.n. yUpg >

r: <v,V,...,Up > < U,U,,Up_1,... ,U2 >

These actions do not change the geometric equivalences of polygonal knots. Therefore,
the quotient space Dn\Qieo(")/R3 % S0O(3) gives the real shapes of n-sided polygonal knots.

However, in this paper we consider the conformation space Geo™.

We can find the followings in [2].

Theorem 5.1 ([2]). The conformation space ®eo™ is a dense open subset of R®. If
n > 1, then the discriminant £ is the union of the closure of some semi-algebraic

varteties of codimension 1.

It follows from Theorem 3.1 that for a given integer n, the crossing number of a knot
K with p(K) = n is bounded above and below. Hence there are knots of only finitely

many knot types which have n-sided polygonal representations, that is, Geo™ consists of

knots of only finitely many knot types. Moreover, one can prove the following theorem

by using a Whitney’s theorem about rel algebraic varieties :
Theorem 5.2 ([2]). The conformation space Geo™ has only finitely many components.

Since every triangle in R? lies on a plane, any two triangles are geometrically equivalent.
Furthermore, by reversing triangles if necessary, it is seen that ®eo® is path-connected.

The discriminant ® is defined by
%O = {(v,, v2,v3) € R? | three vertices v1,v;, v3 lie on a straight line in R%}

By parallel transformations on R?, it is seen that ¥(® is homeomorphic to the space
R? x {(w1,wz) € R® x R® | two points w,, w, lie on a straight line through the origin}.

Recall that the total space 7 of the tautological line bundle over RP? is defined by

T={(,v) e RP* xR® | v € ¢}

= {([w],v) e RP* xR® | v € [w]},
where [w] sdands for the straight line connecting the origin and w. The second factor of
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that space is homeomorphic to R x 7. Hence the discriminant £ is homeomorphic to
R* x 7. A quadrilateral seems to be a burrerfly with two triangles , and we can fatten
wings out. Thus since every quadrilaterale is planar, ®eo? is path-connected. Itis also
seen that ®eo® is path-connected, and that the spaces Beo®, Beo™ and Beo® consist
of unknots.

Since knots whose polygon indices are less than equal to 6 are unknots and trefoil knots.
Notice that the trefoil knot is chiral and so the left-handed trefoil knot and the right-
handed trefoil knot are not geometrically equivalent. Hence ®eo® includes at least three
connected components consisting of unknots, left-handed trefoil knots and right-handed
trefoil knots. Noticing that the figure-eight knot is achiral, it follows from Theorem 1.1
and Theorem 4.1 that ®eo(” includes at least five connected components. In the same
manner, Beo®) contains connected components consisting of all prime knots with crossing
number < 6, the square knot and the granny knot, and consisting of the mirror images
of these knots except achiral knots like the unknot, the figure-eight knot, the square knot
and so on.

We have the following about the fundamental groups of the conformation spaces.

Theorem 5.3. The fundamental group of each component & of Beo™ is isomorphi to

G x Z, for some group G.

Proof. Let £ be a connected component of ®eo™. The group R® x SO(3) acts on &
freely. Hence & is a principal bundle with fiber R® x SO(3). For each equivalence class
in &/R® x SO(3), we can choose a unique representative by placing the first vertex v, on
the origin, v, on the positive z-axis and vz on the upper-half zy-plane. This gives us a
section o : £/R3 % SO(3) — & Hence, the principal bundle & — &/R® x SO(3) is trivial,
and so & is homeomorphic to (£/R3 x SO(3)) x (R* x SO(3)). Therefore, we have that
m (R) = m(R/R3 x SO(3)) x m(R® x SO(3)) = 1 (R/R3 % SO(3)) x Z,. O

Remark 5.1. Calvo proved in [4] that for a component ¥ of Beo® consisting of right-
handed trefoil knots, m; (T/R> x SO(3)) is trivial and so (%) is isomorphic to Z,.
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6. A CONCJUDING REMARK AND OPEN QUESTIONS

Although we do not know whether there is a pair of geometrically distinct n-sided
polygbnal representations of a given knot or not, there is not always only one component
of D, \Geo™/R® x SO(3) consisting of n-sided polygonal representations of a given knot.
By gs(K,n), we denote the number of components of D, \Geo™ /R? x SO(3) consisting of
n-sided polygonal representations of K. Since the number gs5(K,n) implies the number of
“geometric shapes” of n-sided polygonal representations of K, we call gs(K,n) the n-th
geometric shape number of K. Here are some open questions about geometric shapes of
knots :
1.(Geometric.unknottedness) It follows clearly from the argument in §5 that gs(unknot,n) =
1 for n = 3,4,5. Is there an integer n with gs(unknot,n) > 2 7 More generally, there
is a knot K such that gs(K,n) > 2 for some integer n ? Notice that knots can always
be approximated by polygonal knots consisting of many edges, and that any topological
deformation between ambient isotopic knots can always be approximated by a piecewise-
linear deformation of polygonal knots, as long as the number of edges is allowed to increase.
If so, then does the sequence {gs(K,n)},en converge into 1 7 |
2. In (3, 4], one can find that gs(trefoil knot,6) = 1 and gs(figure-eight knot,7) = 1. This

suggests us the following question ; For any knot K and n = p(K), is the geometric shape

number gs(K,n) equal to 1 7 That is to say, can we choose an economical polygonal

representation of K uniquely ?
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