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The spatial growth of the instability and the nonlinear interaction between a small cold beam and a warm
background plasma are examined by means of particle simulation. Up to the first maximum in the
amplitude oscillation of the wave, quantitative measurements confirm the predictions based on the single
wave model: the magnitude of the growth rate, monochromaticity of the unstable mode, the maximum

wave amplitude, and the phase space orbits of the beam electrons. After the first maximum of the wave
amplitude, the spatial dependence of the wave amplitude cannot be explained by the single wave model
predictions and the wave power is anomalously overdamped by a factor of 0.1 smaller than the predicted
value in the first minimum. The extended single wave model equations suggest that this anomalous

phenomenon is caused by weak collisions of the order of v/w,~ 10~3 within the background plasma.

I. INTRODUCTION

The interaction between a beam and a plasma has
been studied extensively since the beginning of research
in plasmas. In nonlinear phenomena, the beam-plasma
interactions have been investigated as a physical sub-
ject which has shown the essence of the nonlinearities
most simply and typically. Theoretical and numerical
studies’™! of the temporal and spatial evolutions in the
cold beam and the plasma have been performed exten-
sively within the last decade. Here, the adjectives,
temporal and spatial, distinguish the differences in the
boundary conditions: temporal means that the wave is
periodic in space and grows in time from the initial val-
ue, whereas, spatial means that the wave is periodic in
time and grows in space from the point where the beam
enters the plasma., Their essential feature is the dom-
inance of the most unstable mode in the system of the
plasma and the cold beam. Drummond et al.! have
shown that the most unstable wave develops linearly
from the thermal fluctuation level, while the wave spec-
trum becomes progressively narrower, After several
e foldings it becomes so narrow that a beam electron
can detect a nearly pure sinusoidal wave or a single
wave, and the wave grows to an amplitude sufficient to
trap the beam,! It is different from the warm beam
case to which quasi-linear theory can be applied.

By assuming that the beam electrons are interacting
with the monochromatic and most unstable wave, and
that the background plasma is a linear dielectric medi-
um, both temporal and spatial single wave models are
constructed. In these models, the phase space orbits
of the beam electrons are numerically and self-consis-
tently calculated. The electric field is calculated from
the discrete beam charges and the continuum dielectric
medium represented by the linear dispersion relation of
the background plasma. O’Neil ef al.?® have shown that
both descriptions of the temporal and spatial evolutions
can be reduced to the same scaled equation in the in-
finitesimally small expansion parameter, In other
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words, there can exist an example such that the tem-
poral and spatial problems are essentially equivalent
even in the nonlinear regime. This result is similar to
that of linear theory, in which we may predict the prop-
erties of the spatial evolution from those of the solution
of the temporal evolution.

However, to what extent can we apply the single wave
model predictions to real experiments? This problem
has remained unsolved, although numerous experi-
ments'?~!7 have been performed concerning these beam-
plasma interactions. Especially, experiments by Gentle
and Lohr!® revealed that the single wave model predic-
tions were indeed correct through saturation and one
amplitude oscillation bounce in the nonlinear regime,
After that point, the experiments did not agree with the
prediction.

The particle simulations of the temporal case have
been performed by some authors,** Kainer ef al,'?
have indicated that the initial growth of the unstable wave
can be described by the two-stream instability and that
the subsequent phenomena can be separated into two re-
gions (high and low density), depending on whether or
not merging of space-averaged velocity distributions oc-
curs during the growth of the initially most unstable
wave., However, we cannot apply these results directly
to the spatial case, which we have usually treated ex-
perimentally, since the basic equations describing the
spatial evolution do not become coincident with those of
the temporal evolution in the expansion parameter of the
finite value even within the framework of the single wave
model, 1

Shapiro and Shevchenko” have suggested that the con-
dition for neglecting the nonlinearity of the plasma os-
cillation in the spatial evolution is very rigid and takes
the form

1/3 v2
() <«pe=s, M
n, Uy Uy
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where n, and n, are the beam and plasma densities, v, is
the group velocity of the unstable wave, and v, and v,
are the plasma-thermal and beam-drift velocities.

The considerations concerning these problems have
motivated us to develop a particle simulation model®
treating the phenomena of plasma in the semi-infinite
space approximately, in order to study the spatial evo-
lution of the beam-plasma interaction and predict the
experimental results. In addition, it would be possible
to apply this technique to other problems of the wave
such as lower hybrid wave propagation in a nonuniform
density, 2

As the simulation model treating the phenomena of the
beam-plasma system in the semi-infinite space, we
have substituted a model which can simulate plasmas in
a finite system bounded by a pair of the metallic walls
with the beam injectors in the left wall. When we try to
approximate the semi-infinite plasma with the bounded
plasma, we should consider the effects of the right wall
on the beam-plasma interactions, except for the case
that the distance between the walls is infinite. These
effects may cause the reflection of the wave or the pro-
duction of the standing wave. However, we found that
the effects can be neglected if we can handle the system
including more than ten wavelengths. The details are
explained in Sec. III. In Sec. II, we abbreviate the sin-
gle wave model predictions for comparison with simula-
tion results and make a comparison between the predic-
tions of the single wave model and those obtained from
the more exact single wave model equations,' which in-
clude the effects of the weak collision and the finite ex-
pansion parameter. In Sec. V, we will discuss the
comparison of our results with existing simulations, the
theoretical and numerical work, and the experiments.

Il. SINGLE WAVE MODEL PREDICTIONS IN THE
SPATIAL EVOLUTION

A feature of the single wave model is that the basic
equations describing the nonlinear interactions in the
system of a cold beam and a warm plasma can be writ-
ten by the universal variables which do not only depend
on the basic parameters of the problem (i.e., n,, 1,
v, and v,), but also include all their dependences.® In
other words, the scaled equations® which are derived
from the single wave model equations by using the uni-
versal variables are the unique nonlinear equations,
which do not depend on any basic parameters directly.
This elegant model was obtained at a slight sacrifice of
strictness. Actually, this model can be extended to be
exact to higher orders of the expansion and to include
collisional effects!! and many wave effects,'® at the sac-
rifice of the uniqueness of the scaled equations.

The scaling law® derived from the properties of the
uniqueness of the scaled equations is an important fea-
ture in these beam-plasma interactions. For the pur-
pose of understanding the qualitative properties of these
beam-plasma interactions and of approximately estimat-
ing the characteristic quantities, the single wave model
equations® are very satisfactory. The linear growth
rate, the saturation level of the wave amplitude, and the
length of the amplitude oscillation can be calculated from
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the scaled equations and the scaling law. Here, we pre-
sent a summary of the fundamental results of the calcu-
lation® and these results will be compared with our sim-
ulation results.

In order to represent the scaling law, we introduce an
expansion parameter ¥ which should be much less than

unity
2\1/3
K =(1"—°”—g> «1. )

Then, the equations for the single wave model in the
lowest order of « give the universally scaled equations
or Egs. (12) in Ref. 6.

In the linear region where the instability develops
from thermal fluctuations, only one mode with the max-
imum growth rate grows strongly after several e fold-
ings. The frequency w,,, the wavenumber k, and the
spatial growth rate y are

wyy =w,[1+3(w%/v2)]'/2, (3)
k=Fky(1+k/2), (4)
v=[(3)1/%/2]kk,, (5)

where w, =(n,6%/eqm)!/? and ko=w,/,.

At the point where the wave amplitude saturates after
the linear growth or at the first maximum of the wave
amplitude, the magnitude of the electric field and the
bounce frequency of the trapped particle in the wave
trough are

Ene= 1,23 (m/e)0iky, (6)
we (1.2) %, . (7)

In the nonlinear region, where the wave amplitudes
make the undamped but not growing oscillation, the pe-
riod of its oscillation A, and the ratio 7 of the maximum
wave energy to the minimum are the most characteristic
quantities

A, =5/kk,, (8)
Y= ":ﬁm:/l':lzmnE 5. 9)

Then, the maximum velocity v,n,, and the minimum ve-
locity vy, Of the trapped beam electrons are related to
the phase velocity v, and the maximum of the electric

field as follows'®*:
v =0,y(1-k/2); (10)
Vpmazx = Uph = Vpn = Vpmin = AV, (11)
Ap= (4—;%&)1/2 = 2.2, . (12)

I1l. SIMULATION MODEL

The simulation model adopted in this work is intended
to be representative of some!?~!" of the beam-plasma
systems in a sufficiently strong magnetic field having
one-dimensional electron dynamics. This one-dimen-
sional, electrostatic system of length L is bounded by a
pair of conducting walls where the electrostatic poten-
tials ¢ are zeros. For the method of calculating the in-
terparticle forces, the cloud-in-cell model of Gaussian
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clouds? is used. Thepotential ¢ is calculated by the ex-
pansion of the eigenmodes [sin(urx/L)jn=1,2,...,M], %
using the method of fast Fourier transforms. The al-
gorithm for advancing particles is the standard time-
centered leap-frog scheme, 2

This system contains the background and beam elec-
trons immersed in immobile, uniform background ions.
In order to reduce unacceptable statistical fluctuations
owing to too few beam particles, the model can include
both heavy and light particles, which are assigned to the
background and beam electrons, respectively. The ra-
tio e/m is the same for both types of particles in order
to keep the acceleration due to the electric field the
same.!® Each beam electron with velocity v, enters the
system steadily from the left side (x =0). The beam
electrons reaching the right wall are removed from the
system., The background electrons reaching the walls
are reflected with the same velocity but opposite sign
on arrival,

The initial conditions of the particle distributions are
described as follows; both the beam and background
electrons are uniformly located in space, respectively.
The background ion density is constant in time and is
determined as the system is initially neutral. From the
condition imposed on the motion of the particles, it is
clear that the number of background electrons is con-
stant in time, while the number of beam electrons is
variable. This means that the system can be non-
neutral, In this work, however, the ratios for non-
neutrality were very small, because the beam densities
were much smaller than the background densities and,
in addition, the beam electrons were initially located
uniformly in space. Therefore, this weak non-neutral-
ity is of the order of the beam density fluctuation and
scarcely changes the behavior of the beam-plasma in-
teraction., The reason why we discarded the neutrality
condition is the following: At first, we attempted to
change the density of the background ions in time in or-
der to satisfy the neutrality condition. Then, the den-
sity of the ions changed with frequency near one of the
unstable modes. It excited a mode with a half-wave-
length equal to the system size and changed the inter-
actions in the beam-plasma systems considerably.

Both the initially located and the steadily injected
beams are assumed to have drift velocity v,. The initial
velocities of the background electrons are selected at
random from the Maxwellian distributions and adjusted
for the thermal and drift velocities to equal v, and zero,
respectively, in each region of length A, =L/N,, which
is located from x =(n—=1)A, to x =nA, (n=1,2,...,N,);

N, is 200 throughout this work,

We choose the simulation parameters as follows; the
numbers of the beam and background electrons are 4000
and 80000, respectively. The beam velocity v, is
0.0114 Lw,: the transit time of the beam electrons
through the system is about 90 w;'. With the grid sepa-
ration A, the characteristic length can be represented:
L =2048A (M=2048), R=3.5A, A, =1,63A~3,26A, X
=~ 120A ~140A, where R is the cloud radius, A; is the
Debye length, and A is the wavelength of the unstable
mode.
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TABLE I. Simulation parameters.

Final

vp vt time

K m/ny  vy/vy (Lwy/2m) (Lwy/2m) ndp  (wp')
Run E1 0.25 0.001 9.9 0.07 0.0071 90 552.0
Run E2 0.20 0.001 .0 .07 0.01 127 301.6
Run E3 0.20 0.0005 9.9 0.07 0.0071 90 674.3
Run E4 0.40 0.002 14.0 0.07 0.005 64 672.0

In the system which contains 15 to 17 wavelengths,
the effects of the right conducting wall can be neglected
for the fundamental wave-particle interactions except
near the right wall, or it can be said that the system is
semi-infinite (we confirmed that these systems can rep-
resent traveling waves, if they have more than 5 to 6
wavelengths and if the waves are not reflected at the
right walls, as in the case treated here and in Ref, 21).

In these systems, the system cannot reach the fully
steady state, because the temperature of the background
electrons continues to increase gradually by obtaining
a part of the beam energy through the wave. In addition,
the computer time permitted for this work forced us to
interupt the simulation runs, when we judged that it
reached an approximately steady state.

Through all simulation runs, energy conservation?®
was better than 0, 2%.

IV. RESULTS OF PARTICLE SIMULATION

Runs E1 to E4 were performed with the parameters
shown in Table I. We adjusted the ratios #,/n, and v,/
v;, such that the expansion parameters k are 0.25 for
E1l, 0.2 for E2 and E3, and 0.4 for E4, From Egs.
(10)-(12), these parameters are expected to have the
following features in phase space: The distributions of
the trapped beam electrons are separated from those of
the background electrons for ¥ =0.2, and are merged
with those of the background electrons slightly and are
merged deeply for k =0.25 and k =0.4, respectively.

At first, we present the details of the evolution in run
E1l, which is a typical one, Because the beam electrons
are distributed uniformly in space at¢ =0, the initial
growth of an unstable mode and the corresponding weak
perturbation of the beam distribution occur everywhere
in the system, In other words, the system evolves
temporally? in the early stage of the run, As the unsta-
ble mode grows, the wave amplitude begins to grow
spatially® as well as temporally and becomes largest at
the right wall, near which the beam electrons are
trapped. Then, the first maximum of the wave ampli-
tude appears. The position of the maximum shifts to
the left side and the magnitude of the maximum grows.
Next, the first minimum of the wave amplitude appears,
then the second maximum is observed, and so on. Dur-
ing that time, the observed growth rate in the linear
stage gradually increases. In this way, the system
reaches an almost stationary state,

Figures 1(a) and (b) present a spatial wave pattern at
t =360 w;l and a spatial dependence of the wave power
averaged during 330 to 360 w;l, in which the system is
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FIG. 1. The spatial dependences of the electric field before

arrival at the stationary state for run E1: (a) An instantaneous
wave pattern as a function of distance x from the beam injec-
tion. (b) The spatial dependence of the average wave power

as a function of distance x. The ratio of the first maximum of
the wave power to the first minimum is about 50, which is

larger by a factor of about 10 than the value »z~5 in Eq. (9).

in a transient state, They show three amplitude oscil-
lations of the wave, The most unstable mode grows
from the thermal fluctuation and saturates at a point A,
where the wave amplitude is the first maximum, After
A, the wave amplitude oscillates in space to become the

first minimum at B, the second maximum at C, and the
second minimum at D, It is most characteristic that
the minimum wave power damps by a factor of about
0.1 smaller than that expected from the prediction of
the single wave model.® During this time the system
does not reach the stationary state sufficiently. Even
if the system approaches the stationary state, the over-
damping of the minimum amplitude was also observed
(Fig, 3)., The phenomenon of overdamping will be dis-
cussed in detail for the example of run E3.

Figure 2 shows the instantaneous phase space plot at
1=345.6 w;l. The beam electrons which enter from the
left wall undergo velocity modulation, as the wave grows
exponentially in space. Next, the phase space loci of
the beam electrons become curved strongly and begin to
rotate in phase space, when the wave grows large
enough to trap the beam electrons. O’Neil et al,?®
showed that this rotation was caused by the sloshing
back and forth in the wave trough. Figure 2 suggests
the following: The beam velocity decreases strongly at
point A, where the wave amplitude is a maximum.

Then, the beam electrons are accelerated by the wave
and form a hollow vortex in phase space after A, while
the wave amplitude decreases and becomes a minimum
at B. These appearances correspond to the prediction
of the single wave model® exactly. In the next stage af-
ter B, the appearance of the phase space loci does not
become coincident with the prediction in accordance with
the overdamping of the minimum wave amplitude at B.
Namely, the faster beam and slower beam electrons
near B can be insufficiently decelerated and accelerated,
respectively, for the phase space loci of the beam elec-
trons to agree with the prediction,® because the wave
amplitude is very small at B. As a result, the hollow
vortex of the beam in phase space becomes inclined af-
ter B. The beam electrons seem to be instantaneously
detrapped from the wave trough. As the beam electron
approaches point C of the second maximum of the wave
amplitude, the inclined vortex begins to undergo a
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FIG. 2. The instantaneous phase space plot at the time corresponding to that in Fig. 1 for run E1. Four arrows indicated by the
symbols A, B, C, and D indicate the characteristic positions from the first maximum to the second minimum as shown in Fig. 1.
The value V, is the theoretical phase velocity calculated from Eq. (10).
Abe et al. 313

313 Phys. Fluids, Vol. 22, No. 2, February 1979



<—Emax ., Np/Np=0.001, Vp/ V4 =9:9
" T=510-540wp”!
~ e
' )
£
2 PR 04y 06 08 10

FIG. 3. The spatial dependence of the wave power in the
stationary state for run E1. The solid line corresponds to
the theoretical linear growth. The values designated by the
symbols E_,, and A, are the maximum of the wave power and
the wavelength of the amplitude oscillation predicted by the
single wave model.

strong effect of the wave and the insufficiently deceler-
ated beam electrons at the upper part in phase space
plane are again trapped to be a new vortex and overtake
the insufficiently accelerated beam vortex, Namely, the
slow vortex seems to shoulder the fast vortex. Asa re-
sult, the vortex is split into two vortices. At point C of
the second maximum of the wave amplitude, these two
vortices mix and lose their original form. Although
this behavior was observed in the transient state, the
features were not changed in the stationary state (Fig.
5).

About 200 w;l later from the time shown in Fig, 1,
the system reaches the almost stationary state, As
shown in Fig, 3, which presents a spatial dependence of
the wave power, the measured growth rate agrees with
the value calculated from linear theory or Eq. (5), and
the amplitude of the electric field at the first maximum
is close to the value calculated from Eq. (6). After the
first minimum, however, the appearance of the spatial
evolution of the electric field departs from the predic-
tions.® Namely, it fails to recover the amplitude near-
est to the first maximum, This feature is in contrast
to the previous one and can be called the destruction of
the amplitude oscillation,'” In Figs. 4(a) and (b), we
show the spatial dependence of the frequency spectra and
of the most dominant mode and its side band modes up
to the second minimum. It shows the dominance of the
single mode in accordance with the prediction, %6
However, its frequency w=1.047 w,, is larger than the
frequency w, =1,015 w,, which is that of the theoretical-
ly most unstable mode, calculated from Eq. (3). A part
of its origin may be due to the nonlinear effects of the
beam electrons, as discussed in Sec. V. As pointed
out by O’Neil ef al. ,?® the secondary harmonics is ob-
served near the first maximum, At the first minimum,
the peak of the spectrum seems to shift by about 0.05 w,
to the higher frequency side as a result of the over-
damping of the most dominant mode,

Figure 5 shows the instantaneous phase space plot at
£=518.4 w;!, Let us compare this with the phase space
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plot in Fig. 2, which was observed at about 200 w}' be-
fore this time, namely, at 345.6 w;!, The maximum
electric field grows larger than that at the previous time
[compare Figs, 1(b) and (3)]. Therefore, the beam
electrons are decelerated by the wave more strongly
than before and are merged with the background elec-
trons near the point of the maximum electric field [com-
pare those in Figs. (2) and (5)]. It is noted that the de-
struction of the amplitude oscillation seen in Fig. 3 oc-
curred at almost the same time in growth of this merg-
ing, although it is unclear whether it causes the de-
struction or not. The spreading of the beam velocity
agrees with the value, 2Av, calculated from Egs. (11)
and (12).

Figures 6 and 7 show the spatial dependence of the wave
power in the case of runs E2 and E3 withthe same expansion
parameter of x=0.2 and with different plasmaparameters
n,/n,=0.001, v,/v,="7, and n,/n,= 0.0005, v,/v,=9.9, re-
spectively. In the limit of small k, these two runs
should have the same stationary state., In the transient
state, the systems evolve temporally at first, and begin
to form the spatial evolution with the temporal satura-
tion, Therefore, it is observed that run E2 has grown
faster than run E3, because of the larger temporal ex-
pansion parameter?® (3n,/n,)}/%, which corresponds to «
in the spatial case. From the linearly growing region
to the second maximum, both spatial variations of the

n, /n, =0.001 xeAL (@)
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004 e
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/
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004
FIG. 4. The frequency spectra for run E1: (a) The spatial

dependence of the spectra between ¢ =423 w;i and 543 w;i. The
minimum frequency separation is 0.052 w,. (b) The spatial
dependences of the most dominant mode and its side band
modes.
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FIG. 5. The instantaneous phase space plot in the stationary state. The value V, is the theoretical phase velocity, v, and V.

and V, are vy, —271/2 Ay and vy, + 2712 Av, where vy, and Av are

wave powers in runs E2 and E3 resemble each other,
but begin to depart after the second maximum, Figure
8 shows the instantaneous phase space plot of run E3.
In this case, the beam electrons are separated slightly
from the background electrons, and the nonlinearities
associated with the background electrons are expected
to be weaker than those in runs E1 and E4. However,
we should usually take account of the weak collisional
effects, which may play an important role in the non-
linear stage. Therefore, we have extended the single
wave model equations to the more rigorous ones!! in-

cluding collisional effects between the plasma electrons,

and the higher order effects of k, Typical results are
shown in Figs. 9 and 10. The value n shown in the fig-
ures is the normalized distance n=kkgx. The dashed
and solid curves show the wave powers as a function of
the distance 7 from the beam injection in the collision-
less and slightly collisional cases, respectively. Some
other plasma parameters are chosen to fit those in run
E3 for comparison.

In spite of the very large k (k =0.2), the collisionless
case scarcely changes its qualitative features compared
with the case® for k =0, while the collisional case shows
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FIG. 6. The spatial dependence of the average wave power
between ¢ =270 w;' and 300 w}! (run E2).
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given in Egs. (10) and (12) (run E1).

an interesting change: Before 1 =11 or the point of the
first maximum of the wave amplitude, the collisional ef-
fect does not significantly alter the spatial evolution of
the wave except that the wave amplitude saturates ata
slightly lower level than that in the collisionless case,
as shown in Fig, 9. After this point, however, the two
curves begin to depart from each other, Near the first
minimum, the wave amplitude decreases drastically,
becomes much smaller than that in the collisionless
case, and fails to regrow to the initial saturation level
in the second maximum. These features closely resem-
ble those in run E3. Here, we estimate the effective
collision frequency v in run E3: the collision frequency
v of the one-dimensional particle simulation has the re-
lationship?*25 with the plasma density », and the Debye
length X, i.e., wp™=a@m),)?, where a is a numerical
factor and is about 0.1 in the model adopted here, and
nAp=90 in run E3. Therefore, the calculated value of
v/w, is about 1.2X 1073, which is comparable to the value
v/w,=2x10"3, shown in Figs. 9 and 10. Now, we can
conclude that the origin of the overdamping of the first
minimum is due to a weak collision of the order of 1073,
which scarcely changes the linear growth and the satura-
tion level in the first maximum of the wave amplitude.

ny/Mp=00005 vy/Vy= ss
T=630-660w;
—
3
< -
S
£
o‘ 1 | 1 io
0 02 %, 05 08 T

FIG. 7. The spatial dependence of the average wave power
between ¢ =630 w;' and 660 ' (run E3).
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FIG: 8.

Next, we examined the corresponding evolution of the
beam electrons in the slightly collisional case for re-
confirmation of these conclusions. In Fig. 10, this evo-
lution is summarized in the sequence of the phase space
loci of the beam electrons at the characteristic positions
denoted in Fig. 9. Each locus is composed of the phase
space points of the 200 beam electrons, which are plot-
ted at every two electrons. In accordance with ampli-
tude oscillation, the sloshing back and forth of the

trapped beam electrons in the wave trough appears. Al-

np/Np =0.0005
Vb/Vt =99

collisionless

10

3

10

30

FIG. 9. Comparison of spatial dependences of the wave power
between collisionless case (dashed curve) and the slightly col-
lisional case (solid curve): v/ccpz 2% 10'3, n=kkyx and the
other plasma parameters are fit to those in run E3. These
are numerically calculated from the extended single wave
model equations., !!
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The instantaneous phase space plot at the time corresponding to that in Fig. 7 (run E3).
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FIG. 10. Phase space loci for the beam electrons at the
positions denoted in Fig. 9. Each point gives the normalized
beam velocity %/v, and a phase &; of the jth beam electron,
where ¢;/w, is a difference between the time when the beam
electron reaches the position x and the time, x/v,.!!
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FIG. 11. The spatial dependence of the average wave power

between ¢ =480 w}' and 510 «}' for run E4.

though the motion of the beam electrons in phase space
is still a reversible process in the earlier nonlinear
stage, after saturation of the wave amplitude its behav-
ior gradually changes from that of the collisionless case.
Near the point 7,;, the locus splits into two parts and
forms a double vortex structure. Next, the vortices in
phase space begin to be smeared out in an irreversible
manner after 7,. These features are close to those in
Fig. 8, and contrasted with those in the collisionless
case, for which the numerical calculation of the usual
single wave model equations® shows that the single vor-
tex is persistent as the main phase space loci even at
the second maximum of the electric field.

Run E4 has the largest expansion parameter of x =0.4
among the ones presented here. As shown later, the
minimum velocity reaches zero in this case. When k or
the maximum wave amplitude is so large that the beam
velocity reaches zero or changes its sign, the transfor-
mation of the variables introduced for derivation of the

x/L
ny/n, =0.002 7
Vo/ Vi =14 06 JA
T=404 - 524"
T IEwl J L
04 y P

2
- 10 20 w/wp
FIG. 12. The spatial dependence of the frequency spectra be-

tween t=404 w;‘ and 524 w;l. The minimum frequency separa-
tion is 0.052 w, (run E4).
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FIG. 13. The spatial dependence of the average wave power
between =630 w;! and 660 wj;' in the final state (run E4).

single wave model equations becomes inappropriate, be-
cause the differential equations of Eq. (3) in Ref. 11 be-
come singular near zero beam velocity. In addition, the
plasma electrons cannot be treated as a linear dielectric
medium, Accordingly, its solution becomes invalid
near k =0.4. In the usual particle simulation, we do not
need such a transformation and assumptions. We can
simulate the system, even if the beam velocity becomes
negative instantaneously.

Figures 11 and 12 are spatial variations of the wave
power and frequency spectra. Figure 12 shows that this
wave is a coherent wave through the whole spatial evolu-
tion, As shown in Fig, 13, one more maximum grows
after 150 w;! in the middle of the two maxima, Asa re-
sult, three amplitude oscillations are clearly observed.
Now, we can conclude that the persistent amplitude os-
cillation can exist in the large expansion parameter «,
in which the single wave model equations are invalid and
the nonlinearities of the background electrons cannot be
neglected. Figure 14 is the corresponding phase space
plot. The velocity of the beam electron becomes zero
at the maximum of the wave amplitude, which fairly
well agree with v, . calculated from Eqgs. (10)-(12).

V. DISCUSSION AND CONCLUSIONS

The single wave model prediction®® suggests that the
properties of the nonlinearities in a small cold beam and
plasma system are comparably simple among the non-
linear problems and that the basic equations are reduced
to the unique scaled equations. In the usual parameters
which have been treated in the experiments and simula-
tions, it has been verified up to the region near the first
minimum of the wave amplitude, however, after that
region, it has disagreed with the results of experi-
ments!® and this simulation. Up to now, some mecha-
nisms which destroy the regular amplitude oscillations
of the electric field have been proposed by some authors.
These are the weak collisions,!"!" the nonlinearities of
plasma oscillation in the background plasma,” and the
trapped particle instability and the many wave effects
associated with this instability. 1°

Here, we discuss the influence of these mechanisms
on our results, comparing them with those of other sim-
ulations,'®!® a theoretical and numerical work,'” and the
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FIG. 14. The instantaneous phase space plot. Symbols O and E denote the positions in phase space for the beam electrons and

background electrons, respectively. Some background electrons ar

experiments, *2® Treating the temporal case by means

of particle simulation, Kainer et al. concluded the fol-
lowing®: Two distinct regimes were identified. For
denser beams (nb/n,;O. 038) it was observed that the
rapid growth of the linearly most unstable wave led to
merging of the beam distribution with the background
distribution and the wave accelerated some main plasma
electrons to high velocity causing it to drop back in am-
plitude, For the low density beam (n,/n,<<0.038) it was
observed that after the initial growth of the most unsta-
ble mode and the accompanying spread in velocity, the
beam decelerated and thermalized in quantitative agree-
ment with the quasi-linear calculations.

Now, let us compare their results with our results.
It was observed that the minimum amplitude of the wave
and the phase space loci of the beam electrons were af-
fected by the weak collision between the background
electrons., These are the features which are not clear
pr not seen in the data in Refs, 18 and 19 which treat
*he temporal evolutions, although the background elec-
trons in a Debye length used in their simulations were
nearly equal to or less than those in our simulation.

For the larger expansion parameter of x =0.4, which
corresponds to denser beams in the temporal case, we
observed three amplitude oscillations, although the
beam electrons were deeply merged with the background
electrons and the wave accelerated some background
electrons to high energy. This is also in contrast to the
temporal case.’® For the small expansion parameter
k=0.2, it was observed that the regular amplitude os-
cillation was destroyed by the weak collision, In this
work, there existed no regime where the quasi-linear
theory could be applicable, because we did not reduce
k sufficiently due to the smallness of the available num-
ber of background electrons,

It could not be clarified in this work whether the non-
linearities of the background electrons’ contribute to the
destruction of the amplitude oscillation or not. Howev-
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e observed to be accelerated to high velocity (run E4).

er, the following facts were observed experimentally:
In run E1, the destruction occurred just after the beam
velocity distribution merged with the background distri-
bution. However, the weak collision!! or the trapped
particle instability'® can also be considered as a candi-
date for the origin of the destruction. On the other hand,
the three amplitude oscillations have been observed in
the parameter x =0. 4, where the nonlinearities of the
background plasma and the merging were strongest
among the runs presented in this work., This problem
remains unsolved, theoretically.

Recently, Winfrey and Dunlop'® have extended the sin-
gle wave model to the model of fifteen waves and studied
the linear and nonlinear self-consistent evolution with
the beam and a non-resonant plasma. They have con-
cluded that the trapped particle instability occurs in a
beam-plasma system with the larger expansion parame-
ter k and the mechanism of growth may be a secondary
instability caused by the trapped electron distribution in
the nonlinear beam, With these conclusions, we discuss
this phenomenon concerning runs E1 and E4, The beam
is trapped by the wave, and the average velocity of the
beam decreases to the value near the phase velocity,
therefore, the frequency of the secondary instability
should be increased, as shown in Ref. 10, This phenom-
enon can occur long before the point of saturation of the
wave amplitude. Following their model, we numerically
calculated the examples of v,/v,=3.6, 4.5 and /1,
=107, 6.4x10™* (both k have the same value of 0. 13) by
the use of 600 beam electrons and five modes, whose
frequencies were w,;, w,;*AW, W, 2400 (Aw=0,01 w,),
The calculations up to the point of the saturation of the
wave amplitude showed that the linearly most unstable
mode of the frequency w,, and the next upper two modes
grew together and that the modes of the frequencies Wy
and w,, +Aw were saturated near the point of the wave
power less, by a factor of about 0.1, than the maximum
which was predicted by O’Neill ef al.® The mode of
w,; +2Aw was saturated near the point of the wave power
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less, by a factor of about 2/3, than the maximum. This
suggested that the frequency of the most dominant mode
nonlinearly shifted to the upper side by more than 0. 02
w,. Winfrey and Dunlop10 summarized this trend in the
temporal cases: Essentially, one wave dominates the
others for most times. For large beams, the largest
nonlinear wave resembles the single wave model pre-
diction somewhat but occurs at a nonlinearly shifted
wavenumber. Now, we can conclude that this phenomenon
is related to the observation that the frequency of the
most dominant mode in run E1 was larger by about 0. 03
w,, although the poor frequency resolution of the wave
spectra in run E1 prevented us from a detailed analysis.

Next, we observed a clear frequency shift of about
5% to the still higher side at the point of the minimum
electric field with the destruction of the amplitude os-
cillation after the minimum in run E1. However, this
frequency shift might be mainly due to the overdamping
of the most dominant mode rather than due to the growth
of the side band mode, as shown in Fig. 4(b). The am-
plitudes of the side band modes varied as that of the
most dominant mode up to the point of the minimum of
the wave amplitude. This behavior does not necessarily
correspond to the results in Ref, 10.

The amplitude oscillation observed in run E4 which
had a large expansion parameter cannot be predicted
from the results of Ref. 10. One of the causes may be
attributed to the differences in the plasma parameters
between these runs and the runs adopted in their work,
and to the collisional effect which was not considered in
their work. These problems have remained unresolved.
A part of them will be resolved in the near future.

In this work, we have suggested that the weak effec-
tive collisions of order, v/w,~10", which are too small
to alter the properties in the linear stage of the beam-
plasma interactions, cause overdamping of the minimum
amplitude, the associated destruction of the amplitude
oscillation, and modification of the phase space loci of
the beam electrons.!! As an effective collision frequen-
cy v, we can adopt one associated with the Coulomb col-
lisions in dense plasmas. In addition, it has been sug-
gested that, even when the Coulomb collision is negligi-
ble, some weakly nonlinear process (like parametric in-
stabilities) may correspond to the effective collision. &7
At the present time, however, we cannot self-consis-
tently estimate the magnitude of their exact effective
collision which may change as the wave amplitude. This
is a new problem to be considered in a future simulation
where the ion is assumed to have finite mass or to be
mobile, Therefore, let us restrict our considerations
to Coulomb collisions. The effective collision frequency
v determines the damping of the plasma oscillation in the
case of no beam?® or is expressed as Eq. (1) in Ref. 11
for the plasma dielectric function €(w, &)

(13)

2 2
e(w,k)zl——w-L<1+3%L>.

w(w +iv)
Here, we should notice the features of the collision
asscciated with a one-species, one-dimensional plasma
corresponding to the background electrons. Dawson®
confirmed experimentally that the relaxation time for
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thermalization was proportional to (n‘J\D)2 and pointed
out that it was not caused by two-particle collisions,
i.e., by including only two-particle correlations which
vanish in such a plasma, but by three-particle correla-
tions.

The damping of plasma oscillation due to only Cou-
lomb collision has been discussed by some authors, 2628
Shkarofsky?” and McBride? calculated the damping rate
using the Fokker—Planck equation and moment equation
approach and obtained a formula

/2 1/2
B 0]

where A =127}, According to this formula, the
anomalous collisional effects presented here might be
neglected in the experiment by Gentle and Lohr,!* be-
cause their plasma was tenuous where u/w, might be
less than 107, On the other hand, Bohmer et al.?®
studied the influence of collisions on the instability in
the beam and dense plasma mainly in the linear stage,
both theoretically and experimentally, They used the
background plasma, whose plasma densities were be-
tween 1,5% 10'® and 2% 10! em™ and whose plasma tem-
peratures varied between 900° and room temperature.
In this plasma, the magnitude of the collision became
larger than of the order of v/w,~10%, Therefore, the
phenomena associated with the weak collision should be
observed in the appropriate plasma parameters. Actu-
ally, Fig. 7 in their paper? showed an anomalous decay
of the wave amplitude after its saturation, although
whole the plasma parameters were not presented and

so direct comparison is impossible, As the origin of
the decay, they proposed the self-quenching mechanism,
It was a linear mechanism associated with the combined
effects of the collision and the velocity spread of the
beam after wave amplitude saturation. This self-
quenching mechanism, perhaps, is independent of over-
damping in the first minimum of the wave amplitude dis-
cussed in this paper, but may be related to the destruc-
tion of the subsequent amplitude oscillation. This is a
future problem,

(14)
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