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A survey for discovering new ferroelectric or ferroelastic crystals has been worked in order to

get more useful or functional materials or to understand the mechanism of ferroelectricity and

ferroelasticity. In the last two decades, a family of crystals with a chemical formula A2BX4 have

been widely investigated, because they have incommensurate phases.1)

If two alkali metal ions A’s are not the same kind, then the crystal structure and the transition

sequence become a little different from the A2BX4 family.1) Among such AA′BX4-type crystals,

LiNH4SO4
2) and LiRbSO4

3) are ferroelectrics and take a general tridymite structure.4,5) At high

temperature, both crystals belong to an orthorhombic Pmcn (Z = 4) system, where each SO4 tetra-

hedron occupies two configurations with equal probability.6,7) Ordering of the disordered tetrahedra

takes place with lowering temperature. In LiRbSO4, incommensurately and commensurately mod-

ulated phases are realized above room temperature.8) The LiNH4SO4 crystal is ferroelectric in the

room-temperature phase and takes a superstructure below room temperature.9)

Recently Shimizu and Takashige synthesized LiTlSO4 by a Bridgman method.10) They performed

differential thermal analyses and observed two anomalies on cooling and one anomaly on heating,

which indicates structural transitions of the crystal. They also measured dielectric constants; the

constant perpendicular to the cleavage plane showed three and two anomalies (stepwise change or

hump) on cooling and heating runs, respectively. The crystal was considered not to be ferroelectric

because no DE-hysteresis loop was observable.

According to a preliminary study by X-ray scattering,11) the room-temperature phase of the

crystal belongs to Pmcn. In the low temperature region, superstructure reflections have been

found. The diffraction pattern in the (h k 0) zone seems to be a hexagonal one in the lowest

temperature phase, although the degree of crystal symmetry usually decreases with decreasing
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temperature. In A2BX4-type crystals, flopping of BX4 tetrahedra is necessary to become hexagonal

from orthorhombic.12) If such flopping takes place at the transition of LiTlSO4, then a large thermal

anomaly will be observable. The character of the intermediate phase may also be clarified by

thermal analyses. Since no further study has been reported so far as the author’s knowledge, we

investigated the transition entropy of this crystal.

Single crystals of LiTlSO4 were grown by the Bridgman method. The crystal is transparent and

colorless. A small amount of crystal was sealed in an aluminum cell and was provided for the

thermal analysis. Two kind of samples were prepared; powder of the crystal: 17.87 mg, and a peace

of block cut from the bulk: 2.53 mg. Since the peace was selected from a single crystal part, it

is called as a single crystal hereafter. A differential scanning calorimeter (Rigaku: DSC8230) was

used. The heating rate was 10 K/min. The transition temperature was determined by a cross point

of the slope line of the anomalous heat flow and the back ground line. The transition entropy was

estimated from the amount of the excess heat flow.

With decreasing temperature, a differential thermal analysis was recorded on a chart. For the

powder sample, two signals were detected; a small anomaly was at 267 K and a large anomaly peaked

at 232K with accompanying a shoulder around 238K in similar to the first report in ref. 10. For

the single crystal, two anomalies were observed; a small one at 267K and a large one at 243K. The

second transition temperature depended on a cooling rate a little; it was about 253 K under a very

slow cooling.

On heating, the excess heat flow at the structural transition was recorded as DSC signal, which is

shown in Fig. 1 for the powder sample. We can notice two small anomalies at 236 K and 263 K and

Fig. 1. The DSC signal from LiTlSO4 powder observed on a heating run. Two small anomalies are indicated by

arrows.
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a large one at 288K. The amount of the enthalpy change ∆H was 0.017, 0.027 and 1.65 kJ/mol,

respectively. The transition entropy at 288K was 5.75 J/(mol K) ' R ln 2.0.

On the other hand, only one DSC signal was observed for the single crystal. It was found that

the anomaly depended on the turning temperature at which a cooling run was changed to a heating

run. If the crystal was cooled enough, say below 230 K, then the single crystal sample showed a

large anomaly at 288 K with ∆H = 1.47 kJ/mol on the heating. The excess heat flow amounts to

the entropy change of 5.10 J/(mol K) ' R ln 1.8. Since the single crystal sample was very small,

this value is not so accurate as the powder one.

On the contrary, if the turning temperature was above 250K, the small anomaly appeared at

267K with ∆H ' 0.12 kJ/mol and the anomaly at 288K disappeared, as shown in Fig. 2. If the

Fig. 2. The temperature dependence of the DSC signal from LiTlSO4 single crystal on heating runs. The sample

temperature was changed from cooling to heating at 235 K (a), 245K (b) and 260K (c).

turning temperature was near the transition temperature of 243 K, then weaker anomalies were

detectable at 267 K and 288 K. This result shows that once the low temperature phase is realized,

it is easily super-heated and the intermediate phase does not appear on heating. If the crystal

transforms to the room-temperature phase, then the intermediate phase appears on cooling. The

phase sequence and the transition temperatures are summarized in Table I.

The transition temperatures and the shape of the anomaly depended slightly on the part of the

crystal from which the sample was prepared. However, the transition at 267K, if it takes place,

seems to be a second order one. Meanwhile the transition at 243 K (cooling) and 288 K (heating)

is a first-order one with accompanying a large thermal hysteresis. The powder sample might be

contaminated from a non-stoichiometric part synthesized by the Bridgman method. We attribute
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Table I. Phase sequence of LiTlSO4.

Phase III ←− II ←→ I

243K 267K

Phase III −→ I

288K

the additional small anomalies at 236 K and 263 K in the powder sample to such imperfection of

the sample.

The transition entropy at 288K on heating is almost R ln 2 per one mole and the transition is

an order-disorder type. Taking the LiNH4SO4 type structure into account, the SO4 tetrahedra are

disordered in the room temperature phase of Pmcn. Each tetrahedron occupies, with an equal

probability, two configurations related by the mirror symmetry perpendicular to the a axis. In the

low temperature phase, the tetrahedron occupies one configuration, dominantly. Then the expected

entropy change is R ln 2. If the lowest temperature phase is hexagonal, then the SO4 tetrahedra

should have additional freedom to turn the apex upside down, which needs further entropy change

of R ln 2, and the total entropy change may be R ln 4; however this is not the case.

Finally we note about the thermal anomaly at 267 K, below which superstructure reflections

were observed by the preliminary X-ray scattering study.11) The estimated transition entropy is

about 0.45 J/(mol K), small enough to indicate a displacive type transition. On further cooling,

the intensity of the supperstructure reflections increased discontinuously below 243 K. Between

267K and 243K, the cell dimension is fourfold along the a-axis. Below 243 K, the unit cell volume

becomes six times of the room-temperature phase. Therefore, the existence of the intermediate

phase in LiTlSO4 is clear. A detailed diffraction study is now on progress.
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