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Abstract

In this paper we solve the inversion problem of the radiative transfer process in
the isotropic plane-parallel atmosphere by iterative integrations of the Milne inte-
gral equation. As a result, we obtain the scattering function in the form of a cubic
polynomial in optical thickness. The author has already solved the same problem
by iterative integrations of Chandrasekhar’s integral equation. In the Milne inte-
gral equation, both the cosines of the viewing angles and the optical thickness are
integral variables, while in Chandrasekhar’s integral equation the cosines of the
viewing angles are variables but the optical thickness is not. We derive several se-
ries of exponential-like functions as intermediate derivations. Their convergences
are evaluated by the author’s previous work in the solution of Chandrasekhar’s in-
tegral equation. The truncated scattering function up to the third order in optical
thickness thus obtained is identical to that obtained from Chandrasekhar’s integral
equation, though their apparent forms are different. Chandrasekhar pointed out
that the solution of Chandrasekhar’s integral equation does not have a uniqueness
of solution. The Milne equation, in contrast, has been proven to have a unique
solution. We discuss the uniqueness of the solution by these two methods.

1 Introduction

In the area of satellite remote sensing, we observe the radiance at the top
of the atmosphere (TOA) by instruments aboard satellites, and we retrieve
the surface reflectance and the optical thickness from the observed radiance
(inversion problem). We assume the homogeneous plane-parallel atmosphere
and the isotropic scattering by matters within the atmosphere.

Preprint submitted to Elsevier Science 7 March 2008



We show the geometry of the radiative transfer process in Fig. 1. The atmo-
spheric layer has the vertical optical thickness 7 and the optical depth z is
measured from the top. The input solar irradiance comes to the surface in the
direction 7y and the scattered radiance that we observe from satellites gets out
from the surface in the direction ;1. At the bottom the transmitted radiation
gets out in the direction i» and we assume no incident radiance from the bot-
tom. i, is the zenith direction. We introduce a variable tns o = | COS(Z_; A Zn)|,
for the direction i,. The sign of the cosines of the zenith angle for both the
upper and lower bound directions is positive .
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Fig. 1. Geometry of Radiative Transfer

We introduce two functions: the scattering function S and the transmission
function 7. The scattered radiance I(0,7;) and transmitted radiance I(7, i),
are given, as
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where 1(0,149) is the incident intensity, €y is the solid angle subtended around
the input direction iy and the integral domain is the lower half of the unit
sphere. The incident radiance to the layer is the solar radiance from the TOA.

It is given as Fyd(i — ip), where §(7) is Dirac’s delta function. Inserting the
incident radiance into (1), we obtain (0, 14),

- -

F
0 S(T, il,io).

TH1

1(0,iy) =

Our problem is to obtain the scattering function S as a polynomial in 7 with
coefficients that are derived from 41, .



Introducing the source function J(z, i), the radiative transfer process is gov-
erned by the Milne integral equation [4] [2].

o) =espi )+ [ [T esp(= . g 3)

We solve the Milne equation by iterative integration with the initial solution

as exp(—-). Using J(z, po), the scattering and transmission functions are
expressed as below [4],

S(7, p1, po) = /OT eXP(—j)J(yaﬂo)d% (4)

D)y, o)y (5)
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Chandrasekhar derived an integral equation that governs the radiative transfer
process [1]. It is a non-linear, simultaneous integral equation with the scat-
tering and transmission functions S and T as two unknown functions to be
solved [1] as below.
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It is noted that the optical thickness 7 is not an integral variable in Chan-
drasekhar’s equation. We obtained the solution by iteratively integrating Chan-
drasekhar’s integral equation, [5], [6] that is described in Section 4.

We have to integrate the Milne equation with respect to the optical thick-
ness in addition to integrating it with respect to the zenith angle. Changing
the sequence of integration, we integrate with respect to the optical thick-
ness and then with respect to the zenith angle. We derive several series of



exponential-like functions that are evaluated by the author’s previous work,
[5] [6]. Truncating the series expansions of the scattering function S up to the
third power in 7, we obtain the third approximation of the Milne equation in
Section 2. The crucial derivations for the iterative integration is discussed in
Section 3.

We then compare the solution by the Milne equation with that of Chan-
drasekhar’s integral equation (Section 4). Because of the linearities and the
the condition of the boundednes, it is proved that the Milne equation has a
unique solution [2]. It is also proved that Chandrasekhar’s integral equation
can be derived from the Milne equation [2]. The family of solutions for Chan-
drasekhar’s integral equation is derived based on the uniqueness of the Milne
equation [3]. We discuss the uniqueness of the solutions in Section 5.

2 Integration of the Milne Equation

2.1 lIteration of Integration

The first iteration is the first term of the Milne equation (3),
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The higher iteration integrations are given as below.
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J(x, 1) is the summation of J,(z, uo)

J(, o) Z In (T, pio)- (10)

Substituting J(x, o) into equation (4), we obtain S(7, u1, fio),

AS(T,m,uo)z/o exp(—— Z (y, o)) dy—ZAS (7, p1, o) (11)
n=1 n=1
AT(Ty,UQaNO):/O exp(— Z (y, o) dy—ZAT (T, 2, o) (12)

n=1 n=1



where AS,, (7, i1, po) is given as
A8, (o) = [ sl Tuly. o)y (13)

Similarly, we define AT, (T, u2, o) as
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AT (T, pa, o) = /0 exp(—

We obtain the relation between AS,, (7, u1, o) and AT, (7, ua, fo), by a simple
algebraic operation on the above two equations,
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M2

We designate the n-th approximation for S(7, u1, po) and T'(7, pa, o) as Sy (7, i1, fto)
and T,,(7, e, o) given below.
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2.2 The First Approximation

Substituting the first iteration exp(—-), we obtain ASy(7, p1, po)
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AT (T, po, 11o) is obtained from AS; (7, 1, po) shown below.

ATa(r s ) = (o = =) expl =) = expl(—)
= TG (18)



It is noted that both AS; and AT; are symmetrical with respect to us.

ASy(7, pa, pro) = AS (T, po, p1)
Ajﬁl (T7 H2, /1’0) = ATI (7—7 Ho, /~L2> (19>

The truncated polynomial of S; in 7 is given below,
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2.3 The second Approzrimation
Jo(T,y, o) is given below.
L ly — | x ., dp
Jo(7,y, :// _ Iyt 21
2(Ty, o) = | | exp( . ) exp( Ho) " (21)

ASy(T, p, o) is evaluated by equation (13),
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The sequence of integration in the above equation is dx, du, dy. We change it
to dx, dy, du. It is proven in the next section that the sequence of integration
does not affect the integration. We can easily integrate with respect to dx, dy.
The integration with respect to p requires a special derivation that is described
in the next section. We obtain the first integration in the above equation.

/1 /T y exp(-i) exp(—y — :1:) exp(—ﬁ)dxdydﬂ
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Since the equation (22) is symmetric with respect to p; and pg, the second
integration is obtained from the first integration by exchanging g with ;.
Summing up the both integrations in equation (22), we obtain ASy(7, 1, fo)
below.

ASQ(Ta M1, MO) (24)
- (ulo + ;)_I[Uz(uo) + Us () — exp(—;o)%(ul) - eXP(—;l)V?(Ho)]

where Us(T, p1*) and Va(T, p*) are given as

1 d

Uslroit) = [ A8 i), (25)
1 . d

Va (T, 11") :/0 AT (i, )25- (26)

We obtain the relation between Us(7, u*) and Va(7, u*) by equation (15) as
below,

Va(r, p*) = exp(—;*w?(r, —i). (27)

By the above equation and the equation (15), we obtain ATy (7, u2, fto)

ATZ (7_7 H2, HO) (28)
= (o = o) b)) + Valpa) = exp(—)Uala) V(o))

AT5(T, po, 11o) is also symmetric with respect to us and pp.

Us(7, 1*) and Va(7, 1*) are evaluated by as the polynomial in 7 [6] as below.

Gal,p") = Z{ ¢- Zl mm' +Z n+1+m)m!}((;7f*l))7; (29)

D

where C' = log 7 4+ 7 and v = 0.577216 is Euler’s constant.

We obtain the second iterations as polynomials in 7 by substituting Us (T, p*)
and Va(7,p*) into ASy(T, py, po) and ATy (7, pa, o).



2.4 The third Approximation

The third iteration AS(T, p1, o) is evaluated by the recurrent form in equation
(13),

T Z
AS3(T, pa, o) :/o eXp(—Z>J3<T,Z,/LO>dZ.

Substituting Js(7, z, po) into the above equation, we obtain the the quintuplet
integration of AS(T, i1, f10),

T d o d
ASg(T,MhMo):/O exp(— )J T, Z, o dz_/ /{ 25 ZZZ
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The sequence of integration due to the iteration scheme is x, g, y, pp and z.
Because of the interchangeability of integration (refer to the next section), we
integrate in the sequence of x, vy, z, u, and p,. We can easily integrate with
respect to z, y, z. Then we repeat the special integral derivations twice (refer
to the next section).

It is noted that AS3(7, p1, po) is symmetrical with respect to py, po as

A‘513(7-7 M, IU’O) = AS?»(T? Ho, Ml)

We divide the integration into four separate domains;
>zy>2) (y<wz,y<z) (y>zy<z)and(y<zy>2z)

We integrate the first domain or (y > x,y > z,) with respect to =, y, and 2
and obtain the following,
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For the integration with respect to p,, and pup, the evaluation procedure is de-
scribed in the next section and the detailed derivation is given in the Appendix
1. We obtain the following,

/////eXp T eXp(_y_Z)eXP(—y_I)exp(—i)dzdydxdﬂa%

Hy Ha o 2410 241
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where a new function Uy (7, 1*), is given as below.

111 du

- _ Lo
Us () = [ = =0 0(07) = (il (34
For ux < 0, Ug (7, 1*) is further derived as below, (refer to Appendix 4)
Us (7, —px) = Va(u")Va(—p") — Uy (117) (35)

We integrate the second domain or (y < z,y < z,) with respect to z, y, 2, pa,
and i, and obtain the following (refer to Appendix 2).

/////exp _;)exp(y_z)exp(y_x)exp(—x)dzdydxduad'ub

b Ha Ho 20 21y
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We integrate the third domain or (y > =,y < z,) with respect to z, vy, 2z, pta,
and p;, and obtain the following (refer to Appendix 3).

z y—=z r—y x dita dpy

exp(——)ex ex exp(——)dzdydx —_—

////// ol ul) p( ub) p( ua) p( Mo) Y 2410 24y
1 T

= o ) ep(= DV () + Vi () (37)

where another a new function V5 (7, —p*) is given as below,

Vi (o) = [ G = o) Walo) = Vel (33)

For the fourth domain, the integration is made the same as in the third domain
by exchanging o and ;.

Summing up the integrations in the four domains, we obtain AS5(7, p1, o)

ASs(T, i1, fo)
1 1

= () Valm)Valio) + Uy () + U (1o
+Us(10)Us (1) + exp(—; - ;)[Ug(ﬁbo) + Uy ()]

T T
—eXp(—%)Vz(m)Ua(ul) - exp(—Z)Vz(uo)Uz(uo) (39)
T _ _ T _ _
+exp(—a>[—‘/3 (o) + Vi (=pm)] + exp(—%)[—Vs (k1) + Vs (—p0)]}
The problem or evaluation of the the third iterations is reduced to obtain the

two integrations Us (7, ux) and Vi (7, u*), that are solved by the author [6]
and are given as below,

m n+2 )"
Us (7.p7) = = ) —C- Zl mm‘ Z C+z:171“ an))!
<—T>2 S () (=)
* 4 g[mzo C+rzlr+n+2+m](n+2+m)m!](n+2)!
(P &, & (=) & (4 2= (7"
4 T;)(—C—m:l mm! )[; q(n+2+q)!)] (n—fZ)! (40)
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e R
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ii{i n+2+gl=r)" <?”E+2'<—T))q)]<—7p*)“
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Substituting Us (7,p*), V5 (,p*), Us(7,p*), and Va(7,p*) into the equation
(39), we obtain the AS5(7, i1, i) that is given in the section 4.

We can further derive AS3(7, 1, 1o) as below,

1 1

ASs(T, 1, o) = (E + %)71[U2(M0)U2(M1) — Vo) Va(po)] (42)
:1 " ;>-I[U3<u0> + Ui() = exp(—-)Va(ga) = exp(——)Vi )]

where Us(ux) and Vz(ux) are given below,

Us(x) = | ASalr o, 1) 51 = Uy (14) + exp(—)V5 (=4 (13)
Vates) = [ ATl o ) 5l = Vi (0e)+ Vale)Ualis) = exp(—-)U ().

(44)

3 Consideration on the integration of the Milne equation

3.1 Sequence of integration

In the previous section, we integrate the iterations with respect to z, y, and z
first and then p, and p,. We prove that the change of sequence of integration
is possible in the second approximation for the equation (22). The integration
is given as below,

11



L// /@®_“M_y;)@®Pﬁh@m# (45)

Ho 2p

The integrand is regular except for p = 0.
For (y — ) > 0 the integrand tends to 0 as u — 0.

1 —=0 46
pmyexp(=—"—)~ (46)

However at (u = 0,y — x = 0) the integrand tends to a different value by
different sequence of 'lim’ |

-z 1

lim lim exp(— Y x)— = 00 (47)
#=0 (y—a)—0 [
—x. 1

lim lim exp(—y x)— =0 (48)
(y—2)—0 p—0 [’

The integration should be regarded as the limit value of the integration with
two infinitesimal parameters ¢,, and J, approaching to 0.

Lo y=oa y y—ax dp
—Z - —)dxd 49
/%/0/0 exp(— ) exp(= =) exp w) dy (49)

We can integrate the equation above with any sequence of integration by x,
y, and u, because the integrand is regular within the integral domain. The
problem is, then, whether the following residual integration converges to 0 in
any sequence of integration.

Ou T 1Y Y Yy—x d,u
exp(—-2) exp(— exp(——)dzd 50
/O/O/y_% (=) expl Np(uo) o (50)

Ignoring the non-essential terms, the integral is reduced to the following,

S O r 1
/ ‘ / exp(—Z) 2 da'dp. (51)
0 Jo wop

We change the variables from (2/, ) to (z = 2’/ u, ). The associated Jacobian
is given as below.

Oz, p) |12
Az, 1) o1

= i (52)

Thus, the integration is given in the new variables z and p below.

12
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The above integration tends to O either as J, approaches 0 and then J, ap-
proaches 0 or as ¢, approaches 0 and then 6, approaches 0. The residual
integration in equation (50), accordingly, tends to 0 as d,, and 0, approach to
0. We can thus change the integral sequence with respect to x, y and p in
equation (45).

We can prove the third approximation in the same manner.

3.2 Integration with respect to

After integrating equation (22) with respect to x and y, we obtain the following
integration with respect to p,

L opem ory — z d
L[] ep(=-Lyexp(=2=5) exp(—-" ) dudy 5
o Jo Jo 1 Ho 2
11 1 1 1. T T d
- — )Y == l[exp(———f)—lfu
0 K Ho Mo M1 Mo M1 24
11 1., 1 1 T T dp
_ - - = R exp(— — —) — 1] —. 54
o(u M0> ( 7 Ml) (b 7 ul) ]2u (59

We cannot integrate the two integrations separately in the above equation
because each integrand has a singularity at u = g in common. This singularity
disappears by subtracting the second integrand from the first. Ignoring the
non-essential terms, the subtracted integrand is given below.

Substituting 1/ g in the place of 1/u in the above equation, it becomes 0. The
subtracted term includes the factor (1/u—1/pg). Therefore (1/p—1/uo) ™t is
canceled from the equation (54).

We introduce a dummy integrand and subtract it from the first integration
and add it to the second integration. The dummy integrand has also has a
singularity at u = ppand has the form as below.

LN VIS S S RN
(;—%) ( o Ml) [exp( p Ml) 1]. (56)
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Subtracting the dummy integrand from the first integration and adding it to
the second, we obtain the following,

r1 1. .,, 1 1., T T T T, du
= —— ) (—— = —) exp(—— — —) —exp(—— — —)] —
0 K Mo to i o Bt 2p
111 1 1 1 1. o7 dp
[ =) = ) = (e = ) Mlexp(-2 = Dy 1) 2E
0 K o [ to foop It
1 1 1 1. T T T T o dup
= (=) [ (& = ) exp(——— = ) —exp(—= — —)| F
Ho M1 0 [ Ho Ho M1 Ko B ap
1 1 1/1 1 1 T T dp
( o uq) 0 [ ul) Jlexaw [ )~ 2p
1 1., T, 1 du 1 du
= (—+ ) —exp(——) [ AT - AS 1 (57
(M0+M1) [— exp( ,Ul)/o 1 (1o, 1) 2 T, (1, 1) 2u] (57)

The two integrations in the above equation have been evaluated for the inte-
gration of Chandrasekhar’s integral equation as Va(uo) and Us(uy), [5] [6].
Thus we obtain the integrated form of equation (22).

///exp exp( y;x)exp(—x)dxdy;lz

(M+MQ[%W0—%M7ﬁ%WM (58)

In the above derivation, the following relation is used,

L Lyt bty A 1yl 1
(E_%) [(NC ;ua) (;uc //Jb) ] (Mc ;ua) (:uc p“a) (59>

For the third iteration, we repeat this procedure for u, and pu, and obtain
AS(Ta H1, :U’O)

4 Comparison with the Solution by Chandrasekhar’s integral equa-
tion

The author obtained the solution of Chandrasekhar’s integral equation by the
iterative integration [5] [6]. The first approximation Si(7, 1, o) for Chan-
drasekhar is identical to the Milne equation.

14



0 1 1 1
S1(7, 1, = ASi (7, p1, = 577+7n_n 60
1(7' 251 Mo) 1(7' 251 No) Tnzo (n+1)!(,u1 ,uo) ( 7') ( )

The second approximation ASy(7, pu1, o) is given below [6],

ASs(r, i, o) = <M10 " li)-l{Ugwo) T Uy(yn) (61)

o) Valim) —exp (

—exp ( _T
1

. Wa(po) + Ua(pt0) U (p1) — Va(pen)Va(po) }

where Us(110) and Va(pg) are identical to those in the Milne equation. The non-
linear terms in the above equation, Us(po)Usa (1) — Va(u1)Va(po) are omitted
in the Milne equation. However, the truncated polynomial of ASsy(T, 1, o)
up to the second power in 7 are identical because the omitted terms do not
include the second order power in 7.

The third iterations is given below [6].

1 L c c
ASs(7, pu, o) = (— + —)"H{Us (o) + U$ (1) (62)
Mo M1
_T
0

. Wi (1) — exp (

1

. Wi (10) + Us (120)Us (p11) — V3 (11) V3 (p20) }

where U§(px) and Vi (ux) are different from Us(ux) and Vs(px) and are given
below,

+Va(p")Vy (7, —p*) — Ua(p™)Us (7, —p") (63)
V(T p*) = Ua(p")Va(p®) + V5 (7, p") — exp(—7p")Us (7, p")
+Us(p")Vy (1,p07) = Va(p*)Us (7, p%). (64)

AS3 of Milne includes the product terms [Us(po)Uz(p1) — Va(ur)Va(po)] that
are included in AS; of Chandrasekhar. All the other terms of Us ( V3) of Milne
are included in US ( V) of Chandrasekhar. The terms which are included in
Us (V) of Chandrasekhar but not in that of Milne do not have the third or
lower power in 7.

Thus the truncated polynomials of the third approximation S3 of Milne and
Chandrasekhar are identical up to the third power in 7, though the apparent
forms of the third approximations S3 are different.

The truncated form of S3(7, 1, t19) up to third power in 7 is given below,

15



S3 (T7 Hi, /’LO)

=T ;(Mll + ulo)TQ + é('ull + :())273
—i—;(— log 7)7% + (i — %)7-2
—l—(; - le(ull + Ml(J))(_logT)TS + [% 274 — (_% + ?l)<u11 4 ,ulo)]TB

where 7y is the Euler constant (0.5772).

5 Discussion on Uniqueness of Solution

The solution by iterative integration of Chandrasekhar’s equation does not
guarantee the uniqueness of solution [1]. Chandrasekhar argues that X and Y
functions have multiple solutions. Using X and Y, S(7, p1, po) and T'(7, p1, pio)
are given below.

S (7. i1, o) = (:1 " ;w[mnxw Y ()Y (1)
T, i, o) = <;1 - :0)1[5/(/%0))((#1) ~ X (i)Y (1) (66)

The author shows that X (u%) and Y (ux) are identical to the infinite series
series of US(T, pux) and V(T ux) [6],

X7 ) = 1+ Us(7, pox) + Us (7, px) + - + -
Y(7, px) = exp(=7/px) + Va(T, pe) + Vi (7, o) + - + - (67)
where US(T, pux) and V6(7, ux) are different with those of the Milne equation,

and V¢(r, px) is given by the following iterative integration with Uy(7, u*) and
Vo(T, pux) as the first iteration [6].

Vi (7 o) = Us (7, pe) Vi (7, o)

HULH ) [ G =) Vi) = Vil
T L e e
(o) [0 =7 Uk ) = Uil (68)
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And UE(T, ux) is obtained from exp(—7/pu*)V,¢(T, —px).
By iterative integration, X (7, ux) is expressed below [6].

X (7, %) = a7 + aoo™ + - 4 - + - + - + -]
+log(T)[anT + @t + 4 -+ -+ 4]
+(log(7))*[aze7 + ags7 + -+ + -+ + ]

The function X (7, ux) is not regular at 7 = 0, though it is continuous at
7 = 0. The singularity of X (7, ux) at 7 = 0 is due to log(7), (log(7))? etc. The
function log(7) is a multiple function around 7 = 0.

log(7) = log(|7|) + 2nmi (70)

where n is 0,41, +2, £3,- - -.

Substituting the above equation in equation (69), we obtain other solutions
on the complex domain or branches n # 0. And if all the imaginary parts
vanish, the solution might be another solution with real number coefficients
on the branch n # 0. The new solution is a sum of the basic solution (BS)
that is obtained on the branch n = 0 and the add-on (AO) terms that comes
from the imaginary parts of the solution on the branch n # 0. This additional
characteristics of BS and AO for the multiple solutions agrees with the works
that concerns the uniqueness of the X and Y functions [1] [3]. The possibility
of multiple solution is not only limited to X (7, u*) but also for other functions
like S(7, i1, po) and T'(7, pa, po) because of their inclusion of log(7).

If we choose the branch n = 0 and choose 7y # 0 as the point around which we
expand the solution, the resulting function is regular on the domain (0, 27).
7 = 0 is excluded in the convergent domain. The solution thus obtained might
be unique. The solution has a true singularity at 7 = 0. This is clear if you
differentiate the solution, the derivatives at 7 = 0 is oco. Nevertheless it is
noted that lim, o X (7, ux) = 0 holds.

6 Conclusion

We obtain a solution of radiative transfer in the anisotropic plane-parallel
atmosphere by iterating integration of the Milne integral equation. The trun-
cated polynomials of the scattering function, Ss(7, 1, o), up to the third
power in 7 is identical with that by Chandrasekhar’s integral equation.
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S3 (T7 Hi, /’LO)

_r—;(;+;)72+é(;+:0)2 ’
—i—;(— log 7)7% + (i — %)7-2
(5= 3l + o log )+ 5+ g = 3+ D+ )
+le(—log7)273 + (—% + 2)(—10g )7 + (Zf -t 172 — 7;;)73 (71)

where v is the Euler constant (0.5772).

The solution has a true singularity at 7 = 0 since it has log(7). And log(7)
terms imply the possibility of multiple solution around 7 = 0.
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Appendix 1. Derivation of Equation (33)

/////exp ) exp(~ y;bz)exp<—yl;x)exp<—;)dzdydx;iZZgzlb’
—///ex —7—7{/ exp——+ dz}/ exp——+u)d v)dy ;ZZ;ZZZ
[ [ %eojyle;—;glmmnl—;)—u
—&% %w<%%>%x<;;>1
) e ) R )
o ) = ) Mexp(— = 1) -
ﬂ«/% %%ﬁ{l?lmm—gwww
4—@ q@%—@—%g*wmo
() s = ) exp(— Vi (o)
) = ) ) }
[«% jﬁ%% jﬁlmmi>em<nwww
_FT ?w&?—T>wmm—wwn
(o = ) (e = 20 () = Val—po)
= ) e = )bl V() — Ua(—pn)]}
= (oo = =) {Vali) V(o) = U ) + Us (=) = Val—pa) Vi)l
= (o =0 (= Valie) V() + U ) + Us (1)
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Appendix 2. Derivation of Equation 36)

/////exp _;)exp(y;{)z)exp(y_x)exp(—x)dzdydxdua’d'ub

Ha o 2tq 2tp
[ enL+ Ly exn—= = Zyazp [ exp(— — Dyanjayglecte - [ [
1 1 T T, 1 1 T
{ (—; - /7)71(—% E)fl eXP(—E - ﬁ)(a + ;)71 eXP(—% - ;)[GXP(E + ﬁ) — 1]
_(_i b —1(_i 1 —1(_i L L Lexp(—— — D)fexp(—— + 1) — 1]
S T R S S S
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) e ) e e D
1 o1 1.
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~( ) el = D)V Val =) = U () + exp()Valpo) VsG]
= (o ) Walpo)Ualn) + expl—- = ) [U5 o) + U ()
1 1. T T
—(% ) ! exp(—% - Z)[Vg(ul)vz( fi) + exp(u )Va(110) Us(p10)]
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Appendix 3. Derivation of Equation (37)

1 1 p7 prT . o J ad
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Appendix 4. Derivation of Equation (35)

R A Y A K
[ e DG D e L - Dy
_ /01 01 (;/ _ Ml*) 1(; + Ml*)_l[exp(—;—/ A eXp(—;, + ;;*)]}
| A LR T ) e
_ /Ol(j, - e D) + G}
_ /O <;f _ ;)—1{[@{13(_;*) — exp(—— )| Va(—p") + [Uz (') — Ua(p)]}

Figure Captions

Figure 1: Geometry of Radiative Transfer
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