Typeset with jpsj2.cls <ver.1.0beta>

Theoretical Temperature-Pressure Phase Diagram for {N(CHj)4}>MnCly
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Theoretical phase diagrams for {N(CHgz)4}2MnCly are calculated by using a phe-
nomenological approach. Expressions for thermodynamical potentials of different phases
and for boundaries between these phases are given in an explicit or parametric form.
The theoretical temperature-pressure phase diagrams are plotted. They show sufficiently
well agreement with corresponding experimental diagrams.
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§1. Introduction

The crystal {N(CHs)4}2MnCly (TMATC-Mn) belongs to the large family of well studied
tetramethylammonium tetrahalogenometalic compounds {N(CHs)4}s MXy, where M and X
stand for divalent metals and halogens, respectively.!™) The theoretical approach to calculat-
ing the temperature-pressure (T-P) phase diagram for the crystals TMATC- M, specifically for
TMATC-Zn, was worked out recently.?

This approach is based on the assumption that a special triple point, which was called the
Lifshitz-type (LT) point, exists in the phase diagram. This point was theoretically introduced by
Aslanyan and Levanyuk,?) and it represents some similarity of the Lifshitz (L) point.8) In the
LT-point, as in the L-point, three lines of the phase transitions between the incommensurate (IC)
phase, initial (C) phase and commensurate (Cy/;) phase, which is equitranslational with the C
phase, are converged (see a classification and special features of such triple points7)). Existence of
the LT-point in the phase diagram is due to the distinctive features of dispersion of the soft optical
branch of the normal vibration spectrum of the crystal responsible for the phase transitions. This
branch in a certain range of parameters has two minima: one in the center of the Brillouin zone
and the other in an arbitrary point of this zone.

The experimental T-P phase diagrams for TMATC-Mn are shown in Fig. 1,%) and in Fig.
2 (in less range of 7' and P but in greater detail)®) (see also diagrams reported by Hamaya et
al.lo’ll)). The aim of this paper is to construct theoretical phase diagrams for TMATC-Mn on
the bases of the method developed previously.?) First we construct the diagram on the plane of
dimensionless coefficients D and A of the thermodynamic potentials (see below). Assuming the

linear dependence of D and A on T and P, we then construct the T-P diagrams and compare them



2 D. G. sannNikov, G. A. KessENIKH and H. MASHIYAMA

with the experimental diagrams (Figs. 1 and 2).
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Fig. 1. The experimental T-P phase diagram for TMATC-Mn from Ref. 8. The notations of phases are the same as
in Fig. 4.

The space group of the initial C phase is D1® or Pmen (in bea setting which is usual for
these crystals). The modulation vector of the IC phase is k. = g¢*. The space groups of the
C,./1 phases with different wave numbers ¢, /; = m/l are the following: ¢/ 5, (P121/cl), q1/3
C3p, (P1121/n), qo5 C3, (P21cn), q3p7 D3 (P212121) and ¢y, C3;, (P21/cl1) (see reports' ) and
references therein). We assume, as indeed is the case, that all phases observed in TMATC-Mn
are determined by the single optical branch of the normal vibration spectrum of the crystal (the
language of lattice dynamics is useful for the case of displacive phase transitions as well as for
order-disorder ones). The space groups of the C,,;; phases are in agreement with this assumption.
Table T of the previous report®) gives the space groups for all possible C,n/1 phases corresponding

to this branch (for details, see reference?).

§2. Thermodynamic Potentials

We use the expressions for thermodynamic potentials obtained previously,® adding the term
proportional to p® (necessary, as can be seen from the following consideration). The potential of

the C,,/; phases (excluding the case of qp/; = 0/1) has the form

D11 = o(qup)p” + Bp" +7p° — ajp® cos(209), (1)
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Fig. 2. The experimental T-P phase diagram for TMATC-Mn from Ref. 9.

where p and ¢ are the amplitude and phase of a two-component order parameter (the soft branch
is doubly degenerate, i.e. a(q) = a(—¢)). We assume g > 0 and v > 0. The potential of the IC

phase has the form
Orc = alg)p” + Bp* + 70" (2)

Note that the anisotropic term with the coefficient o] in Eq. (2) for an arbitrary incommensurate ¢
does not satisfy a translational symmetry of the crystal and hence is not an invariant. The potential

of the initial C phase and the commensurate Cy/y phase has the form

@oj1 = alg)C? o+ 250+ 2 3

The soft optical branch, or more precisely, dependence of the elastic coefficient o on the wave

number ¢, see Eqs. (1) and (2), is determined by the expression®

a(q) = a—8¢* — k' + 7¢°, (4)

where Kk > 0 and 7 > 0 are assumed.

Eq. (4) can be rewritten in the form

a(q) = a+ A(q), Alg) =70 — ¢*)’[2(6° — i) + ¢°], a = a — Ay,
Ao = A(0) = 270" (b — ¢f), § = 70*(3b* — ddf), af = w/2r,
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where we introduce quantities a, b and ¢, used in what follows. Their physical meaning is the
following: @ and b are coordinates of the minimum of the soft branch in an arbitrary point of the

Brillouin zone:
¢=0b, o) =a. (6)

This minimum exists at the values § > —x*/37 or b? > 2¢# /3. The minimum at the center of the

Brillouin zone
q = 07 04(0) =« (7)

exists at the values § < 0 or b* < 4¢f/3. Thus, in the interval of values —x%/37 < § < 0 or
2¢} /3 < b* < 4¢f /3 the soft branch has two minima. The LT-point is determined by the condition
that these minima simultaneously become zero. The coordinates of the LT-point, depending on

the planes we use, are
a=0,b=q,, 6=—-71q, Ag=0. (8)

Expressions (1)-(3) for the potentials can be simplified if we minimize them with respect to

their variables. As a result we obtain, at v = 0,%

Do =0, Do = —a’/483, Bgj = —30° /84,

a? ’ -2
. m/l |al | O/l

where a,,, ; = @(qy, ;). The last expression for @,, ; is obtained at the condition that the anisotropic

(i.e. ¢-dependent) invariant in Eq. (1) is small in comparison with the isotropic invariant?

Lof 12 _ gl (_awp)"
2607 25 2 ) ©h (10)

We stress that neglecting the term vp® in potentials (9) cannot be valid for /3. Indeed, if
v = 0 the minimum of @, /3, Eq. (1), at finite values of p? disappears very quickly as | a3 | grows,
even at not too large values of | o |. (It occurs at 3(—aq/3) | b | /3% =1 or at 1243(A—D;3) =1
in notations of Eq. (13).) In order to avoid this, it is necessary to take into account the term ~p®
and to suppose 7 >| aj |. Obviously, the term vp® must be included in all potentials (not only in
®y/3).

Minimizing Eqs. (1)-(3) with respect to their variables we now obtain more complicated than
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in Eq. (9) equations for thermodynamic potentials

tro =~ 2= T - - Ty
Bops = oy {1 - 1 - (1 - ),
e T N o
nip = 2O Tl U g e
Bt = — {1 - T (1= Ty o (L - Ty gy
The last expression for ®,,/; is obtained at the condition of weak anisotropy taking now the form
(- ) e w

which coincides with Eq. (10) if 3y(—ay,/)/8% < 1.

§3. Phase boundaries

Later on we use the following variables and parameters

. a . Ao . A(qm/l) . b _qL
A__T—QG’ DO_T—QG’ Dm/l_W7B_é7 QL—§7 (13)
O Lt b QL gty
m/l - Q 9 - TQ47 [ = Qﬁ TQG 9 ¥ Qﬁ TQ6 *

For convenience (see D-A diagram on Fig. 3) the sign of A is chosen opposite to that of a. Each
C,n/1 phase is characterized by only one dimensionless parameter A; depending on the magnitude
of the coefficient aj. There is one more parameter A, common for all phases. Since the coefficients
a, 8, k and 7 are dimensionless by itself, Q is mere a number and we introduce it in Eq. (13) for
the sake of choosing numerical values of different quantities when constructing the phase diagrams.

A phase diagram must be plotted on the plane of such two coeflicients of the potentials, which
are small, and hence their dependence on T and P is essential. The other coefficients are assumed to
be independent of T" and P which is justified because these coefficients are, generally speaking, not
small. The small coefficients are 6 and « and hence D and A. So we construct a phase diagram on
the D-A plane, assuming that these variables linearly depend on T and P, while the rest quantities
Qr., Ay and A; are supposed to be constant. Hence, constant are the coefficients &, 7, 3, v and «].

Equating potentials (12) to each other we obtain expressions for the boundaries between corre-
sponding phases. We restrict ourselves by those which present on the experimental phase diagram.

The boundaries with the initial C phase: C-IC and C-Cy/; have, respectively, the form

A=0, A=D. (14)
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The boundaries IC-Cy /1, IC-Cy/3 and IC-Cy /5 have, respectively, the form
(14 12424)%2 — (1 + 18424) =
DI+ 12424 - Do)~ [1 4 1842(4 — Do)

1
W (14 12424)%2 — (1 + 18424)} =
2 2 3/2 2 2 (15)
(A2 — AQ)Q{[l + 12(14’7 - A3)(A - D1/3)] - [1 + 18(14’7 - A3)(A - D1/3)]}7
¥ 3
(14 12424)%2 — (1 + 18424) =
(1 - 24,)2 (1-24,)2

Three boundaries C-1C, C-Cy/1, Eq. (14), and 1C-Cy/y, Eq. (15) converge at a single point,

(1 - 242)*{[1 + P21

which is the LT-point. Its coordinates on the D-A plane is
D=-Qf, A=0, (16)

the values B? = Q? and Dy = 0 correspond to this point, see Eq. (8)).
L
The boundaries Cy/1-C /3 and C;/3-C, /5 have, respectively, the form

%i [ o 1243(4 = DO = [14 1842 (A = Do)]} =

Gy 0+ 12083 — A = Dy = [ 1842 = A3)(A = Dyl

(17)
m{[l +12(A2 — A3)(A - DI/S)]3/2 — 14+ 18(A2 — A (A - Dy )]} =
v 3
(1—-2A4,)3 N 12A2(A = Dy ) 1y 18A2(A - DI/Q)]}
Al (1 —2A5)? (1—2A4,)? ’
The boundary 1C-C,, /;, as it follows from Egs. (11) and (12), has the form
Dl/(l_l) 3A2D1/(l_1)
A= mZ 1+ % . (18)

This expression is obtained at the condition D,,,; < A, which coincides practically with the

condition of weak anisotropy (12), which assumes in notations (13) the form

Al -+ 12434172 < 1) < (19)

For the C,, /;-C,,//y boundary we obtain from Eq. (11) under the condition (19) the expression

Dyt~ L+ 12424)1/2 2 1]y =

(Gl

Ay
Dm’/l’ - {6A2

(20)
[(1+12A424)12 ]3P,
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The boundaries C,,,-C;/3 and C,, ;;-C, , differ little from the boundaries IC-Cy;3 and 1C-Cy s,
respectively, and these differences usually can be neglected (as it is done in Fig. 3).
The quantities D, /;, Do and D are expressed in terms of B? according to Eq. (5) in the

following way

Dyt = (B> = Q%) [2(B* = Q1) + Q2 1),

Do =2BY(B*-Qi), D= B*(3B*-4Q}) 1)
0 — L/s — L

Setting values of B% we can find values of A from Eqs. (14)-(20) and D from Eq. (21). This enables
us to plot boundaries on the D-A diagram.

The minimum of the branch at an arbitrary point of the Brillouin zone disappears below the
value B? = %Qi Simultaneously the quantities @ and b (A and B) lose their sense. Hence, the

diagram on the D-A plane has the sense only at D > —%Qi.

§4. Theoretical Phase Diagrams

In order to construct the D-A phase diagram for TMATC-Mn we must chose values of the
parameters (Jr,, A4, and A; for each C,,/; phase. Such choice is determined from the condition
of best possible agreement between theoretical T-P diagrams, as obtained from the D-A diagram,
and the experimental T-P diagrams shown in Fig. 1 and 2. We choose the following values of the

parameters
Qf =055, Q =05, Ay =0.375, A, = A3 =1, A5 = 0.5, A; = 1.1. (22)

They are taken with an accuracy only of one - two significant figures. The simplifying assumption
A, = Az is used. Figure 3 shows the D-A phase diagram constructed according to expressions
(14)-(21). LT denotes the LT-point with the coordinates given by Eq. (16). Note that there is no
way of constructing the phase diagram on the D-A plane to the left of the dashed line (see also
Fig. 4).

When constructing the T-P phase diagram from the D-A diagram given in Fig. 3, we assume
the simplest linear dependence of D and A on T and P. Then the T and P axes are straight lines
in Fig. 3. Their positions, orientations and scales are determined from the best possible agreement
with the experimental T-P diagrams (Figs. 1 and 2). We put CO‘L(TB):O.S, Cot(a)zo.&

Figures 4 and 5 shows the T-P phase diagram constructed from Fig. 3 with the choice of T
and P axes indicated there. The scales along the T and P axes are chosen in the ratio of 0.7.
By comparing Figs. 4 and 5 with Figs. 1 and 2, one can see that the theoretical and experimental
phase diagrams agree sufficiently well. This agreement could be improved by making a more suitable
selection of the parameters J1,, A, and A;, and by achieving a more precise orientation of the T’

and P axes in the D-A diagram. A strong non-linearity of the dependencies of ¢,,,; on T" and P in



8 D. G. sannNikov, G. A. KessENIKH and H. MASHIYAMA

Fig. 3. The D-A phase diagram with the LT-point plotted for TAMTC-Mn.

Fig. 4. The theoretical T-P phase diagram plotted on the bases of Fig. 3 for TMATC-Mn. The scale is the same as
in Fig. 1.
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Fig. 5. The theoretical T-P phase diagram plotted on the bases of Fig. 3 for TMATC-Mn. The scale is the same as
in Fig. 2.

Figs. 1 and 2 require to take into consideration nonlinear dependencies of A and D on T and P.

But it is beyond the scope of this paper.

§5. Discussion

In conclusion, we enumerate again all approximations and assumptions made when constructing
the theoretical 1-A and T-P phase diagrams. The triple point between C, Cq/; and IC phases
existing in the experimental T-P diagrams for TMATC-M crystal family is assumed to be the
LT-point®) (and the L-point must be absent).

The single harmonic approximation is used for the IC phase. This leads to errors, although
they are usually small when determining the boundaries between the IC and C,, /; phases. The weak
anisotropy condition is used for the C,, ,; phases (m/l # 1/2 and 1/3). This allows us to obtain
explicit expressions for the potentials and hence for the boundaries with the C,, ,; phases. This
condition is comparatively well fulfilled in the whole region of the D-A and T-P phase diagrams in
Figs. 3 and 4, 5.

Only two small quantities D and A are assumed to be dependent on 7" and P. The remaining
quantities Qr,, A, and A; (or &, 7, #, v and a]) are considered to be constant, independent of 7" and
P. The assumption of linear dependence of D and A on T and P is a simplification which obviously

does not entirely quite correspond to the experimental diagrams (compare Figs. 1, 2 and 4, 5).
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When constructing the phase diagrams the numerical values of the parameters are taken with,
an accuracy of one - two significant figures. The simplification A, = As3 is used. The dispersion
(dependence on ¢) of the coefficients 3, v and o] is neglected.

The approximations and assumptions above-listed did not prevent us from obtaining a wholly
satisfactory agreement between the theoretical and experimental T-P phase diagrams for TMATC-
Mn. And this is in spite of the fact that in the phenomenological model considered here the number
of dimensionless parameters which are used is small: )1, determining the coordinate of the LT-
point, A, and A;, which determines the width of the interval values ¢ around ¢,,;; occupying by
the C,,/; phases (at fixed values of A).

The phenomenological approach to structural phase transitions is known to be well justified.
The present result shows that it is just as well justified in this case, i.e., as applied to complicated
phase diagrams on which the special triple point of a new type, incommensurate phase, and a large
number of commensurate phases exist. Thus this approach can be considered to be adequate to

the experimental data.
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