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Abstract

We introduce a generalized Wigner-Yanase skew infor-
mation and then derive the trace inequality related to
the uncertainty relation. This inequality is a non-trivial
generalization of the uncertainty relation derived by
S.Luo for the quantum uncertainty quantity exclud-
ing the classical mixture. And we introduce a general-
ized Fisher information and then derive a generalized
Cramér-Rao inequality. We also give an example for
our generalized Fisher information and then derive the
uncertainty relation for two observables.

1. INTRODUCTION

As a degree for non-commutativity between a quan-
tum state p and an observable H, Wigner-Yanase skew
information

I(H) = %Tr [(z {pl/Q,Hbz]

was defined in [10]. Here we denote the commutator
by [X,Y] = XY — Y X. This quantity was generalized
by Dyson

Iy a(H) = 5 [l H]) (Lo~ H])]

which is known as the Wigner-Yanase-Dyson skew in-
formation. It is famous that the convexity of Ip, a(H)
with respect to p was successfully proven by E.Lieb in
[7]. From the physical point of view, an observable H
is generally considered to be an unbounded operator,
however in the present paper, unless otherwise stated,
we consider H € B(H), where B(H) represents the set
of all bounded linear operators on the Hilbert space
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‘H, as a mathematical interest. We also denote the
set of all self-adjoint operators (observables) by L, (H)
and the set of all density operators (quantum states) by
S(H) on the Hilbert space H. The relation between the
Wigner-Yanase skew information and the uncertainty
relation was studied in [9]. Moreover the relation be-
tween the Wigner-Yanase-Dyson skew information and
the uncertainty relation was studied in [6, 11]. In our
previous paper [11], we defined a generalized skew in-
formation and then derived a kind of an uncertainty
relation. In the section 2, we introduce a new gen-
eralized Wigner-Yanase-Dyson skew information. On
a generalization of the original Wigner-Yanase-Dyson
skew information, our generalization is different from
the Wigner-Yanase-Dyson skew information and a gen-
eralized skew information defined in our previous paper
[11].

On the other hand, we have some definitions for the
Fisher information in quantum mechanical system. In
the section 3, we consider the standard definition and
its one-parameter extended one. For a parameterized
density operator pg € Sp(H), we define the Fisher in-
formation by

I(pg, Lg) = TrlpoLoL}),
where the logarithmic derivative Ly is defined by

Opo _ 1

20 -~ 2 (poLg + Lype)

and Sy(H) represents the set of all quantum states with
one-parameter § € R. In the section 3 of the present
paper, we define a one-parameter extended Fisher in-
formation and study some trace inequalities between
this quantity and the variance (a generalized Cramér-
Rao type inequality). See the literatures [2, 3] on recent
advances of the skew information, the Fisher informa-
tion and the uncertainty relation.



2. TRACE INEQUALITIES ON A GENER-
ALIZED WIGNER-YANASE SKEW INFOR-
MATION

We review the relation between the Wigner-Yanase
skew information and the uncertainty relation. In
quantum mechanical system, the expectation value of
an observable H in a quantum state p is expressed
by TrlpH]. Tt is natural that the variance for a
quantum state p and an observable H is defined by
Vo(H) = Tr(p(H — TrlpH]I)?] = Tr(pH?] — Tr[pH]*.
It is famous that we have the Heisenberg’s uncertainty
relation:

1
Vo(A)Vp(B) = 4| Tr(p[A, B]]? (1)
for a quantum state p and two observables A and B.
The further strong result was given by Schrodinger

Vo(A)V,(B) ~ [Covy(4, B)P > {|TrlplA, B,

where the covariance is defined by Couv,(4, B)
Tr(p(A — Tr[pAlI)(B — Tr[pB]I)]. However, the un-
certainty relation for the skew information failed. (See
[9, 6, 11].)

1,(A),(B) > {ITr[plA, B

Recently S.Luo introduced the quantity U,(H) repre-
senting a quantum uncertainty excluding the classical
mixture:

Uy (H) = \JV,(H)? — (V,(H) — I,(H))?.
Note that we have the relation among quantities as

0 < I,(H) < Uy(H) < Vy(H). @)
For a quantum state p and observables X, Y, he derived
the following uncertainty relation in [8]:

1
Up(X)U,(Y) = 4 |Tr{pl X, Y]] (3)
The inequality (3) is a refinement of the inequality (1)
in the sense of (2). In this section, we study two types of
one-parameter extended inequalities for the inequality

(3).

Definition 2.1 For0 < a <1, a quantum state p and
an observable H, we define the Wigner-Yanase-Dyson
skew information

Ipo(H) = STr [(ilp®, Ho))(ilp'~*, Ho))]
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and we also define

J

P

(H) =;Tr [{pa’HO}{pl_avHO}] )

where Hy = H — Tr[pH|I and we denote the anti-
commutator by {X, Y} = XY - Y X.

N | =

Note that we have

%TT [(i[paa HO])(i[pliav HO])]
— oy mae . m).

but we have

1 _ 1 _
STrl{e™ HoH{p' ™", Ho}] # STrl{p®, H}{p' ™", H}].

Then we have the following inequalities:
Ipo(H) < I,(H) < J,(H) < Jpa(H), (4)

since we have Tr[p'/?Hp'/?H| < Tr[p*Hp'~“H]. If
we define

Upo(H) =V, (H)? — (V, (H) -

as a direct generalization of Eq.(1), then we have

Ipa(H))?,

0<,a(H)<U,o(H) <U,(H)

due to the first inequality of (9). We also have

U,

pal(H) =1/1

pa

(H)J,

pra

(H).

In this paper, we introduce a generalized Wigner-
Yanase skew information which is a generalized
Wigner-Yanase skew information by

1 ) a+ 11—« 2
Kpo(H) = 5Tr (Z {’JQ’J,HOD ]
and we also define
1 fe 11—« 2
Lya(H) = 517 ({pzp,Ho})

Throughout this section, we put Xg = X — Tr[pX]I
and Yy = Y — Tr[pY]I. Then we show the following
trace inequality.

Theorem 2.2 For a quantum state p and observable
X,Y and a € [0, 1], we have

1
Wp,a(X)Wp,a(Y) > 1 Tr

where

Wi a(X) = /K a(X)Lp0(X).



Remark 2.3 Theorem 2.2 is not trivial by the follow-
mng two reasons.

(1) There is no relation between

o [ ) 2 :

and |Tr [p[X, Y]])°.

Then (5) is equivalent to the following;

(Trl(p™ + p=)2([X, Y]))?

(zllTr[Aa(X)2 A a(X)?] + Lpa(X )>

(6)

1
4
4
<iTr[Ba(Y)2 + Bi_o(Y)?] + Jp,oz(Y)) ‘

And we also have

(2) Though Uya(H) < Up(H) and U,o(H) <
Up,o(H) hold, there is no relation between U,(H)
and U, o(H).

<

Proof of Theorem 2.2. We put

T + oG YD 7)
(TP + Ao 4 DoY)

1 2 2
(4TT[BQ(X) + Bi—a(X)7] + Jp,a(X)) :

Ao(H) = i[p%, Ho), Bo(H) = {p®, Ho},
K= %(AQ(X) Ay (X)) + %(BQ(Y) LB, By taking a square root of (6) x (7), we ha;/e
It follows from K* = K that {i (Trl(p™ + p' TP (X, Y])])Q}
0 < TrlKKY| <

_ iTr[(Aa(X)-l-Alfa(X))z]gf

+%Tr[(Aa(X) + Alfoc(X

%Tr[(Ba(Y) +B1-a(Y))?]

= (702 + A (0 4 1a(X) ) 2

N(Ba(Y) + Bi—a(Y))]x

Tr((p* + p'~*)?(i[Xo, Yo))]

4 <iTr[Aa(X)2 b A o(X)] 1 I, a(X))

+Jpa )

4<iTr[A (V) + Ao (Y )]"‘Ipa(y))

1
(4Tr[Ba(Y)2 + B1_of

<iTr[Ba(X)2 + B1_o(X)?] + J,,,Q(X)) .

5 Tr(Aa(X) + AL o(X)(BaY) + Bra(V) 1
" (leTr[Ba(Y)2 + Bi_o(Y)?] + Jp,a(Y)> : 1 (Trl(p™ + p' =) (X, YD)
Then < 2\/(1TT[Aa(X)2 + A1_a(X)?] + Ip,a(X))
i (Tr[(Aa(X) + A1 o (X))(Ba(Y) + B1—a(Y))])? \/GTr[Ba(Y)Q + Bi—a(Y)?] + Jp,a(Y))
< 4 <iTr[Aa(X)2 + A o(X)? + Ip,a(X)> (5) . 2 2
) P (4T7'[AQ(Y) + Ao (Y) ]+Ip,a(y))
(4TT[BQ(Y)2 + B oY) + Jp,a(Y)> )
1
Now we have \/<4TT[BQ(X)2 +Bi-a(X)7T+ JPVQ(X)).
Tr[(Aa(X) + A1—a(X))(Ba(Y) + Bi_a(Y))] Therefore
= Tr((ilp®, Xo] +i[p" =, Xo)) ({p™, Yy + {p*~*, Yo})] o L 1-an 2 2
= iTr[(p™ +p""*)*XoYo — YoXo(p™ + p' )’ i(TT (p +2,0 ) (@[, Y]) )
(p*
(

[
= Trl(p* + 92X, Y)))
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Since
(o 11—« 2
Tr (p+2p> [X,Y]
fe 1—a\ 2
. (’JZ") X, Y|,
we have
o 1—a\ 2
Re ('OJFQ'O) [X,Y]| = 0.
And then
« 1—a\ 2
Tr (p+2p> [X,Y]
(e% 1—a\ 2
= iImT'r <'°+2p) [X,Y]].
Hence

(742 )

<pa+pla>2[X,Y]

; |

(TT
— (Tr
— (iImTT

fet 1—a\ 2
(ImTr (p—f—p

L) oy
(pa +2p1a>2 [X,Y]

(pa +2p1‘°‘>2 X.Y]

>2

2

Tr

q.e.d.
We also define the followings to obtain another uncer-
tainty relation.

Definition 2.4 For a quantum state p and observable
H and o € [0, 1], we define

Wp.a(H)
VIl BT Tr [l B

VTr[{p®, HoY| Tr [{pt==, Ho}?].

The we have the following theorem.
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Theorem 2.5 For a quantum state p and observable
X,Y and o € [0,1], we have

VW ()W, (V)

> % 77 [, Y]] T 20 v |

Remark 2.6 There is no relation between Theorem
2.2 and Theorem 2.5 by the following (1), (2).

(1) There is no relation between 4W, o(X) and

(Tr {(i[pa,xo]y "!‘4(2'[/)1_0‘7)(0])2

] —&-Ip,a(X))

(Tr {({PQ»X(J}V +4({p1a,Xo})T n Jp,a(X)> .

That is, there are no relation between

VTr[(ilp, Xo))2] Tr [(i[p =2, Xo])?]

and

7y [ (A% Xo])? + (o', Xo])?
e R

v [, o il X))

and there is no relation between

VTr[{p® X012 Tr [{pt=, Xo}?]

and

Tr [{PQ»X0}2 + {PI_O‘»XOP]

4
1 for 11—«
+5Ir [{p*, XoHp' ™ Xo}] -
(2) There is no relation between
‘Tr [P [X, Y]] Tr [p2<1—a) X, Y]} ‘

and
2

(e 11—«
‘Tr [(p aall

L px ]

That is, there is no relation between

|Tr [p**[X, Y]]

(pa +2'°1_a)2 X,Y]

and

Tr




and there in no relation between
oot

and

a 1—a\ 2
Tr (p+2p> [X,Y] ‘

(3) When oo = 1/2, both Theorem 2.2 and Theorem
2.5 reduce the result of Luo.

Proof of Theorem 2.5. We put

K= i[paaXO]z + {paa Yb}

It follows from K* = K that
0 < Tr[KK"]
= Tr [ Z[pa,Xo x + {P YO}) ]
= T [(i[p%, Xo])?] 2 + 20T [[p%, Xo){p®, Yo}] =
+Tr[ p Y} ]
= Tr[(ilp 1)?] 2% + 26ImTr [p**[X, Y]] =
+Tr [{p Yo} ]
Then

Tr [p**[X, Y]] > = (ImTr [p**[X,Y]])?

<Tr [(i[paa XO])Q] Tr [{pa, YO}Z} :
By exchanging X and Y we have
Tr [p*[X, Y]]
<Tr [(i[po‘, Yo])z} Tr [{p“, Xo}z} .

And we also have

7 201X, Y]

< Tr[(ilp'™*, Xo))?] Tr [{p'*, Y0}?] .
By exchanging X and Y we have

(77 201X, Y]] 1

<Tr [( [P~ Yo)) ]Tr [{pl_a,Xo}] )
We put as follows;

Sp.a(X)

Tr [(i[p™, Xo))?] ,

N~ N

Sp,lfa(X)

Tr [(ilo' ™, Xo))?]
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SpalV) = 3Tr [, Vo))
Spa-a(¥) = 5T [0, ¥o)?]
T,0(X) = 377 (", Xo}?].
TpaaX) = JTr [{9 X0}
T,0(Y) = 5T [{6% Yo},
T,1-a(Y) = %Tr [{p' ™ Yo}?].

Then we have
Tr [p**[X, Y]] |?

< 44/8,0(X)T,

v [pm*“) X, ]| 2

X)Sp.a(Y)Tpa(Y).

Tpa-a(X)Sp1-a(Y)Th1-a(Y).

<481 (X

By putting

X) = \/SP,Q(X)S

p,lfa(X)Tp»a (X)Tp,lfa (X),
)= 5nal¥)

VWoa (X)W (V)

(Tr [ (X, Y]] Tr [0~ [X, Y]] |

pl a( )Tp,a(y)Tp,lfa(Y)a

we have

1
> =
4

q.e.d.

3. A GENERALIZED FISHER INFORMA-
TION AND A GENERALIZED CRAMER-
RAO INEQUALITY

We review the Fisher information and the Cramér-
Rao inequality in quantum mechanical system. We
consider the set of all quantum states:

So(H) = {ps € B(H)|ps > 0,Trlpa] = 1},

with one parameter § € R. Let H € L,(H) = {H €
B(H)|[H = H*} be an estimater of the parameter
0. In the sequel, we consider the case which an es-
timater is unbiased, that is, Eg[H] = Tr[peH] = 6.
The variance Vy[H| of the estimater H is defined by
Vo[H] = Trlpe(H — Tr[pgH]I)?]. Then the famous
Cramér-Rao inequality, which is a relation between the
Fisher information and the variance, Vy[H| >

1
= I(po,Lo)
holds. We should note that the logarithmic derivative



Ly € B(H) is not uniquely determined. Thus we define
the symmetric logarithmic derivative L € L, (H) by
Ipe

00

1
5 (oL + Lipo)-

Then the symmetric logarithmic derivative L5 is
uniquely determined [1, 4, 5] and we have

I(po, Lg) > I(pg, Ly). (8)

In addition, for the symmetric logarithmic derivative

L(;S , we have the Cramér-Rao inequality [1, 4, 5]:

1
VolH] > —.
I(po, L)

Due to the inequality (8), we have the following theo-
rem known as Cramér-Rao inequality.

(9)

Theorem 3.1

1
VolH) = 1 Ty

That is, the symmetric logarithmic derivative Lg gives
the best estimation of the lower bound for the variance

Vo[H].

We here introduce a generalized Fisher information
with one-parameter « € [0, 1].

Definition 3.2 We define a generalized Fisher infor-
mation by

Ia(pg,Lo’a) = Tr[ngG,apéiaLz,aL S [07 1]7

where a generalized logarithmic derivative Lg o is de-
fined by

dpe 1 1ta l1—a la 1o
97 =3 (o0 Loar™ +007 Liapy™ ). (10
Note that @ = 1 or [ps,Lgo] = 0 recovers

Io(po, Lo.o) = I(po, Ly). We also have I (pg, Lo.o) > 0
and the following trace inequality.

Theorem 3.3 For a self-adjoint operator H, a density
operator pg with the parameter 6 and o € [0,1], if we
have Eg[H] = 0, then we have the inequality

Vi[H] > 1

 Tolon Lo "

It is clear that (11) is obtained by putting

11— a—1

Loo=py*

Lgpe 2,
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