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Abstract. In this paper, necessary optimality conditions for optimal control problems subject to
state-variable inequality constraints are derived under regularity assumptions for the problems.
It is shown that so-called adjoint variables are continuous on whole interval on which the optimal
state variable are defined. The regularity assumptions are sufficient condition for continuity of

the adjoint variables.
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1. Introduction

In Necessary conditions for optimal control problems with restricted coordinates
were first presented by Gamkrelidze in 1960 [1]. Many works have been done on the
problem since then. The necessary conditions have been shown by various means, for
example, the calculus of variations [2-4], the abstract theory of optimality [5-7], etc.
Further, the necessary conditions for the problem with higher-order state inequality
constraints have been derived [3,8,9]. In this paper, the adjoint variables in the necessary
conditions may be discontinuous, that is, may have jumps, when the optimal state on
the boundary of the restricted region. But we can guess that the adjoint variables are

continuous everywhere the optimal solution is defined, depending on the problem. In
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this paper, we shall consider optimal control problems with state-variable inequality
constraints. Under regularity assumptions for our problems, it will be proved that the
state variables, the optimal controls and the adjoint variables of the optimal control
problems satisfy the necessary conditions which are similar to those of ordinary optimal
control problem. In particular, the adjoint variables are absolutely continuous on whole

interval on which the optimal state variables are defined.

In section 2, we will give a property with respect to linear operations and cones in
normed spaces. In section 3, we will formulate an optimal control problems with state-
variable inequality constraints and give notations, terminologies and assumptions for
our problems. In section 4, we will introduce the conditions necessary for continuity of
adjoint variables and give their properties. In section 5, we will prove necessary conditions
for the optimal solutions of our problems. And in section 6, we will give a simple
example with respect to time optimal control problem with state-variable inequality

constraints.

2. Preliminary Results

In this section, we will show a mathematical concept on linear operators and cones

in normed spaces, which will be used in the sequel.

Let 2, Z and Z be real normed spaces and let | o |, | ¢ |, and | o |, be
norms on the spaces 2, % and .Z, respectively. Let O be a non-empty convex subset
of 2 containing the origin, let ¥ and P be a convex cone in % with non-empty
interior and a subset of .Z°, and let Z be a convex cone in .Z". Throughout this paper, a
set S of the underlying linear space will be called a cone, if it is not empty and if uSc§
whenever 4 >0. Let y and Z be an elements of % and .2 such that jeY and 7€ Z,
respectively, and let G and H be a continuous linear operator from 2 into % and a
linear operator from 2’ into .Z, respectively. For any subset S and any element a of
undérlying space, int S, cl S and [S[a] shall respectively denote the interior of §, the

closure of S and the conical hull of §-—a, that is,

V) [Sla]= U{r(s-a)}.

>0
Further, each origin of the spaces 2°, % and .Z shall be denoted the same notation 0.
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Now let us consider the following condition.

Condition 1. Besides the original norms | e |, on 2 and| e |, on %, additional
norms | ¢ [, on & and ] e [, on 2" can be defined so as to possess the following
properties:
(C1) the convex cone Z has non-empty interior under the additional norm 1o,
(C2) there exists an « =1 such that
Iy <ea]x[g, [l,<alz[, forall xe2 and zeZ,
(C3) P=Z,
(C4) there exists a positive S such that, for each peP, we can find an

x €[0|0] satisfying the relations

peH(x)-[ZE] and |, <Blpl,-
Here S denotes the closure of the set S in 2 or .2 under the additional norms e[,
or | e [, respectively. Further, all topological properties hereafter mean those under

the original norm, unless explicitly stated otherwise.

We can now show the following lemma. Since the assumptions of the lemma is

different from those of Lemma 3 in [10], we shall give the proof.

Lemma 1. Suppose that the sets 0, Z, P, the element Z, the norms | loes @ 1o

and the linear operator H:2” — 2 satisfy the Condition 1. If
@) {6 (in¢ [¥15])} n{H"([z 2]°)}nm =2,

then there exists a non-zero linear continuous functional y* defined on % and a linear

continuous functional z* defined on .Z such that
y*(y)<0, z*(z)<0 forall yeY and zeZ,
y*(3)=0, z*(z)=0,
y*(G(x))+z*(H(x))20 forall xeQ,
where S° denotes the interior of the set S in 2 or .2 under the additional norms
] [, or ] e [, respectively.
Proof. For any p >0, we shall respectively define the set U, and V, as follows:

U,={xe2|lkl, <p} and V,={zez|[, <p}.
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We will first show that the following statement is true:

for any €>0, there exists a 6> 0 such that
v; < H{[Qo] v, )-[7z]
Let £>0 be an arbitrary. We set 6 = ¢/ (>0). By means of (C2) and (C3), it is easily

3

verified that

4) VscPAV;.

It follows, from (C4), that pnV;c H(mmUe)—[—Z?A], which, by virtue of (4), that
implies that

®) = { (o] nu.)- [le]}

It is easily verified that [Q10] and [Z[z] are respectively convex cones in 2 and Z,

which, together with (C1) and linearity of H, implies that H{[00]nU,)-[7] is a

convex cone in .2 with non-empty interior under the additional norm ] ¢ [, . Using

Lemma 11.A in [11], we obtain that

{{ (IZORTAR [le]}} { (FORVAR [zlz]} < H({@o]ny ) 2]
This together with (5) implies that

vs < H({do]~ U, )-[22],

and thus proving the statement (3).

We now turn to the proof of the lemma. Let O= G“l(int [YI)A;]) We first consider the
case where [Ql0]nO#@. Since G is a continuous linear operator from 2 into % and
H is a linear operator from 2 into .Z, it follows, from Lemma 11.A in [10], that O isa

convex cone in & and
(6) H([QT] N 0)— [2\2]0 is a convex cone in .Z .
Let ze H(m N 0) - [Z|2]° be arbitrary, then there is an xe [-Q_w—] N O such that

ze H(x)—[ZlE]o. Since O is open, there is an &> 0 such that x+U, c 0. It follows from

(3) that there is a 6>0 such that Vsc H([—QTO-]n Ue)—[ZTA]. We know that
[Z|£]+[Z|2]° c [Z\E]O, which, by virtue of the linearity of H, implies that
2+ Vs c H(x)+ H([_Qlam UE)—{@+ [le”]} c H([Elo—]n [x+ Ue}) - (2]
< H{[ov]no)-[2E]"
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that is,
) H(m ) 0) - [Z[E] is open
(under the original norm | e |, ). By means of (2), we can obtain that

o
.

®) 0 H([00]~0)-[2]
We conclude, from (6)-(8), that H([_Q|_0_] N 0) - [Z|2]o is an open (non-empty) convex cone

in Z and does not contain the origin of the space .Z. Hence using the standard
separation theorem (see e.g., Theorem 2.7.8 in [12]), there is a non-zero continuous
linear functional 7z * defined on .Z such that

9 7*(z)20 whenever ze H([QIO] ) 0) -[z] -

It follows from (C2) that [2[z] ={[2z]'} = el {[2z]'}, which, by virtue of (9), implies that

(10) 7*(z)<0<z*(H(x)) whenever ze Z[E] and xe[Q0]nO,

because [Q|0] O and [Z|2] are both convex cones. Let us define the norm | ¢ | on the

product space % x R' by |(,7)|=I)l,, +|y| and let us define subset S, and S, of & x R

as follows:

s ={07)|yeint [} v<o}, = {(c(x),z *(H))| x e [Q_|()]}.

Since D=intY c [Yljz], it is verified that S, is an open convex cone in %" X R'. Since

[Ql0] is a convex cone in & with [00]nO#D and (G( o ) z*(H( o ))) is a linear map
from 2 into % xR', S, is (non-empty) convex cone in % x R'. Further it follows from
(10) that S, NS, =@. Therefore, once again using the standard separation theorem,

there exists a continuous linear functional y* and an 77 20, not both zero, such that
(11) y*(y) <0 whenever yecl [Y\fl].

(12) y*(G(x))+ Nz *(H(x)) 20 whenever x e [—Qm

It follows from (10) that

(13) N7*(z) <0 whenever ze [—ZE]

Since 7 * is continuous with respect to the original norm | e |, it follows from (C2)
that z*, which is non-zero, is also continuous with respect to the additional norm

] * [ - Hence we obtain, from (C3), (C4) and (12), (13), that
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(14) y* is a non - zero functional on Z.

It follows from (C2) that c {[Z[i]}=el[ZZ]. Hence (11)-13) imply that, if we set

7¥=nz*, then

(15) y*(y)<0 whenever yecl [Y|jz],
(16) 2*(y)<0 whenever zecl[Zz],
a7 y*(G(x))+z*(H(x)) 20 whenever xe[Q0].

We now consider the case where [QIO] No=3. G([Q|0]) is a convex cone in % and
int [Y]}?] is an open convex cone in % such that int [Y]&]r\ G([Q|0]) =@. Using the
standard separation theorem, there is a non-zero continuous linear functional y* such

that
ﬁ], xe[Q[O].
If z* denotes the functional on .Z such that z*(z)=0 for all ze.Z, then it is easily

y*(y)<0<y*(G(x)) whenever yeint [Y

verified that (14)-17) hold. Therefore, we can obtain that there exist continuous linear
functionals y* and z* defined on % and .Z  respectively, such that (14)-(17) hold,
whether or not the set m N O is empty. Since yeY and 7 e Z, it follows from (1) that
tyeecl [Y|)3] and +Zeel [Z|2]. Hence, by virtue of (14)-(17), we conclude that the lemma

is true. [

3. Formulation of Optimal Control Problems

In this section, we will formulate an optimal control problems with state-variable
inequality constraints and give notations, terminologies and assumptions, which will be

used throughout this paper.

Let D, U and J be respectively a non-empty open connected set in R", a non-empty
set in R™ and a bounded open interval containing 0, and let A be an open connected

set in R™™*! such that DxUxJ c A, where R’ denotes the Euclidean Jj-dimensional

&
space. Let f(£,v,7) be an n-vector valued function defined on A, where £=| : |eR",
S
Vi
v=| i |eR™, 7eR'. Let fé(é v, 'r) is the matrix with element w in ith row
v J

m
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and jth column (i,j=1,-,n).Let gy(£).&(&)-- g, (&) and hy(E), -, 4 (£) be real valued
functions defined on D which are of class C' on D. Let A and Q be a set of all
absolutely continuous functions from J into D and a set of all measurable essentially
bounded functions from J into U, respectively, where a function is measurable if the

preimage of every Borel set is a Borel set.

We are interested in the functions x(7), u(r) and real number T that satisfy the

following relations:

(18) xeA, ue, [0,T]cJ,

(19) de(}z = f(x(7),u(r),7) for almostall 7€[0,7],
(20) h;(x(r))<0, forall 7€[0,T] andeach j=1,--,s,
(21) g(x(0))<0 for each k=1,--,q,

(22) g4+i(x(T))<0 foreach i=1,---,r.

If functions x(7), u(7) and a real number T satisfy the relations (18)-(22), then we shall
call the triple (x,u,T) a feasible solution of the control system (18)-(22).
In this paper, we shall consider the following optimal control problem.
(OCP) Find a feasible solution (x,u,T) of the control system (18)-(22) such
that go(x(T)) achieve a minimum (subject to the relations (18)-(22)).
Further we shall consider so-called time optimal control problem, which is one of the
most important optimal control problems.

(TOCP) Find a feasible solution (x,u,T) of the control system (18)-(22) such
that T achieve a minimum (subject to the relations (18)-(22)).

As regards terminology, a triple (x,«,T) shall be called an admissible solution of the
equation (19) if x, ¥ and T are respectively the n-vector valued function, m-vector
valued function and real number that satisfy the relations (18) and (19). A triple ()?, u, f‘)
shall be called an optimal selution of (OCP) or (TOCP) if it is a feasible solution of the
control system (18)-(22) and if go(i(f")) < go(x(T)) or T<T for every feasible solution
(x,u,T) of the control system (18)-(22), respectively.
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As regards notation, | | shall denote the ordinary Euclidean norm in the underlying
finite dimensional linear space, 'Y and ¥~ shall denote the transpose and inverse of
the matrix ¥, respectively, and all vectors shall be interpreted column vectors unless
explicitly stated otherwise. For each k=0,L---,g+r and each j=1--,s5 [g] é(é) and
[h f]; (é) shall denote rn-dimensional row vector valued functions on D, defined by

k(%2 - 28] e 0% - 70

respectively. g7(£), g*(&) and h(£) shall denote a g-vector valued function, r-vector

function and s-vector valued function on D defined by

g ()= (21(6) 1 8,(8), &€= (2,1(8) 8,4 (8)

HE)= (hu(E) -~y ()),
respectively. g; (), g;(&) and k(&) shall denote gxn, rxn and sxn Jacobian matrices
derived from the functions g™ (&), g*(£) and h(&), respectively, that is,
61, o0 0 (]2

g@)=| i | &) and k(&)=
[4),(8) [8+],8) [hs]:(8)

for all £e D. Further ¥ shall denote the family of functions from DxJ into R"
defined by
(23) ¥ = {F(éj,r)|F(§, )= f(& u(t),7)— f(R(z).a(z)T), ue .Q}
and co ¥ shall denote the convex hull of the family # .

In closing this section, we shall suppose that, for every ue Q and every compact
subset B of D, there exists a positive M, possibly depending on u and B, such that
(24) | F(& u(7), ’c)’ <M, I fe(&u(T), ’L’)' <M  forevery &£eB, 1el.
Under this assumption, we can prove that the family ¥ is quasiconvex, using arguments
identical to those used by Gamkrelize (see section 4 in [13]). The assumption used by
Gambkrelidze is weaker than (24). However we will use the assumption (24), because

discussion of the assumption itself is not essential theme of this paper.
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4. Regularities of an Admissible Solution

In this section, we will define a regularities of the admissible solution of the equation
(19) and we will give their properties.

Throughout this paper, let ()?, i, f") be the admissible solution of the equation (19)
and let /= [O, f"]. Let &(7) be the absolutely continuous n x» matrix valued function on
I that satisfies the following relations:

d(D(‘L’)

25 = fe(¥(7).é(z),7) for almostall ze1,

<D(O) = the identity matrix.
For each £ R” and each Feco¥ ,let X(& F;7) be the absolutely continuous n-vector

valued function on / defined by

(26) X(& Fr)= ¢(t)[§ + jozp(o)'l F(x(o), c)dd] forall 7€/,
where the integral is to be interpreted in the sense of Lebesgue, and let
@27 (x,u, ) {xéF‘ °)|&eR", FecoZH}.

Let X be the subset of A defined by

X ={x € A| there exists u € 2such that
(x, u, f") is the admissible solution of the equation (19) } .

By the theory of ordinary differential equations, we have known that the following is

true (see e.g., section 3 in [13]).
Lemma 2. If ¥(&F; o e Q(x,u, ) then, for each sufficiently small £> 0, there exist

an x, € A and u, € Q such that

& (T) = f(x(7).u(7),7) for almostall T/,

xe(O) = x(0)+ €.

that is, x, € X. Moreover,

x,(7) - X(1) > %(& F;7) uniformlyin tel.

£ £

We define the regularities of admissible solution of the equation (19).
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Definition 1. (i) An admissible solution (J? u, f‘) of the equation (19) is called regular
to the constraints (20) if we can find a positive B satisfying that, for each s-vector
valued polynomial p(t)='(p,(7),+,p,(7)), there exist positive numbers p, y and an
Xe Q(x, i, ) possibly depending on the polynomial p(7), such that

(28) pi(1)2 p[h ] (%(7))%(z)+1h;(%(z)) forall relandeach j=1--s,

R 12
T 2
(29) [|x o)’ + J' |50 d0':| < p[| p(0) Ip IO lp(o) do| .
(ii) An admissible solution (56, u, f‘) of the equation (19) is called strongly regular to the

constraints (20) if it satisfies the statement (i), but with (29) replaced by the relation

1/2
(30) [Ix(O)I J |%(o) do] < ﬁ[j |p(o)] do‘] .
Here vector valued polynomial means that the vector valued function whose components

are all polynomials.

Let & and Z be the linear spaces of all n-vector valued and s-vector valued
continuous functions defined on I, respectively. We define the norm | ¢ |, on 2 as

follows:
; 12
(31) I~ 5 []x(0)| ' ( )I +J ]x(a)‘zdo} for each xe 2.
0
Besides the norm above, we define an additional norm ] ¢ [, on 2 as follows:
112
K, [|x(0)| l ( A)l +sup |x(T)[2] for each xe 2.
tel

Let T(X,x) be the sequential tangent cone to X at X (cf. [14,15]), that is,

T(X,£)={262’ x*eX, y*>0 foreach k=1,2,---

(32)

k_ 2
and lim y*=0, lim }x—" k"[ =0}.
¥4

k—>oc0 k—o0
Further let
(33) o = max {1%}

We can verify that Q()?, i, f") is a convex subset of 2 containing the origin 0 of 2
and T(X, %) is a cone which is closed in the sense of the additional norm ] e [, (seee.g,

[14]). Therefore, by virtue of Lemma 2, the following lemma is straightforward to prove.
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Lemma 3. (i) Q(fr, i, f") is a convex subset of 2’ satisfying that
00 T)<|of%a 7)o = 7(x.%)

(i) |d, <alx, forall xe2,
where [Q(fc i, f)‘o] denotes the closure of the set [Q( X, U, f‘)IO] under the
additional norm ] e [,,.

Let Z be the convex cone in .Z" defined by
34 z= {z(o)='(zl(.),...,zs(o)) eZ } zj(r)<0forall Te/ and each j=1,-,s },
and let P be the set of all s-vector valued polynomials. Let # and H be the functions
from & into Z such that, for each x e 27,
(35) R(x)=h(x(e),  H(x)= he(3(s))x(9).

We now consider the case where (i i, f") is regular to the constraints (20), In this

case we define the norm | e |, on 2 as follows:

2 ~2 (T v
(36) lds = |z(0)| +|z(T)| + J (o) do for each ze Z.
0
Besides the norm above, we define an additional norm ] e [, on Z as follows:
, 2 T2
37 lz[, = [|Z(O)| +|z(T)i +sup |z(1')| ] for each z€.Z.
tel
As was defined in section 2, for each subset § of 2 (or Z), int S cl S shall denote the
interior and the closure of the set S under the original norm | |, (or | ¢ |, ), respectively.

$° and S shall denote the interior and the closure of the set S under the additional
norm ] e [, (or ] e [,), respectively. We will show the following lemma.
Lemma 4. (i) H is alinear operator from £ into .Z such that, for each xe 2,
lim ] RE2)_ ) [ =0,
ylo
4 z
-, —0
(ii) The statements (C1)-(C3) in Condition 1 hold, in addition if we set z = h (fc) and
0= Q(fc, u, f’) , then the statement (C4) holds.
Proof. Since hj,---,h, are of class C', (i) follows from (35). Now we will show that (ii)
is true. By means of (33), (34), (36), (37) together with (ii) in Lemma 3, it is easily
verified that (C1) and (C2) hold It follows, from Weierstarass' theorem, that (C3) holds.
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To show (C4), let p='(p,,--, p,) € P. It follows, from (i) in Definition 1, that there are
positive numbers p, ¥ and an e Q(fc, i, f)) which satisfy the relations (28) and (29).
Let z/(7),-+-,z,(7) be the function on / defined by

ol ], (G0)E@) - py(2)

AT) =
J
Y
and let z(7)='(z,(7),--+,z,(7)) for all 7 eI. Since h,--,h, are of class C' on D, it follows,

+h;(¥(7)) forallzel andeach j=1,---,s

from (28), (34) and (35), that ze Z and p=H(p%)-y[z—k(%)]. Let x=p%, £=h(%) and
0= Q(fr, i, f), then xe[Q0]c m and pe H(x) —[Z[E], because y[z —h (i)] c [Z|2] c [ZIE].
Further, (29) together with (31) and (86) imply that x|, < 8|p||, . Hence (C4) holds, and

thus proving the lemma. [

Let us consider a continuous linear functional defined on the normed space .Z".
Lemma 5. Let z* be a continuous linear functional on the normed space .2 such that
(38) z*(z)<0 forall zeZ,

then there is a square Lebesgue integrable s-dimensional row vector valued function

() =(4(1),+-,A,(7)) defined on I such that

(39) 2*(2) = 0)2(0) + A(T)e(T) + J'Oa(a)z(o)do for each ze &
and, for each j=1,---,s,

(40) 2;(0)20, 2;(T)20 and A;(r)20 for almostall 7e (0.7).

Proof. Let .#” be a linear space of all square Lebesgue integrable functions from I

into R’ andlet | o |, be the norm on .#* defined by
R 12
7
lzl, = I:J IZ(O')]zdo‘:l for each 7 e 2.
0
Further let 77" = R’ x R® x #*. We define the norm | o

ol = [l +1cP +122] for each w=(6.6,2)

|- on 7 as follows:

Let z* be an arbitrary continuous linear functional on the normed space .Z which
satisfies the relation (38). Since the linear space .2 is regarded as a subspace of the
normed space 7 and is everywhere dense in % (under the norm |  |,,.), the functional
z* can be uniquely extended onto 77". Now let w* be the extended continuous linear
functional on 7. Then there exists a square Lebesgue integrable s-dimensional row

vector valued function A(r)=(A4,(), -, A,(r)) defined on I such that
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w*(w) = A(0)E + l(f){ + JOTA(O')Z(G)dG for each w=(£,0,2)e?",
which implies that the relation (39) holds. It follows, from (34), (38) and (39), that
4;(0)20, lj(f") 20 foreach j=1,---,5s and J:?t(a)z(c)do <0 for all ze.Z', which implies
that 4,(7)>0 for almost all 7 and each j=1,---,s, and thus proving the lemma. [J
At the end of this section, we consider the case where ()2 u, f‘) is strongly regular to

the constraints (20). Besides the norm | e |,, we define an additional norm ] e [ as

follows:

1z[. =esssup [z(7) (= sup |z(‘l')|) forall zeZ.
tel tel
Using the identical procedures in the proof of Lemma 4, but with the norms | e |,
] » [, on Z and the relation (29) replaced by the norms | o |,, ] ® [_ on Z and the

relation (30), respectively, we can show the following lemma.

Lemma 4. (i) H is alinear operator from 2 into .Z such that, for each x e 2,

E A
lim ] M—H(ic)[ =0,
ylo0 Y

Jx-3[, -0 “
(i) If the element 7, the set Q, the norms | o |, and ] e [, arereplaced by h(%),
Q(i, i, f), | o |, and ] e [_, respectively all the statements (C1)-(C4) hold.

Since the linear space .Z is regarded as a subspace of the normed space Z
(presented in the proof of Lemma 5) and is everywhere dense in % (under the norm
| e, éach continuous linear functional on the normed space Z can be uniquely
extended onto .#?. Therefore we can prove the following lemma, employing arguments
virtually identical to those used in the proof of Lemma 5.

Lemma 5'. Let z* be a linear functional on .2 which is continuous with respect to
the norm | |, and satisfies the relation (38), then there is a square Lebesgue integrable

s-dimensional row vector valued function A(7)=(4,(t),---,A,(r)) defined on I such that
T

(41) 2*(z)= J Mo)z(o)do for each ze€ Z
0

and, for each j=1,---,s,

42) A j(’l') >0 foralmostall 7€ (O, f‘)
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5. Necessary Conditions for Optimal Solutions

In this section, we will introduce necessary conditions for optimal solutions of the
problems (OCP) and (TOCP), and give their proofs. We will use all notations in section
4 without further explanation.

we first consider the problem (0CP).

Theorem 1. Let (fc, i, f’) be an optimal solution of the optimal control problem (OCP)
and regular to the constraints (20) as well. Then there exist non-negative numbers
TosM»+*>Tg4,» DOt all being zero, square Lebesgue integrable functions 4,(7).---,4,(7)
defined on [O, f‘] and absolutely continuous functions y,(7),---,¥,(7), defined on [0, f],
which satisfy the following conditions:

M8(%(0))=0 forall k=1,---,¢,

(N1) nq+,-gq+i(£(f"))=0 forall i=1--,r,

2,(0)20, 2,(0)h;(5(0)) =0, 4,(7)20, 4,(F)n,(%(F))=0 forall j=1--s,

(N2)
2(2)20, 4(e)h;(%(x)) =0 for almost all 7€ (0,7) andall j=1.-,s,

d!/;i’f) = ~y(2)fy(#(z), (), 1)~ (r)hg(R(x)) for almost all 7 [0, 7]}

(N3)  (0)=-n"g; (%(0)) — A(0)%;(%(0)),
()= moligole(3(7)) -+ (5(7) + A(T)re(3(7))
(N4)  y(7)f(*(r)a(r),7) = min y(7)f(%(z),v,7) for almostall 7e [0, f‘],

where y(7) = (y,(2),--¥, (7)), 4(7)=(A(2)-A(0), 17 = (M1, )s 0 =(Mguro+Tlysr)s

which are all row vectors.

Proof. Let (,%, i, f) be an optimal solution of (0CP) as well as regular to the constraints

7+r+l a5 follows:

(20). We define a convex cone Y c R
43) Y={’(yo,y1,---,yq+,)eR“*'*' |50 for alli=0,1,---,q+r}-

Let g:2 — R and G: 2 — R7*"*! be defined by

aolo{T)) - ol (7)) o], 4(7))+(7)

T
(44) g(x)= g (x(0)) , G(x)=| £;(%(0))x(0) |, for each xe 2.
)

(
£'(+(7)) & ({7
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It is easily verified that ¥ is a convex cone in R?*"*!

go(&).&1 (&), 8,+-(&) are of class C' on D, it can be verified that G: 2 — R¥*"*! is a

with non-empty interior. Since

continuous linear operator such that, for each x e 27,

(45) lim g—(’i’f‘;)—"—g(—"l—c(i) l=o.
Jx-3[,—0

Since (x i, f) be an optimal solution of (0CP), we can verify that
g(X)ey, h(¥)ez.
In order to prove that
(46) {G“(int [Y!g(i)])} n{ H‘l([Z]E @] )}n[g( i, f)lo] =0,

suppose the contrary, that is, there is an

47) fe [Q(fc, i) 0}
such that
(48) G(3) eint [Yfg(®)], H(z)<[Zp(E)].
It follows, from (382), (47) and (i) in Lemma 3, that there are sequences {x"} and {y"}
such that
(49) x*eX, y*>0 foreach k=12,
Pl

(50) lim ]fc- . [ =0, lim y*=0.

k—ro0 Y P k—ro0

Since ¥ and Z are respectively convex cones in R*"*! and 2 with intY+@ and

Z° # @, we can show, by means of Lemma 11.A in [11], that

(61) OintY+wYcintY, 68Z+wZcZ whenever 0>0, 020,

(52) int[Yg(3)]=[int vg(®)],  [4R()] =[z ()]

It follows from (48) and (52) that there are elements yeintY, zeZ’ and positive

numbers p,, p, such that

(53) G(i)=py(y_§(i))’ H(i)=pZ(z_}_‘(;‘))’

which imply that there is a > 0 such that

(54) y’ eintY whenever |[y-y|<8, z’€Z° whenever |z-z|<$.

If we set positive numbers p,, = min {py,pz} and p, =max {py,pz}, then it follows,

from (45), (50) and (i) in Lemma 4, that there is a positive integer ¢ such that
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(£+yf[(x" —f)/y’])—ﬁ(i) )

H(x)| <pud,
; g

| S — |
=
—
=
-
N
~ 1
=
o~~~
>
SN——
|
T
PoumnY
=1
SN——
—
&
1]
=

Z

and 7’ < 1/py , which, by virtue of (49), (51), (53) and (54), imply that

(65) x‘eX, gr(x"') eint Y, };(xf) e,

because g(%)eY and h(%)e Z. Considering the definitions of the sets X, ¥, Z and the

functions g, %, the relations (55) imply that there is a ue Q such that the triple

(x'f,u, f) is a feasible solution of the conti‘ol system (18)-(22) and go(i(f’)) > go(x"] (f‘)),

which contradicts the optimality of the triple ()2, i, f") Therefore the relation (46) holds.
Using Lemma 1, it follows, from (ii) in Lemma 4 and (46), that there exists non-zero

continuous linear functional y* on R?*"*! and a continuous linear functional z* on .2

such that

(56) y*(y)<0 forall yev, y*(g(%))=0,
(57) z*(z)<0 forall zeZ,

(58) 2*(k(%))=0,

(59) y*(G(%))+2*(H(%))20 forall e 0% iT).

Since y* is a non-zero continuous linear functional on R?*"*! there are real numbers
To>Mi>***> Tg+r, DOt all being zero, such that

(60) y *(}’) = lgn,-y,- for all y=t(}’0’)’1,""yq+r) € Rq+r+l,

which, by virtue of (56) t(‘)=g0ether with the definitions of the cone Y and the function g,
implies that the numbers n,,7;,--,1,,, satisfy (N1), because g(z)eY. By virtue of
Lemma 5, (57) implies that there exists a square Lebesgue integrable s-dimensional
row vector valued function A(7)=(4,(z),--,A,(r)) defined on I which satisfies (39) and
(40). Hence (N2) follows from (39), (40), (58), because h(i)eZ. Let us define row

vectors 77 and n* as follows:

77_=(771"",774), n+ =(’7q+1,"'»7]q+,).
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We know that (&, F; e )e Q(fc, i, f") for each £e R" and Feco¥ , where x({ F; o ) is
the function from 7 into R" defined by (26). Hence, using (35), (39) and (44), (60), the
following inequality is obtained from (59):

[r +a9(7) I:l(a)hé (i(o))db(o')do]é + m(i)j?(@“ F(%(0),0)do

1) 4 ‘[Of Mo (x(o))qs(a)“;fp(f)-‘ F(3(z), r)dr]da >0
forall £eR" and Feco ¥,

where I" and A denote n-dimensional row vectors defined by
(62) T =1"gz (%(0)) + A(0)k((0)),

(63) A=10[go] ( (7 ))+n gg( ( ))+A(f)h§(£(f')).

Using Fubini's theorem, (61) is rewritten as follows:
. T
(64) 29(T)+ j M0y (%(0))P(0)do =T,
(65) J' [A(D j Mo (% )qb(a)da]w(f) F(i(t),1)dt 20 forall Feco® .

Let y(7) be an absolutely continuous n-vector valued row vector valued function on /

defined by

(66) v(r)= [A(b(f‘) + JT},(G)hé(i(o))(b(o)da]«b(r)“’ forall tel,
then, we obtain, from (64), (65) and (23), that
(67) y(0)=-I', y(T)=4
and
T
(68) I 1//(1)[ F(&()u(t), 7) - f(£(2). i(7), T)]d’t’ >0 forall ueQ,
0

because ®(7) is a non-singular matrix for all e/ and @(0) is the identity matrix.

Hence (N3) follows from (62), (63), (66), (67) and the fact that
-1
dtbcgz) - ot )_1 dd)(r)

Using the same argument as those used in the proof of (4.20) in [2], (N4) is obtained

(1) =-d(7)" fe(%(z),i(z),7) for almost all rel.

from (68), This completes the proof of the theorem. [J

In the case where the optimal solution ()? i, f’) of (OCP) is strongly regular to the
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constraints (20), we can show the following corollary if we respectively use Lemmas 4',
5', relations (41), (42) and

r=ng;(%(0)),  A=n[goly((7))+n"s:(3(7))
instead of Lemmas 4, 5, relations (39), (40) and (62), (63) in the proof of Theorem 1.

Corollary 1.1. Let ()2, i, f’) be an optimal solution of the optimal control problem
(OCP) and strongly regular to the constraints (20) as well. Then there exist non-negative
numbers 17,7;,--,7,,,, Dot all being zero, square Lebesgue integrable functions
Ai(7),---,A4(1) and absclutely continuous functions y,(7),---,y,(t), both defined on
[o, f], which satisfy the conditions (N1), (N4) and the following conditions:

(N2) 2;(1)20, A;(1)h;((z))=0 for almostall 7 (0,7) and all j=1,-,s,

dlg(: ) _ —y(2)fz(X(7),4(7), 7) — A(7)he(%(7)) for almost all 7 e [0, f‘]

(N3 w(0)=-1"g; (%(0)),
v{T)=mlaol, (3(7))+ n*e3 (3(7))
Next we consider the problem (TOCP).

Theorem 2. Let (2, i, f‘) be an optimal solution of the time optimal control problem
(TOCP) and regular to the constraints (20) as well. Then there exist non-negative
numbers 7,---,7,,,, not all being zero, square Lebesgue integrable functions
Ai(7),--, A,(7) and absolutely continuous functions y,(z),---,y,(r), defined on [O,f’],
which satisfy the conditions (N1), (N2), (N4) and the following conditions:

d!gir) =y (7)5,; (3(z),i(z),7) - A7)k, (%(r)) for almostall 7€ [0, f],

(N3") w(0) =-n"g; (£(0)) - A(0)h(%(0)),

(7)) A7),
Proof. Let (2, u, f‘) be an optimal solution of (TOCP) as well as regular to the constraints
(20). If we use the space R?*" in place of R?*"*! and replace (43) and (44) by
Y= {'(yl,---,yq+,)e R7"|y; <0 foralli= 1,--«,q+r}

and
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 (&7(x(0) 82 (#(0))x(0)

g(x)= g+(x(f’)) , G(x)= gg(fc(f’))x(f") , for each xe 2
as the definitions of cone Y and functions g, G, respectively, then we can show the
relation (46), because, for every xe€ A, ue 2 and Te(O, f”), (x,u,7T) is not a feasible
solution of the control system (18)-(22). By virtue of Lemma 1, (46) implies that there
exist a non-zero continuous linear functional y* on R?"" and a continuous linear
functional z* on Z which satisfy the relations (56)-(59). Hence we can prove the

theorem in the same way as we have proved in Theorem 1, but (60) and (63) replaced by

q+r

y*(y)= 2 my; forall Y=r(}’1,“',yq+,) e R,

i=1

and

A=n*gf(:(F))+ A(T)rg(5(F)),

respectively. [J

In case the optimal solution (i, 78 f‘) of (TOCP) is strongly regular to the constraints
(20), we can easily verify that the following is true, by virtue of Lemmas 4' and 5'.
Corollary 2.1. Let (JE, u, f‘) be an optimal solution of the time optimal control problem
(TOCP) and strongly regular to the constraints (20) as well. Then there exist non-negative
numbers 1,,--,7,,,, not all being zero, square Lebesgue integrable functions
(1), A,(tr) and absolutely continuous functions y;(7),--,¥,(t), both defined on
[0, f"], which satisfy the conditions (N1), (N2), (N4) and the following conditions:

dl/;if) =~y (0)fu(£(e),(5), ) — A(2)y(5(r)) for almost all 7 &[0, 7]

(N3") y(0)=-n"g; (%(0)),

() =me;(3(7))

6. Example and Concluding Remarks

In this section, we shall verify that the optimal solution of the following simple
example about time optimal control problem with restricted phase coordinates is strongly

regular to the constraints (20) and satisfies the Corollary 2.1:
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Find a time T, absolutely continuous functions x,, x, and a measurable function u,

both defined on [0,T] such that

1. dxd;‘(:z =x,(7), -‘{%ET—) =u(t) for almost all 7€[0,T],
2. x(0)24, x,(0020, x(T7)<0, x,(T)20,

3. |x(7)|<1 forall Te[0,T],

4. |u(7)<1 for almost all 7€[0,T],

and such that T achieves a minimum (subject to the above constraints ).

If we define an absolutely continuous function #(e)="(%,(e), %,(¢)) from [0,5] into R*

and a measurable essentially bounded functions i(e) from [0,5] into R' as follows:

t 72
(———+4, —r], 0<7<],
2
, ) o
(69) x(7) =+ (—1+5’ —l), 1<7<4,
(12 25
——=5T+—, 7-5|, 4<7<5,
2 2
(-1, 0<7<]1,
(70) a(t)=14 0, 1<1<4,
| 1, 4<7<5,

then the functions #(t) and x(7), 0 <7 <5, are so-called optimal control and optimal
trajectory of the above problem, respectively.

Let T be a sufficiently large positive number and let J = (—l, f‘) .Let Aand Q bea
set of all absolutely continuous functions from J into R? and a set of all measurable

functions from J into U= {v e R'| V< 1}, respectively.

We set that, for each &='(&,,)e R?, veR', 1€,

(71) f(Ev.T) =(§2)

v
72 WE)=6-1 k()=-¢-1,
(73) a(6)=4-4. £(0)=-& &l8)=& s&(®)=-5.
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It is easily verified that the example given in this section is the time optimal control
problem (TOCP) introduced in section 3, where n=g=r=s=2 and m=1. Hence the
triple (.2,5) is the optimal solution of (TOCP), where the function %(r) and i(r) are
the functions presented by (69) and (70), respectively. It is obtained from (71) that

fg(fc(f), (1), 1) =(8 (1)) Hence we obtain from (25) that®d(7) = ((1) :), o) = {(1) _IT) for

all 7 €[0,5]. By means of (26), (27) and (71), for each u € Q, the function

i(r)= db(r)[(g)+ ‘[):D(a)'l [(¥(0).u(0).0) - f(i(o)il(o), o)}do]

_ J-r[(r—a)(u(d)—ﬁ(a))) i, 0<r<s,

(74)

o\ uo)-i(o)
is an element of O(%,4,5), because f(& u(0),0)- f(#(c).i(c).0)e & .
Let us check that the optimal solution (%, i, 5) will be strongly regular to the constraint
(75) hy(%(7))=%,(1) 150, hy(%(7))=-%,(1)-1<0 forall 7€[0,5].
Let p(t)='(p,(7), p,(7)) be an arbitrary 2-vector valued polynomial. Let us define non-

negative continuous functions z*(7) and z7(7) on [0,5] as follows:

z+(1)=M, Z_(T)___|p_2(r)|_—p2_(‘r) for all 7€[0,5],

2 2
then it is easily verified that
(76) p()=2"()-27 (1), | ()| |p,(x) forall ze[0,5].
Let
5 , T2
(77) 5= [ joyz'(r)l dr] :

Let us consider the case where & > 0. There is a polynomial p(7) such that
(78) 28 < p(t)+z (r)<0 forall 7€]0,5].

Let £ be a number such that

2 2
19) 0<& <min {£ 38 1}.
p(1)" B4 2
Since z7(7) is continuous on [0,5], it follows from (78) that there is an ¢’ €(0,¢) such
that
(80) [i—_(l—_e)]gQ <-z7(r) whenever 1-¢'<7<1,
€
- p(4
(81) —[—T——£4+—£)—]£Q <—z7(7) whenever 4<7<4+¢’.

£
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Let p and y be sufficiently large numbers such that
- p(1 p(4
T)l . - E_(__)_ - P( ) }’

> ,
P max{maxp( r »

0<7<5

1 -
82 —
o 7> x| gl (ofe poglte). e}
where p’(7) denotes the derivative of the polynomial p(7). Now we define a measurable

essentially bounded functions u(s) from [0,5] into R' as follows:

[—1, 0<7<l-g¢g

—EQ—I, 1-e<1<1,
pE

(83) u('t')=<—‘D—(12 1<7<4,

} P

&H, 4<1<4+¢,
pE

1, 4+e<1<s.

Substituting (83) for (74), we can obtain the function

(84) (1) € Q(%,4,5)

as follows:
(0, 0), OsT<l—g
_5(1)t((7_1+£)2 1—1+£} l1-g<7t<1
pE 27 -

(85) x(f)m%(%(llﬁ(f), ﬁ(f)} Is7<4,
%r(%—(—?(r—4)(r—4—28)—%1—2—13(4), @(1—4—8)} 4<1<4+e¢,
'—lt(w+ﬁ(4) 0} 4+e<7<5
p 2 ’ -

_ T
where P(7)= j p(o)o for all 7 €[0,5]. Further the function x(e) satisfies the following
1
inequalities:

(86) pi(7) 2 p(0, £,(7))x(7) +¥(%,(7) - 1), for all 7€[0,5],

p(7)2 P(O, - J?:z(’f));‘('f) +y(=%(7)- 1),
2 e (P2 172 s, P
(87) p[lx(0)| [z + jo 1%(c) d‘c] 321“0 lp(z) dr] .

The inequalities (86) and (87) correspond to the inequalities (28) and (30), respectively.

—220—



In case 6 =0, we define positive numbers p, y and absolutely continuous 2-vector

valued function %(s)='(x,(e), x,()) on [0,5] as follows:

p=1 7= max{max|p1(r), 1}, %(t)='(0, 0) for all 7 €[0,5].

0<1<5
Then it is easily verified that the function X(7) also satisfies the relations (84), (86) and
(87). Therefore, we see, from (84), (86) and (87), that the optimal solution (%,4,5) is

strongly regular to the constraints (75).

Now we see that the optimal solution (%,4,5) satisfies the Corollary 2.1, that is,
there exist non-negative numbers 7, 7n,, 73, 74, not all being zero, square Lebesgue
integrable functions A,(t), A,(7) and absolutely continuous functions y,(7), ¥,(t), both
aeﬁned on [0,5], which satisfy the following conditions:

88) n (4 —%(0)) = 1,(=%,(0)) = 75 (21(5)) =14(~%,(5)) =0
A(7)20, A (1)20,

89) for almost all 7 €[0, 5,
MEE(D)-1)=0, A ()-1)=0, relos]

(90) d";lf(f) =0, dV;zT(T) = -y, (1) + 4, (1)+ A,(r) for almost all 7€[0,5],

O v (0)=m, y,(0)=m,, vi(5)=m ¥2(0)=-n,,
92) v (1) (1) +yo(0)id(r) = li:lqu{wl(r)fcl(r) +y,(7)v} for almost all 7 [0,5].
Indeed, if we set that
m=m=mn=1N=1,
(0, 0, 0<r<l,
(M(7), Ay(7))=4(0, 1), 1=7<4,
(0,0, 4<t<5,
(1,1-70), 0<7<l,

(w1(2), wa(7))=4(1 0), 1<7<4,
(1, 4-1), 4<7<5,

then it is easily verified, from (69) and (70), that the relations (88)-(92) hold.

Let us here state concluding remarks. We can obtain the Lemma 1 except the
continuity of the linear functional z*, without the Condition 1. In this case, the functional

z* is continuous with respect to the additional norm ] ¢ [, but it is not always
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continuous with respect to the original norm | ¢ |, which implies the integral of (66)

in the proof of Theorem 1 is in the sense of Stieltjes. Therefore we can not give the

assurance that so-called adjoint variables y,(e),--,y,(¢) are continuous on all the interval

where the optimal control #(e) is defined. We now end our discussion by emphasizing

that it is Condition 1 that give the assurance.
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