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Abstract. There are two purposes in the paper. One is to introduce equivalent conditions for
solutions of extremal problems to satisfy Lagrange multiplier rules in real, linear topological
spaces, and the other is to show that, by slightly changing the shape of the Neustadt's conditions,

we can obtain equivalent conditions for the solutions to satisfy Lagrange multiplier rules.
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1. Introduction.

In research on nonlinear programming problems, many kinds of constraint
qualifications have been presented for obtaining meaningful results (see, e.g., [1-3]).
Neustadt also gave constraint qualifications for solutions of extremal problems, and
showed that such solutions satisfy Lagrange multiplier rule (see Th.3.1 in [4]). For
solutions of extremal problems defined in real, linear spaces, similar results were given
in [5]. In this paper, we shall introduce some relations between Lagrange multiplier
rules and constraint qualifications for the solutions of extremal problems, and give
necessary and sufficient conditions for the solutions to satisfy Lagrange multiplier rules

by means of a few modification of the Neustadt's constraint qualifications.

In section 2, we shall give notations, definitions and their properties which will be
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used in the sequel. In section 3, we shall define two kinds of extremals, which we shall
refer to as (¢, y,Z X)-extremal and (v, Z X)-extremal. These concepts were first
introduced by Neustadt (see Def.2.1 and Def.2.2 in [4]). For each extremal, we shall give
a Lagrange multiplier rule and two kinds of constraint qualifications. In sections 4 and
5, we shall show that the constraint qualifications and Lagrange multiplier rule are
equivalent for the (¢, y, Z, X)-extremal and (y; Z, X)-extremal, respectively. In section 6,
we shall consider the abstract maximum principle given by Neustadt. We shall introduce
a constraint qualification for a (¢, y, Z X)-extremal by slightly changing the shape of
the Condition 3.1 in [4]. We shall show that if an element is the (¢, y, Z,X)-extremal,
then the Lagrange multiplier rule is equivalent to the reformed constraint qualifications,

and we shall give a theorem which is virtually equivalent to the Theorem 3.1 in [4].

2. Preliminary Results.

In this section, we shall give notations, definitions and show fundamental results
which will be used in the sequel.

Let 7 be a topological linear space over the real field, R a set of all real numbers

and N a set of all positive integers. For every k € N, we define a simplex Pf"l of R* (a

k -dimensional vector space) as follows:

P! ___{(al,.__’ak)

For arbitrary subset E and F of 7", we define sets E—~ F, E+F and E\F as follows:

ko .
Ya'=1, a'>20, for i=1,---,k}.
i=1

E-F={u-v|ucE veF}, E+F={u+v|ucE veF}, E\F={v|veE, ve F}.
A non-empty subset C of 7 will be called a cone if aC — C whenever a =0, where
oC ={ox | xeC}.
The following lemma was shown by Neustadt (Lemma 3.1 in [in.
Lemma 2.1. If C is a convex cone in 2 with non-empty interior, then
aint.C+ B C=int.C whenever a>0, 20,
in particular,
int.C+C=int.C,

where int.C is the interior of the set C.
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For an element ve?” and a set Ac %', the following subset [Alv] was defined by
Neustadt ((4.3) in [1]):

[Alv]={a+yv laeA, ySO}.
If A is a convex subset of 7 with non-empty interior, then int.A is an open convex set.

Therefore we can easily show the following lemma, and hence we shall omit the proof.

Lemma 2.2. Let C be a convex cone in 7" and let v €% . Then [Clv] is a convex cone
in 7 such that C c[Cv]. If the set C has non-empty interior, then [int.C]v] is an open

convex subset of [C]v]
We shall now show the following lemma (cf. Lemma 3.2 in [5]).

Lemma 2.3. Let C be a convex cone in 7" with non-empty interior and let ve?",
then [int.Clv]=int[C]v].

Proof. From Lemma 2.2, the set [int.CIv] is an open convex subset of 2" such that
[int.Clv] < [Clv], which implies that [int.Clv] < int[C]] and int{clint.Clv]} =[int.C}v),
where cl.§ is the closure of the set S. Therefore, to prove that [int.Clv] = int[Clv], it
suffices show that [Clv] < cl[int.Clv]. Let w e[C]v] be arbitrary, and let U be an arbitrary
neighborhood of the origin 0, of the space Z". There exist a ¢, €C and 7, <0 such
that w=c, +7,v. Since the convex cone C has a non-empty interior, we obtain that
C ccl{int.C}. Hence there exists an c e int.C such that cec, +U, which implies that
c+y,vec, +U+y,vew+U. Since c+y,veint.C+y,vc[int.C], it is satisfied that

{w+U}n[int.Cv]# @, that is, w € cl[int.Cv]. Thus we obtain that [Vv] cel|int.Cp]. ]

3. Lagrange Multiplier Rules for Extremals and Constraint Qualifications.

In this section, we shall formulate two kinds of extremals which nave been introduced
by Neustadt [4], and give equivalent conditions which the extremals satisfy.

Let 2 be a real linear space, and let % and 2 be real linear topological spaces.
Let  * and .Z * be the topological duals of % and .2 respectively. Let X be a subset
of 27, Z a convex cone in Z" with non-empty interior. Let ¢(s) and y(s) be functions
from 2 into % and .Z, respectively. Now let us present extremals, which were first

introduced by Neustadt (see Def.2 and Def. 3 in [4]).
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Definition 3.1. (Neustadt) An element i e .2 be called a (¢, y, Z, X)-extremal, if
(1)  ¢(x)=0, (the origin of %),

(i)  wy(x)ez,

(ii) xeX,

(iv) {xexl P(x) =0y, v/(x)eint.Z}=®.

Definition 3.2. (Neustadt). An element % e 2 be called a (y, Z, X)-extremal, if
(1) y(Hez,

(ii) xeX,

(i) {reX|y(x)eintz}=0.

In the first place, we shall consider the (¢, y, Z, X) -extremal. We shall give a Lagrange
multiplier rule and constraint qualifications for a (y, Z, X)-extremal.
Lagrange Multiplier Rule A (LMR:A). There exist a non-empty convex subset K
of Z, an affine function f:K— %, a Z-convex function g:K — Z and elements

*e Z *, y*e ¥ * such that

) (2% y%)#(0zw 04.),

(2) 2*(g(x))+y*(f(x))20 forall xek,
3 z*(z)<0 forall zeZ,

@ z*(w(#)=0.

Here 0. and 04« are the origins of the spaces 2 * and % *, respectively, and the

Z-convex function g: K — Z is defined as follows: for every positive integer k,
k k
g(z a,-x,-) ey og(x)+z
i=1 i=1
whenever v; e X for each i=1---,k and (o,--, )€ Pf™'. The Z-convex function was

introduced by Neustadt [4].

Basic Constraint Qualification A (BCQ:A). There exist a non-empty convex subset

K of 2, an affine function f:K — %, a Z-convex function g:K - % and a convex

subset V of % such that

0, eV, intV#@ and intVn f(g“(int.[zly/(f)])) =2.
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The following constraint qualification is obtained by changing the shape of the
Condition 3.1 in [4].

Generalized Neustadt's Constraint Qualification A (GNCQ:A). There exist a
non-empty convex subset K of &2, an affine function f:X— % and a Z-convex
function g:K — 2 with the following property: In case int. f(g“(int [Z]l//(i)]))=®,
there exists a non-empty convex subset V of % such that 0y eV, int.V+D and
int.Vn f(g"'(int.[Z’yf(fc)])) =@, and in case int. f(g"'(int [Zly/(f)])) # @, for every triple
(SU,m) — where S is a convex subset of g‘l(int.[Zly/(i)]) such that
0y ecr.f(S) cint. f(g“(int.[zly/(f)])), U is a neighborhood of 0, and 1> 0 — there are
an ¥ € X and an £ €(0,7) (both possibly depending on S, U and 1) such that

(5) ¢(x) =0y,

y(x) - y(%)

(6) €co.g(S)+Z+U,

where 05 is the origin of 2, cr.A and co.A are the core and convex hull of the set
A, respectively. (The core of the set was first introduced by Klee (see [6]).

In the second place, we shall consider a (1//, Z, X)-extremal. We shall give a Lagrange

multiplier rule and constraint qualifications for a (y, Z, X)-extremal.

Lagrange Multiplier Rule B (LMR:B). There exist a non-empty convex subset K

of 2, a Z-convex function g: K —» Z and an element z*e.Z * such that

¢ 2¥#04.

8 z*(g(x))20 forall xek,
9) ' 2*(z)<0 forall zeZ,
(10) 2*(w(%))=0.

Basic Constraint Qualification B (BCQ:B). There exist a non-empty convex subset

K of 2 and a Z-convex function g: K — Z such that

¢ (int[Zp()]) = 2.
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Generalized Neustadt's Constraint Qualification B (GNCQ:B). There exist a
non-empty convex subset X of 2 and a Z-convex function g: K — 2" with the following
property: For every triple (x,U,n) — where xe g™ (int.[Z|y/()2)]), U is a neighborhood of
05 and >0 — there are an X € X and an £ €(0,7) (both possibly depending on x, U
and 7n) such that

(11) egx)+Z+U.

y(x)-y(5)
£
The BCQ:B and GNCQ:B are obtained slightly changing the shape of the Condition

B in [2] and Condition 3.2 in [4], respectively.

4. Properties of (¢ y, Z X)-extremal.

In this section, we shall show that, if an ¥ e Z’isa (¢, y, Z, X)-extremal, all conditions
for the (¢, v, Z X)-extremal are equivalent. We will use all notations and terminologies
in sections 2 and 3 without further explanation.

Lemma 4.1. Let ie2 be a (¢,y,Z X)-extremal. The element ie 2 satisfies the
LMR:A if, and only if, the X € 2 satisfies the BCQ:A.

Proof. Let 1€ 2 be a (¢,y,Z X)-extremal which satisfies the LMR:A. Then there
exist a non-empty convex set K .2, an affine function f:K—>%, a Z-convex
function g: K —» .2, a z*e 2 * and y*e % * satisfying the relations (1)-(4), and let
V= {y € ?I y¥(y)< 0}, then the set V is a convex subset of % such that 0, eV and
int.V = @. In order to show that

12) mt.V A f( g (int.[Zlu/()E)])) -0,

suppose the contrary. Then there exists an xeK such that f(x)eintV and
glx)e int[le//(i)]. It follows from Lemma 2.3 that there are zeint.Z and y <0 such
that z=g(x)- 7!//()2) We obtain from (1)-(4) that y*= 04+ Indeed, if y*= 04+, it follows
from (1) that z*#0,.,, which, by virtue of (3) together with zeint.Z, implies that
2*(2)<0. Since z = g(x) - yy(%), we obtain from (4) that z *(g(x)) < 0 which contradicts
the inequality (2). We now obtain that y*(f(x))<0, because f(x)eintV. Hence it
follows from (3) and (4) that z *(g(x))+y *(f(x)) =z *(g(x))-1r *(l//(i)) +y *(f(x)) < 0 which
contradicts the inequality (1). Therefore the relation (12) holds. Since 0 y €V and
int.V # @, the element x € 2 satisfies the BCQ:A.
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Conversely, let e 2 be a (9. v, Z, X)-extremal which satisfies the BCQ:A. Then
there exist a non-empty convex set K = 22 , an affine function f:K — %, a Z-convex
function g:K — 2 and a convex subset V of % such that 0y eV, int.V+QJ and
int.Vvn f(g‘l(int,[zly/(f)]))= @. Let 2'x % be a product topological space, and let Q
and 7 be subset of .2’ x % defined by

0= [le//()?)] xV
and
T= U{(z f(x)) |g(x)—z € Z},
respectively. Since Z is a convexle;ne in Z" with non-empty interior, it follows from
Lemma 2.2 that [Z|l//(£)] is a convex cone in 2" with non-empty interior, and hence Q is
a convex subset of Z'x% such that (Oz, Oz/)e 0 and intQ#J, because

int.Q= int.[Zly/(i)] xint.V. Further it is obvious that T is a non-empty convex subset of

Z X% , because the sets K and Z are both convex.

To show that int.V T =, suppose the contrary. Then thereis a (z,y)eint.V xT.
Then z ¢ int.[le//(i)], y€int.V and there is an x € K such that g(x)—ze Z and y= f(x).
It follows, from Lemmas 2.1 and 2.2, that

gx)ez+Zc int.[Zly/(i)] + [Z|y/(£)] = int.[Z|l//(£)] ,
thatis, xe g‘l(int.[zlw(i)]). This contradicts the relation (12), because y = f(x) € int.V.
We obtain that 9 and T are non-empty convex subset of & x % such that
(05, 0y)€0, ntQ#@ and int.VAT=2.

By the separation theorem of convex subsets of a topological linear space (e.g., see

Theorem V.2.8 in [7]), there exist z*e 2 *, y*e % * and real number o such that

(13) (2% y%)# (054 04.)

(14) 2*(g(x) -z *(2)+y *(f(x) 2 & forall xeK and zeZ,
(15) 2*(2)+y*(y) < for all ze[Zy(%)| and yeV.
Since 0, €V and 0 € Z, we obtain from (13) and (14) that

(16) 2*(g(x)+y *(f(x) 2 @ forall xeK,

17) *(2)<a for all z e[ Z]y(#)].
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Since [Zlv/(f)] is a convex cone in Z" such that 0, eZc [Zly/(i)], the real number o
must be 0, and hence the relations (1), (2) and (3) are obtained from (13), (15), (16).
Since —y/(f)e[zly/(f)], a=0 and y(%)eZ, we can obtain the equality (4) from the
inequalities (2) and (16). Therefore the element % € 2 satisfies LMR:A. [ ]
Lemma4.2. If xeZ isa ((p, v,Z X ) -extremal which satisfies the GNCQ:A, then the
element x € 2 satisfies the BCQ:A.

Proof. Let e be a (p,y, Z X)-extremal which satisfies the GNCQ:A. Then there
exist a non-empty convex subset K of 22°, an affine function f:K — % and a Z-convex

function g: K — 2" which have property stated in the definition of the GNCQ:A.

In case int. f(g"(int [le(ﬁ)]))=®, there exists a non-empty convex set Vc %
such that

(18) Oy eV, intv#@, intVn f(g”(int.[Zly/(f)])) e
In case int.f(g-l(int [ZIW()?)]));t@, it is verified, from Lemmas 2.1-2.3, that
S (g—l(int.[leI/(f)])) is a convex subset of % with non-empty interior. Suppose that

0y eint. f( g'l(int.[le//(i)]))- Then it follows from Lemma 2.3 that there exist x € K and
7 <0 such that g(x) e int.Z +yy(%) and f(x)=0,,.Since Z is a convex cone with non-empty

interior such that 0, € Z, it follows from lemma 2.1 that
(19) ~elx)eintZ+ 2 (3),
which, by virtue of Lemma 2.1, implies that
g(x) e % g(x)+ % gx)+ZeZ+intzZ+ %W(x) +% g(x) = intZ+-;—W(£) + % 2(x)

and that there exists a neighborhood U of 0. such that

(20) Ze(x)+Ucintz+ S1(d).

Now we can define a non-empty convex subset S’ of g‘l(int[le(i)D as follows:
(21) §'= g"(int2+%y/(£)+;— g(x)).

We obtain that

22) A8 f(g"‘(int[Zly/(i)D).

Let y be arbitrary element of % . Since thereisa 1 e (0,1) such that

Ay=(1-2)0, +Aye f( g“(int;[Zlv/(f)D) whenever 0<A<Ai.
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Further there is an fe K such that f(i) = }:y. It follows from (19) that there is a
A €(0,1) such that
(23) %g(x) + /I[g(f) - g(x)] eint.Z+ %y/(f) whenever 0<A<A.
Since g: K — 2 isa Z convex function and X is convex, it follows from Lemma 2.1 and
(22) that (1- A)x+ A% € K and
8((1-2)x+ AF) e (1- A)g(x) + Ag(% )+Z——g(x)+Z+{ g(x)+ A[g(%) - g(x)]}
Clg(x)+Z+intZ+—l//(x)
=intZ++ 1//( )+;g( )
whenever 0 <A< 4, which 1mp1y that (1-A)x+Afe S’ whenever 0< A< 7, that is,
M(F)=(1-2)f(x)+ M(%)=£((1-2)x+ A%)e f(S’) whenever 0<A<A.
Since f(i) =72y, it is obvious that Ay e f(S’) whenever 0<A< (Ii), and hence
0y ecr.f(S’). Therefore we obtain from (22) that
(24) 0, ccr.f(S) c f(S) < f(g“(int[zlw(f)])).
It follows from (21) that g($’) < int.Z +(y/2)y(%) +(1/2)g(x), which implies from (20) that
g(8)+U cintZ +(y/2)y(%)+(1/2)g(x)+ U c int.Z + py(%). Since the set int.Z+ (%) is
convex, we obtain that
(25) co.g(8")+ U cint.Z + yy(%).
Let §=(1/2)S"+(1/2)x, then S is a convex subset of $’, because xeS’, and hence it
follows from (25) that
(26) | co.g(8)+ U cint.Z + yy().
Since f(8)=(1/2)f(S") cer.f(S") and f( g“(int[Zly/(f)])) is a convex set such that
0y cint. f( g“(int[zly/(f)])), it follows, from (24) and Theorem V.2.1 in [7], that
0, ecr.f(S) c f(S) cint. f(g‘l(int[Zly/(i)])).
Let n=1/(1-7), then 1+&y >n>0 whenever 0<£<7. By means of the hypothesis of

GNCQ:A, for the triple (S, U, n)., there exist an ¥ € X and £ €(0,7) such that (5) and (6)

hold. Since 1+&y >1> 0 and y(x) € Z, it follows, from (6), (26) and Lemma 2.1, that
y(x)e Eco.g(S)+EZ+E U+y(%)=E{co.g(S)+U}+EZ+y(x)
cE{intZ+yy(R)}+EZ+y(2) = E{intZ+ Z}+EZ+(1+ 7 )y (%)
cEintZ+(1+&y)Z=int.Z
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that is,

27) y(X)eint.Z.

Since ¥ e X, the relations (5) and (27) contradict that the element % is a
(pv,Z, X)—extremal . Hence we obtain that

(28) 0, eint. f(g‘l(int.[zly/(f)])).

t

The set int. f(g"l(int,[zly/(f)]))is also a convex subset of % with non-empty interior,
because f( g“(int[zlw(ﬁ)])) is a convex subset of %2 with non-empty interior, Hence, by
means of (28) together with the separation theorem of convex subsets of a topological

linear space again, there exists non-zero y*e % * such that

29) © y*(y)20 forall ye f(g'l(int[Zly/(f)])).
Let V={y eY | y *(y)SO}, then it is obvious that all of the relation of (18) hold, and
hence the element x satisfies the BCQ:A. []

Lemma 4.3. If i€ 2 is a (p,y,Z X)-extremal which satisfies the BCQ:A , then the
element x € 2 satisfies the GNCQ:A.

Proof. Let ie2 be a (¢ y,Z X)-extremal which satisfies the BCQ:A. Then there
exist a non-empty convex subset K of 2, an affine function f:K — %, a Z-convex

function g: K — 2" and a convex subset V of % such that 0y eV, intV=J and
(30) int.vn f(g"] (int.[th//(f)D) -2.
In case int. f(g“(int [Zly/(i)])) =@, It is obvious that the x satisfies the GNCQ:A. In
case int. f( g’l(int.[zly/(i)])) # J, the relation (30) implies that there is no convex subset
S of g"(int.[ZIy/(fc)]) such that
0, ecr.f(S) c int. f(g“'(int.[Zlu/(J?)])),

and hence the % satisfies the GNCQ:A. []

From the Lemmas 4.1-4.3, We obtain the following main result of this section.

Theorem 4.1. Let f€ 2 be a (¢,y,Z X)—extremal, then the LMR:A, BCQ:A and
GNCQ:A are all equivalent.
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5. Properties of (y, Z X)-extremal.

In this section, we shall show that, if an % e Zis a (v.Z X )-extremal, all conditions
for the (v, Z, X)-extremal are equivalent. We will use all notations and terminologies in
sections 2 and 3 without further explanation.
Lemma 5.1. Let 12 be a (1//, Z, X)-extremal. The element e .2 satisfies the
LMR:B if, and only if, the % € 2 satisfies the BCQ:B.
Proof. Let e 2 bea (v, Z, X)-extremal which satisfies the LMR:A. Then there are a
non-empty convex set K <2, a Z-convex function g: K —-.2 and a z*¢.Z * and a
y*e % * satisfying the relations (7)-(10). Suppose that g"(int.[Zly/(f)]) #(J, then there
is an x e K such that g(x)e int[le//(J?)]. It follows from Lemma 2.3 that there are a
zeint.Z and a y <0 such that z = g(x)—yy(x). Hence we obtain from (9) and (10) that

2*(g(x) = 2 *(g(x) = *(w(%)) = 2 *(2) <O,

which contradicts the inequality (8). Therefore g'l(int.[zlv/(f)]) =(J, that is, the element
X € Z satisfies the BCQ:B.

Conversely, let €2 be a (l//, Z X ) -extremal which satisfies the BCQ:B. Then

there exist a non-empty convex set K 2 and a Z-convex function g:K — .2 such

that g‘l(int_[z|y/(2)]) =. Let T be a subset of .Z" defined as follows:
T= U{zeZ|g(x)—zeZ}.

xek

It is obvious that T is a non-empty convex subset of 2. We know that [Zly/(f)] is a
convex cone in .Z  with non-empty interior. To show that int.[le(i)]m T =, suppose
the contrary, that is, thereis a z e int.[Zlv/(i)]n T. Hence there is an x € K such that
g(x)—z e Z. It follows from Lemmas 2.1 and 2.2 that

gx)ez+Zc int[le//(f)] + [Zly/(i)] = int[Zly/(i)] ,
that is, x e g“(int,[zly/(f)]) , which contradicts our hypothesis. Therefore we obtain that
(31) int[Zy($)]nT=2.
Using the separation theorem of convex subsets of a topological linear space, it follows

from (31) that there exist non-zero z*e€ .2 * and « € R such that

(32) z*(g(x))—z*(z)2a forall xeK and zeZ,
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(33) z¥(z)sa forall ze[Zy(d)].

Since [le()?)} is a convex cone such that 0, € [le//()?)], we can easily verified from (33)
that

(34) a=0.

Since (%) €[Z}y(#)| and -y(%) e[Zy(%)), the relation (33) and (34) implies that

(35) z*(y(%))=o0.

Since 0 € Z<[ZJy(%)] and z*#0, we obtain from (32)-(35) that the element % e 2
satisfies LMR:B. []

Lemmab5.2. Let e 2 bea (v, Z X)-extremal. The element i € 2 satisfies the BCQ:B
if, and only if, the X € 2 satisfies the GNCQ:B.
Proof. Let xe2 be a (y,Z X)-extremal such that the %e 2 satisfies the BCQ:B.

Then there exist a non-empty convex subset K of 2 and a Z-convex function
g:K — Z such that g“(int.[Zly/()E)]) =, which implies that there is no element x e 2
such that x e g“(int.[Z|w(i)]). Therefore the x € 2 satisfies the GNCQ:B.

Conversely let xe 2 be a (y, Z X)-extremal which satisfies the GNCQ:B. Then
there exist a non-empty convex subset X of 2 and a Z-convex function g:K—-Z
which have property stated in the definition of the GNCQ:B. To prove that the element
% satisfies the BCQ:B, it suffices prove that

(36) ¢! (int{2Zy(3)) = 2.

In order to prove (36), suppose the contrary. Then there is an xe X such that
gx)e int[ZIw(,\?)], which, by virtue of Lemma 2.3, implies that there is a ¥ <0 such that
g(x)-yw(i)eint.Z. Hence there exists a neighborhood U of 0, such that
g(x)—yw(%)+ U eint.Z, that is,

(37 g(x)+U eint.Z + py(%).

Let n=1/(1-y), then n>0. It follows, from the hypothesis of GNCQ:B, that, for the

triple (x,U,n), there are an ¥eX and an Ze(0, n) such that (11) hold. Since
1+ &y >n>0, it follows, from (37) and Lemma 2.1, that
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¥(¥) e E{g(x)+U+EZ+y(f) c E{int Z + yy(#)} + £ Z+ y(3)
(38) CE{intZ+Z}+(1+Ey)y(i) c Eint Z+(1+ £y)Z
=intZ,
that is, y(x) € int.Z. This contradicts (iii) in the Definition 3.2. Therefore the equality
(36) holds, that is the element 3 satisfies the BCQ:B. 1

From the Lemmas 5.1 and 5.2, We obtain the following main result of this section.

Theorem 5.1. Let e 2 bea (l//, Z, X) -extrmal, then the LMR:B, BCQ:B and GNCQ:B

are all equivalent.

6. On Neustadt's Abstract Maximum Principle and Concluding Remarks.

In this section, we shall consider the abstract maximum principle introduced by
Neustadt [4]. Notations and terminologies in sections 2-5 are used except the space 2/
and the cone Z. Let 2 be an m dimensional Euclidean space and Z a closed convex

cone in .Z° with non-empty interior.

Neustadt presented the following constraint qualification to obtain a Lagrange

multiplier rule for the (¢, y, Z, X)-extremal (see Condition 3.1 in [4]).

Neustadt's Constraint Qualification A NCQ:A). There exist a non-empty convex
subset K of 2, an affine function f:K — % and a Z-convex function g:K — .2 with
the following property: For every triple (X,U, ) — where X is a k-simplex contained in
K such that k <m and 0y € f(£), U is a neighborhood of 0, and >0 — there exist
real numbers ¢, # 0 and ¢, € (0,7) together with a map ©: X — X (all possibly depending
on 2, U and 1) such that

(39) ¢°6(x) - (%) -f(x)<n for every xe X,
=)

(40) M €co.g(X)+Z+U for every xe X,
g

D) the map ¢ - @is continuous from X (i.e., is continuous as

a function of the barycentric coordinates of a point in X) into %

Here, vertical bars denote the ordinary Euclidean norm.
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We can relax the condition in NCQ:A as follows.

Relaxed Neustadt's Constraint Qualification A(RNCQ:A). There are a non-empty
convex set Kc 2, an affine function f:X— % and a Z-convex function g:K —» %
with the following property: For every triple (X,U,n) — where X is an m-simplex
contained in g'l(int[le//(i)]) such that 0y eint.f(Z)cint. f(g'l(int.[Z[l//(i)D), Uisa
neighborhood of 0, and 7> 0 — there exist real numbers ¢, # 0 and ¢, €(0,7) together
with amap @: X — X (all possibly depending on X, U and 1) which satisfy the conditions
(39)-(41) in NCQ:A.

Neustadt also presented the following constraint qualification to obtain a Lagrange

multiplier rule for the (v, Z, X)-extremal (see Condition 3.2 in [4]).

Neustadt's Constraint Qualification B (NCQ:B). There exist a non-empty convex

subset K of 2 and a Z-convex function g: K — Z with the following property: For
every triple (x,U,n) — where x € K, U is a neighborhood of 0, and 1 >0 — there exist
an x€ X and a real number ¢, €(0,1) (both possibly depending on x, U and 1) such

that
y(x)-y(%)
&

(42) eg(x)+Z+U.

Let us present a property on the (¢, v, Z, X)-extremal and give the proof. The only

if part of the proof is essentially the same as the proof of Lemma 4.1, together with one

of Lemma 4.2 (see section 4 in [4]).
Lemma 6.1. Let xe2 bea (¢, y,Z X)-extremal. The element £ e 2 satisfies the
GNCQ:A if, and only if, the % € 2 satisfies the RNCQ:A.

Proof. Let e be a (¢,y, Z X)-extremal which satisfies the GNCQ:A. By virtue of
Lemma 4.2, the element X satisfies the BCQ:A. Hence there exist a non-empty convex
subset K of 2, an affine function f:K — %, a Z-convex function g:K—Z and a

convex set Vc % such that
0y €V, intV#@ and int.Vn f(g-‘(int.[zly/(f)]))= @,
which imply that there is no m-simplex X contained in g'l(int[Zly/()?)]) such that

0y eint.f(X)cint f(g‘l(int[zly/(i)])). Therefore the functions f, g and the set X
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satisfy the property stated in RNCQ:A, that is, the element # satisfies the RNCQ:A.
Conversely, let € 2 be a (9.v,Z, X)-extremal which satisfies the RNCQ:A. Then
there exists a non-empty convex subset K of £, an affine function f:K—> % and a
Z-convex function g:K—% with the property in RNCQ:A. In case
int. f(g"(int.[zly/(i)]))=®, there exist s a convex subset V of % such that 0, €V,

int.V#@ and int.V f(,g'l (int.[le/f(fc)])) =, because f(g‘l(int.[Z[y/(,%)D) is a convex set
in Z = R"™. Now let us consider in case where int. f(g‘l(int.[Z[w(f)])) #J.Let S, U and

n be a convex subset of g~ (int.[Zly/(i)D such that

(43) 0, ecr.f(S)cint. f(g‘l(int.[Z‘y/(i)])),

a neighborhood of 0 and positive number, respectively. Since % = R™ and the function
f:K—> % is affine, cr.f(S)=int.f(S) which, by virtue of (43), imply that there is a
m~simplex X c f(S) such that 0, eint. cer.f(S). Hence there is an 7 (0, n) such
that

(44) yeX whenever ye 2 and |y|<7.

Let f(% )., f(X,41) be the vertices of X, wherei; e § for each i=1,---,m+1. Since the
function f:K — % is affine and the points f(%,),---, f(%,,,;) are in general position, the
points X;,---,%,,, are in general position, and hence the convex hull of the set
{)"c,,---,)'cm +1} are an m-—simplex in §, which is denoted by X. It is easily verified that
Tc g'l(int.[Z|l//(£)]) and 0, eint.f(Z)c int. f(g“(int.[z|q/(£)])).

By means of the property of RNCQ:A, for the triple (X,U,77), there exist real
numbers g, #0 and £ €(0,77) together with a map ©:X — X such that (39) and (40)
hold and such that the map ¢ © is continuous as a function of the barycentric coordinates
of a point in . For each £= mf‘,lg,. f(x)eZ, let n()= Elé,.fci . Then h(£)e X forall £eX
and f(h(é))=§, for all £eX l,—lbecause the functionl—; is affine. Now let us define a
function y: X > % (= R”’) as follows:

x(é)=£—°—@é@—§ forall £eX.
0
Since ¢(%) =0y, it follows from (39) that
!%(é)}-: —(p_o_%(.}_l(_g)_)_ = (Poe(h(f))_(p(i) -f<n forall écX.
0 0

—195—



Recall (41) and (44), we conclude that the y is a continuous function from the compact
convex non-empty subset T into itself. Hence, by Brouwer's fixed point theorem, that
there exists a E € X such that x(E):E , that is, ¢o@(h(§))=0? (see e.g., Theorem
2.1.11 in [8]). Let f:@(h(g)), then xe X and ¢(x)=0y. Since X cS, it follows from
(40) that the relation (6) holds. Since 0 < £ <7 <7, we now conclude that the % satisfies
the GNCQ:A. []

The following theorem is obtained from Theorem 4.1 and Lemma 6.1.

Theorem 6.1. Let €2 be a (p,y,Z,X)-extremal. If Z =R", then the LMR:A,
BCQ:A, GNCQ:A and RNCQ:A are all equivalent.

Let us consider the NCQ:A and NCQ:B. It is obvious that, if an element x e 2 is a
(¢.v.Z, X)-extremal or (y,Z, X)-extremal which satisfies the NCQ:A or NCQ:B, then
the element X satisfies the GNCQ:A or GNCQ:B, respectively. Therefore, we can obtain
the following theorem which is virtually equivalent to the Theorem 3.1 in [4].

Theorem 4.2. If xeZ is a (qo, v,Z, X) -extremal satisfying the NCQ:A, then the
element % satisfies the LMR:A. And if 22 is a (y,Z X)-extremal satisfying the
NCQ:B, then the element # satisfies the LMR:B.

Finally we shall state concluding remarks. In extremal problem, the weakest
constraint qualification to obtain the necessary condition in the form of Lagrange
multiplier rule is the basic constraint qualification stated in section 3. Further we can
give necessary and sufficient conditions for the solutions to satisfy Lagrange multiplier

rules by means of a few relaxation of the Neustadt's constraint qualifications.
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