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Abstract 
Using a direct drag balance measurement for the local wall shear stress, 
self-preserving development of a turbulent boundary layer was achieved 
experimentally over a d-type rough surface without pressure gradients.  
The wall shear stress and mean velocity measurements confirmed the 
requirements for exact self-similarity and highly similar Reynolds stress 
profiles within the Reynolds number range for a constant skin friction 
coefficient. Under the condition that the boundary layer flow is completely 
independent of Reynolds number, the effect of wall roughness was 
investigated with respect to the similarity laws for the wall layer as well as 
the outer layer.  Experimental observation reveals the wall similarity 

yuyU κτ=∂∂  to be applicable to the present rough wall boundary layer 
remaining the accepted value of Kármán constant to be κ = 0.41.  
Otherwise, investigation of the wake strength in the mean velocity and 
Reynolds stress profiles reveals that the wall roughness does affect the outer 
layer structure.  Reynolds stress measurements indicate that the primary 
effect of wall roughness on turbulence properties is in the component 
normal to the wall. 

Key words: Turbulent Flow, Boundary Layer, Law of the Wall, d-Type Roughness 

 

1. Introduction 

Self-similarity is commonly observed in jets, wakes, and boundary layers and 
provides a fundamental basis for calculating the evolution of thin shear or 
approximated thin shear turbulent flows using a set of similar solutions and an 
ordinary differential equation (e.g. Schlichting-Gersten (1)).  The law of the wall 
and the velocity defect law are essential in constructing a universal representation 
of the mean velocity profile, as well as any statistical quantities for wall turbulence.  
As Re ∞→ , statistical independence between the inner and outer parts of the 
boundary layer guarantees the applicability of these laws and yields the logarithmic 
mean velocity profile in the overlap region (Millikan (2)).   

If a self-preserving boundary layer emerges at zero pressure gradient and under 
the limited condition of linear growth of boundary layer thickness and constant skin 
friction coefficient, then the boundary layer equations can be reduced to an ordinary 
differential equation (Rotta (3)).  In general, a constant skin friction coefficient has 
not been realized over a smooth surface, but rather appears over a particular 
roughness.  Perry et al. (4) and Wood-Antonia (5) reported experimental evidence of 
a self-preserving boundary layer over the two-dimensional grooved rough surface, *Received 20 Dec., 2005 (No. 05-0005) 

[DOI: 10.1299/jfst.1.24] 



 

 

Journal of  Fluid 
Science and Technology 

Vol. 1, No. 1, 2006 

25 

which they called d-type roughness.  Perry et al. (4) observed that the requirement 
is satisfied if effective roughness height is proportional to boundary layer thickness.  
Their experimental data confirmed that error-in-origin, as the relevant length scale 
for d-type roughness, is proportional to the boundary layer thickness and that both 
length scales grow linearly downstream.  However, in their experiment the wall 
shear stress was estimated only from the integral of the wall static pressure 
measurement around a rectangular roughness element.  More precise verification 
is desired in order to confirm that the skin friction coefficient remains constant, 
because the wall shear stress must be the sum of pressure drag and viscous shear 
stress over a rough surface.  

Arguments as to whether the log law or the power law is more appropriate for 
use in determining similarity of the mean velocity profile in turbulent boundary 
layers have been made based on experimental data corrected over smooth surfaces 
(e.g., Barenblatt et al. (6), George-Castillo (7)).  However, the outer layer structure is 
always subject to the Reynolds number effect in turbulent boundary layers over a 
smooth surface; that is, the skin friction coefficient continuously decreases in the 
streamwise direction no matter how large the Reynolds number.  Incomplete 
similarity should be considered in such a turbulent boundary layer, in which the 
skin friction coefficient decreases continuously as a function of Reynolds number 
over smooth (8) and k-type rough surface (9), ≠dxdC f 0.  Whereas, in a 
self-preserving boundary layer, in which the skin friction coefficient must be 
completely independent of Reynolds number, the outer layer structure will exactly 
attain Reynolds number similarity at finite Reynolds numbers, as observed in 
laboratory experiments.  In other words, a self-preserving boundary layer allows 
viscosity to be removed from dimensional arguments on the outer layer structure 
and would provide an example of complete similarity for the argument on the 
self-similarity of mean velocity profile. 

First, we will confirm self-preserving development over d-type rough surface 
by experimental investigation using a direct drag balance measurement for the wall 
shear stress.  Second, similarity of the mean velocity and Reynolds stresses will be 
verified using the carefully corrected experimental data obtained for the 
self-preserving boundary layer. 

2. Experimental Set-up and Measurement Techniques 

Figure 1 shows a schematic of the flow field, coordinate system, and 
nomenclature.  The experimental study was performed in a low-turbulence wind 
tunnel having a cross section of 300 x 500 mm2 and a length of four meters.  The 
free-stream turbulence level was maintained below 0.3%, and the pressure 
coefficient 2

10 /)(2 UppC p ρ−≡  varied within 0-0.5% ( p  and p0  are the 
free-stream static pressure 
and atmospheric pressure, 
respectively, and ρU1

2 2/  
is the free-stream dynamic 
pressure).  Each 
two-dimensional rectangular 
bar roughness element was 
produced by machining a 
18-mm-thick Bakelite plate 
such that the roughness 
height kr, element width b, 
and groove width w are all 

 
Fig.1 Flow field, coordinate system and 
nomenclature. 
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equal to 3 mm.  The test plate was placed behind an initial smooth plate of 480 
mm in length so that the boundary layer was laminar upon entering the rough 
surface section. 

A direct measurement device, as shown in Fig.2, was used to measure the wall 
shear stress acting on the rough surface.  A circular floating element of 60 mm in 
diameter and containing 10 roughness elements was held in place by two bronze 
parallel links that formed a uniform gap with the surrounding plate of 0.25 mm.  
Since the gap size is 2.5-7.5 times larger than the viscous wall length ν τ/ u (ν  is 
kinematical viscosity and uτ  is friction velocity), the flow disturbance due to the 
gap is negligible (Gaudet-Winter (10)).  A force-displacement relationship was 
examined using a stationary procedure, and the obtained calibration curve was 
found to have extremely good linearity.  The output of a linear differential 
transducer was averaged over 40 seconds using a 12-bit AD converter and a 
personal computer.  The linear differential transducer used in the present 
experiment is able to detect displacements as small as 0.1 μm, which corresponds 
to 1% accuracy for the wall shear stress measurement. 

The velocity measurement was performed using constant temperature 
anemometers (KANOMAX model 1011) and a single probe or a crossed hot-wire 
probe.  A tungsten filament sensor of 5µm  in diameter and a sensor length, , 
of 1 mm, which satisfies the criterion + = uτ ν/  < 30 for reasonable spatial 
resolution of Reynolds stress measurement based on (Ligrani-Bradshaw  (11), 
Mochizuki-Nieuwstadt  (12)).  The two sensors welded onto prong tips of the 
crossed hot-wire probe were spaced at 0.5 mm and crossing angle of 90 degrees.  
Over k-type mesh rough walls, a large crossing angle of 120 degrees is 
recommended for obtaining accurate measurements in high-intensity turbulence 
normal to the wall (Perry et 
al. (13), Krogstadt et al. (14)).  
However, the crossing angles 
of 90 to 120 degrees were 
found to have no effect on 
measured turbulence 
quantities for the skimming 
flow over the d-type rough 
wall.  Velocity signals from 
the anemometers were 
passed through low-pass 
filters, in which the cut-off 
frequency was set to 20 kHz, 
and were digitized using a 
12-bit AD converter at a 10 
kHz sampling rate before 
being stored on a hard disk.  
The mean velocity and 
Reynolds stresses were 
calculated from the stored 
signals.  The maximum 
measurement uncertainties 
for the hot-wire 
measurement close to the 
wall y / δ  = 0.068 ( δ  is 

Table 1: Experimental Uncertainties (%) 

fC  U  2u  2υ  υu  

5 3 4 30 14 
 

 
Fig.2 Direct measurement device for the wall 
shear stress. 
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the boundary layer thickness, the height of which corresponds to yuτ ν/ = 20) and 
that for the wall shear stress measurement at Rθ = 700 (= νθ /1U , θ  is the 
momentum thickness) are summarized in Table 1 (Yavzkurt (15)).   

3. Requirement for a Self-preserving Boundary Layer 

Rotta (3) presented six possibilities for the self-preserving boundary layer based 
on an analysis in which compatibility between the presumed local similarity and the 
equations of motion is required.  In this section the self-preserving condition will 
be derived for evolving turbulent boundary layers with no pressure gradients. 

In general, the governing equations for stationary turbulent flow in a 
two-dimensional boundary layer under zero pressure gradient can be expressed as 
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The similarity forms for mean velocity and Reynolds stress distributions are 
assumed to be 
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where δη /y≡  and 1Uuτω = .  Substituting these similarity forms into Eq. 
(3.1) yields a dimensionless equation, 
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Here, with available experimental evidences on flat plate boundary layer, 
dependence of these functions on the friction parameter ω  is sufficiently small so 
that derivatives with respect to ω  can be neglected.  In addition, the momentum 
integral equation under the constant free-stream velocity  
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is transformed using the dimensionless forms as follows: 
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The last term in Eq. (3.5) is usually negligible in turbulent boundary layers at points 
far distant from the flow separation point.  When dxdω =0, that is when 
ω =const., Eq. (3.5) yields dxdδ =const.  Eq. (3.3) then becomes an ordinary 
differential equation with respect to the single independent variableη .  In 
boundary layers, dxdω =0 means that the local skin friction coefficient is 
independent of Reynolds number, and this requirement can never be met for flow 
over a smooth wall.   
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If the surface is covered by roughness, the self-preserving condition for 
evolving turbulent boundary layers may be satisfied.  The universal mean velocity 
profile for the wall layer above uniform roughness can be written as 

τ

τ

τ νκ u
UC

yu
u
U ∆

−+= ln1
                                     (3.6) 

where κ  is Kármán constant, C  a numerical constant determined over a smooth 
surface, and τuU∆  is a roughness function that is the velocity defect from the 
standard distribution over a smooth wall, which indicates the additional increment 
in wall shear stress due to the roughness.  Since the near wall flow is independent 
of viscosity, i.e. in the fully rough state, the roughness function can be expressed in 
terms of representative roughness height k  only,  

B
u

u
U k +=

∆
νκ
τ

τ

ln1
                                      (3.7) 

where B is a numerical coefficient depending on the specific roughness geometry.  
Substituting Eq. (3.7) into Eq. (3.6) and setting δ=y  yields the following 
relationship: 

BC
u
U

C kf

−+==
δ

κτ

ln12 1 .                              (3.8) 

If ω  = const., then the length scale ratio kδ  must be constant.  Since the 
boundary layer thickness grows in proportion to the boundary layer 
thickness x∝δ , the representative roughness height must be proportional to the 
streamwise distance xk ∝ .  Consequently, self-preserving development of a 
turbulent boundary layer is accomplished at a constant skin friction coefficient, and 
the boundary layer thickness and representative roughness length scale are 
proportional to the streamwise travel distance:  

1Uuτω = = const., where x∝δ  and xk ∝ .                    (3.9) 

4. Self-preserving Development over d-type Roughness 

4.1 Skin Friction Coefficient and Boundary Layer Thickness 
In this section, we will determine whether the boundary layer attains a 

self-preserving state satisfying the constant skin-friction coefficient requirement for 
linear growth of boundary layer thickness.  The skin friction coefficient, which 
gives definition of the friction parameter 2/1 fCUu =≡ τω  in Rotta’s 
analysis, is defined as   

)2//( 2
1UC wf ρτ= ,                                           (4.1) 

where τw  is the wall shear stress. The skin friction coefficient is plotted with 
respect to the momentum thickness Reynolds number θR  in Fig.3.  All 
experimental data over smooth and d-type roughness were obtained experimentally 
by direct wall shear stress measurement in the same wind tunnel facility (Osaka et 
al. (8)).  For a two-dimensional smooth wall boundary layer under zero pressure 
gradient, a frequently used empirical formula is Kármán-Schoenherr’s formula (e.g., 
Granville (16)):   

1 17 08 2511 6 0122/ . (log ) . (log ) .C R Rf = + +θ θ ,                  (4.2) 

and a more accurate formula for low and moderate Reynolds numbers (Osaka et al.  

(8)) is the following: 
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1 20 03 17 24 3 712/ . (log ) . (log ) .C R Rf = + +θ θ .                  (4.3) 

The skin friction coefficient of the d-type rough wall flow has a constant value of 
C f = 0.0039 when Rθ >2000 (the skin friction coefficient estimated by the 
momentum balance 2d dxθ /  agrees well with the values obtained by direct 
measurement).  The present experiment yields direct evidence that the constant 
skin friction coefficient evaluated from the total wall shear stress includes both 
pressure drag and viscous shear stress.  Otherwise, for the lower Reynolds 
numbers Rθ < 2000 the skin friction coefficient gradually increases as Rθ  
decreases and approaches approximately the same value as that of the smooth wall 
boundary layer, C f = 0.0048 at approximately Rθ = 800. 

Figure 4 shows the development of boundary layer thickness, displacement 
thickness, momentum thickness, and error-in-origin, which is the representative 
roughness length scale of the d-type rough wall (see Fig.6).  All three length 
scales develop along straight lines ～ 1x  over a considerably long streamwise 
distance.  The experimentally obtained skin friction coefficient and the 
development of the boundary layer thickness satisfy the conditions required for the 
exact self-preservation of the boundary layer.  According to the skin friction 
measurement, the boundary layer attains the self-preserving state over the Reynolds 
number range of Rθ > 3000, corresponding to x > 1700 mm and νδδ τu≡+ > 
1000. 
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Fig.3 Local skin friction coefficient as a function of momentum thickness Reynolds
number. 
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Fig.4 Development of length scales: boundary layer thickness δ, displacement
thickness δ*, momentum thickness θ, and error-in origin ε. 
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4.2 Similarity of the Mean Velocity and Reynolds Stress Profiles 
The extensive survey on available experimental data of turbulent boundary 

layer in Stanford Conference shows the logarithmic velocity profiles shown in 
Fig.5 using the standard log-law lines proposed in 1968 (Coles-Hirst  (17)): 

U
u

yu

τ

τ

ν
= +5 62 5 0. log . .                                    (4.4) 

The distance from the wall y is measured from the virtual origin, y yT= + ε , 
where error-in-origin ε  is determined using the method proposed by 
Monin-Yaglom  (18). The mean velocity profile of the present smooth boundary 
layer matches that predicted by the standard log-law at both ends of the examined 
range of Reynolds numbers, Rθ = 860 and 5230.  Over the higher Reynolds 
number range of Rθ > 3000, at which good similarity can be expected in the 
boundary layers over the d-type rough wall, the log layer is immediately recognized 
and the velocity gradient coincides with that of the standard log-law, that is, the 
Kármán constant κ  
remains at the accepted value 
of 0.41 over the roughness.  
This experimental 
observation confirms the 
wall similarity 

yuyU κτ=∂∂  to be 
applicable to the present 
rough wall boundary layer.  
The logarithmic velocity 
profile having the same 
velocity gradient as the 
standard log law is 
recognizable at somewhat 
smaller Reynolds numbers of 
Rθ = 1230 and 2000.  This 
result indicates that the wall 
similarity is sustained 
regardless of exact 
self-preservation of the outer 
layer structure, and this 
behavior is similar to that 
formerly observed over 
smooth surfaces.  However, 
the validity of the log law is 
difficult to demonstrate using 
κ = 0.41 for the 
experimental evidence at 
much smaller Reynolds 
numbers of Rθ = 700 and 
790, at which the skin 
friction coefficient depends 
strongly on the Reynolds 
number.  Because the 
Reynolds number 
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Fig.5 The logarithmic mean velocity profiles over 
d-type rough wall at different Reynolds numbers.
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νδδ τ /u≡+  is smaller than 500, even if the wall layer remains, the thickness of 
the log layer is not sufficient to easily locate its existence. 

In order to examine whether the error-in-origin is acceptable as representative 
length scale for d-type roughness, the roughness function is plotted against the 
roughness Reynolds number based on the error-in-originε , as shown in Fig.6.  In 
the fully rough state defined by the constant skin friction coefficient, the 
experimental data is reasonably correlated by the logarithmic function having the 
same gradient as the mean velocity profile in the wall layer.  This implies that k
～ε , and the alternative expression for the mean velocity profile in the fully rough 
state becomes: 

ε
τ ε

Cy
u
U

+= log62.5                                        (4.5) 

where εC  is a numerical constant, and the error-in-origin indicates the effective 
length scale of wall roughness. 

Let us examine self-similarity in the outer layer mean velocity profile in detail 
using the wake law proposed by Coles (19), in which a possible formula for rough 
wall turbulent boundary layers is defined as  
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,                    (4.6) 

where Π  is a wake parameter and W y( )δ  is the universal wake function.    
Figure 7 shows the wake function obtained using the two semi-empirical formulas 
as proposed by Coles (19) and Lewkowicz (20), respectively, for smooth wall 
boundary layers: 
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             (4.8) 

The first equation by Coles was later improved by Lewkowicz in order to satisfy 
the condition ∂ ∂U y = 0 at y = δ .  The wake function of the d-type rough wall 
boundary layer is reasonably similar, except for the minimum limit on Reynolds 
number, Rθ = 700.  Lewkowicz's formula better fits the experimental data of the 
d-type rough wall, especially in the outer half layer of y δ > 0.6.  The slight 
upward deviation of the experimental data from the formulas in the inner half layer 
of y δ < 0.6 is associated with the slightly smaller thickness of the wall layer in 
the present rough wall boundary layer.  The ratio of the wall layer thickness, 
which is defined as the upper height of the logarithmic layer, to the boundary layer 
thickness is approximately 0.15 at large Reynolds numbers, at which the 
self-preserving development is observed.  Otherwise, the ratio is from 0.15 to 0.20 
over the smooth surfaces (Purtell et al. (21), Sabramanian-Antonia (22)).  The small 
deviation in the wake function over the rough surface would cause an error in the 
estimation of the wall shear stress using the universal profile.  However, the 
universal wake function is an acceptable means by which to represent the mean 
velocity profile in the outer layer for the d-type rough wall flow at low Reynolds 
numbers, at which the requirement is not satisfied for the self-preserving 
developments.  

The wake parameter is plotted against the Reynolds number )/( τνδδ u≡+ , 
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defining the length scale ratio of the largest eddy to the smallest eddy in Fig.8.  As 
∞→+δ , the wake parameter increases rapidly and approaches to an asymptotic 

value within the range of Π = 0.72-0.73 over δ + = 800-1400, at which the 
self-preserving development is observed at constant skin friction coefficient over 
the corresponding Reynolds number range of Rθ = 2000-4000.  The 
self-preserving development over the d-type roughness can be confirmed by the 
wake strength κτ /2/ Π=∆ uU  to be constant at finite Reynolds numbers.  The 
solid line represents the semi-empirical formulation by Coles' survey on carefully 
selected experimental data of smooth wall boundary layers having no pressure 
gradients (Coles (23)): 

Π = − − +0 62 121 290. . exp( / )δ                               (4.9) 

This is an improved formulation of Π as a function of +δ , and the present 
experimental data obtained in a two-dimensional smooth wall boundary layer under 
zero pressure gradient agree well with Eq.(4.9).  Note that the asymptotic value of 
the wake parameter over the d-type rough surface is greater than that for smooth 
wall flow.  The larger value of wake strength, being independent of the Reynolds 
number effect by virtue of the constant skin friction coefficient, proves that the 
velocity defect law depends on the wall roughness, and a parameter describing the 
effect of wall roughness can never be completely neglected in a dimensional 
argument of the outer layer structure.  If the wall shear stress determined in the 
matching process of the measured mean velocity profile to the defect law is 
assumed to be universal, the quantitative difference in the wake strength causes 
skin friction coefficients over the d-type rough wall to be overestimated by 
approximately 30%.   
Similarly, Furuya et al. (24), 
Perry et al. (13) and Dijedini et 
al. (25) have reported the effect 
of wall roughness on the outer 
layer structure in thick 
turbulent boundary layers.  
Furuya et al. (24) suggested the 
dependence of the additive 
constant upon wall roughness, 
and proposed a procedure by 
which to determine the 
error-in-origin using the 
velocity defect law.  In the 
experimental study by Perry et 
al. (13), the Reynolds shear 
stress in the constant stress 
layer, which was carefully 
obtained by hot-wire 
measurement, was found to be 
considerably smaller than the 
wall shear stress determined by 
velocity fitting to the universal 
velocity defect shape, casting 
some doubt on the velocity 
defect law being independent 
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of wall roughness.  Dijedini et al. (25) and Krogstadt et al. (14) recognized a clear 
distinction in Reynolds stress profiles or turbulent properties in the outer layer of 
the boundary layer that had developed over rough walls.  The universal velocity 
defect law is often used as a convenient method by which to determine the wall 
shear stress over non-smooth surfaces, such as Riblets surface (Choi (26)).  
However, the present experimental findings indicate that this method leads to 
significant quantitative error in estimating wall shear stress. 

4.3 Profile of Reynolds Stresses  
Figures 9-11 show the turbulent intensity and Reynolds shear stress profiles 

normalized with the velocity and length scales employed for self-similarity, namely, 
friction velocity τu and thickness τδ uU /1

*≡∆ , as introduced by Rotta’s analysis 
for similarity argument.  Similarity of the turbulent intensity and Reynolds shear 
stress profiles is fairly good over the Reynolds number range of Rθ = 3200-5140, 
at which self-preserving development is observed at constant skin-friction 
coefficient.  At low Reynolds numbers of Rθ = 700, 790 and 1230, at which the 
wake strength grows faster in the downstream direction, the magnitude of 
normalized Reynolds stresses increases around the outer edge of the layer.  
Compared with the smooth surface, an effect of the wall roughness can be seen in 
the magnitude of the normal component of turbulent intensity τυ urms  
throughout the layer.  The magnitude of τυ urms in the inner layer over the 
present rough surface is 1.2-1.25, whereas that over a smooth surface is 
approximately 1.0.  Dijedini 
et al. (25) also find greater 
magnitude of τυ urms  in the 
LDV measurement performed 
over d-type roughness.  Over 
three- dimensional k-type 
rough walls, for example, 
three- dimensional arrays of 
isolated roughness elements 
(Raupach et al. (27)) and a mesh 
rough surface (Krogstadt et al. 
(14)), a much greater value of 

τυ urms , up to 1.35, was 
observed in the wall layer.  
Consequently, these 
experimental findings indicate 
that the roughness effect on the 
turbulent structure appears 
primarily in the turbulent 
intensity component normal to 
the wall. Considering the 
experimental uncertainty of the 
wall shear stress and Reynolds 
shear stress measurements, we 
can conclude that a constant 
stress layer (Townsend (28) ) 
exists in the d-type rough wall 
boundary layer over the entire 
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Reynolds number range of 
Rθ = 700-5400.  This 
experimental evidence supports 
the friction velocity as a 
relevant scale in the wall layer 
over the d-type roughness for 
the Reynolds number range 
examined. 

5. Conclusions 

(1) Based on the skin friction 
measurement using the 
direct drag balance, the 
boundary layer attains the 
self-preserving state over the Reynolds number range of Rθ >3000, 
corresponding to x >1700 mm and νδδ τu≡+ >1000.  

(2) The experimental observation of mean velocity profiles confirms the wall 
similarity yuyU κτ=∂∂  to be applicable to the present rough wall flow, 
and the Kármán constant κ  remains at the constant value of 0.41.  The 
larger value of wake strength compared with the smooth wall boundary layer, 
being independent of Reynolds number, proves that the velocity defect profile 
depends on wall roughness, then a parameter describing the effect of wall 
roughness can never be completely neglected in a dimensional argument of the 
outer layer structure. 

(3) Similarity of the turbulent intensity and Reynolds shear stress profiles is fairly 
good over the Reynolds number range of Rθ = 3200-5140, at which the 
self-preserving development is observed at constant skin-friction coefficient.  
The Reynolds stress measurements indicate that the roughness effect on a 
turbulent structure appears primarily in the normal turbulent intensity. 
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