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We theoretically evaluated the performance of our proposed associative watermarking method in which the watermark
is not embedded directly into the image. We previously proposed a watermarking method that extends the zero-
watermarking model by applying associative memory models. In this model, the hetero-associative memory model is
introduced to the mapping process between image features and watermarks, and the auto-associative memory model is
applied to correct watermark errors. We herein show that the associative watermarking model outperforms the zero-
watermarking model through computer simulations using actual images. In this paper, we describe how we derive the
macroscopic state equation for the associative watermarking model using the Okada theory. The theoretical results
obtained by the fourth-order theory were in good agreement with those obtained by computer simulations. Furthermore,
the performance of the associative watermarking model was evaluated using the bit error rate of the watermark, both
theoretically and using computer simulations.

1. Introduction

Illegal use of digital content in social media is a serious
problem. In particular, unauthorized use and tampering with
images and videos have been frequently detected. The digital
watermarking method1–3) is an effective method to solve
such problems. In this kind of method, information such as
copyrights and licenses is imperceptibly embedded in digital
content. This prevents unauthorized use of the content and
identifies the authorized owner. The information embedded
in the content is called a watermark. Embedding methods
include pixel substitution,4) which adds the watermark to a
pixel, and embedding in the frequency domain obtained by
discrete cosine transformations (DCT)5,6) and other meth-
ods.7) These embedding methods place the watermark
directly into the content, causing distortion in the image.

The zero-watermarking method8–10) was proposed as a
method of undistorted image watermarking. In this method,
instead of embedding a watermark in an image, a secret key
is generated from the watermark and the unique features
extracted from the image. The validity of the image can be
determined by retrieving the watermark from the features and
the stored secret key. Because this method never embeds
a watermark, the image is never distorted. However, the
watermark cannot be retrieved correctly if the original image
is attacked because there is no error correction capability.
Furthermore, if the zero-watermarking method were applied
to a large number of images, a large number of secret keys
would be generated, requiring that the pair between the secret
keys and features be managed.

The hetero-associative memory model (HMM)11) can store
pairs of key patterns and associative patterns, and the
corresponding associative patterns can be recalled if a key
pattern is input. Therefore, the HMM can be applied to
achieve the zero-watermarking method by considering the
features extracted from the images as key patterns and by
considering the watermarks as associative patterns. Applying
the HMM has the following advantages. First, the sizes of the
features and watermark can be made different. Second, if the
features have errors, the HMM can correct the errors in the

watermark. Third, pair management is no longer necessary
because multiple pairs can be stored in the HMM. The auto-
associative memory model (AMM)12–14) stores multiple
patterns, and the most similar pattern among the stored ones
is recalled when a pattern is input. Therefore, watermark
errors can be corrected by storing watermarks in the AMM.

We proposed an associative watermarking method (AWM)
based on the HMM and AMM to enable a zero-watermarking
method.15) The AWM is composed of a HMM in the first
layer and an AMM in the second layer, resulting in the same
network structure as the human associative processor
(HASP).16,17) Owing to the error correction capability of the
associative memory models, we showed using computer
simulations that the watermark is retrieved without errors
even when the image is attacked. In this paper, we present an
evaluation of the error correction capability of the AWM
through theory and computer simulations. Because AWM
consists of the associative memory models, its recall process
of the watermark and memory capacity can be obtained
by using statistical neurodynamics, in particular, Okada
theory.13,14) The macroscopic state equations for the HASP
have been derived.11) Since the structure of the proposed
model is the same as that of HASP,11) its macroscopic state
equations were derived. The recall process for one-to-many
associations was analyzed in the previous study.11) In this
paper, we present new results to characterize it as the AWM.
We evaluated the bit error rate of the watermark by using the
equations.

The paper is organized as follows. Section 2 explains the
zero-watermarking method. Section 3 discusses associative
memory models. Section 4 describes the associative water-
marking method. Section 5 describes computer simulations
that were conducted to evaluate the theory. Section 6
concludes the paper.

2. Zero-Watermarking Method

We explain the mechanism of the zero-watermarking
method using DCT coefficients as features.8) Let � ¼ ð�1;
�2; . . . ; �KÞ> be a K-bit watermark, where each element of the
watermark �i takes the value �1.
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2.1 Mapping procedure from the features and watermark to
the secret key

As shown in the upper part of Fig. 1, mapping from
features and a watermark to a secret key involves two steps.
Step 1: Extract features from the original image.

Two-dimensional DCT is performed on the original image.
Low-frequency components are chosen as features because
the changes in the DCT coefficients are small when the image
is degraded. K low-frequency components d ¼ ðd1; d2; . . . ;
dKÞ> are extracted from the DCT coefficients, excluding the
DC component. The feature � ¼ ð�1; �2; . . . ; �KÞ> is obtained
by binarizing these extracted DCT coefficients d, that is,
given by

�i ¼ sgnðdiÞ; i ¼ 1; 2; . . . ; K; ð1Þ
where the sign function sgnð�Þ is defined as

sgnðxÞ ¼ þ1; x � 0

�1; x < 0

�
: ð2Þ

Step 2: Generate a secret key.
The secret key W is generated by the Hadamard product of

the feature � and the watermark �. That is, it is calculated in
Step 1. That is,

Wi ¼ �i�i; i ¼ 1; 2; . . . ; K: ð3Þ
Note that the bit length of the feature, K, must be the same as
the bit length of the watermark. Finally, the generated secret
key is stored.

2.2 Watermark extraction procedure
As shown in the lower part of Fig. 1, the procedure for

obtaining a watermark from a feature and a secret key
consists of two steps.
Step 1: Extract features from the original image.

This step is identical to step 1 in the previous subsection.
Step 2: Extract a watermark.

A watermark � can be obtained by the Hadamard product
of a feature � and a secret key W. That is, it is calculated by

�i ¼ Wi�i; i ¼ 1; 2; . . . ; K: ð4Þ

Thus, the zero-watermarking method can map a watermark
to a feature derived from the original image by generating a
secret key. Because no watermark is embedded in the image,
i.e., the image itself is not modified, no degradation in image
quality occurs. However, the zero-watermarking method
cannot extract the watermark if the original image has been
degraded. Therefore, if compression, noise addition, filtering,
or other attacks are applied to the image, the extracted feature
might not coincide with the original, and errors might occur in
the watermark. In other words, the method lacks robustness
against attacks. In addition, because the Hadamard product is
used to generate the secret key, there is a restriction that the bit
length of the features and the watermark must be the same.
Furthermore, as the number of images increases, the number
of secret keys also increases. Therefore, it becomes difficult to
manage the pairing between the features and the secret keys.

2.3 Amount of information required to store
Let us calculate the amount of information required to

store the secret keys, Cz, in the zero-watermarking method.
The K-bit secret key must be stored. If P secret keys are to be
stored, PK bits of information must be stored. In addition,
information about the mapping of images to secret keys must
be stored. Note that the need for this mapping information
is not considered in conventional zero-watermarking meth-
ods.8–10) We assume that an index of L ¼ log2 P bits is
appended to both the image and the secret key to manage
them. The index allows us to find the secret key correspond-
ing to the image. This management information requires 2LP
bits. Thus, the total information to be stored is Cz ¼ PK þ
2LP ¼ PðK þ 2 log2 PÞ bits. However, if the use of the index
is allowed, the watermark can be indexed directly. It can be
easily mapped to the image. As a result, it is no longer
necessary to implement the zero-watermarking method. The
zero-watermarking method does not support the management
of multiple images.

3. Associative Memory Models

There are two types of associative memory models: the
hetero-associative memory model11) and the auto-associative
memory model.12–14)

3.1 Hetero-associative memory model
The HMM stores mappings from key patterns to

associative patterns. Therefore, when a key pattern is given
to the input layer, the corresponding associative pattern is
recalled in the output layer. Let �� be the μ-th key pattern and
let ��, � ¼ 1; 2; . . . ; P be the μ-th associative pattern, where
P is the number of patterns. The bit length of the key pattern
is K bits, and that of the associative pattern is N bits. That is,
the key pattern and the associative pattern are represented by
�� ¼ ð��1 ; ��

2 ; . . . ; �
�
KÞ> and �� ¼ ð��1 ; ��2 ; . . . ; ��NÞ>, respec-

tively. We assume that each component of the key and
associative pattern takes the value �1 with equal probability
and is given by

Prob½��i ¼ �1� ¼ 1

2
; ð5Þ

Prob½��i ¼ �1� ¼ 1

2
: ð6Þ

The synaptic weight Wh
ik of the HMM is given by

(+1,-1, ,+1,-1)⋯

watermark ξ

feature η
(+1,+1, ,+1,-1)⋯ secret key W

(+1,-1, ,+1,+1)⋯

original
image

Step 1

(+1,-1, ,+1,+1)⋯

original
image

(+1,+1, ,+1,-1)⋯
feature η

(+1,-1, ,+1,-1)⋯
watermark ξ

secret key W

Watermark Mapping
Procedure

Watermark Extraction
ProcedureStep 1

Step 2

Step 2

Fig. 1. (Color online) Mechanism of zero-watermarking method.
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Wh
ik ¼

1

N

XP
�¼1

��i �
�
k : ð7Þ

As an input y ¼ ðy1; y2; . . . ; yKÞ> is given to the HMM, the
output of the HMM, x0 ¼ ðx01 ; x02 ; . . . ; x0NÞ>, is given by

x0i ¼ sgnðhiÞ; ð8Þ
where hi is the internal state of the neuron and is defined
as

hi ¼
XK
k¼1

Wh
ikyk: ð9Þ

Here, we define the similarity between the input y and the
ν-th key pattern �� as overlap given by

m�
� ¼ 1

K

XK
k¼1

��kyk: ð10Þ

The internal state given by (9) can be expressed as

hi ¼ �m�
��

�
i þ z�i ; ð11Þ

where � ¼ K
N and z�i are the crosstalk noise term, given by

z�i ¼
1

N

XK
k¼1

XP
�≠�

��i �
�
k yk: ð12Þ

The crosstalk noise z�i is subject to a Gaussian distribution
with mean 0 and variance �2

� when the large system limit
N ! 1, K ! 1, P ! 1 hold and both the loading rate
� ¼ P

N and γ are finite.11) The variance �2
� given by

�2
� ¼ E½ðz�i Þ2� ¼ ��: ð13Þ

The overlap m�
0 between the output x0 of the HMM and the

μ-th associative pattern �� is defined by

m�
0 ¼ 1

N

XN
i¼1

��i x
0
i : ð14Þ

In the large system limit, the overlap m�
0 is given by

m�
0 ¼ erf

�m�
�ffiffiffi

2
p

��

� �
; ð15Þ

where erfðxÞ is the error function. See Appendix A.1 for the
derivation of (15).

3.2 Auto-associative memory model
The AMM stores multiple patterns and can recall the most

similar pattern when a pattern is input to the network. If the
AMM stores P patterns �� ¼ ð��1 ; ��2 ; . . . ; ��NÞ>, � ¼ 1; 2; . . . ;
P, the synaptic weight Wa

ij is given by

Wa
ij ¼

1

N

XP
�¼1

��i �
�
j : ð16Þ

The state xtþ1i of the i-th neuron at time t þ 1 is given by

xtþ1i ¼ sgnðhtiÞ; ð17Þ
where hti is the internal state of the neuron at time t, given
by

hti ¼
XN
j≠i

Wa
ij x

t
j : ð18Þ

The overlap m�
t between the state xt of the neurons in the

AMM at time t ¼ 0; 1; 2; . . . and the μ-th pattern �� is defined
as,

m�
t ¼ 1

N

XN
i¼1

��i x
t
i : ð19Þ

The overlap at time t ¼ 0 is the same as (14) and is called the
initial overlap. Now, assuming that the μ-th pattern is recalled
at time t, from Eq. (19), the internal state (18) can be
expressed as,

hti ¼ m�
t �

�
i þ zti; ð20Þ

where the crosstalk noise term zti is given by

zti ¼
1

N

XN
j≠i

XP
�≠�

��i �
�
j x

t
j : ð21Þ

In the large system limit, the crosstalk noise term zti follows a
Gaussian distribution with mean 0 and variance �2

t , that is,

�2
t ¼ E½ðztiÞ2�: ð22Þ

The overlap m�
tþ1 and the variance �2

tþ1 are given by

m�
tþ1 ¼ erf

m�
tffiffiffi
2

p
�t

� �
; ð23Þ

�2
tþ1 ¼ � þ U2

tþ1�
2
t þ 2�

Xt

	¼t�nþ1
qtþ1;	

Ytþ1
k¼	þ1

Uk: ð24Þ

Because AMM is a recurrent neural network, the variance
of the crosstalk noise has temporal correlations.11,14) See
Appendix A.2 for the derivation of (23) and (24).

4. Associative Watermarking Method

The AWM15) introduces HMM for mapping features to
watermarks in the zero-watermarking method and AMM for
watermark error correction. When mapping multiple images
and watermarks, the μ-th feature �� and watermark �� in the
zero-watermarking method correspond to the key pattern ��

and the associative pattern �� in the HMM, respectively.
Also, all secret keys W� are represented by a single synaptic
weight Wh. Therefore, the AWM has several advantages
compared to the zero-watermarking method. First, it does not
need to manage the mapping between many secret keys and
features— only the synaptic weight. Second, errors in the
watermark can be corrected even if a feature is degraded.
Third, the bit length of the feature � and that of the watermark
� may be different. Fourth, the AWM has the same structure
as the HASP,11,16) as shown in Fig. 2, and the retrieval
process and memory capacity can be analyzed by using
statistical neurodynamics.11)

4.1 Proposed model
Let t ¼ �1 be the time when the input y is given to the

HMM, and let t ¼ 0 be the time when the output x0 of the
HMM is input to the AMM.

Suppose that there are P images and that the N-bit
watermark �� ¼ ð��1 ; ��2 ; . . . ; ��NÞ> is associated with the μ-th
image. Similar to the zero-watermarking method,8) K low-
frequency components are extracted from the DCT coef-
ficients of the μ-th image, excluding the DC components. The
extracted DCT coefficients are binarized by (1) to obtain the
features �� ¼ ð��1 ; ��

2 ; . . . ; �
�
KÞ>.

The features �� and watermarks �� are regarded as key
patterns and associative patterns, respectively. The synaptic
weights Wh and Wa are given by (7) and (16), respectively.
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The mapping between features and watermarks can be
managed by storing the weight Wh, and the watermarks can
be recalled almost without error by storing the weights Wa.

Suppose that the μ-th image is attacked and that a feature
is degraded. In the HMM, the sum of the products of the
degraded feature ~�� ¼ ð ~��

1 ; ~�
�
2 ; . . . ; ~�

�
KÞ> and the synaptic

weight Wh is calculated by (9) to obtain the output x0. This
output x0 is given as the initial value of the AMM. The state
of the neurons in the AMM at each time is determined by
(17). The watermark �� is known to be successfully recalled
if the overlap between the state of the neurons xt and the
watermark �� at time t is m�

t ¼ 1 after sufficient time.

4.2 The recall process and basin of attraction
The AWM corresponds to the one-to-one association case

of the HASP.11) The recall process and memory capacity of
this model were analyzed.11,17) We evaluated the performance
of our method using the macroscopic state equations derived
in A.1 and A.2 and using computer simulations.

First, we evaluated the recall process of watermarks from
degraded features. Figure 3 shows the watermark recall
process. The horizontal axis represents time t, and the vertical
axis represents the overlap. Here, the overlap at time t ¼ �1
represents the overlap m�

� for the feature ��, and the overlap
at t ¼ 0; 1; 2; . . . represents the overlap m�

t for the watermark
��. The solid line represents the theoretical value of overlap
represented by (15) and (23). The cases recalled from various
initial overlaps are shown. In the computer simulation, the

features and watermarks were randomly generated by (5) and
(6). The degraded figures input to the AWM were flipped to
be the given initial overlap. The bit lengths of the features
and watermark were set to N ¼ 10000, K ¼ 10000, respec-
tively. That is, � ¼ 1:0. The overlap at each time was
illustrated by an error bar. The error bars represent the mean
and the standard deviation for 100 trials. (a) and (b) show the
results when the number of patterns was P ¼ 800 (� ¼ 0:08)
and P ¼ 1200 (� ¼ 0:12), respectively.

Figure 3 shows the overlap m�
0 of the output layer of the

HMM was larger than the overlap m�
� of the input layer. This

means that the HMM can not only store the mapping between
features and watermarks but also correct watermark errors.
The recallable boundary value is called the critical overlap
mc. For � ¼ 0:08 in Fig. 3(a), the critical overlap was
mc > 0:2 for the fourth-order theory (n ¼ 4). Computer
simulations also showed that mc > 0:2. Similarly, for � ¼
0:12 in Fig. 3(b), both theory and computer simulations
showed mc > 0:3. These results revealed that fourth-order
theory can quantitatively represent the results of computer
simulations.

Figure 4 shows the basins of attraction to evaluate the error
correction capability of AWM. (a) is a case where the bit
lengths of the features and watermark were K ¼ 5000, N ¼
10000, i.e., � ¼ 0:5, respectively, and (b) is a case where
K ¼ N ¼ 10000 (� ¼ 1:0). The horizontal axis represents the
loading rate α, and the vertical axis represents the overlap.
The lower curves show the critical overlaps mc. The upper
curves show the equilibrium overlaps m1 when the network
was in equilibrium at time t ! 1. The equilibrium overlap
represents the stability of the memorized pattern and is the
overlap at time t ! 1 when the network is recalled from an
initial state with initial overlap m0 ¼ 1. The region bounded
by the equilibrium overlap and the critical overlap is the basin
of attraction.

We can see from Fig. 3 that the overlaps were well
converged by t ¼ 20. Therefore, the equilibrium overlaps
obtained from the computer simulations were the overlap m20

at t ¼ 20. The error bars were the results obtained from the
computer simulations, and they represent the mean and
standard deviation of the overlap m�

20 over 100 trials at each
loading rate α. The black and red dashed lines are the results
obtained from the fourth-order theory for AMM and AWM,
respectively. The results of the computer simulations were in
good agreement with the theoretical curves of the AWM. In
Fig. 4(a), the basin of attraction of AWM was lower than that
of AMM, while the basin of attraction of AWM was higher in

x0y
Wh

ij

Wa
ij

x0
N−1

x0
N

x0
3

x0
2

x0
1

y1

y2

yK

Fig. 2. Structure of the associative watermarking memory.

(a) loading rate α = 0.08 (b) loading rate α = 0.12

Fig. 3. (Color online) Time evolution of overlaps m�
� ; m

�
t for the loading rates � ¼ 0:08; 0:12 and � ¼ 1:0.
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(b). As the bit length ratio of the features and watermarks,
� ¼ K=N, decreases, the overlap of the HMM’s output
decreases from (15). In other words, when γ is low, the error
correction capability of the HMM is low.

4.3 Amount of information required to store
Let us calculate the amount of information required to

store the secret keys, C, in AWM. Information on the weight
matrices Wh

ik and Wa
ij must be stored. If the activation

function in (8) and (17) is sgnðÞ, the division by N operation
in (7) and (16) can be omitted. Thus, the weights can be
stored as integers. The maximum value of Wh

ik and Wa
ij is P if

the values of the patterns are ��k ¼ 1 and ��i ¼ 1 for all μ. In
practice, the maximum is less than P because this case is
unlikely. It takes log2 P bits to store the value of a weight.
Since Wh

ik is an asymmetric matrix, Ch ¼ NK log2 P bits are
required to store this weight. In addition, since Wa

ij is a
symmetric matrix and the diagonal components are not used,
Ca ¼ ðNðN � 1Þ=2Þ log2 P bits are required. Accordingly, the
total information to be stored is C ¼ Ch þ Ca ¼ NðK þ
ðN � 1Þ=2Þ log2 P bits. Let us compare the zero-watermark-
ing method and AWM in terms of the amount of information.
Obviously, the zero-watermarking method requires less
information than AWM. Note, however, that the proposed
AWM does not require indexing. In other words, the
proposed method is suitable for managing multiple images.

5. Performance Evaluation of the AWM

The order parameter equations are equivalent to those of
the HASP.11) The previous section presented an evaluation of
the performance of AWM with the basin of attraction as an
AMM. This section features an evaluation of its performance
as a watermarking model. It was evaluated quantitatively in
terms of the bit error rate (BER) of the watermark. The BERs
obtained from the zero-watermarking method, HMM, and
AWM were evaluated using features obtained from images.
The BER is defined by

BERðmÞ ¼ 1 �m

2
; ð25Þ

where m is an overlap. Therefore, the BER for the μ-th
watermark at time t is represented by BERðm�

t Þ.

5.1 JPEG compression attack
We evaluated the BERs of the watermarks when the

images were JPEG compressed and when the degraded

features were extracted. JPEG compression was applied to
1200 original images18) of 512 � 512 pixels. The bit lengths
of the features were set to K ¼ 5000; 10000. The watermarks
were randomly generated by (6). The bit length of the
watermarks was set to N ¼ 10000. That is, � ¼ 0:5; 1:0 and
� ¼ 0:12. With weak JPEG compression, the watermark
could be recalled correctly due to the error correction
capability of the HMM. Therefore, we examined the case
of strong compression, where the watermark was incorrectly
recalled at the output of the HMM. Here, the quantization
level of JPEG compression was set to Q ¼ 5.

The BERs of the watermarks are shown in Fig. 5 when the
images were JPEG compressed. The horizontal and vertical
axes represent the overlap m�

� of the feature �� and the
BERðm�

t Þ of the watermark ��, respectively. Because the
degraded feature ~�� was given as input y of the HMM, the
overlap m�

� was calculated using the (10). The blue and red
solid lines represent, respectively, the theoretical BER for the
output of the HMM obtained by the (15) and the output of the
AWM at time t ¼ 20 obtained by the (23). The black, blue,
and red points represent the BERs of the watermarks obtained
from the zero-watermarking model, the HMM, and the AWM
obtained from computer simulations. The overlaps for AWM
were the value of m�

20 at time t ¼ 20. The BERs were plotted
using 12 images compressed at a high compression ratio
(Q ¼ 5) so as to generate errors in the output of the HMM.
Note that it is difficult to obtain a small overlap m�

� even with
a high compression rate. Figure 5(a) shows the results for bit
lengths of K ¼ 5000, N ¼ 10000 (� ¼ 0:5) and (b) for those
of K ¼ N ¼ 10000 (� ¼ 1:0), where the loading rate was
� ¼ 0:12. The theoretical curves showed that the BER of the
HMM varied gradually, while the BER of the AWM varied
sharply at the critical overlap mc, owing to the AMM.
Because of their error correction capabilities, both the HMM
and AWM had smaller errors than the zero-watermarking
method. In addition, errors that could not be corrected by the
HMM could be corrected by the AMM. The error was almost
zero for the AWM in total. The overlap for the HMM
appeared to be out of the theoretical curve because the
features extracted from the images did not satisfy the
condition (5).

5.2 Gaussian noise attack
Next, we show the results for additive Gaussian noise,

since the JPEG compression attack did not degrade the
watermarks below the critical overlap. Gaussian noise with a

(a) K = 5000, N = 10000 ( γ = 0.5) (b) K = N = 10000 ( γ = 1.0)

Fig. 4. (Color online) Basin of attraction for the AMM and AWM.
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mean of 100 and a standard deviation of 100 was used to
generate large errors. Although pixel values usually take
256 gray levels, we assume that the pixel values in this
experiment take values beyond that range. Figure 6 shows
the BER in the case of a Gaussian noise attack, where
K ¼ 20000, N ¼ 10000 (� ¼ 2:0), and P ¼ 1200 (� ¼
0:12). There are differences in BER for AWM below the
critical overlap because theory and computer simulations do
not match below the critical overlap, as shown in Fig. 3.
However, they are in good agreement above the critical
overlap. If the image is highly degraded and the overlap of
the watermark is below the critical overlap (which is rarely
the case), only the HMM performs better because the BER of
the HMM is lower than that of the AWM.

6. Conclusion

While the zero-watermarking method does not degrade the
original image, it cannot correct watermark errors. Also,
managing the mapping between features and secret keys
becomes difficult because the number of secret keys increases
as the number of images increases. However, the mapping
between the features and secret keys in the associative
watermarking model can be managed collectively by simply
storing synaptic weights. In addition, the features and
watermarks have no restrictions on the bit length. Further-
more, even if the image is attacked, the watermark can be
corrected and extracted.15) In this paper, we presented an
evaluation of the BER in the AWM through theory and
computer simulations. The macroscopic state equations for

the AWM were equivalent to the one-to-one associative case
of the HASP, and the retrieval process and storage capacity
were calculated using statistical neurodynamics. The retrieval
processes obtained from fourth-order theory and those from
computer simulations were in good agreement. The storage
capacity of the AWM was the same as that of the AMM. We
also found that the basin of attraction for the AWM varied in
size depending on the ratio � ¼ K=N of the bit lengths of the
features and the watermark.

Actual images were usually JPEG compressed, and the
BER of the extracted watermark was evaluated to assess the
effectiveness of AWM as a watermarking model. The results
showed that the error rates of both the HMM and AWM were
less than those of conventional zero-watermarking. Further-
more, the BERs of the AWM were almost zero. As a result,
our method extends the capabilities of the zero-watermarking
method and has excellent functions. Although we discussed
the JPEG compression and additive Gaussian noise attacks,
the results would be the same if other image processing were
applied. The performance was determined by the overlap at
the input to the HMM.

When processing multiple images, the independence of the
features must be taken into account. For example, in the case
of chest X-ray images, since they are all similar images, they
are highly correlated with each other. The extraction of
independent features from such correlated images is an open
problem.
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Appendix: Order Parameter Equations

To analyze the dynamics of the recall process in the
associative memory model, we derived a macroscopic state
equation for this model using statistical neurodynamics.13,14)

This theory describes the state of the network using multiple
macroscopic state variables, and the recall process is
represented by the macroscopic state equations. Okada’s
theory14) considers temporal correlations of states up to n
previous time. In this paper, we call it n-order theory. For
n ¼ 1, it is equivalent to the Amari–Maginu theory.13) The
storage capacity converges to the results obtained from the
equilibrium state theory19) as the order n increases.

Fig. 6. (Color online) BER for Gaussian noise attack (� ¼ 0:12, � ¼ 2:0).

(a) K = 5000, N = 10000 ( γ = 0.5) (b) K = N = 10000 ( γ = 1.0)

Fig. 5. (Color online) BER of the zero-watermarking method, HMM, and AWM for JPEG compression attack (� ¼ 0:12).
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A.1 Macroscopic state equations for the HMM
We herein discuss the case where the μ-th pattern is

recalled. The superscript for μ is omitted. Macroscopic state
equations are derived for the HMM. From (12), the mean of
the crosstalk noise term at time t ¼ �1 is 0, and its variance
is given by

�2
� ¼ E½ðz�i Þ2� ¼ ��; ðA:1Þ

where � ¼ P=N and where � ¼ K=N. The macroscopic state
equations at time t ¼ 0 are given by

m0 ¼
Z

Dzh� sgnð��m� þ ��zÞi�; ðA:2Þ

�2
0 ¼ � þ �2

�U
2
0 ; ðA:3Þ

U0 ¼ 1

��

Z
Dz zhsgnð��m� þ ��zÞi�; ðA:4Þ

where h�i� represents the average over μ-th pattern �� and
where Dz is defined by

Dz ¼ dzffiffiffiffiffiffi
2


p exp � z2

2

� �
: ðA:5Þ

These equations can be solved as

m0 ¼ erf
�m�ffiffiffi
2

p
��

� �
; ðA:6Þ

U0 ¼
ffiffiffiffiffiffiffiffi
2


�2�

s
exp � �2m2

�
2�2�

� �
: ðA:7Þ

A.2 Macroscopic state equations for the AMM
The macroscopic state equations for the AMM were

derived by Okada.14) The n-order macroscopic state equations
at time t � 0 are given as follows.

mtþ1 ¼
Z

Dzh� sgnð�mt þ �tzÞi�; ðA:8Þ

�2
tþ1 ¼ � þU2

tþ1�
2
t þ 2�

Xt

	¼t�nþ1
qtþ1;	

Ytþ1
k¼	þ1

Uk; ðA:9Þ

Utþ1 ¼ 1

�t

Z
Dz zhsgnð�mt þ �tzÞi�; ðA:10Þ

qtþ1 ¼
Z

Dzhsgnð�mt þ �tzÞ2i�: ðA:11Þ
These equations can be solved as

mtþ1 ¼ erf
mtffiffiffi
2

p
�t

� �
; ðA:12Þ

Utþ1 ¼
ffiffiffiffiffiffiffiffi
2


�2
t

s
exp � m2

t

2�2
t

� �
; ðA:13Þ

qtþ1 ¼ 1: ðA:14Þ
The qtþ1;	 represents the correlation between the state xtþ1 at
time t þ 1 and the state x	 at time τ, and it is defined as

qtþ1;	 ¼ E½xtþ1i x	i �: ðA:15Þ
This variable can be expressed as

qtþ1;	 ¼
Z

Dc

Z
Da

Z
Dbhsgnð�mt þ �tðd0a þ d1cÞÞ

� sgnð�m	�1 þ �	�1ðd0b þ d1cÞÞi�; ðA:16Þ
where

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Ct;	�1

�t�	�1

r
; d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ct;	�1
�t�	�1

r
; ðA:17Þ

and where Ct;	�1 denotes the correlation Ct;	�1 ¼ E½ztz	�1�
between the crosstalk noise term zt at time t and the term z	�1
at time 	 � 1. These correlations can be expanded as

Ct;	�1 ¼ 0 ð	 ¼ t � n þ 1; n � 1Þ; ðA:18Þ
Ct;	�1 ¼ �qt;	�1 þUtCt�1;	�1 ð	 ¼ t � n þ 2; n � 2Þ;

ðA:19Þ
Ct;	�1 ¼ �qt;	�1 þUtU	�1Ct�1;	�2

þ �
X	�2

�¼	�nþ1
qt;�

Y	�1
k¼�þ1

Uk þ �
Xt�1

�¼	�nþ1
q�;	�1

Yt
k¼�þ1

Uk

ðt � n þ 3 	 	 	 t; n � 3Þ: ðA:20Þ

A.3 Temporal correlation between the HMM and the AMM
The AWM consists of both the HMM and the AMM.

Therefore, we need to consider the temporal correlation
between the input (t ¼ �1) of the HMM and the state of the
AMM at time t. However, the input at time t ¼ �1 is the
feature �� and the state at time t is the state recalling the
watermark ��. Because the feature and the watermark are
uncorrelated, the temporal correlation between the input and
the state can be ignored. Therefore, the correlation of states at
time t ¼ �1 can be qtþ1;�1 ¼ 0.
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