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 A B S T R A C T

Mixed extension has played an important role in game theory, especially in the proof of 
the existence of Nash equilibria in strategic form games. Mixed extension can be regarded 
as continuous relaxation of a strategic form game. Recently, in repeated games, a class 
of behavior strategies, called zero-determinant strategies, was introduced. Zero-determinant 
strategies control payoffs of players by unilaterally enforcing linear relations between payoffs. 
There are many attempts to extend zero-determinant strategies so as to apply them to broader 
situations. Here, we extend zero-determinant strategies to repeated games where action sets of 
players in stage game are continuously relaxed. We see that continuous relaxation broadens 
the range of possible zero-determinant strategies, compared to the original repeated games. 
Furthermore, we introduce a special type of zero-determinant strategies, called one-point zero-
determinant strategies, which repeat only one continuously-relaxed action in all rounds. By 
investigating several examples, we show that some property of mixed-strategy Nash equilibria 
can be reinterpreted as a payoff-control property of one-point zero-determinant strategies.

1. Introduction

In game theory, mixed strategies, which play pure strategies probabilistically, have played an important role [1,2]. Nash proved 
the existence of a Nash equilibrium in mixed extensions of strategic form games [3]. This result is true even if a corresponding 
pure strategy game does not contain any Nash equilibria. In two-player zero-sum games, the existence of Nash equilibria is 
known as a minimax theorem, and it is a special case of duality theorem in linear programming [4]. Linear programming is a 
continuous relaxation of integer linear programming. Continuous relaxation is a technique in optimization theory which relaxes 
discrete variables to continuous variables, and generally makes problems easier [5]. Mixed extension can be regarded as continuous 
relaxation of a strategic form game. For strategic form games with finite action spaces, mixed extension relaxes discrete actions to 
continuous variables interpreted as probability.

In repeated games, a class of behavior strategies, called zero-determinant (ZD) strategies, was discovered in 2012 [6]. A ZD 
strategy controls payoffs in a repeated game by unilaterally enforcing linear relationships between payoffs [7–11]. Although ZD 
strategies were originally introduced in the repeated prisoner’s dilemma game, the concept of ZD strategies was later extended to 
arbitrary stage games [12,13]. Concurrently, a necessary and sufficient condition for the existence of ZD strategies was specified for 
stage games where each action set is a finite set [14]. Whereas this condition cannot be applied to stage games where action sets of 
some players are infinite sets, McAvoy and Hauert also provided a procedure to explicitly construct ZD strategies (called two-point 
ZD strategies) for arbitrary stage games when some sufficient condition is satisfied [12]. Interestingly, the latter sufficient condition 
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coincides with the former necessary and sufficient condition [15]. Therefore, if action sets of all players are finite sets, the existence 
of two-point ZD strategies is equivalent to the existence of ZD strategies.

In this paper, we introduce ZD strategies for repeated versions of mixed extensions of strategic form games, when the original 
action set of each player is a finite set. Such extension can be regarded as ZD strategies on continuously-relaxed action space. By 
using the technique proposed by Ref. [12], we can construct two-point ZD strategies in our setting. We then investigate difference 
between an existence condition of such two-point ZD strategies on continuously-relaxed action sets and that of ZD strategies on the 
original (finite) action sets. Through construction of an example, we see that continuous relaxation broadens the range of possible 
ZD strategies, compared to the original repeated games. Furthermore, as a special case of two-point ZD strategies, we introduce the 
concept of one-point ZD strategies, which use only one continuously-relaxed action. We show that, in several examples, a property 
of mixed-strategy Nash equilibria can be interpreted as a payoff-control property of one-point ZD strategies.

This paper is organized as follows. In Section 2, we introduce our model of repeated games with continuous relaxation. In 
Section 3, we introduce ZD strategies, and previous results on the existence of two-point ZD strategies. In Section 4, we investigate 
difference between an existence condition of two-point ZD strategies on continuously-relaxed action sets and an existence condition 
of ZD strategies on the original finite action sets. Several examples of two-point ZD strategies are provided in this section. In 
Section 5, we introduce the concept of one-point ZD strategies. By analyzing several examples, we discuss a relation between a 
property of mixed-strategy Nash equilibria and a property of one-point ZD strategies in the section. Section 6 is devoted to concluding 
remarks.

2. Model

We first introduce a strategic game. We write the set of players as  . We also write the set of actions of player 𝑗 ∈   as 
𝐴𝑗 . The payoff function of player 𝑗 ∈   is written as 𝑠𝑗 ∶

∏

𝑘∈ 𝐴𝑘 → R. A strategic game is defined by these three elements 
as 𝐺 ∶=

(

 ,
{

𝐴𝑗
}

𝑗∈ ,
{

𝑠𝑗
}

𝑗∈

)

 [1,2]. In this paper, we assume that   and 𝐴𝑗
(

∀𝑗 ∈ 
) are finite sets. We introduce notations 

 ∶=
∏

𝑘∈ 𝐴𝑘 and 𝐴−𝑗 ∶=
∏

𝑘≠𝑗 𝐴𝑘. We write an action profile as 𝒂 ∶=
(

𝑎𝑘
)

𝑘∈ ∈ . For simplicity, we also introduce the notation 
𝑎−𝑗 ∶=

(

𝑎𝑘
)

𝑘≠𝑗 ∈ 𝐴−𝑗 . When we focus on an action of player 𝑗 in 𝒂, we write 𝒂 = (𝑎𝑗 , 𝑎−𝑗 ).
Next, we introduce mixed extensions of the strategic games. A mixed extension of the strategic game 𝐺 is defined as �̃� ∶=

(

 ,
{

𝛥
(

𝐴𝑗
)}

𝑗∈ ,
{

𝑢𝑗
}

𝑗∈

)

, where 𝛥 (𝐴𝑗
) is the set of all probability distributions on 𝐴𝑗 , and 𝑢𝑗 is the expected payoff of player 

𝑗 ∈  . When we introduce the notations 𝑝𝑗 ∶=
(

𝑝𝑗
(

𝑎𝑗
))

𝑎𝑗∈𝐴𝑗
∈ 𝛥

(

𝐴𝑗
) and 𝒑 ∶=

(

𝑝𝑘
)

𝑘∈ ∈
∏

𝑘∈ 𝛥
(

𝐴𝑘
)

, we can write 

𝑢𝑗 (𝒑) =
∑

𝒂

{

∏

𝑘∈
𝑝𝑘

(

𝑎𝑘
)

}

𝑠𝑗 (𝒂) . (1)

Similarly as above, we introduce the notations 𝛥 () ∶=
∏

𝑘∈ 𝛥
(

𝐴𝑘
)

, 𝛥 (𝐴−𝑗
)

∶=
∏

𝑘≠𝑗 𝛥
(

𝐴𝑘
)

, and 𝑝−𝑗 ∶=
(

𝑝𝑘
)

𝑘≠𝑗 ∈ 𝛥
(

𝐴−𝑗
)

. The 
strategy 𝑝𝑗 ∈ 𝛥

(

𝐴𝑗
) is called a mixed strategy of player 𝑗 ∈  . Mixed strategies can be regarded as continuous relaxation of actions 

in the original game 𝐺.
There are many interpretation on mixed strategies [2]. In this paper, we interpret a mixed strategy 𝑝𝑗 as a strategy realized 

by population 𝑗. That is, a player 𝑗 ∈   is a population of individuals, and games are played by populations. Therefore, a mixed 
strategy of each player can be explicitly observed.

We then consider the repeated version of mixed extensions of the strategic games. We write a mixed-strategy profile at 𝑡th round 
as 𝒑(𝑡). When we write a history of mixed-strategy profiles between 𝑡′-th round and 𝑡th round with 𝑡′ ≤ 𝑡 as ℎ[𝑡′ ,𝑡] ∶=

{

𝒑(𝑠)
}𝑡
𝑠=𝑡′ , a 

behavior strategy of player 𝑗 in the repeated game is defined as 
𝑗 ∶=

{

𝑇 (𝑡)
𝑗

(

𝑝(𝑡)𝑗 |ℎ[1,𝑡−1]
)

|𝑡 ∈ N, 𝑝(𝑡)𝑗 ∈ 𝛥
(

𝐴𝑗
)

, ℎ[1,𝑡−1] ∈ 𝛥 ()𝑡−1
}

, (2)

where 𝑇 (𝑡)
𝑗

(

𝑝(𝑡)𝑗 |ℎ[1,𝑡−1]
)

 is a conditional probability density function of player 𝑗 at 𝑡th round using a mixed strategy 𝑝(𝑡)𝑗  when a 
history of mixed-strategy profiles is ℎ[1,𝑡−1]. We write the expected value of the quantity 𝑄 with respect to the behavior strategies 
{

𝑘
}

𝑘∈  of all players as E [𝑄]. The payoffs in the repeated game is defined as 

𝑗 ∶= lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
E
[

𝑢𝑗
(

𝒑(𝑡)
)]

(𝑗 ∈  ). (3)

That is, in this paper we assume that there is no discounting.

3. Preliminaries

In this section, we introduce the concept of zero-determinant strategies and previous studies about the way to specify the existence 
of zero-determinant strategies. Below we write the Kronecker delta and the Dirac delta function as 𝛿𝑎,𝑎′  and 𝛿(𝑝), respectively.

A time-independent memory-one strategy of player 𝑗 is defined as 𝑗 with 

𝑇 (𝑡)
𝑗

(

𝑝(𝑡)𝑗 |ℎ[1,𝑡−1]
)

= 𝑇𝑗
(

𝑝(𝑡)𝑗 |ℎ[𝑡−1,𝑡−1]
)

(4)

for ∀𝑡 ∈ N,∀𝑝(𝑡)𝑗 ∈ 𝛥
(

𝐴𝑗
)

,∀ℎ[1,𝑡−1] ∈ 𝛥 ()𝑡−1. For such time-independent memory-one strategies, we introduce zero-determinant 
strategies, by arranging the definition in arbitrary action space [12] for our mixed strategy space. 
2 
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Definition 1.  A time-independent memory-one strategy of player 𝑗 is a zero-determinant (ZD) strategy when 𝑇𝑗 satisfies 

∫ 𝜓(𝑝𝑗 )𝑇𝑗
(

𝑝𝑗 |𝒑′
)

𝑑𝑝𝑗 − 𝜓
(

𝑝′𝑗
)

=
∑

𝑘∈
𝛼𝑘𝑢𝑘

(

𝒑′
)

+ 𝛼0 (5)

with some coefficients {𝛼𝑏
} and some bounded function 𝜓(⋅).

When action sets are not finite sets as in our case 𝛥 (𝐴𝑘
)

, ZD strategies are also called as autocratic strategies. It has been known 
that a ZD strategy (5) unilaterally enforces a linear relation between payoffs [12] 

0 =
∑

𝑘∈
𝛼𝑘𝑗 + 𝛼0. (6)

When a ZD strategy unilaterally enforces Eq. (6), we call it a ZD strategy controlling ∑𝑘∈ 𝛼𝑘𝑢𝑘 + 𝛼0. The quantity such as 
𝑇𝑗

(

𝑝𝑗 |𝒑′
)

−𝛿(𝑝𝑗 −𝑝′𝑗 ) in the left-hand side of Eq. (5) has been called as the Press–Dyson functions [12,16], which describes difference 
between the time-independent memory-one strategy and the Repeat strategy. Definition  1 means that a linear combination of the 
Press–Dyson functions of a ZD strategy is described by a linear combination of payoff functions and a constant function.

Below we write 𝐵 (𝒂) ∶=
∑

𝑘∈ 𝛼𝑘𝑠𝑘 (𝒂) + 𝛼0 and �̃� (𝒑) ∶=
∑

𝑘∈ 𝛼𝑘𝑢𝑘 (𝒑) + 𝛼0. It should be noted that 

�̃� (𝒑) =
∑

𝒂

{

∏

𝑘∈
𝑝𝑘

(

𝑎𝑘
)

}

𝐵 (𝒂) . (7)

McAvoy and Hauert provided a sufficient condition for the existence of ZD strategies in arbitrary action space [12]. Here we again 
arrange their result in order to apply it to our mixed strategy space. 

Proposition 1.  If there exist two mixed strategies 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ) and a constant 𝑊 > 0 such that

−𝑊 ≤ �̃�
(

𝑝
𝑗
, 𝑝−𝑗

)

≤ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 ))

0 ≤ �̃�
(

𝑝𝑗 , 𝑝−𝑗
)

≤ 𝑊 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )), (8)

then the memory-one strategy of player 𝑗, 

𝑇𝑗
(

𝑝𝑗 |𝒑′
)

= 𝛿
(

𝑝𝑗 − 𝑝′𝑗
)

+ 1
𝑊
�̃�
(

𝒑′
)

𝛿
(

𝑝𝑗 − 𝑝𝑗

)

− 1
𝑊
�̃�
(

𝒑′
)

𝛿
(

𝑝𝑗 − 𝑝𝑗
)

(∀𝑝′𝑗 ∈ 𝛥
(

𝐴𝑗
)′ ,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )), (9)

where 𝛥 (𝐴𝑗
)′ ∶=

{

𝑝
𝑗
, 𝑝𝑗

}

 is a restricted action set of player 𝑗, is a ZD strategy controlling �̃�.

We can easily check that the strategy (9) satisfies Definition  1 as 

∫ 𝜓(𝑝𝑗 )𝑇𝑗
(

𝑝𝑗 |𝒑′
)

𝑑𝑝𝑗 − 𝜓
(

𝑝′𝑗
)

=
[

𝜓
(

𝑝
𝑗

)

− 𝜓
(

𝑝𝑗
)

] 1
𝑊
�̃�
(

𝒑′
)

(∀𝑝′𝑗 ∈ 𝛥
(

𝐴𝑗
)′ ,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )) (10)

with arbitrary 𝜓 with 𝜓
(

𝑝
𝑗

)

≠ 𝜓
(

𝑝𝑗
)

. Such ZD strategies can be called as two-point ZD strategies, because they use only two 𝑝𝑗 . It 
should be noted that the existence of 𝑊  is trivial for our case because the payoffs are bounded.

The condition (8) is also known to be a necessary condition for the existence of two-point ZD strategies [14,15]. Indeed, if a 
two-point ZD strategy of player 𝑗, 

𝑇𝑗
(

𝑝𝑗 |𝒑′
)

= 𝐷
(

𝒑′
)

𝛿
(

𝑝𝑗 − 𝑝
(1)
𝑗

)

+
(

1 −𝐷
(

𝒑′
))

𝛿
(

𝑝𝑗 − 𝑝
(2)
𝑗

) (

∀𝑝′𝑗 ∈
{

𝑝(1)𝑗 , 𝑝
(2)
𝑗

}

,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

, (11)

satisfying 0 ≤ 𝐷(⋅) ≤ 1 and 

∫ 𝜓(𝑝𝑗 )𝑇𝑗
(

𝑝𝑗 |𝒑′
)

𝑑𝑝𝑗 − 𝜓
(

𝑝′𝑗
)

= �̃�
(

𝒑′
)

(

∀𝑝′𝑗 ∈
{

𝑝(1)𝑗 , 𝑝
(2)
𝑗

}

,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

(12)

exists, we obtain 
�̃�
(

𝒑′
)

= 𝜓
(

𝑝(1)𝑗
)

𝐷
(

𝒑′
)

+ 𝜓
(

𝑝(2)𝑗
)

(

1 −𝐷
(

𝒑′
))

− 𝜓
(

𝑝′𝑗
)

. (13)

Especially, equalities

�̃�
(

𝑝(1)𝑗 , 𝑝
′
−𝑗

)

=
[

𝜓
(

𝑝(2)𝑗
)

− 𝜓
(

𝑝(1)𝑗
)](

1 −𝐷
(

𝑝(1)𝑗 , 𝑝
′
−𝑗

))

�̃�
(

𝑝(2)𝑗 , 𝑝
′
−𝑗

)

= −
[

𝜓
(

𝑝(2)𝑗
)

− 𝜓
(

𝑝(1)𝑗
)]

𝐷
(

𝑝(2)𝑗 , 𝑝
′
−𝑗

)

(14)

hold. If 𝜓
(

𝑝(2)𝑗
)

− 𝜓
(

𝑝(1)𝑗
)

≥ 0, we obtain

�̃�
(

𝑝(1)𝑗 , 𝑝
′
−𝑗

)

≥ 0
(

∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

�̃�
(

𝑝(2)𝑗 , 𝑝
′
−𝑗

)

≤ 0
(

∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

. (15)
3 
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If 𝜓
(

𝑝(2)𝑗
)

− 𝜓
(

𝑝(1)𝑗
)

≤ 0, we obtain

�̃�
(

𝑝(1)𝑗 , 𝑝
′
−𝑗

)

≤ 0
(

∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

�̃�
(

𝑝(2)𝑗 , 𝑝
′
−𝑗

)

≥ 0
(

∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )
)

. (16)

This result is summarized to the following proposition. 

Proposition 2.  If a two-point ZD strategy of player 𝑗 controlling �̃� exists, then there exist two mixed strategies 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ) such that

�̃�
(

𝑝
𝑗
, 𝑝−𝑗

)

≤ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 ))

�̃�
(

𝑝𝑗 , 𝑝−𝑗
)

≥ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )). (17)

Therefore, we find that the condition (8) is a necessary and sufficient condition for the existence of two-point ZD strategies.

4. Existence of two-point ZD strategies

We first provide a sufficient condition for the existence of two-point ZD strategies in our mixed extension games. 

Theorem 1.  If there exist two actions 𝑎𝑗 , 𝑎𝑗 ∈ 𝐴𝑗 such that

𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 )

𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 ), (18)

then a two-point ZD strategy of player 𝑗 controlling �̃� exists.

Proof.  When we consider
𝑝
𝑗
(𝑎𝑗 ) = 𝛿𝑎𝑗 ,𝑎𝑗 (19)

𝑝𝑗 (𝑎𝑗 ) = 𝛿𝑎𝑗 ,𝑎𝑗 , (20)

we find

�̃�
(

𝑝
𝑗
, 𝑝−𝑗

)

=
∑

𝑎−𝑗

{

∏

𝑘≠𝑗
𝑝𝑘

(

𝑎𝑘
)

}

𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )) (21)

�̃�
(

𝑝𝑗 , 𝑝−𝑗
)

=
∑

𝑎−𝑗

{

∏

𝑘≠𝑗
𝑝𝑘

(

𝑎𝑘
)

}

𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )). (22)

Therefore, according to Proposition  1, a two-point ZD strategy exists. □

We remark that the condition (18) is known as a necessary and sufficient condition for the existence of ZD strategies in original 
strategic games (with finite action sets) [14], and, moreover, it is equivalent to a necessary and sufficient condition for the existence 
of two-point ZD strategies in original strategic games [15]. Therefore, even if we consider mixed extension (continuous relaxation) 
of strategic games, the same type of payoff control as one in original strategic games is possible.

Next, we rewrite the condition (8) into a simpler form. 

Lemma 1.  The existence of two mixed strategies 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ) such that

�̃�
(

𝑝
𝑗
, 𝑝−𝑗

)

≤ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 ))

�̃�
(

𝑝𝑗 , 𝑝−𝑗
)

≥ 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )) (23)

is equivalent to the existence of two mixed strategies 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ) such that

∑

𝑎𝑗

𝑝
𝑗
(𝑎𝑗 )𝐵

(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 )

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 ). (24)

Furthermore, this condition is also equivalent to
min
𝑝𝑗

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0

max
𝑝𝑗

min
𝑎−𝑗

∑

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0. (25)

𝑎𝑗

4 
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Table 1
Payoffs of the prisoner’s dilemma game.
 𝐶 𝐷  
 𝐶 𝑅,𝑅 𝑆, 𝑇  
 𝐷 𝑇 , 𝑆 𝑃 , 𝑃 

Proof.  If Eq. (24) holds for some 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ), they trivially satisfy Eq. (23).

Suppose that Eq. (23) holds for some 𝑝
𝑗
, 𝑝𝑗 ∈ 𝛥(𝐴𝑗 ). If the inequality 

∑

𝑎𝑗

𝑝
𝑗
(𝑎𝑗 )𝐵

(

𝑎𝑗 , 𝑎
′
−𝑗

)

> 0 (26)

holds for some 𝑎′−𝑗 ∈ 𝐴−𝑗 , when we consider 

𝑝′−𝑗 (𝑎−𝑗 ) ∶= 𝛿𝑎−𝑗 ,𝑎′−𝑗 ∈ 𝛥(𝐴−𝑗 ), (27)

we obtain 
�̃�
(

𝑝
𝑗
, 𝑝′−𝑗

)

> 0, (28)

leading to contradiction. Therefore, we find 
∑

𝑎𝑗

𝑝
𝑗
(𝑎𝑗 )𝐵

(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 ). (29)

The inequality 
∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 ) (30)

holds for a similar reason.
Furthermore, we remark that Eq. (24) can be rewritten as

max
𝑎−𝑗

∑

𝑎𝑗

𝑝
𝑗
(𝑎𝑗 )𝐵

(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0. (31)

If such 𝑝
𝑗
 and 𝑝𝑗 exist, the inequalities (25) are satisfied, because

min
𝑝𝑗

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≤ max
𝑎−𝑗

∑

𝑎𝑗

𝑝
𝑗
(𝑎𝑗 )𝐵

(

𝑎𝑗 , 𝑎−𝑗
)

≤ 0

max
𝑝𝑗

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

≥ 0. (32)

If Eq. (25) holds, we can obtain 𝑝
𝑗
 and 𝑝𝑗 by defining

𝑝
𝑗
= argmin

𝑝𝑗
max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

𝑝𝑗 = argmax
𝑝𝑗

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵
(

𝑎𝑗 , 𝑎−𝑗
)

. □ (33)

It should be noted that, as we will see in Section 4.1, 𝑝
𝑗
 and 𝑝𝑗 are generally not unique.

We now state our main theorem. 

Theorem 2.  Mixed extension broadens the range of possible ZD strategies compared to the original repeated games.
We prove this theorem by explicitly constructing an example in Section 4.3, which does not satisfy the condition in Theorem  1 

but contains a ZD strategy in a continuously-relaxed action space.

4.1. Prisoner’s dilemma game

As an example, we consider the prisoner’s dilemma game [17], where  = {1, 2}, 𝐴𝑗 = {𝐶,𝐷} (𝑗 = 1, 2), and the payoffs are 
given as Table  1. We assume that 𝑇 > 𝑅 > 𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆.

Here we consider the existence of an equalizer-type strategy of player 1, which unilaterally sets the payoff of the opponent [6,18]. 
For such ZD strategies, we need to set 

𝐵 𝒂 = 𝑠 𝒂 − 𝑟 (34)
( ) 2 ( )

5 
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Fig. 1. A linear relation between 1 and 2 when player 1 uses the two-point ZD strategy (9) and player 2 uses 103 randomly-chosen two-point memory-one 
strategies. Parameters are set to (𝑅,𝑆, 𝑇 , 𝑃 ) = (3, 0, 5, 1), 𝑟 = 2, 𝑊 = 3, 𝑝1(𝐶) = 2∕3, and 𝑝

1
(𝐶) = 1∕4. Each 𝑗 is calculated by time average over 105 time steps.

with 𝑆 ≤ 𝑟 ≤ 𝑇 . When we write 𝑝𝑗 =
(

𝑝𝑗 (𝐶), 𝑝𝑗 (𝐷)
)𝖳 (𝑗 = 1, 2), �̃� is given by

�̃� (𝒑) = 𝑝𝖳1

(

𝑅 − 𝑟 𝑇 − 𝑟
𝑆 − 𝑟 𝑃 − 𝑟

)

𝑝2

=
(

(𝑅 − 𝑟)𝑝1(𝐶) + (𝑆 − 𝑟)
(

1 − 𝑝1(𝐶)
)

(𝑇 − 𝑟)𝑝1(𝐶) + (𝑃 − 𝑟)
(

1 − 𝑝1(𝐶)
) )

𝑝2. (35)

When 𝑟 > 𝑅, we find 
(𝑅 − 𝑟)𝑝1(𝐶) + (𝑆 − 𝑟)

(

1 − 𝑝1(𝐶)
)

< 0 (36)

for arbitrary 𝑝1. Therefore, according to Lemma  1, 𝑝1 cannot exist, and we cannot construct a corresponding two-point ZD strategy. 
Similarly, when 𝑟 < 𝑃 , we find 

(𝑇 − 𝑟)𝑝1(𝐶) + (𝑃 − 𝑟)
(

1 − 𝑝1(𝐶)
)

> 0 (37)

for arbitrary 𝑝1. Therefore, according to Lemma  1, 𝑝1 cannot exist, and we cannot construct a corresponding two-point ZD strategy. 
When 𝑃 ≤ 𝑟 ≤ 𝑅, we obtain

�̃� (𝒑) =
(

|𝑅 − 𝑟| 𝑝1(𝐶) − |𝑟 − 𝑆|
(

1 − 𝑝1(𝐶)
)

|𝑇 − 𝑟| 𝑝1(𝐶) − |𝑟 − 𝑃 |
(

1 − 𝑝1(𝐶)
) )

𝑝2

=
(

|𝑅 − 𝑆| 𝑝1(𝐶) − |𝑟 − 𝑆| |𝑇 − 𝑃 | 𝑝1(𝐶) − |𝑟 − 𝑃 |
)

𝑝2. (38)

Therefore, any 𝑝1 such that 

𝑝1(𝐶) ≤ min
{

|𝑟 − 𝑆|
|𝑅 − 𝑆|

,
|𝑟 − 𝑃 |
|𝑇 − 𝑃 |

}

(39)

can be 𝑝
1
. Similarly, any 𝑝1 such that 

𝑝1(𝐶) ≥ max
{

|𝑟 − 𝑆|
|𝑅 − 𝑆|

,
|𝑟 − 𝑃 |
|𝑇 − 𝑃 |

}

(40)

can be 𝑝1. By using such 𝑝1 and 𝑝1, we can construct a two-point ZD strategy of player 1 unilaterally enforcing 

2 = 𝑟. (41)

In Fig.  1, we display a relation between 1 and 2 when player 1 uses the two-point ZD strategy (9) and player 2 uses 
randomly-chosen two-point memory-one strategies. We find that a linear relation 2 = 𝑟 is indeed enforced.

It should be noted that Eq. (34) satisfies
𝐵
(

𝐷, 𝑎2
)

= 𝑠2
(

𝐷, 𝑎2
)

− 𝑟 ≤ 0 (∀𝑎2 ∈ 𝐴2)

𝐵
(

𝐶, 𝑎2
)

= 𝑠2
(

𝐶, 𝑎2
)

− 𝑟 ≥ 0 (∀𝑎2 ∈ 𝐴2) (42)

for 𝑃 ≤ 𝑟 ≤ 𝑅. Therefore, the condition in Theorem  1 is also satisfied, and we can construct the equalizer strategy by using pure 
strategies 𝑝

1
= (0, 1)𝖳 and 𝑝1 = (1, 0)𝖳. As noted above, a relation between Eq. (42) and the existence of the original equalizer strategy 

is a well-known fact [14].
6 



M. Ueda and A. Fujita Physica A: Statistical Mechanics and its Applications 670 (2025) 130615 
4.2. Public goods game

As another example, we consider the public goods game [19,20], where  = {1,… , 𝑁} (𝑁 ≥ 2), 𝐴𝑗 = {𝐶,𝐷} (𝑗 ∈  ), and the 
payoffs are given by 

𝑠𝑗 (𝒂) =
𝑟𝑐
𝑁

∑

𝑙≠𝑗
𝛿𝑎𝑙 ,𝐶 + 𝑐

( 𝑟
𝑁

− 1
)

𝛿𝑎𝑗 ,𝐶 (43)

with 𝑐 > 0 and 1 < 𝑟 < 𝑁 . The public goods game can be regarded as an 𝑁-player version of the prisoner’s dilemma game.
Here we again consider the existence of an equalizer-type ZD strategy of player 𝑗. For such ZD strategies, we need to set

𝐵 (𝒂) =
∑

𝑘≠𝑗
𝑠𝑘 (𝒂) − 𝜇

=
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐
∑

𝑘≠𝑗
𝛿𝑎𝑘 ,𝐶 + 𝑁 − 1

𝑁
𝑟𝑐𝛿𝑎𝑗 ,𝐶 − 𝜇. (44)

Below we write 𝑝𝑗 =
(

𝑝𝑗 (𝐶), 𝑝𝑗 (𝐷)
)𝖳. In order to apply Lemma  1, we consider two cases 1 < 𝑟 ≤ 𝑁∕(𝑁 − 1) and 𝑁∕(𝑁 − 1) < 𝑟 < 𝑁

separately.

(i) 1 < 𝑟 ≤ 𝑁∕(𝑁 − 1)
For this case, we can calculate as

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) = 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) =
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) + 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇. (45)

Therefore, we obtain
min
𝑝𝑗

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) = −𝜇

max
𝑝𝑗

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) =
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) + 𝑁 − 1
𝑁

𝑟𝑐 − 𝜇. (46)

According to Lemma  1, two mixed strategies 𝑝
𝑗
 and 𝑝𝑗 exist if and only if the inequalities

−𝜇 ≤ 0
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) + 𝑁 − 1
𝑁

𝑟𝑐 − 𝜇 ≥ 0 (47)

are satisfied, which are simplified as 
0 ≤ 𝜇 ≤ (𝑁 − 1)(𝑟 − 1)𝑐. (48)

(ii) 𝑁∕(𝑁 − 1) < 𝑟 < 𝑁
For this case, we can calculate as

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) =
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) + 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) = 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇. (49)

Therefore, we obtain

min
𝑝𝑗

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) =
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) − 𝜇

max
𝑝𝑗

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) = 𝑁 − 1
𝑁

𝑟𝑐 − 𝜇. (50)

According to Lemma  1, two mixed strategies 𝑝
𝑗
 and 𝑝𝑗 exist if and only if the inequalities

(𝑁 − 1
𝑁

𝑟 − 1
)

𝑐(𝑁 − 1) − 𝜇 ≤ 0

𝑁 − 1
𝑁

𝑟𝑐 − 𝜇 ≥ 0, (51)

are satisfied, which are simplified as 
(𝑁 − 1 𝑟 − 1

)

𝑐(𝑁 − 1) ≤ 𝜇 ≤ 𝑁 − 1 𝑟𝑐. (52)

𝑁 𝑁

7 
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Table 2
Payoffs of a two-player three-action symmetric game.
 1 2 3  
 1 −3,−3 1,2 −1,− 7

3
 

 2 2,1 −1,−1 2,1  
 3 − 7

3
,−1 1,2 − 3

2
,− 3

2
 

It should be noted that such range of 𝜇 exists only for 
𝑁

𝑁 − 1
< 𝑟 ≤ 𝑁

𝑁 − 2
. (53)

These results on the existence of equalizer strategies coincide with those for pure strategy case [20]. (We remark that our 
definition of the payoffs is slightly different from that in Ref. [20].) This is because we can check that two actions 𝐶 and 𝐷 satisfy

𝐵
(

𝐷, 𝑎−𝑗
)

≤ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 )

𝐵
(

𝐶, 𝑎−𝑗
)

≥ 0 (∀𝑎−𝑗 ∈ 𝐴−𝑗 ) (54)

for the above parameter regions. Therefore, similarly to the prisoner’s dilemma game, the condition in Theorem  1 is satisfied, and 
we can construct the equalizer strategy by using two pure strategies.

Moreover, as in the prisoner’s dilemma game, we can use mixed strategies as 𝑝
𝑗
 and 𝑝𝑗 in order to construct ZD strategies. For 

example, when 1 < 𝑟 ≤ 𝑁∕(𝑁 − 1) and Eq. (48) hold, any 𝑝𝑗 satisfying 

max
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) = 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇 ≤ 0 (55)

can be 𝑝
𝑗
, and any 𝑝𝑗 satisfying 

min
𝑎−𝑗

∑

𝑎𝑗

𝑝𝑗 (𝑎𝑗 )𝐵 (𝒂) =
(𝑁 − 1

𝑁
𝑟 − 1

)

𝑐(𝑁 − 1) + 𝑁 − 1
𝑁

𝑟𝑐𝑝𝑗 (𝐶) − 𝜇 ≥ 0 (56)

can be 𝑝𝑗 .

4.3. A two-player three-action symmetric game

As another example, we consider a two-player three-action symmetric game, where  = {1, 2}, 𝐴𝑗 = {1, 2, 3} (𝑗 = 1, 2), and the 
payoffs are given as Table  2.

When we set 
𝐵 (𝒂) = 𝑠2 (𝒂) (57)

and write 𝑝𝑗 =
(

𝑝𝑗 (1), 𝑝𝑗 (2), 𝑝𝑗 (3)
)𝖳 (𝑗 = 1, 2), �̃� is given by 

�̃� (𝒑) = 𝑝𝖳1

⎛

⎜

⎜

⎜

⎝

−3 2 − 7
3

1 −1 1
−1 2 − 3

2

⎞

⎟

⎟

⎟

⎠

𝑝2. (58)

Then, we find 

�̃�
(

( 1
3
, 2
3
, 0
)𝖳

, 𝑝2

)

=
(

− 1
3 0 − 1

9

)

𝑝2 ≤ 0 (∀𝑝2 ∈ 𝛥(𝐴2)) (59)

and 

�̃�
(

(

0, 2
3
, 1
3

)𝖳

, 𝑝2

)

=
(

1
3 0 1

6

)

𝑝2 ≥ 0 (∀𝑝2 ∈ 𝛥(𝐴2)). (60)

Therefore, we can regard 𝑝
1
= (1∕3, 2∕3, 0)𝖳 and 𝑝1 = (0, 2∕3, 1∕3)𝖳 in Lemma  1, and can construct a two-point ZD strategy of player 

1, which unilaterally enforces 
2 = 0, (61)

by using Proposition  1.
In Fig.  2, we display a relation between 1 and 2 when player 1 uses the two-point ZD strategy (9) and player 2 uses 

randomly-chosen two-point memory-one strategies. We find that a linear relation 2 = 0 is indeed enforced.
We remark that none of the actions of player 1 becomes 𝑎1 or 𝑎1 in Eq. (18) in Theorem  1. Therefore, differently from the 

prisoner’s dilemma case, the corresponding pure strategy game does not contain a ZD strategy controlling 𝑠2, and we conclude that 
mixed extension broadens the range of possible ZD strategies compared to the original repeated games (Theorem  2).
8 
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Fig. 2. A linear relation between 1 and 2 when player 1 uses the two-point ZD strategy (9) and player 2 uses 104 randomly-chosen two-point memory-one 
strategies. Parameter is set to 𝑊 = 3. Each 𝑗 is calculated by time average over 105 time steps.

Fig. 3. Feasible regions of 𝑝
1
 and 𝑝1 in a probability simplex 𝛥(𝐴1). We define 𝑏(𝑎2 )(𝑎1) ∶= 𝐵(𝑎1 , 𝑎2) for simplicity. Any 𝑝1 in the green region can be used as 𝑝1, 

and any 𝑝1 in the red region can be used as 𝑝1.

This fact can also be understood by displaying 𝑝
1
 and 𝑝1 in 𝛥(𝐴1) as in Fig.  3. In this figure, we have defined 𝑏(𝑎2)(𝑎1) ∶= 𝐵(𝑎1, 𝑎2)

for simplicity. According to Lemma  1, 𝑝1 satisfying 𝑝1 ⋅ 𝑏(𝑎2) ≤ 0 (∀𝑎2), if exists, can be used as 𝑝1, and 𝑝1 satisfying 𝑝1 ⋅ 𝑏
(𝑎2) ≥ 0

(∀𝑎2), if exists, can be used as 𝑝1. Such two 𝑝1 exist for this case, and 𝑝1 in the green and red region can be 𝑝1 and 𝑝1, respectively. 
It should be noted that each vertex of the equilateral triangle corresponds to a pure strategy, and is not contained in both regions.

5. One-point ZD strategies

In this section, we consider a special situation where 𝑝
𝑗
= 𝑝𝑗 =∶ 𝑝

(0)
𝑗  in the condition (8), which implies 

�̃�
(

𝑝(0)𝑗 , 𝑝−𝑗
)

= 0 (∀𝑝−𝑗 ∈ 𝛥(𝐴−𝑗 )). (62)

For such case, a two-point ZD strategy in Proposition  1 becomes 
𝑇𝑗

(

𝑝𝑗 |𝒑′
)

= 𝛿
(

𝑝𝑗 − 𝑝′𝑗
)

(∀𝑝′𝑗 ∈ 𝛥
(

𝐴𝑗
)′ ,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )) (63)

defined on 𝛥 (𝐴𝑗
)′ =

{

𝑝(0)𝑗
}

. This strategy satisfies 

∫ 𝜓(𝑝𝑗 )𝑇𝑗
(

𝑝𝑗 |𝒑′
)

𝑑𝑝𝑗 − 𝜓
(

𝑝′𝑗
)

= 0 = �̃�
(

𝒑′
)

(∀𝑝′𝑗 ∈ 𝛥
(

𝐴𝑗
)′ ,∀𝑝′−𝑗 ∈ 𝛥(𝐴−𝑗 )) (64)

for arbitrary 𝜓 . Although such ‘‘Repeat’’ strategies [16] have not been regarded as ZD strategies [6], here we call such strategies as
one-point ZD strategies only if Eq. (62) holds, because they still unilaterally enforce Eq. (6). This fact is summarized as a corollary of 
Proposition  1. 

Corollary 1.  If there exists a mixed strategy 𝑝(0)𝑗 ∈ 𝛥(𝐴𝑗 ) satisfying Eq. (62), then the memory-one strategy (63) of player 𝑗 defined on 
𝛥
(

𝐴
)′ =

{

𝑝(0)
}

 is a ZD strategy controlling �̃�.
𝑗 𝑗

9 
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Table 3
Payoffs of the matching pennies game.
 1 2  
 1 1,−1 −1, 1 
 2 −1, 1 1,−1 

Table 4
Payoffs of the battle of the sexes game.
 1 2  
 1 2,1 0,0 
 2 0,0 1,2 

Below we provide several examples of one-point ZD strategies.

5.1. Matching pennies

First, we consider the matching pennies game [1], where  = {1, 2}, 𝐴𝑗 = {1, 2} (𝑗 = 1, 2), and the payoffs are given as Table  3. 
Here we consider the existence of an equalizer-type strategy of player 1: 

𝐵 (𝒂) = 𝑠2 (𝒂) − 𝑟 (65)

with −1 ≤ 𝑟 ≤ 1. When we write 𝑝𝑗 =
(

𝑝𝑗 (1), 𝑝𝑗 (2)
)𝖳 (𝑗 = 1, 2), �̃� is given by

�̃� (𝒑) = 𝑝𝖳1

(

−1 − 𝑟 1 − 𝑟
1 − 𝑟 −1 − 𝑟

)

𝑝2

=
(

1 − 2𝑝1(1) − 𝑟 −1 + 2𝑝1(1) − 𝑟
)

𝑝2. (66)

According to Lemma  1, for the existence of two-point ZD strategies, two mixed strategies 𝑝
1
, 𝑝1 satisfying

1 − 2𝑝
1
(1) − 𝑟 ≤ 0

−1 + 2𝑝
1
(1) − 𝑟 ≤ 0

1 − 2𝑝1(1) − 𝑟 ≥ 0

−1 + 2𝑝1(1) − 𝑟 ≥ 0 (67)

are necessary. By summing the first and second inequalities, and the third and fourth inequalities, we obtain

𝑟 ≥ 0

𝑟 ≤ 0, (68)

respectively. Therefore, 𝑟 = 0 must hold. Furthermore, these inequalities are satisfied only for

𝑝
1
(1) = 1

2

𝑝1(1) =
1
2
. (69)

Thus, 𝑝
1
= 𝑝1 = (1∕2, 1∕2)𝖳, and we obtain

�̃�
(

( 1
2
, 1
2

)𝖳

, 𝑝2

)

=
(

0 0
)

𝑝2

= 0 (∀𝑝2 ∈ 𝛥(𝐴2)). (70)

Therefore, by using this mixed strategy, we can construct a one-point ZD strategy which unilaterally enforces 

2 = 0. (71)

We remark that this result is well-known as a property of the mixed-strategy Nash equilibrium, where every action in the support 
of any player’s equilibrium mixed strategy yields that player the same payoff [2]. In the matching pennies game, a mixed-strategy 
profile (𝑝1, 𝑝2) =

(

(1∕2, 1∕2)𝖳, (1∕2, 1∕2)𝖳
) is the Nash equilibrium, and once player 1 uses a mixed strategy 𝑝1 = (1∕2, 1∕2)𝖳, two 

actions of player 2 yield the same payoff.
We also remark that none of the actions of player 1 becomes 𝑎1 or 𝑎1 in Eq. (18) with 𝑟 = 0 in Theorem  1. Therefore, this is 

another example of Theorem  2.
10 
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Table 5
Payoffs of the rock–paper–scissors game.
 𝑅 𝑃 𝑆  
 𝑅 0,0 −1, 1 1,−1 
 𝑃 1,−1 0,0 −1, 1 
 𝑆 −1, 1 1,−1 0,0  

5.2. Battle of the sexes

Next, we consider the battle of the sexes game [2], where  = {1, 2}, 𝐴𝑗 = {1, 2} (𝑗 = 1, 2), and the payoffs are given as Table 
4. Again, we consider the existence of an equalizer-type strategy of player 1: 

𝐵 (𝒂) = 𝑠2 (𝒂) − 𝑟 (72)

with 0 ≤ 𝑟 ≤ 2. When we write 𝑝𝑗 =
(

𝑝𝑗 (1), 𝑝𝑗 (2)
)𝖳 (𝑗 = 1, 2), �̃� is given by

�̃� (𝒑) = 𝑝𝖳1

(

1 − 𝑟 −𝑟
−𝑟 2 − 𝑟

)

𝑝2

=
(

𝑝1(1) − 𝑟 2 − 2𝑝1(1) − 𝑟
)

𝑝2. (73)

According to Lemma  1, for the existence of two-point ZD strategies, two mixed strategies 𝑝
1
, 𝑝1 satisfying

𝑝
1
(1) − 𝑟 ≤ 0

2 − 2𝑝
1
(1) − 𝑟 ≤ 0

𝑝1(1) − 𝑟 ≥ 0

2 − 2𝑝1(1) − 𝑟 ≥ 0 (74)

are necessary. From the first and second inequalities, and the third and fourth inequalities, we obtain
2 − 3𝑟 ≤ 0

2 − 3𝑟 ≥ 0, (75)

respectively. Therefore, 𝑟 = 2∕3 must hold. Furthermore, these inequalities are satisfied only for

𝑝
1
(1) = 2

3

𝑝1(1) =
2
3
. (76)

Thus, 𝑝
1
= 𝑝1 = (2∕3, 1∕3)𝖳, and we obtain

�̃�
(

( 2
3
, 1
3

)𝖳

, 𝑝2

)

=
(

0 0
)

𝑝2

= 0 (∀𝑝2 ∈ 𝛥(𝐴2)). (77)

Therefore, by using this mixed strategy, we can construct a one-point ZD strategy which unilaterally enforces 

2 −
2
3
= 0. (78)

We remark that this result is also well-known as a property of the mixed-strategy Nash equilibrium (𝑝1, 𝑝2) =
(

(2∕3, 1∕3)𝖳, (1∕3, 2∕3)𝖳
)

.
Again, none of the actions of player 1 becomes 𝑎1 or 𝑎1 in Eq. (18) with 𝑟 = 2∕3 in Theorem  1. Therefore, this is another example 

of Theorem  2.

5.3. Rock–paper–scissors game

Here, we consider the rock–paper–scissors game, where  = {1, 2}, 𝐴𝑗 = {𝑅, 𝑃 , 𝑆} (𝑗 = 1, 2), and the payoffs are given as Table 
5. We consider the existence of an equalizer-type strategy of player 1: 

𝐵 (𝒂) = 𝑠2 (𝒂) − 𝑟 (79)

with −1 ≤ 𝑟 ≤ 1. When we write 𝑝𝑗 =
(

𝑝𝑗 (𝑅), 𝑝𝑗 (𝑃 ), 𝑝𝑗 (𝑆)
)𝖳 (𝑗 = 1, 2), �̃� is given by

�̃� (𝒑) = 𝑝𝖳1
⎛

⎜

⎜

−𝑟 1 − 𝑟 −1 − 𝑟
−1 − 𝑟 −𝑟 1 − 𝑟

⎞

⎟

⎟

𝑝2

⎝ 1 − 𝑟 −1 − 𝑟 −𝑟 ⎠

11 
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=
(

−𝑝1(𝑃 ) + 𝑝1(𝑆) − 𝑟 𝑝1(𝑅) − 𝑝1(𝑆) − 𝑟 −𝑝1(𝑅) + 𝑝1(𝑃 ) − 𝑟
)

𝑝2. (80)

According to Lemma  1, for the existence of two-point ZD strategies, two mixed strategies 𝑝
1
, 𝑝1 satisfying

−𝑝
1
(𝑃 ) + 𝑝

1
(𝑆) − 𝑟 ≤ 0

𝑝
1
(𝑅) − 𝑝

1
(𝑆) − 𝑟 ≤ 0

−𝑝
1
(𝑅) + 𝑝

1
(𝑃 ) − 𝑟 ≤ 0

−𝑝1(𝑃 ) + 𝑝1(𝑆) − 𝑟 ≥ 0

𝑝1(𝑅) − 𝑝1(𝑆) − 𝑟 ≥ 0

−𝑝1(𝑅) + 𝑝1(𝑃 ) − 𝑟 ≥ 0 (81)

are necessary. By summing the inequalities, we obtain
−𝑟 ≤ 0

−𝑟 ≥ 0. (82)

Therefore, 𝑟 = 0 must hold. Furthermore, these inequalities are satisfied only for
𝑝
1
(𝑅) = 𝑝

1
(𝑃 ) = 𝑝

1
(𝑆)

𝑝1(𝑅) = 𝑝1(𝑃 ) = 𝑝1(𝑆). (83)

Thus, 𝑝
1
= 𝑝1 = (1∕3, 1∕3, 1∕3)𝖳, and we obtain

�̃�
(

( 1
3
, 1
3
, 1
3

)𝖳

, 𝑝2

)

=
(

0 0 0
)

𝑝2

= 0 (∀𝑝2 ∈ 𝛥(𝐴2)). (84)

Therefore, by using this mixed strategy, we can construct a one-point ZD strategy which unilaterally enforces 
2 = 0. (85)

We remark that this result is also well-known as a property of the mixed-strategy Nash equilibrium (𝑝1, 𝑝2) =
(

(1∕3, 1∕3, 1∕3)𝖳,
(1∕3, 1∕3, 1∕3)𝖳

)

.
It should be noted that the original rock–paper–scissors game does not contain any ZD strategies [21]. Therefore, this is another 

example that mixed extension broadens the range of possible ZD strategies compared to the original repeated games (Theorem  2).

6. Concluding remarks

In this paper, we investigated the existence of two-point ZD strategies in repeated games where action sets in stage games 
are continuously relaxed. Through an example in Section 4.3, we found that the existence condition of two-point ZD strategies in 
continuously-relaxed action sets is weaker than that of two-point ZD strategies in the original finite action sets. Furthermore, we 
introduced the concept of one-point ZD strategies, as a special case of two-point ZD strategies. In our three examples, we found that 
a property of mixed-strategy Nash equilibria can be reinterpreted as a payoff-control property of one-point ZD strategies.

Before ending this paper, we provide three remarks. The first remark is on our interpretation of mixed strategies. In Section 2, 
we assumed that we interpret a mixed strategy as a strategy realized by a population. This interpretation of mixed strategies is 
necessary for our study, because a behavior strategy in Eq. (2) makes sense only when mixed strategies in previous rounds are 
explicitly observed. If we interpret a mixed strategy as a probability distribution of actions taken by one player, each round must 
contain many games, which is an unnatural setup. Therefore, we used the interpretation that a mixed strategy is a strategy realized 
by a population. Unexpectedly, this interpretation is compatible with a standard assumption of evolutionary game theory [22], 
where a mixed strategy describes a population. Particularly, discrete-time coupled replicator equations in evolutionary game theory 
are a special case of our Markov chain with deterministic transition probability. Therefore, if we seek for realistic situations to which 
we apply our zero-determinant strategies on mixed action spaces, evolutionary game theory is the most suitable candidate. It should 
be noted that evolutionary performance of ZD strategies in structured populations has attracted much attention [23–27].

The second remark is related to possible ZD strategies in continuously-relaxed action sets. When action sets of all players are 
finite sets, the existence condition of two-point ZD strategies is equivalent to that of general ZD strategies [15]. At this stage, we 
do not know whether this is also true when action sets of some players are infinite sets. One may expect that, when action sets of 
some players are infinite sets, ZD strategies can exist under weaker condition than one in Ref. [14]. We will try constructing ZD 
strategies which do not satisfy the condition (8) in our continuously-relaxed action sets in future.

The third remark is on the relation between a property of mixed-strategy Nash equilibria and a property of one-point ZD 
strategies. Although we provided three examples where equilibrium mixed strategies appear as 𝑝(0)𝑗  in Section 5, this is not a general 
result. As noted in the section, in mixed-strategy Nash equilibria, only actions in the support of a player’s equilibrium mixed strategy 
yield that player the same payoff. Therefore, even in two-player games, the property of mixed-strategy Nash equilibria can be 
reinterpreted as a payoff-control property of one-point ZD strategies if and only if all actions are in the support of the equilibrium 
mixed strategy of the opponent. Further investigation is needed to clarify the relation between them.
12 
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