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SUMMARY

Soft tissue sarcoma (STS) is one of the most common cancers in dogs. Canine STS
encompasses a heterogeneous group of mesenchymal neoplasia, accounting for
approximately 8—15% of all canine cancers. These tumors can originate from various soft
tissues, resulting in diverse histological subtypes that exhibit distinct biological behaviors
and therapeutic responses. The primary challenge in canine STS is the lack of reliable
prognostic markers and an incomplete understanding of its pathogenesis. This research
investigates the phosphatidylinositol-3 kinase (PI3K) and protein kinase B (AKT) signaling
pathways, as their analysis may provide insights into disease activity and potential
prognostic markers. PI3K/AKT is one of the signaling pathways contributing to cell
proliferation and is a crucial regulator of various critical cellular processes such as growth,
survival, and metabolism. Dysregulation of the PI3K/AKT pathway due to genetic
mutations or alterations in its components has contributed to tumorigenesis. Our previous
investigation identified the PI3K/AKT pathway activation in STS cell lines and clinical
samples. We confirmed that phosphorylation of AKT occurred in conjunction with S6
phosphorylation in three canine STS cell lines (MUMA-G, A72, and STS-YU1) based on
western blotting, as compared with a mouse fibroblast cell line (NIH3T3).

The first chapter investigated the relationship between PI3K/AKT activation and
tumor-infiltrating lymphocytes (TILs), as the dysregulation of this pathway may influence
TILs density within the tumor microenvironment (TME). 59 STS samples were labeled via
immunohistochemistry to calculate the density of TILs, including CD3+ T cells, CD8+ T
cells, CD20+ B cells, and FOXP3+ regulatory T cells. Most canine STS samples (81.3%)
contained intra-tumoral TILs, with CD3+ T cells and CD8+ T cells being the most abundant,
while CD20+ B cells and FOXP3+ T-regulatory cells were comparatively limited. This
TILs profile indicates that the immune response in dogs remains favorable against STS, as
CD3+ and CD8+ T cells subsets are critical for cytotoxic responses against cancer. TILs
density, however, was not associated with clinicopathological parameters and tumor grade.

Furthermore, a positive correlation between TILs density and the Ki-67 index, a
tumor proliferation marker. Samples with a high Ki-67 index had a significantly higher
abundance of CD3+ T cells, CD8+ T cells, and CD20+ B cells (p=0.0392, 0.0254, 0.0380,
respectively). This finding provides initial insights into the role of PI3K/AKT pathway
activation in canine STS. The abundance of CD8+ T cells was positively correlated with

the activation of PI3K/AKT, indicating that samples with high levels of phospho-AKT and



phospho-S6 tend to have higher CD8+ T cell densities (p=0.0032 and 0.0218, respectively).
These findings suggest that the PI3K/AKT signaling pathway might play a role in
modulating the immune landscape. A plausible mechanism is that elevated PI3K/AKT
pathway activity in cancer cells indirectly enhances tumor-antigen presentation or
promotes the secretion of chemokine molecules to attract immune cells to the tumor site.

The second chapter investigated the underlying mechanism as a primary
contributor to PI3K/AKT dysregulation, possibly contributing to tumorigenesis in canine
STS. This chapter investigated PTEN loss, PIK3CA mutation, and EGFR over-expression
as potential PI3K/AKT pathway activation drivers. The investigation suggests that EGFR
over-expression, rather than PTEN loss and PIK3CA4 mutations, is likely a primary driver
of pathway dysregulation. While PTEN loss is one of the common mechanisms for
PI3K/AKT dysregulation, there is no evidence of PTEN loss in canine STS samples. PTEN
was expressed in all analyzed samples. Weak PTEN expression was observed in 33.3% of
samples, while 66.7% showed normal expression.

Although mutations in PIK3CA and EGFR genes were detected, their low
prevalence suggests they are not the primary cause of pathway dysregulation. DNA
sequencing of the PIK3CA gene revealed a missense point mutation in exon 10 (c.554 A>C,
HS554P) in only one case, but no hotspot mutations were identified. Similarly, one missense
point mutation in exon 21 of EGFR (¢.868 G>A) was identified in one sample. High EGFR
expression was significantly correlated with elevated phospho-AKT levels (p<0.0001)
based on a linear regression test. EGFR was expressed in 83.3% of STS samples; in most
cases (90% of EGFR-positive samples), it also showed positive immunolabeling for
phospho-AKT. This result indicates that EGFR over-expression is a potential major
contributor to the PI3K/AKT pathway dysregulation. When EGFR is over-expressed, it
facilitates consecutive activation of the downstream PI3K/AKT signaling pathway, results
in cellular changes, and disrupts normal cell regulation.

In conclusion, this study identifies EGFR overexpression as a significant feature
and potential contributor to the activation of the PI3K/AKT pathway in canine STS. This
finding highlights promising opportunities for the development of targeted therapies in the
future. Targeting this receptor using EGFR inhibitors has been explored in human cancer
therapy, and similar strategies could be repurposed for dogs. These findings underscore the
need for additional research to better understand the molecular mechanisms in canine STS

and validate potential therapeutic targets.
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GENERAL INTRODUCTION



GENERAL INTRODUCTION

Soft tissue sarcoma

Cancer has emerged as a significant concern in veterinary medicine. Cancer
incidence in dogs was reported to exceed 1,000 cases per 100,000 dogs per year (Baioni et
al., 2017). While precise global epidemiological data remain elusive in veterinary medicine,
it is estimated that cancer affects approximately one in three dogs and one in five cats
(Argyle and Khanna, 2020). Cancer has been identified as the leading cause of mortality in
dogs, accounting for 27% of all deaths (Adams et al., 2010). Another study reported that
30-50% of deaths in elderly dogs are attributable to cancer (Sarver et al, 2022).
Topographically, cancers in dogs are predominantly observed in the skin (34.64%),
followed by soft tissues (20.17%) and mammary glands (14.50%) (Dhein ef al., 2024).

Soft tissue sarcoma (STS) is one of the most common cancers in dogs (Bray, 2016).
Canine STS encompasses a heterogeneous group of mesenchymal neoplasms, accounting
for approximately 20% of skin cancer (Sarver et al., 2022). A recent study of 70,966
histopathological diagnoses estimates that sarcoma comprises approximately 8—15% of all
canine cancers (Dell’Anno et al., 2024). Canine STS encompasses over fifty distinct types
with overlapping histopathological characteristics and lacks specific anatomical
predilection (McSporran, 2009; Sambri et al., 2021). The group of STS includes
fibrosarcoma, liposarcoma, leiomyosarcoma, perivascular tumors, rhabdomyosarcoma,
malignant fibrous histiocytoma, myxosarcoma, mesenchymoma, peripheral nerve sheath
tumors, as well as undifferentiated sarcomas (Coindre, 2006; Bray, 2016).

The biological behavior, treatment approaches, and outcomes of canine STS are
similar to those observed in humans (Bray, 2016; Gardner et al., 2016; Dell’Anno et al.,
2024). However, the incidence of STS is significantly higher in dogs (15%) compared to

humans (1%) (Liptak and Forrest, 2013; Bray, 2017). Consequently, dogs serve as a natural



animal model for humans (Gardner et al., 2016). Canine STS presents significant
challenges in prognostic and treatment due to its heterogeneity (Liptak and Forrest, 2013).
These tumors can originate from various soft tissues, resulting in diverse histological
subtypes that exhibit distinct biological behaviors and therapeutic responses. This
variability complicates accurate prognosis, often necessitating advanced imaging and
histopathological analysis to guide treatment decisions (Bray, 2017).

Surgery is the treatment of choice for STS (Dell’ Anno et al., 2024). The standard
surgical approach involves the excision of the tumor mass with wide margins, typically a
minimum of three cm for lateral margins and one clean fascial plane for deep margins
(Abrams et al., 2021). However, the infiltrative nature of STS complicates surgical excision,
as accurately defining tumor margins can be challenging (Bray, 2017). These difficulties
increase the risk of local recurrence and distant metastasis (Dell’Anno ef al., 2024). Local
recurrence is reported to occur in approximately 20% of cases, with a range of 7-75%,
adversely affecting dogs' overall survival (Dennis ez al., 2011; Bray, 2017). Additional
treatment should be considered depending on the STS subtype, histopathological grade,
and clinical stage (Torrigiani et al., 2019). Additional treatment protocols that combine
surgery with adjuvant therapies, such as radiotherapy, chemotherapy, and immunotherapy,
either alone or in combination, have been proposed for both humans and dogs (Dell’ Anno
et al., 2024). Unfortunately, the effectiveness of these therapies may be limited by tumor
resistance and associated side effects that need to be overcome (Liptak and Forrest, 2013).

Another challenge in canine STS is the lack of reliable prognostic indicators
(Dennis et al., 2011). Histopathological grading into grades 1 (low), 2 (intermediate), and
3 (high) is the most significant prognostic indicator for human STS (Coindre, 2006). A
similar grading system was investigated in dogs, but no correlation between grade and

incidence of metastasis, recurrence, or survival has been observed (Bray, 2016). Metastasis



has been documented even in grade 1 tumors in 13% of cases (13%) (Kuntz et al., 1997,
McSporran, 2009). Moreover, another study on canine STS found that pretreatment
biopsies underestimated the tumor’s final histopathological grade in 29% of cases and
overestimated it in 12% (Perry et al., 2014). This challenge indicates that histopathological
grading alone may be insufficient, highlighting the need for additional to complement
prognostic indicators.

Additional prognostic factors have been explored, including tumor size, location,
invasiveness, stage, cell proliferation, and cytogenetic markers (Dennis et al, 2011).
However, no clinically useful prognostic indicators have been identified to date. Existing
biomarkers, such as Ki-67 and TP53, have shown promise in various canine cancers (Li et
al., 2015). However, their prognostic significance can differ significantly, leading to
inconsistent interpretations of clinical outcomes. Common challenges that limit the
evaluation of prognostic factors include biases associated with retrospective studies, small
sample sizes, inconsistencies in STS classification, and the diversity of study populations
(Dennis et al., 2011). Establishing reliable and objective prognostic markers for predicting
outcomes has become a critical concern. Additionally, the roles of cell signaling pathways
require further elucidation, as their analysis may provide insights into disease activity and

potential prognostic markers.

PI3K/AKT signaling pathway

This research investigates the phosphatidylinositol-3 kinase (PI3K) and protein
kinase B (PKB, AKT) signaling pathways. PI3K/AKT is one of the signaling pathways
contributing to cell proliferation and is a crucial regulator of various critical cellular
processes such as growth, survival, and metabolism (He ez al., 2021; Meuten et al., 2024).

Activation of the PI3K/AKT pathway typically occurs in response to extracellular signals,



such as growth factors binding to receptor tyrosine kinases on the cell surface. This binding
initiates a cascade of signaling processes that begins with activating the PI3K enzyme
(Mayer and Arteaga, 2016). This enzyme catalyzes the phosphorylation of
phosphatidylinositol (4,5)-bisphosphate (PIP2) to produce phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), which subsequently recruits and activates AKT along with its
upstream activator, 3-phosphoinositide-dependent protein kinase 1 (PDK1) (Ocana et al.,
2014; LoRusso, 2016). The detailed mechanism of the PI3K/AKT signaling pathway is
illustrated in Figure 1.

Growth factor
)

] ‘ Receptor tyrosine kinase

PI(4,5)P, PI(3,4,5)P;

4E-BP1 e
mTORC2 <

Ser4 \ Rictor
mTORC2

cell growth, proliferation,
cell survival

PI3K : phospha.tidylinositol 3-kinase PIP3 : phosphatidylinositol 3,4,5-trisphosphate
Akt : protein kinase B mTOR : mammalian target of rapamycin
PIP2: : phosphatidylinositol 4,5-bisphosphate S6 : ribosomal protein S6

Figure 1. Mechanism PI3K/AKT signaling pathway

Once activated, AKT promotes cell survival and proliferation through its effects

on various downstream targets, including mTOR (mechanistic target of rapamycin) and



S6K, thereby enhancing protein synthesis and cell growth (Alliouachene ef al., 2008; Hsieh
et al.,2010). The protein kinase S6K influences cell metabolism, survival, and proliferation
by phosphorylating its substrate, S6, a ribosomal protein type. Consequently, the
PI3K/AKT signaling pathway is crucial for maintaining cellular homeostasis and
facilitating adaptive responses to extracellular stimuli (Tewari et al., 2022). However,
dysregulation of the PI3K/AKT pathway due to genetic mutations or alterations in its
components has contributed to oncogenesis and tumor progression (LoRusso, 2016;
Hoxhaj and Manning, 2020). Aberrant PI3K/AKT signaling is associated with increased
invasiveness, resistance to apoptosis, and poor prognosis across various cancer types,
highlighting its potential target for therapeutic intervention and prognostic marker (Yu and
Liu, 2022).

Our previous investigation identified the PI3K/AKT pathway activation in STS
cell lines and clinical samples (Miyanishi et al., 2023). The high expression of phospho-
AKT, an active form of AKT, was significantly more frequent in grade 3 tumors compared
to grades 1 and 2. Phospho-AKT expression was positively correlated with
histopathological grade and Ki-67 index, a proliferation marker. Furthermore, elevated
phospho-AKT expression was also associated with recurrence and metastasis. We
confirmed that phosphorylation of AKT occurred in conjunction with S6 phosphorylation
in three canine STS cell lines (MUMA-G, A72, and STS-YU1), as compared with a mouse
fibroblast cell line (NIH3T3). Unfortunately, most cases in this study lacked critical clinical
information relevant to prognosis, including data on metastasis, recurrence, and survival
rates. Consequently, drawing definitive conclusions is challenging. Further studies and
comparisons with other parameters are essential to clarify these findings and enhance our

understanding of the prognostic implications.



The first chapter in this study investigated the relationship between PI3SK/AKT
activation and tumor-infiltrating lymphocytes (TILs), as the dysregulation of this pathway
may influence TILs density within the tumor microenvironment (TME). Tumor-infiltrating
lymphocytes (TILs) are immune cells, predominantly lymphocytes, that migrate from the
bloodstream into the TME and infiltrate tumor tissue (Badalamenti ez al., 2019; Presti et
al., 2022; Brummel ef al., 2023). In cancer, TILs represent the body’s immune response to
tumor cells and consist mainly of various types of T cells (e.g., CD8+ cytotoxic T cells,
CD4+ helper T cells, and FOXP3+ regulatory T cells), as well as some B cells and natural
killer (NK) cells (Badalamenti et al., 2019). Their presence, abundance, and types can
indicate the ability of the immune system to recognize and potentially attack the cancer
cells (Brummel ef al., 2023).

TILs serve as predictive markers across several cancer types (Pinard et al., 2022;
Presti et al., 2022). However, their relevance in STS remains unclear. The composition,
relative abundance, and local signaling of TILs play a pivotal role in shaping their anti-
tumor or pro-tumor activity (Salgado et al., 2015). The immune response's efficacy in
combating cancer depends on interactions among tumor cells, stromal cells, and immune
cells (Quail and Joyce, 2013). Over the past decade, TILs have demonstrated prognostic
significance in canine cancer, with recent studies highlighting their potential as predictive
biomarkers for immunotherapy (Badalamenti et al., 2019; Loi et al., 2021; Presti et al.,
2022). TILs contribute in various ways to modulating the anticancer immune response
(Pinard et al., 2022; Brummel ef al., 2023).

Although our previous studies have confirmed the activation of the PI3K/AKT
signaling pathway, the pathogenesis of canine STS remains incompletely understood.
Dysregulation of the PI3K/AKT pathway can manifest as consecutive activation, which

may arise from the distinct dysregulation of individual components within this signaling



cascade (Ocana et al., 2014). A comprehensive understanding of the PI3K/AKT signaling
pathway is imperative, as each element plays a critical regulatory role in cellular functions
and tumorigenesis (LoRusso, 2016; Meuten et al., 2024). This underscores the necessity
for comprehensive research to elucidate these aberrant mechanisms. The second chapter in
this study investigates several potential major contributors to the tumorigenesis of canine
STS that lead to PI3K/AKT pathway dysregulation. This information may serve as a

foundation for developing therapeutic targets for STS in the future.



CHAPTER 1
The density of CD8+ tumor-infiltrating lymphocytes correlated with

AKT activation and Ki-67 index in canine soft tissue sarcoma



1.1 Summary

The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway
has been implicated in canine soft tissue sarcoma (STS) and may serve as a prognostic
marker. This study investigated the correlation between PI3K/AKT activation in tumor
cells and tumor-infiltrating lymphocytes (TILs). A total of 59 STS samples were labeled
via immunohistochemistry to calculate the density of TILs, including CD3+ T cells, CD8+
T cells, CD20+ B cells, and FOXP3+ regulatory T cells. Forty-eight samples (81.3%) had
intra-tumoral TILs with a high density of CD3+ T cells (mean: 283.3 cells/mm?) and CD8+
T cells (mean: 134.8 cells/mm?). Conversely, CD20+ B cells (mean: 73.6 cells/mm?) and
FOXP3+ regulatory T cells (mean: 9.2 cellssmm?) were scarce. The abundance of
CD3+/CD8+, CD3+/CD20+, and CDS8+/CD20+ TILs were highly correlated in
multivariate analyses (1=0.895, 0.946, and 0.856, respectively). Nonetheless, TILs density
was unrelated to clinicopathological parameters (sex, age, tumor location, breed) and tumor
grade. The abundance of CD8+ T cells was positively correlated with the activation of
PI3K/AKT, indicating that samples with high levels of phospho-AKT and phospho-S6 tend
to have a higher CD8+ T cell density (»p=0.0032 and 0.0218, respectively). Furthermore,
TILs density was correlated with the Ki-67 index, a tumor proliferation marker. Samples
with a high Ki-67 index had a significantly higher abundance of CD3+ T cells, CD8+ T
cells, and CD20+ B cells (p=0.0392, 0.0254, 0.0380, respectively). PI3K/AKT pathway
activation may influence the infiltration of CD8+ T cells within the tumor

microenvironment in canine STS.
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1.2 Introduction

Tumor-infiltrating lymphocytes (TILs) have a predictive value in several cancer
types (Pinard er al., 2022), but their importance for canine STS is unknown. TILs
composition, relative abundance, and microenvironmental signals are crucial for
determining anti- and pro-tumor activity (Salgado et al., 2015). Whether the immune
mechanism is protective against cancer depends on the interaction between tumor cells,
stromal cells, and immune cells (Quail and Joyce, 2013). Over the past ten years, TILs have
demonstrated a prognostic relevance in several cancers, and recent studies have reported
their potential as predictive biomarkers for immunotherapy (Badalamenti et al., 2019; Loi
etal.,2021). However, their importance in canine STS remains unclear. TILs have a variety
of roles in regulating the immune response to anticancer activity (Taddei ez al., 2013;
Khoury et al., 2018). CD8+ T cells have been associated with improved survival and lower
metastasis rates (Bujak et al., 2020), while CD20+ B cells enhance the humoral immune
response in most cancers (Wouters and Nelson, 2018). FOXP3+-expressing regulatory T
(Treg) cells are essential for preventing autoimmunity but also suppress effective anti-
tumor immunity, with high Treg cells infiltration often linked to poor prognosis (Shang et
al., 2015).

Besides serving as prognostic markers, TILs have been associated with pathogenic
characteristics and biological behavior (Carvalho er al., 2011; Saeki et al., 2012; Sakai et
al., 2018). Canine oral malignant melanoma with better survival rates had higher TILs
abundance and more CD8+ T cells (Yasumaru ef al., 2021). In contrast, high infiltration of
T cells correlated with poor prognosis in canine mammary tumors (CMT) (Saeki et al.,
2012). Although a high abundance of CD3+ T cells may be associated with better outcomes
in histiocytic sarcoma (Lenz et al., 2022), CMT patients with high CD3+ T cells have more

aggressive histology and worse survival (Carvalho ef al., 2011). CD20+ B cells are also



associated with tumor progression, metastasis, and recurrence in melanocytic tumors
(Porcellato et al., 2020). This contradiction indicates that the TILs profile may differ
between cancer types. Therefore, it highlights the need to analyze them parallel to obtain
more comprehensive information and develop prognostic tools to predict cancer behavior.
Evaluating only one type of TILs may provide incomplete information about the immune
environment. A new insight into prognostic indicators in canine malignancy may be
obtained by determining the relationship between TILs density, proliferative markers, and
signaling pathways.

To the best of the author’s knowledge, the TILs profile in canine STS for
prognostic purposes has not been widely reported. The prognosis of canine STS has
traditionally been based on histopathological grading (Dennis et al., 2011; Nystrom et al.,
2023). However, the rate of underestimation and overestimation is 29% and 12%,
respectively, when histopathological grades are determined based on pre-treatment canine
STS samples obtained upon tumor resection (Perry et al., 2014). Metastasis occurs even in
grade 1 tumors (4/31 cases, 13%) (Kuntz et al., 1997). Therefore, additional indicators are
needed to predict prognosis. The PI3K/AKT signaling pathway is an essential proliferative
signal in canine STS. AKT activation is correlated with a high histopathological grade and
Ki-67, thus making it a potential adverse prognostic indicator (Miyanishi et al., 2023).

Therefore, this preliminary study aimed to provide initial information on the
potential of TILs as a prognostic indicator of canine STS by investigating the correlation
of the TILs profile in canine STS with the activation of the PI3K/AKT pathway and Ki-67

index.



1.3 Material and Methods
1.3.1 Tissue samples

A total of 59 formalin-fixed paraffin-embedded (FFPE) canine STS tissues were
used in this study (Supplementary Table I). The samples included 23 fibrosarcomas (FSs),
14 malignant nerve sheath tumors (MNSTs), 12 undifferentiated pleomorphic sarcomas
(UPSs), six perivascular wall tumors (PWTs), two leiomyosarcomas (LMSs), one
myxosarcomas (MXSs) and one liposarcoma (LPS). Tumor tissues were surgically excised
from clinical cases referred to the Yamaguchi Animal Medical Centre (YUAMEC), the
Veterinary Pathology Diagnostic Center (Fukuoka, Japan), and several private hospitals.
Samples were collected between January, 2012, and January, 2022. Clinical data, including
breed, sex, age, and tumor location, were extracted from medical records and
histopathology request forms.

All samples were diagnosed based on histopathological and immunohistochemical
findings by at least two veterinary pathologists. Each tissue was stained with hematoxylin
and eosin (HE), followed by classification of tumor type and tumor grading (Dobromylskyj,
2022). If a diagnosis could not be made by examination of HE-stained sections alone,
immunohistochemical labeling with mouse anti-desmin monoclonal antibody (D33; Dako,
Glostrup, Denmark), mouse anti-vimentin monoclonal antibody (V9; Dako), mouse anti-
alpha-smooth muscle actin (SMA) monoclonal antibody (1A4; Dako) and rabbit anti-S100
polyclonal antibody (Dako) was performed based on individual pathologist decisions in the

diagnostic laboratory.

1.3.2 Immunohistochemistry staining

Canine STS samples were labeled via IHC to calculate the density of TILs,

including CD3+ T cells, CD8+ T cells, CD20+ B cells, and FOXP3+ Treg cells. Formalin-
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fixed paraffin-embedded (FFPE) tissue samples were sectioned at four um thickness and
placed on glass slides. To remove paraffin wax, the sections were treated with xylene,
followed by rehydration through graded ethanol solutions (100% to 70%), and finally
rinsed with water. Antigen retrieval was performed using either Dako Target Retrieval
Solution (pH 9, Agilent Technologies, Santa Clara, CA, US) for phospho-AKT and Ki-67;
0.01 M citrate buffer (pH 6.0) in a pressure cooker (125°C for 20 min) for TILs and
phospho-S6. Endogenous peroxidase activity was blocked by incubating the slides in 3%
hydrogen peroxide in phosphate-buffered saline (PBS) for 30 min. Non-specific binding
was blocked with 5% skim milk and 5% bovine serum albumin (BSA) in PBS for 30 min.
Slides were then incubated with primary antibodies overnight against a rat anti-CD3
monoclonal antibody (clone CD3-12, Abcam, Tokyo, Japan); rat anti-canine CDS$
monoclonal antibody [clone F3- B2, own production (Sakai et al., 2020)]; rabbit anti-CD20
polyclonal antibody (Thermo Fisher Scientific, Waltham, MA, USA); and mouse/rat anti-
FOXP3 monoclonal antibody (clone FJK-16s, Invitrogen, Carlsbad, CA, USA) (detailed in

Table 1.1).

Table 1.1 Detailed primary antibody was used in this study.

Protein target Primary antibody Origin Dilution
Phospho-AKT  rabbit monoclonal antibody DOE (Cell Signaling Technology, 1:200
(anti-phospho AKT Ser473) Danvers, MA, US)
Phospho-S6 rabbit monoclonal antibody D57.2.2E (Cell Signaling 1:200
(anti-phospho S6 Ser235/236) Technology)
Ki-67 mouse monoclonal antibody SolA15 (Invitrogen, Carlsbad, 1:1000
CA, US)
CD3+ rat monoclonal antibody clone CD3-12 (Abcam, Tokyo, 1:100
Japan)
CD8+ rat anti-canine monoclonal clone F3- B2 (own production) 2.5
antibody ug/ml
CD20+ rabbit polyclonal antibody PAS5 (Thermo Fisher Scientific 1:100
Waltham, MA, USA)
FOXP3+ mouse/rat monoclonal antibody  clone FJK-16s (Invitrogen) 1:200




Secondary antibodies, either Histofine Simple Stain Mouse MAX PO or Rabbit MAX PO
(Nichirei Bioscience, Tokyo, Japan), were applied, and detection was performed using the
Peroxidase Stain DAB Kit (Nacalai Tesque, Kyoto, Japan). Isotype-matched antibody was
used as a control. Finally, the sections were counterstained with Mayer's Hematoxylin

Solution (Wako, Osaka, Japan) for visualization.

1.3.3 Analysis of immunohistochemistry staining

Immunohistochemistry-stained samples were scanned using a Nanozoomer 2.1 RS
(Hamamatsu, Shizuoka, Japan). Subsequent analysis employed Image] software version
1.53 (National Institute of Health, Bethesda, MD, USA). Phospho-AKT immunoreactivity
was quantified using an All-in-One Fluorescence Microscope BZ-X800 with application
software (Keyence, Milton Keynes, UK). Initially, cases were classified based on two
immunolabelling patterns: (1) nuclear labeling and (2) nuclear and cytoplasmic labeling.
According to these categories, images were randomly obtained in five representative high-
power fields (HPFs, 400x) in each section. Nuclear-only labeling was assessed as the ratio
of the area of phospho-AKT-positive nuclei divided by the total nuclear area of all tumor
cells. For nuclear and cytoplasmic labeling, the area of labeled cells was divided by the
total area of all tumor cells to obtain the ratio of immunolabelled phospho-AKT.

Immunoreactivity for Ki-67 and phospho-S6 was assessed using the BZ-X800
microscope. To determine the area ratio of Ki67-positive nuclei, tumor hot spots exhibiting
Ki-67-positive cells were identified in each slide. Images of randomly selected hot spots
were captured across three representative high-power fields (HPFs, 400x magnification).
The percentage of the total area of Ki-67-positive nuclei to the total nuclear area was

calculated using Keyence application software. Phospho-S6 immunolabeling was



classified as either positive or negative. Samples were categorized as positive phospho-S6
expression if labeling was observed in either the nuclei or cytoplasm.

The TILs-stained samples were scanned using Nanozoomer 2.0 RS and analyzed
using Imagel] software ver. 1.53. TILs density was evaluated using semi-quantitative
calculations. Positive immunolabel cells in the intratumoral area were counted in one mm?
from ten independent hotspot areas at high-power representative microscopic fields (HPFs,
0.0625 mm?), as illustrated in Supplementary Figure I. Dense aggregates of lymphocytes
that were reminiscence of tertiary lymphoid structures were excluded. Since the cut-off
value was not standardized, the mean was used to obtain TILs density/mm?”. TILs density
was then associated with phospho-AKT and phospho-S6 as the major indicators of
PI3K/AKT pathway activation, as well as the Ki-67 index. Tumor cells were classified as
high phospho-AKT (samples in the upper quartile) or low phospho-AKT (the remaining
samples) according to the average ratio of positive immunolabeled cells. A similar
procedure was also used for classifying the Ki-67 index. Further, phospho-S6 was

categorized as positive or negative according to immunolabeling.

1.3.4 Statistical analysis

TILs density was compared with the clinicopathological parameters using
ANOVA or Fisher’s exact test, depending on the sample sizes. A non-parametric Wilcoxon
test was used to compare TILs density with phospho-AKT and phospho-S6 expression.
Multivariate analysis with the Pearson correlation test was performed to determine whether
there is a correlation between the subset TILs. Finally, a nonparametric Wilcoxon test was
also conducted to compare the CD8+/FOXP3+ ratio to the Ki-67 index. P-values less than
0.05 were considered to indicate statistical significance. All statistical tests were performed

using JMP Pro Software version 15 (SAS Institute, Tokyo, Japan).



1.4 Results
1.4.1 Patient demographic

In this study, 59 canine soft STS samples were obtained from several institutions
(Supplementary Table I). Several samples had incomplete information. Of the 48 TILs-
positive samples, 27 were male dogs (56.2%), and 21 were female dogs (43.8%), with ages
ranging from 5-17 years (median: 11 years; interquartile range=10-13 years). Tumors were
predominantly located on the extremities, with 35.8% identified on the upper limb (19/53)
and 30.2% on the hind limb (16/53). Additional tumor locations included the thorax-
abdominal region (15.1%), head and neck area (13.2%), and internal organs (5.7%). Breed
data was discernible in 40 dogs, with small breeds representing 50% (20/40), while medium
and large breeds accounted for 22.5% and 27.5%, respectively. Samples from mixed breeds
were excluded from breed-based analysis. The grade distribution of the 59 STS samples
was nearly uniform, with 33.9% categorized as grade 1 (n=20), 33.9% as grade 2 (n=20),

and 32.2% as grade 3 (n=19).

1.4.2 TILs profiles

Of the 59 analyzed samples, 48 (81.3%) exhibited TILs with variable densities
(Supplementary Table I). The densities for CD3+, CD8+, CD20+, and FOXP3+ TILs were
283.3+55.5/mm*(range=0-2,100/mm?), 134.8+30.8/mm?* (range=0-936/mm?), 73.6+1.57
/mm?  (range=0-635/mm?), and 9.2+2.2/mm’ (range=0-91/mm?), respectively. No
significant differences in TILs profiles were observed concerning clinicopathological
parameters, including sex (male vs. female), age (<11.3 vs. >11.3 years), tumor location,
or dog breeds (small, medium, and large). However, an unpaired comparison revealed a
statistical difference in FOXP3+ density across STS subtypes (p=0.016). Table 1.2

compares TILs density and grades to identify any histopathological discrepancies.



Generally, no significant differences were found in the abundance of CD3+, CD8+, CD20+,
and FOXP3+ TILs across tumor grades. In multivariate analysis, correlations were
classified as strong (score: 0.7-1.0), moderate (0.5-0.7), and low (<0.5). Results indicated
a strong correlation between CD3+/CD8+ (r=0.895), CD3+/CD20+ (=0.946), and

CD8+/CD20+ (r=0.856) (Figure 2.1).
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Figure 2.1 Multivariate analyses of the relationship of the density of different tumor-
infiltrating lymphocytes (TILs) subtypes: CD3+ T cells, CD8+ T cells, CD20+ B cells, and
FOXP3+ Treg cells (Pearson correlation test, p=0.03).



In contrast, a low correlation was observed between CD3+/FOXP3+ (7=0.466),
CD8+/FOXP3+ (r=0.416), and CD20+/FOXP3+ (r=0.436) densities.

The PI3K/AKT pathway is activated in canine STS (Miyanishi et al., 2023).
Considering that TILs may serve as a prognostic indicator in canine STS, this study
investigated the potential correlation between TILs density and phospho-AKT as a
PI3K/AKT pathway activation marker. Results indicated that average densities of CD3+,
CD8+, CD20+, and FOXP3+ TILs in the low versus high phospho-AKT group were as
follows: 230.2 vs. 338.2 (p=0.0174); 76.4 vs. 197.4 (p=0.0032); 62.2 vs. 86.8 (p=0.0268);

and 8.9 vs. 9.6 (p=0.885), respectively (Figure 2.2).
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Figure 2.2. Comparison of tumor-infiltrating lymphocytes (TILs) density (cells/mn’) and
phospho-AKT (high expression, n=29 vs. low expression, n=30). A) CD3+ T cells; B)
CDS8+ T cells; C) CD20+ B cells; D) FOXP3+ Treg cells (Wilcoxon test, p=0.05).



The activation of the PI3K/AKT pathway led to the activation of mTOR, which
phosphorylated the ribosomal protein S6 kinase (S6K1) and its substrate, ribosomal S6
proteins (S6) (Meuten ef al., 2024). To further explore any potential correlation between
TILs and the PI3K/AKT pathway, TILs densities were compared between phospho-S6-
expressing and non-expressing groups. Nonparametric analyses indicated that samples
expressing phospho-S6 tended to have a higher TILs density. The comparison of TILs
density in negative versus positive phospho-S6 samples was as follows: CD3+ T cells,
269.1 vs. 285.9 (p=0.068); CD8+ T cells, 100 vs. 147 (p=0.0218); CD20+ B cells, 74.6 vs.
70.5 (p=0.0757); and FOXP3+ Treg cells, 5.5 vs. 11.7 (p=0.3137). Only the abundance of

CD8+ T cells showed a statistically significant difference, while others did not (Figure 2.3).

A. B.
p=0.068 p=0.0218

1000 . 500
= - E
E 800 £ 400 .
8 600 5 300 —
2 400 & 200
[7}) ey o
Py i &
& 200 o 100 bt
o H ®
° i-m- ; l =0 Q

0 . S 0

Negative Positive Negative Positive
phospho-S6 phospho-S6 phospho-S6 phospho-S6

N
o

p=0.0757 p=0.3137

1 1
500 100,

400

@
(=]

300

[=2]
(=]

B
[=]

200
100 . X
| = Q‘

Negative Positive Negative Positive
phospho-S6 phospho-S6 phospho-S6 phospho-S6

CD20+ density (cells/mm?)
FOXP3+ density (cells/mm?2)
N
(=]

1
™
a

Figure 2.3. Comparison of tumor-infiltrating lymphocytes (TILs) density (cells/mm?’) and
phospho-S6 staining (positively immunolabeled, n=45 vs. negatively immunolabeled,
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1.4.3 TILs density and its correlation with prognostic relevance

A nonparametric statistical analysis was performed to determine the relationship
between TILs density and the Ki-67 label index present in tumor cells. The results
demonstrated a positive correlation between TILs density and the Ki-67 index. Samples
with a high Ki-67 index exhibit significantly higher densities of CD3+, CD8+, and CD20+
TILs within the tumor microenvironment. The comparisons of TILs densities in the low
versus high Ki-67 index group were as follows: CD3+ T cells, 185.8 vs. 384.3 cells/mm?
(p=0.0392); CD8+ T cells, 74.9 vs. 194.7 cells/mm? (p=0.0254); CD20+ B cells, 43.2 vs.
104.1 cellssmm? (p=0.0380); and FOXP3+ Treg cells, was 6.0 vs. 12.0 cells/mm?
(»=0.1630) (Figure 2.4). Furthermore, the CD8+/FOXP3+ ratio in low vs. high Ki-67 index

samples was 12.5 vs. 16.2 cells/mm? (p=0.0413).
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Figure 2.4. Analysis of tumor-infiltrating lymphocytes (TILs) density compared to labeled
Ki-67 index (high Ki-67, n=29 vs. low Ki-67, n=30). The samples were grouped into two:
the Ki-67 index was above the mean (black chart) and below the mean (white chart)
(Wilcoxon test, p=0.05).
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1.5 Discussion

In this study, 81.3% of the canine STS samples exhibited lymphocyte infiltration,
with T cells likely more dominant than B cells. The composition was dominated by CD3+
and CD8+ T cells. Conversely, Treg and B cells were infrequent and randomly scattered
across a large area. The high infiltration of CD3+ and CD8+ T cells, combined with low
levels of FOXP3+ Treg cells, initially indicated a favorable immune response in STS. Judge
et al. (2022) reported that human STS patients with high TILs densities experience
improved survival rates. The TILs profiles observed in the present study exhibit similarities
to those found in human STS. A recent study indicated that human STS typically tended to
have a low immuno-suppressive TME, identical to the low density of FOXP3+ Treg cells
(Chalmers et al., 2017). Furthermore, the low percentage of CD20+ B cells aligns with data
from human STS, where they are also infrequently encountered, present in only 14% of
samples (Nystrom ef al., 2023).

This study indicated that TILs density was not significantly correlated with
clinicopathological parameters or histopathological grades. Nonetheless, a high-grade
canine STS tended to be associated with an increased likelihood of lymphocyte infiltration.
Thus, TILs density may be case-dependent, even among tumors of the same grade.
However, these findings somewhat differ from a previous canine STS study that reported
that older age, high histopathological grade, and boxer breeds are negative prognostic
indicators (Chiti et al., 2021). These discrepancies may be due to the limited sample size
in each study. In the present study, the numbers of FOXP3+ Treg cells varied between STS
subtypes in univariate analysis but lost significance in multivariate models. This
observation affirms that canine STS patients exhibit increased peripheral Treg cells levels

compared to healthy dogs (Burton et al., 2011).
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In the current investigation, TILs exhibited a positive correlation with PI3K/AKT
activation. The group characterized by high levels of phospho-AKT and positive phospho-
S6 demonstrated a tendency for increased TILs density. While only CD8+ T cells had
statistically significant differences, the average densities of CD3+ T cells, CD20+ B cells,
and FOXP3+ Treg cells also elevated in the PI3K/AKT-activated group. Enhanced
PI3K/AKT signaling pathway in cancer cells may influence T cells density through
complex mechanisms depending on various factors (Mafi et al., 2022). The PI3K/AKT
pathway orchestrates an adaptive immunity by facilitating T-cell activation, modulating the
balance between Treg and Th17, and influencing metabolic programming (Rao et al., 2010;
Powell et al., 2012; Hawkins and Stephens, 2015).

This study’s result are in line with previous research (Sobral-Leite ef al., 2019),
which observed increased TILs densities in breast cancer with elevated PISK/AKT
phosphorylation. Activation of the PI3K/AKT pathway can promote the secretion of some
chemokines, such as CCL2, CCL5, and CXCL10, which are known to attract and enhance
T cells infiltration (So and Fruman, 2012). In addition, the PI3K/AKT pathway influences
the expression of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1)
(Haydinger et al., 2023) and vascular cell adhesion molecule 1 (VCAM-1) (Kong et al.,
2018). These adhesion molecules interact with their corresponding receptors on the T cells,
further facilitating their infiltration into TME (Amin et al., 2006).

Histopathological grading and Ki-67 immunolabeling have been used as
prognostic indicators of canine STS (Dennis et al., 2011). Elevated Ki-67 levels in cancer
cells suggest an increased proportion of actively proliferating tumor cells. In this study, a
high Ki-67 index was significantly correlated with a high TILs density within TME,
suggesting an appropriate lymphocyte response against STS through intratumoral and

tumor nest infiltration. Similarly, Mitchell et al. (2019). reported that in human non-small
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cell lung cancer, a high Ki-67 index was associated with increased infiltration of increased
infiltration of CD3+, CD4+, CD8+, CD45RO+, and FOXP3+ Treg cells.

The precise mechanistic pathways underlying this correlation remain elusive, and
uncovering the accurate mechanisms represents another critical challenge that warrants
future investigation. It is hypothesized that this relationship may related to the high
proliferation rate of cancer cells, potentially leading to an increased production of tumor-
associated antigens. Since the rapid proliferation of tumors is associated with a high
inflammatory response (Greten and Grivennikov, 2019), this correlation might be due to a
more robust immunogenic profile in highly proliferating tumors, thereby promoting T-cell
activation and infiltration.

The correlation between TILs density and the PI3K/AKT pathway in cancer cells
is complex, involving the interplay of cytokines, chemokines, and growth factors.
Reciprocal signaling between cancer cells and other components within TME may play a

critical role in promoting or inhibiting anticancer immune response.
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CHAPTER 2

Potential contribution of epidermal growth factor receptor to

PI3K/AKT pathway dysregulation in canine soft tissue sarcoma
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2.1 Summary

The previous studies identified activation of the phosphatidylinositol-3 kinase
(PI3K)/ protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical
samples, but the underlying mechanism remains unclear. This study investigated PTEN
loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT
pathway activation in canine STS. Thirty-six STS samples were analyzed. PTEN and
EGFR expression were evaluated using immunohistochemistry, while PIK3CA and EGFR
mutations were assessed through DNA sequencing. PTEN was expressed in all analyzed
samples with no evidence of loss. Weak PTEN expression was observed in 33.3% of
samples, while 66.7% showed normal expression. DNA sequencing of PIK3CA revealed a
single point mutation (c.554 A>C, H554P) in one case, but no hotspot mutations were
identified. High EGFR expression was significantly correlated with elevated phospho-AKT
levels (p<0.0001). Immunolabelling indicated that 30 samples (83.3%) were EGFR-
positive, and 27 of these also showed positive phospho-AKT labeling. Accordingly, one
missense point mutation in exon 21 of EGFR (E868K) was identified in one of 12 samples.
EGFR over-expression, rather than PTEN loss or PIK3CA4 mutations, may contribute to

PI3K/AKT pathway dysregulation in canine STS.
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2.2 Introduction

Soft tissue sarcomas (STS) originate from mesenchymal cells and are commonly
found in dogs' cutaneous and subcutaneous tissue (Dobromylskyj, 2022). In addition to
encompassing various histological phenotypes, these cancers are considered a group based
on their similarity in clinical and histopathological features (Pillozzi et al., 2021). The
pathogenesis of canine STS remains incompletely elucidated, and investigation into cell
signaling pathways might yield crucial insight. In previous research, we identified
activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT)
pathway on STS cell lines and clinical samples (Miyanishi et al., 2023). The PI3K/AKT
signaling pathway controls various cellular activities, including growth, proliferation,
survival, and metabolism (Hoxhaj and Manning, 2020; Meuten, Dean, and Thamm, 2024).
The complex canonical PI3K/AKT cascade features numerous initiation, regulatory, and
effector sites (Guerra et al., 2021; Yu, Wei and Liu, 2022).

Upon activation, AKT phosphorylates numerous downstream targets involved in
essential cellular processes (Ocana et al., 2014; Meuten, Dean and Thamm, 2024). In
contrast, the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) hinders
AKT's activation and functioning as a tumor suppressor (Stefano and Giovanni, 2019).
Dysregulation in the PI3K/AKT signaling pathway has been implicated in tumorigenesis
(Campos et al.,2014; Lorch et al.,2019; Asproni et al., 2021; Kim et al., 2021). PI3K/AKT
dysregulation can be indicated by consecutive activation, which can arise through the
distinct dysregulation of individual components of this signaling cascade (Porta, Paglino,
and Mosca 2014). These aberrations can occur due to mutations in the PI3K or AKT genes,
loss of PTEN, or continuous activation of the upstream cascade (Dobashi et al., 2009; Porta,
Paglino and Mosca, 2014). Mutation of the PIK3CA gene, which encodes the pl10a

catalytic subunit of phosphatidylinositol 3-kinase, has been reported as the second most
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common mutation in human cancer (Lee et al., 2019). This mutation has been demonstrated
to induce the hyperactivation of the PI3K/AKT signaling pathway (Choy et al., 2012;
Estabrooks ef al., 2023).

Loss of PTEN results in the uncontrolled regulation of AKT levels, which
promotes the PISK/AKT pathway hyperactivation, thus leading to tumorigenesis
(Bazzichetto ef al., 2019; Weng et al., 2020). PTEN is frequently subject to mutations,
deletions, or down-regulation in different types of canine cancer (Meuten, Dean, and
Thamm, 2024). Another factor that potentially contributes to PI3K/AKT dysregulation is
the increased activity of the upstream cascade, especially the receptor tyrosine kinase
(RTK) (Hoxhaj and Manning 2020; Porta, Paglino, and Mosca 2014). One extensively
studied RTK upstream of PI3K/AKT signaling is the epidermal growth factor receptor
(EGFR, also known as HER-1 or ErbB-1) (Gori et al., 2009). Over-expression and mutation
of EGFR have been associated with a more aggressive malignant phenotype characterized
by increased resistance to therapeutic modalities and worse clinical outcomes (Selvarajah
etal.,2012; Shan et al., 2017).

The precise mechanism underlying consecutive activation of the PI3K/AKT
signaling pathway in canine STS remains elusive. Therefore, it is necessary to use the
insights from human medicine to address this knowledge gap. A comprehensive
understanding of the PI3K/AKT signaling pathway is imperative, as each component exerts
distinct and pivotal regulatory roles in cellular functions and tumorigenesis. This situation
emphasizes the underscoring for comprehensive research to elucidate these aberrant
mechanisms. This study explored several PI3K/AKT aberrations, including PTEN loss,
PIK3CA mutation, and EGFR over-expression, as potential major contributors to the

tumorigenesis of canine STS.
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2.3 Materials and Methods
2.3.1 Tissue samples

Tissue samples from 43 canine STS cases utilized in prior studies were used in this
study (Supplementary Table II). The hospital database collected archival clinical data on
patient information, tumor grade, and clinical history. Tissue samples were preserved in
4% neutral buffered formalin, embedded in paraffin, sectioned at four um thickness, and
stained with hematoxylin-eosin (HE). Subsequently, two veterinary pathologists classified
the tumor type and determined the tumor grades. If a conclusive diagnosis could not be
determined with HE staining, immunohistochemical (IHC) labeling was conducted. This
IHC procedure utilized the following antibodies: mouse anti-desmin monoclonal antibody
(D33; Dako, Glostrup, Denmark), mouse anti-vimentin monoclonal antibody (V9; Dako),
mouse anti-alpha-smooth muscle actin (SMA) monoclonal antibody (1A4; Dako), and
rabbit anti-S100 polyclonal antibody (IR504, Dako). Tumors were identified according to
the World Health Organization (WHOQ) classification for cancers in domestic animals
(Misdorp, 1976). The histological grading system was designed using criteria such as tumor

differentiation, mitotic index, and tumor necrosis (Dobromylskyj, 2022).

2.3.2 Immunohistochemistry staining

Immunostaining for PTEN and EGFR was performed on 36 samples, as some
FFPE samples had incurred damage. Briefly, four pm-thick tissue sections were
deparaffinized in xylene to remove paraffin and then gradually rehydrated using a sequence
of different concentrations of alcohols, ultimately ending with distilled water. Antigen
retrieval was performed using Dako Target Retrieval solution, pH 9 (Agilent Technologies,
Santa Clara, CA, USA) in an autoclave (121°C, 20 min) for PTEN staining and in Histofine

Protrease solution (Nichirei Bioscience, Tokyo, Japan) at room temperature for 6 min for
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EGEFR staining. The sections were subsequently immersed in a solution of 3% H»O; in
phosphate-buffered saline (PBS) for 30 min to inhibit endogenous peroxidase activity.
Afterwards, the slides were incubated with 5% skim milk and 5% bovine serum albumin
(BSA) in PBS for 30 min. Slides were incubated with primary antibodies against rabbit
anti-PTEN monoclonal antibody (138G6, 1:200; Cell Signaling Technology, Danvers, MA,
USA) and mouse anti-EGFR monoclonal antibody (31G7, Nichirei Bioscience). They were
then incubated overnight at 4°C. Rabbit IgG antibody (DA1E; Cell Signaling Technology)
and mouse I1gG; antibody (P3.6.2.8.1; eBioscience, Waltham, MA, USA) were utilized as
negative controls. The samples were then incubated with secondary antibodies using
Histofine Simple Stain Mouse MAX PO (Nichirei Bioscience) or Histofine Simple Stain
Rabbit MAX PO (Nichirei Bioscience). The sections were visualized using a peroxidase
staining diaminobenzidine kit (Nacalai Tesque, Kyoto, Japan) and counterstained with
Mayer's Hematoxylin Solution (Wako, Osaka, Japan). Phospho-AKT staining was

conducted as in previous work (Miyanishi ez al., 2023).

2.3.3 Immunohistochemistry analysis

PTEN and EGFR-stained samples were scanned using a Nanozoomer 2.1 RS
(Hamamatsu, Shizuoka, Japan). Subsequent analysis employed Imagel software version
1.53 (National Institute of Health, Bethesda, MD, USA). The program enabled examination
at low (100x) and high (200x or 400x) magnifications. The levels of phospho-AKT
immunoreactivity were measured using an All-in-One Fluorescence Microscope BZ-X800
(Keyence, Osaka, Japan) alongside its dedicated application software. PTEN expression
levels were assessed using the Allred scoring method with minor modifications (Gaber et
al. 2014; Mundhenk et al. 2011). This method evaluates both the proportion of positive

cells and the intensity of immunolabeling. The proportion of positive cells was categorized
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according to the following scale: 0: negative; +7: <10% positive cells; +2: 11-49% positive
cells; and +3: >50% positive cells. The intensity of immunolabelling was assessed
following this scale: 0: negative; +1: weak intensity; +2: strong intensity. The final PTEN
expression levels combine the scale of positive cell percentage and the immunolabelling
intensity across all examined fields, resulting in five possible final scores. Total final scores
of 0 and I are categorized as “negative,” scores of 2 and 3 as “weak expression,” and scores
of 4 to 5 as “normal expression”. A similar method was employed to evaluate EGFR with
the expression levels categorized as negative, weak, moderate, and strong expression
categories (Cho et al., 2021; Gaber et al., 2014). Supplementary Figure II displays the

representative results of the immunolabeling scoring for EGFR and PTEN.

2.3.4 Mutation analyses of PIK3CA and EGFR

DNA sequencing was performed to determine the existence of mutations in the
PIK3CA and EGFR genes. 16 samples were subjected to DNA sequencing due to either
amplification failures or limited tumor samples. Genomic DNA was extracted from FFPE
samples using the QlAamp DNA FFPE Tissue kit (Qiagen, Tokyo, Japan) according to the
manufacturer's instructions. Using this genomic DNA as a template, the individually
targeted exons were amplified using Mighty Amp DNA polymerase Ver.3 (Takara Bio Inc,
Shiga, Japan), and the primers are shown in Table 2.1. The DNA sequencing of the PIK3CA
gene targeted exons 10 and 21, whereas that of EGFR gene expression exons 18, 19, 20,
and 21, as reported in various other canine cancer studies. PCR conditions were denaturing
at 98°C for 2 min, followed by 40 cycles of 98°C for 10 s, 60°C for 15 s, and 68°C for 30 s.
The expected sizes of amplified products were obtained from the gel following agarose

electrophoresis. Each sequence was confirmed by Sanger sequence analysis and compared
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with genomic sequences of PIK3CA4 and EGFR in the GenBank database (accession

numbers LC625864.1 and LC643766.1, respectively).

Table 2.1. Primers used for amplifying and sequencing PIK3CA and EGFR genes.

Target Exon Product  Reference

. Name Nucleotide sequences .
Gene location size
YTM2531 5- TTCGCCATTTTCTCTTTTTGTAGA -3’ Lee et al.,
Exon 10 ; ,  300bp 2019
PIKICA YTM2532  5°- AGGTATGGTAAAACCTGCAAGATA -3°
Exon 22 YTM2533 5’- TGTGACATTTGAGCAGAGACC -3’ 384h Own
XOMS2 YTM2534  5°- TCCAGATAATGAGCTTTCGGTT -3° P~ designed
YTM2519 5°- GCAGTTGCTCTTCCTTGTCT -3° Choet al.,
Exon 18 ; , 252 bp 2021
YTM2520 5°- CAACACAGAGTAGACGAGGC -3’
YTM2521 5’- AGTCCGTCTATCTCACGAGG -3’ S12h Choet al.,
Exon o YTM2522 5'- GTGGACAAGCAGAGGACAAA -3° P 2021
- XM v TM2629 5°- GGGCTTCTCTGAAGCTTTCC -3° Jsst Own
YTM2630 5’- GGAGCAGCGAGCGAAGTA -3’ P~ designed
YTM2523 5’- CTCTCCCCTTCTTCTTCCCA -3’ Choet al.,
Exon 20 336 bp 2021
YTM2524 5°- TTATTTCTCCCCCTTGCTGC -3°
YTM2525 5’- GGTGTGAACAGGACATGGG -3’ Cho et al.,
Exon 21 326 bp 2021
YTM2526 5°- TTCTGAGAACGTCCCCTAGG -3°

2.3.5 Statistical analysis

The statistical tests were performed using JMP Pro Software version 15 (SAS
Institute, Tokyo, Japan). The non-parametric Wilcoxon test was used to compare EGFR
and PTEN expression levels against the phospho-AKT area ratio. Fisher’s exact test was
used to evaluate the expression levels of EGFR and PTEN in relation to clinicopathologic
parameters. A multivariate analysis using the Pearson correlation test was performed to
ascertain whether there is a correlation between EGFR, PTEN, PIK3CA4 mutation, and any
other clinicopathological parameter. P-values below 0.05 were considered to indicate

statistical significance.
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2.4 Results
2.4.1 PTEN was intact in canine STS

IHC analysis demonstrated intact PTEN expression in all 36 samples (100%),
without any cases of PTEN loss detected. Among these, 12 out of 36 samples (33.3%)
exhibited weak PTEN expression, while 24 out of 36 samples (66.7%) showed normal
PTEN levels. The weak PTEN expression group displayed a higher mean phospho-AKT
area ratio than the group with normal PTEN expression (p=0.0433, as shown in Figure
3.1A). However, the linear regression analysis did not reveal a significant correlation
(»p=0.0552, Figure 3.1B). These findings suggest that AKT activation in canine STS may

occur independently of PTEN loss.

>
os]

p= 0.0552 PTEN normal (n=24)
: PTEN weak (n=12)

=
Z
172]
o
=
S
=
)
m
=
Ay

Phospho-AKT area ratio (%)

0 10 15 20 25 30
Phospho-AKT area ratio (%)

Weak (n=12) Normal (n=24)
PTEN Expression

Figure 3.1. Comparison of PTEN expression scores with phospho-AKT area ratio. A) The
phospho-AKT area ratio in the PTEN weak group (n=12) compared to the normal PTEN
group (n=24) (p=0.0433). B) The correlation between PTEN score and phospho-AKT area
ratio based on simple logistic regression (p=0.0552).
2.4.2 Mutation on PIK3CA and EGFR

In this study, 2 out of 16 (12.5%) sequenced STS samples exhibited a point
mutation, each in exons 10 and 21 of the PIK3CA gene. The point mutation in exon 10 was

located at nucleotide 554 A>C (H554P). The other sample demonstrated the nonsense

mutation ¢.1661 G>A (E1661K). Analysis of the EGFR gene revealed one out of 12
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sequenced samples (8.3%) had a mutation in exon 21, while no mutations were found in
exons 19 and 20. This EGFR mutation in exon 21 is located at nucleotide 868 G>A
(E868K). In addition, two samples exhibited nonsense EGFR mutations, with one mutation

located in exon 18 and the other in exon 21.

2.4.3 EGFR expression correlated with phospho-AKT

In total, 30 out of 36 (83.3%) exhibited positive EGFR immunolabeling. Of them,
38.8% showed weak EGFR expression, while the remaining 44.4% samples displayed
moderate to high EGFR expression. Of the 30 samples positive for EGFR immunolabeling,
27 also showed positive immunolabeling for phospho-AKT. Remarkably, the six samples
with strong EGFR expression had elevated phospho-AKT area ratio, suggesting an initial
indication of EGFR as an upstream activator of the PI3K/AKT pathway. Next, | analyzed
the relationship between EGFR expression and phospho-AKT levels. EGFR expression
was categorized into four groups: negative, weak, moderate, and strong. The group
characterized by strong EGFR immunolabeling exhibited a significantly higher phospho-

AKT area ratio than the other groups (p<0.0001, Figure 3.2 A).

o

Phospho-AKT area ratio
EGFR expression

Negative =~ Weak Moderate  Strong

EGFR Expression Phospho-AKT area ratio (%)

Figure 3.2 Comparison of EGFR expression scores with phospho-AKT area ratio. A) The
mean phospho-AKT area ratio among EGFR groups (p<0.0001). B) The positive
correlation between EGFR score and phospho-AKT area ratio based on simple logistic
regression (p<0.0001).
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Additionally, linear regression analysis revealed a positive association between EGFR
expression levels and phospho-AKT area ratio (p<0.0001, Figure 3.2 B). These findings
further support the hypothesis that EGFR plays a critical role in activating the PI3K/AKT

signaling pathway in canine STS.

2.4.4.Correlation of PTEN and EGFR expression with clinicopathologic parameters
I examined the correlation between PTEN and EGFR expression with STS types
and tumor grades, as illustrated in Figure 3. No significant differences in PTEN expression

were observed among different STS types (p=0.910, Figure 3.3 A).

PTEN EGFR

Normal (n=24) Weak (n=12) Negative (n=6) Weak (n=14)
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_>

Number of cases

Fibrosarcoma MNST UPsS Others Fibrosarcoma MNST

STS types STS types

os]
)

p = 0.0049

Number of cases
Number of cases

Grade 2 Grade 3

Tumor grades Tumor grades

Figure 3.3. Comparison of EGFR and PTEN expression score among different STS types
and grades. There was no statistically significant difference in PTEN and EGFR expression
according to STS type (p=0.910 and p=0.235, Figure A and C, respectively). The
percentage of PTEN weak expression was found more frequently in samples with high-
grade tumors (p=0.0049, B). The percentage of EGFR strong expression was also more
frequently found in high-grade tumors (p=0.0127, D). MNST: malignant nerve sheath
tumor; UPS. undifferentiated pleomorphic sarcoma.
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Similarly, analysis of EGFR expression revealed no significant differences across STS
types (p=0.235, Figure 3.3 C). When comparing PTEN expression with tumor grades, weak
PTEN expression was notably more frequent in grade 3 STS compared to grades 1 and 2
(»p=0.0049, Figure 3.3 B). Significant differences in EGFR expression were observed
across different tumor grades (p=0.0127, Figure 3.3 D).

Finally, I performed multivariate analyses to investigate the correlation between
PTEN, EGFR, and PIK3CA mutations in conjunction with various clinical and pathological
parameters (Figure 3.4). These multivariate analyses revealed that EGFR expression
correlated with phospho-AKT level (correlation coefficients 0.68). Furthermore, this

analysis did not find any correlation of EGFR and PTEN with other parameters.
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Figure 3.4. Multivariate analyses indicate that EGFR expression positively correlates to
the phospho-AKT area ratio (correlation coefficient, r=0.68).
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2.5 Discussion

Investigating each component of the PI3K/AKT signaling pathway is crucial for
elucidating the tumorigenesis mechanism because this pathway plays a pivotal role in
regulating many cellular processes (Hoxhaj and Manning 2020). Therefore, several
potential factors identified in prior canine studies that might lead to dysregulation of
PI3K/AKT signaling pathways were examined. These factors include the loss of PTEN,
PIK3CA mutation, and EGFR over-expression. By comprehending each component's
distinct contributions and interactions, this study potentially offers valuable insights that
could aid in identifying biomarkers for early detection and uncovering novel therapeutic
targets (Tewari ef al., 2022).

Similar to human counterparts, PTEN mutations or deletions in dogs result in
aberrations in the PI3K/AKT signaling pathway, contributing to tumorigenesis
(Bazzichetto et al., 2019; Lin et al., 2021). Previous studies in canine hemangiosarcoma
(HSA) (Megquier et al., 2019), osteosarcoma (OS) (Sarver et al., 2023), and canine
mammary tumor (CMT) (Asproni et al., 2021) showed that these malignancies frequently
exhibit PTEN loss or reduced expression. PTEN loss was not detected in this investigation.
Out of 36 samples, 12 (33.3%) had weak PTEN expression, whereas the remaining had
normal expression. The expression of PTEN in samples does not necessarily ensure that
these tumor suppressor genes function correctly (Bazzichetto et al., 2019). Therefore, this
result does not definitively eliminate the possibility of PTEN interference as a factor
contributing to the dysregulation of PI3K/AKT.

One study in human cancer reported that the consecutive activation of the
PI3K/AKT signaling pathway is independent of PTEN status in sarcoma cell lines (Lim e?
al., 2016). In support of the human medicine results, this study indicates the possibility of

PTEN-independent and different tumorigenesis mechanisms in canine STS (Mundhenk e?
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al., 2011). PTEN independence refers to mechanisms that lead to the activation of the
PI3K/AKT pathway without alterations in the PTEN gene (Mundhenk et al., 2011). 1
hypothesize that consecutive PI3K/AKT pathway activation may be caused by other
aberrations besides PTEN loss, such as mutations, phosphorylation by tyrosine or
serine/threonine kinases, or crosstalk with different pathways.

Furthermore, mutations in the PIK3CA gene that can drive the dysregulation of the
PI3K/AKT pathway were investigated. PIK3CA mutations PIK3CA mutations have been
observed in canine HSA (Megquier et al., 2019; Estabrooks et al., 2023), OS (Choy et al.,
2012; Selvarajah et al., 2012), and CMT (Arendt et al. 2023; Lee et al. 2019). Hotspot
mutations such as E545K (located in exon 10) and H1047R (located in exon 21) have been
identified in canine cancers, paralleling those observed in human malignancies (Arendt et
al. 2023; Lee et al., 2019). Exon 10 and exon 21 mutations were identified based on DNA
sequencing in one sample each.

The prevalence of PIK3CA mutations was 12.5%, which is lower than prior
investigations conducted on other canine cancers. Previous studies in different types of
canine cancers have reported a frequency of PIK3CA mutations ranging from 14 — 48%
(Arendt et al., 2023; Cho et al., 2021; Lee et al., 2019; Megquier et al., 2019; Wang et al.,
2017). This discrepancy in prevalence might be attributed to the limited number of samples
analyzed. The mutation rate in human STS, which is reported at 2.49%, is also notably
lower compared to the mutation rates observed in other human cancers, such as breast
cancer (36.0%), colorectal cancer (17.9%), and lung carcinoma (9.38%) (Pugh e al., 2022).

The presence of a mutation In EGFR leads to continuous activation of downstream
signaling pathways, such as the PI3K/AKT pathway, the RAS/RAF/MEK/ERK, and the
JAK/STAT pathway (Estabrooks et al., 2023). This investigation detected that one out of

12 samples (8.3%) had an EGFR mutation in exon 21. It is acknowledged that the lack of
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mutations does not always indicate that the genes have not been altered. The literature on
EGFR and other RTK mutations in canine cancer remains sparse. EGFR mutations have
been reported exclusively in canine adenocarcinoma, albeit with limited prevalence data
(Cho et al., 2021; Kobayashi et al., 2023). The mutation analysis of PIK3CA and EGFR in
this study offers additional insights into the genetic alterations associated with canine
cancer and aberrant PI3K/AKT signaling pathways.

Using immunolabeling, I identified a direct correlation between EGFR expression
and PI3K/AKT signaling activation, as indicated by phospho-AKT expression. Samples
with high levels of EGFR expression, indicating potential over-expression, exhibited
elevated phospho-AKT area ratio compared to other groups. While the precise mechanism
by which EGFR influences PI3K/AKT activation remains unclear, the limited number of
mutations detected does not exclude the possibility of EGFR serving as an upstream
regulator that triggers the PI3K/AKT dysregulation in canine STS. EGFR over-expression
may be attributed to other processes, such as increased transcription, loss of inhibitory
signals, defective protein recycling, and gene amplification (Freudlsperger et al., 2011;
Gaber et al., 2014; Guerra et al., 2021). EGFR over-expression, which promotes cellular
proliferation and the epithelial-mesenchymal transition (EMT), is essential for
tumorigenesis and metastasis (McConkey et al., 2009).

The potential utility of PTEN and EGFR as prognostic indicators were analyzed
by comparing them with clinicopathological parameters, such as STS subtype and tumor
grade. These findings indicated that PTEN's weak expression was significantly associated
with tumor grade (p=0.0049). Tumors classified as high-grade (grade 3) STS tend to have
weak PTEN expression levels. Moreover, strong EGFR expression levels were

significantly associated with high-grade tumors (p=0.0127).
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Multivariate analysis also revealed a positive correlation between EGFR and
phospho-AKT. A positive correlation score suggests that there may be a greater likelihood
of PI3K/AKT activation in canine STS with higher levels of EGFR expression. Phospho-
AKT is widely considered a direct marker and primary indicator of the PI3K/AKT
signaling pathway activation. A positive correlation between EGFR expression and
phospho-AKT indicates that EGFR is likely driving the activation of the PI3SK/AKT
pathway. This relationship highlights the importance of EGFR and PI3K/AKT signaling in

canine STS progression and may inform targeted therapeutic strategies in the future.
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GENERAL DISCUSSION
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GENERAL DISCUSSION

The first chapter examined canine STS's tumor-infiltrating lymphocytes (TILs)
profile. Most STS samples contained intra-tumoral TILs, with CD3+ T cells and CD8+ T
cells being the most abundant, while CD20+ B cells and FOXP3+ T-regulatory cells were
comparatively limited. This TILs profile indicates that the immune response in STS
remains favorable against cancer, as CD3+ and CD8+ T cells subsets are critical for
cytotoxic responses against cancer. This study provides novel insights into the role of
PI3K/AKT pathway activation in canine STS. A positive correlation between CD8+ T cell
density and PI3K/AKT activation was identified, suggesting that this signaling pathway
may modulate immune cell infiltration. Furthermore, this investigation identified a
correlation between TIL density and the Ki-67 index, a tumor proliferation marker.

Although this study observed correlations between PI3K/AKT activation and TILs
density, the directionality and causality of this relationship remain unclear. This positive
correlation is suspected to be complex and context-dependent. A plausible mechanism is
that elevated PI3K/AKT pathway activity in cancer cells indirectly enhanced tumor-antigen
presentation. Activation of the PI3K/AKT pathway increases metabolic activity and
upregulates specific proteins, thereby generating stronger immunogenic signals that recruit
more TILs to the tumor site. In this context, the relationship may reflect an active immune
response as a consequence of the presence of a highly proliferative tumor, as indicated by
the association with Ki-67.

Another possibility could be related to the effect of the PI3K/AKT pathway
activation to promote the production and secretion of chemokine molecules. Cancer cells'
release of these chemokines serves as a chemotactic signal to attract immune cells to the
tumor site (Singh and Gray, 2021). Chemokines such as CXCL9 and CXCL10 are reported

to attract cytotoxic T lymphocytes (CTLs) by binding to its receptors like CXCR3 (So and

43



Fruman, 2012), which highly express on CD8+ T cells. The correlation between TILs and
PI3K/AKT pathway activation also supports the hypothesis that immune cell infiltration is
not simply a passive occurrence but may be actively influenced by tumor proliferation
signals.

Similar to findings in human STS, this current study found that canine STS profiles
tended to have a low immunosuppressive TME (Chalmers et al., 2017). On the contrary,
this investigation found that CD8+ T cells were abundant. However, while CD8+ T cells
are often linked to favorable prognosis in several cancers (Khoury et al., 2018; Brummel
etal.,2023), the role of TILs as a prognostic marker in current study study remains unclear.
The unavailability of complete medical record information limited the ability to analyze
CD8+ density as a prognostic indicator.

The first chapter suggests that the PI3K/AKT signaling pathway might not only
serve as a prognostic marker for tumor growth and proliferation (Miyanishi et al., 2023)
but also play a role in modulating the immune landscape. The positive correlation between
CD8+ T cells and the PI3K/AKT pathway may have implications for immunotherapeutic
strategies targeting this pathway. This approach could potentially enhance the antitumor
immune response. Additionally, the relationship between TILs density and Ki-67 supports
the theory that tumor proliferation might drive immune infiltration, highlighting the
potential for immune-modulating therapies in conjunction with conventional treatments.

These findings present opportunities for further investigation into the therapeutic
targeting of PI3K/AKT to improve treatment outcomes for STS. Previous studies on canine
cancers have shown variable levels of TILs. This research provides new insight by directly
correlating these immune cells with key oncogenic signaling pathways, such as PI3K/AKT.
Detailed analysis of other immune populations, such as macrophages and dendritic cells,

which may also influence tumor immune responses, would further enhance the findings of
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this study. Nevertheless, this study contributes to the existing literature by demonstrating
that the presence of CD8+ T cells correlates with PI3K/AKT pathway activation. This
suggests a complex relationship between immune infiltration and tumor signaling pathways.

In the second chapter, this study investigates the underlying mechanisms causing
PI3K/AKT dysregulation, which may contribute to tumorigenesis. Current study suggests
that EGFR over-expression, rather than PTEN loss and PIK3CA mutations, is likely a
primary driver of pathway dysregulation. While PTEN loss is one of the common
mechanisms for PI3K/AKT dysregulation, no evidence of PTEN loss in canine STS
samples. The presence of mutation in only one sample but no hotspot mutations was
detected, suggests that PIK3CA alteration might not be a primary driver of this
dysregulation. Notably, a significant correlation between high EGFR expression and
phospho-AKT levels. This correlation suggests that EGFR over-expression could be a
significant factor driving PI3K/AKT pathway dysregulation.

In this study, PI3K/AKT dysregulation was observed to be independent of PTEN
status. Loss of PTEN function through mutations or deletions is a well-established
mechanism driving tumorigenesis in various human cancers. However, this investigation
demonstrated that PTEN was expressed across all samples, with most exhibiting normal
expression levels. This observation highlights a potential species-specific mechanism in
canine STS. Furthermore, Lim et al. (2016) reported, based on an in vitro study using four
different human sarcoma cell lines, that PI3K/AKT signaling activation occurred
independently of PTEN status, despite normal PTEN protein expression. This indicates that
a distinct molecular profile for both human and canine STS differs from other cancers

where PTEN loss plays a predominant role.
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While PIK3CA gene mutations were detected through DNA sequencing, their low
prevalence suggests these mutations are unlikely to be the primary drivers of pathway
dysregulation. Only one sample exhibited mutations in exon 10 and exon 21. However,
none were located at codons commonly recognized as hotspots mutation (E545K and
H1047R) in the PIK3CA gene. This prevalence is considerably lower than previous studies
on other canine cancers, where PIK3CA mutation frequencies have ranged from 14% to
48% (Arendt et al., 2023; Lee et al., 2019; Megquier et al., 2019; Moon ef al., 2016).

A significant finding was the strong correlation between high EGFR expression
and elevated phospho-AKT levels. EGFR was expressed in 83.3% of the samples, and most
cases (90% of EGFR-positive samples), phospho-AKT levels were also elevated. This
result suggests that EGFR over-expression significantly contributes to the PISK/AKT
pathway dysregulation. When EGFR is over-expressed, it facilitates consecutive activation
of the downstream PI3K/AKT signaling pathway. This excessive stimulation of EGFR
results in cellular change and disrupts the normal regulation of cell growth, survival, and
metabolism. The over-expression of EGFR indicates it amplifies the normal processes,
contributing to uncontrolled tumor growth and metastasis (Dobashi et a/., 2009; Moon et
al., 2016).

EGFR is a cell surface receptor activated by its ligands (such as EGF and TGF-a).
This activation initiates a cascade of intracellular signaling pathways. EGFR
overexpression increases the number of receptors on the cell surface (Freudlsperger et al.,
2011). With EGFR overexpression, even normal ligand levels can produce an exaggerated
response (Gaber et al., 2014). Overexpressed EGFR can undergo ligand-independent
activation, where the receptor dimerizes or forms complexes with other receptors (such as
HER2 or HER3) even without a ligand (Dobashi ez al., 2009). All these mechanisms can

contribute to consecutive activation of the PI3K/AKT pathway leading to tumorigenesis.
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The disruptions of the PI3K/AKT pathway bypass normal cellular checks and
balances, allowing for continuous survival and growth of cancer cells (Porta, Paglino and
Mosca, 2014; Hoxhaj and Manning, 2020; Meuten et al., 2024). This dysregulation not
only facilitates the formation of primary tumors but also supports the development of
resistance to conventional therapies (Nitulescu ef al., 2018; Tewari et al., 2022; Yu, Wei
and Liu, 2022). Additionally, the interplay between EGFR over-expression and PI3K/AKT
activation may contribute to the tumor's ability to evade immune surveillance, further
complicating treatment strategies.

Given the central role of EGFR in activating the PI3K/AKT pathway, targeting this
receptor may provide a promising therapeutic approach (So and Fruman, 2012; LoRusso,
2016; Mayer and Arteaga, 2016). EGFR inhibitors, such as cetuximab or gefitinib, have
been explored in human cancer therapy (Freudlsperger et al. 2011; Gaber et al. 2014), and
similar strategies could be repurposed in dogs. Further research into the molecular
mechanisms linking EGFR over-expression with PI3K/AKT dysregulation will be crucial
in identifying novel treatments to modulate this pathway and improve outcomes for patients
with cancers driven by EGFR-mediated signaling.

The limitation of this study was the inability to identify reliable markers for
predicting metastasis, recurrence, and overall survival. One of the primary goals of this
investigation was to identify markers for distinguishing high-risk cases. However, the
retrospective nature of the sample collection and incomplete clinical data posed significant
limitations. Not all samples had complete records regarding metastasis status, recurrence,
or survival times. The lack of comprehensive clinical data limited the ability to establish
correlations between protein expression and prognostic indicators. Future studies with
prospectively collected samples and well-documented clinical outcomes are essential to

establish the prognostic value of canine STS.
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In conclusion, this study highlights EGFR over-expression as a prominent feature
and potential driver of PI3K/AKT pathway activation in canine STS, opening up new
avenues for targeted therapies in veterinary oncology. These findings underscore the need
for additional research to better understand the molecular mechanisms in canine STS and

validate potential therapeutic targets.
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1.

CONCLUSION

TILs density was positively correlated with the activation of the PI3K/AKT
signaling pathway. The group with high levels of phospho-AKT and phospho-S6
tended to have a higher CD8+ T cells density. A higher proliferation rate, as
suggested by a high Ki-67 index, indicates a higher number of CD3+, CD8+, and
CD20+ TILs.

The aberrant PI3K/AKT signaling pathway in canine STS may be related to the
high expression of EGFR. The absence of PTEN loss and low PIK3CA mutation
prevalence indicate that both are unlikely the main contributors to PI3K/AKT

dysregulation in canine STS.
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Group of high phospho-Akt and Group of low phospho-Akt and
positive phospho-S6 (case no.47) negative phospho-S6 (case no.10)

Supplementary Figure 1. Representative Immunolabeling on CD3+ T cells, CD8+ T cells,
CD20+ B cells, and FOXP3+ Treg cells. The image on the left column shows the tumor-
infiltrating lymphocytes (TILs) density in a sample with high phospho-AKT and positive
phospho-S6 staining (case number 47). In contrast, the figure in the right column shows
the TILs density in a sample with low phospho-AKT and negative phospho-S6 staining
(case number 10) (HPF 400%, scale bar 50 um).
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PTEN EGFR

Supplementary Figure II. Representative immunolabeling score of PTEN and EGFR
expression in STS tumor. The figures on the left column show examples of PTEN negative
expression (A), weak expression (B), and normal expression (C). The figures on the right
column show examples of EGFR negative expression (D), weak expression (E), moderate
expression (F), and strong expression (G) (HPF 400%, scale bar 100 um).
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