U7 5 (5 12 45, 5 31 £:R81%)
(*%ft 7 7E7_") (Format No.7) HZA&ZE

F M o X E F

(Summary of the Doctoral Dissertation)

Intrusion Prevention System with Automated Rule Generation Using
FAFRSCEH | Automata and Large Language Models from Proof-of—Concept Codes
(Dissertation Title) (EFEET—REZHN T =~ P ERBFESEET VICE -
TN—NVEERT HEANIES AT L)

,EE % (Name) U-lzli %@j(

FAN—EF 2T 4I128I1F 5 PoC BESHERE) 22— Rid, Maggrkoz i b OBH~O XK 2]
HIODOEREMT H LT, X2V T4 R ZRT 17T AOERE IS, Mt AIEIET 57120
D8y FEREET LV CHFICHEHATH S, Lol WEED PoC 22— R EEBEOBCRIEM L
720 WEFSPEOFEMZE ML L7720 LT, WBAFATT L2 E MR T T 572 Lottt & 5,

2021 4E 12 iz &Nz, a¥> 75477 1 T 5 Apache Logdj DIfE8IPETH % LogaShell 11,
Logdj W& DT 7V r—2a RO —ERIEELEZ -2 L THATH D, LLENTZIT TR,
Log4Shell |Z PoC == — R OYLRICEER L. IDS 72 £ X 2B ORR OA+5r & & eI oR LT
g5 1 > Thdh D,

ZHET, IDS R°IPS D= NAERICBIT 28X A 713, ANENC X2 FEEEZ DL E L TiThbR TR
V. 12OV —NEERT HTDICEL L O Z ML E L TW5D, —/LDOIERKIZE < OFREE %2 3 &
LCW5Z &1E, LogaShell @ L 5 IZHEBPEN A SUTo 6 Magsth 2 A 3 2 BUE DS REWIZITD
L% F TOMIBDNEY RPN T, MagatE 2 BB 3 2 BB KB SN DRI, ZiH~0Ox)
REMBEDIENE LW EE2ERT D, —VEKREHEMET 5 Z LI2X > T, — L OIERRIZ DY
LR ZHINT 2 2 E N TE L0, THE TIATOIZIFFRTIAMES, B 2 B OB B~ D xHLIZ
SN B B,

% 2 TN CTIX, LogdShell OB — T S ik e Uiz [Eainak) 208
922 LIcko T, EF LT U LM W o To MM A FF OB R Y — 2t G & LT — V& A
TS TFiE S | WEStEOBEICET 5 A EHR AT S5 PoC 2 — FONEEZ BEIIC T4 2 &
2o T, A= VOVERIC BT 2 W 2 Fe/MET 5 FIEEIR—E LT,

R, 5 DOEP LRSI ND,

W1 ETIE EATERRE OV — VAR TEIC X o T MR T X A AR O R —
CHFAICKIAL L LLM (2 X 5 BB eV — VAR TFIEIC K o C, Wagaik 2 A 3 2 B A REUBIZ B A
ENDRNCENSICHT 5 Z L2 AHRICT D2 & T AMICE D— L EREBIT S v) K
O HW) LRI DREE A R LTz,

552 ECIE AL TIRET 5 2 DO/ — /VAERTFIEOVENEZ I3 % 72912, Log4Shell X° IPS -
IDS CEM S5 /L— 2OV THIB L. Log4Shell (IZXFHL9 % F4ES, 1PS X° IDS (2 H Al g 72 /v — Y
ZHBEBENCEKRT A RFEEZNOOEZ /R L, TN E TITRE SN TIEIT., LogaShell D#ER LS
T H LR FF OB N — K LT, END AT DV — NV EAERT D EDRH LW LA
ML=,

%5 3 #ClE. Log4Shell DB XK — Tl fl & 5 ¥ ik & B Lo Fal gk & gy — o b
D, F—hr~hrrEl0lE~vyForZICkoTA—NLE2EKRTHFELRRLE, ZOFEIL,

(F3C 2,000 FH2FE / #53C 800 FEFEHE)
(about 800 words)

75 (5124, % 31 5:Btp)

(B30 7 5) (Format No.D) H A
Log4Shell DFEMIZHWON2DBERE — 0 #FHb e 7 2 & LPEICHRINC LS 5 2 & 2 F[EEIC
L. &SN r—oafifbld, AR Enizv—b & b— L AERRATAE] & 7= SRl Enask oo it oo BRI
ML L, AR S T2 — L ORI X G OB & R 5 2T 5, SRR FIEOA A BGET 2 FEBR T,
WEFDO/L—Lt y MZEFEND, LogdShell ZxtG l Lz — & EFIEICI > TERENTZL—
VAL LTz, BRI Ko T METIRIC L o TER SN V—uid, FRijaak s L ChH 2 b - e
(LIEDO BB DN TR ANY — 2 2 L7518V T i Gor—r X 0§ 60%mE 0 100%,
ORRIYEREZ R LTz, 72, BB TIEO L — VIR CEEHbikIcxt LT, iR oL — 10 b, 62%
FWREEONL— NV EAERTEDZ L Zm L, IRETFIET LogdShell DK RE — L OEEFH{ELS T & A
PEIC . ZhRIICRH L CE D Z L # B nIc Lz,

H4ETIE, PoC 2— FORNEZE LLM (2L > THrd %5 Z & ¢, IDS [T O—/v & HEIIZ AR
TAFERRRE L., ZOFEE. ABICLE AL —AERICBWTE L O A LI L35, aggtko
T E BT VB OO X 27 & BT 5, IREFIEOG ML REET 2 ERTIE, 7'H
TIIVITEERT A~y M ERRR DO PoC 22— RE AW T AR S Lz — /L O R
o, JL— L DA B U2 BRI & bl U 7=, Log4Shell Z 4 2K CHWON AR AY — L 21
HRTREZ2 L — L DAERRIZ AT L, WL PoC 22— REZFER LZGEH. v—% 1 5 DINIHERT]
LEEHIZ, NS XD HRNROBEIEDOAHTERI RN —NVEERTE DL Z ENRINT, ZNH O
BT RETIEN PoC 2— R THWONE T 07 T I VTSR0 7 4 —~ v MUEF LWL Z R
B TR BB NG = OBGICT SICHHLTE D Z LW BT LT,

%5 T TCIL., A & L OAGRSC TR L 7= F1ED LogdShell OB N — 2% L CTHR 2V — V&
AR TCED I 2SO THALE LT, ~v o =7 OBHA~OISH TR, PG SCCHIRE L= 2D
DFEERABRDEDL Z LIV THim LT 5,

(FI3C 2,000 FFEFE / H3L 800 FEFLE)
(about 800 words)

U7 5 (5 12 45, 5 31 £:R81%)
(*%ft 7 7E7_") (Format No.7) ¥:EE

F M o X E F

(Summary of the Doctoral Dissertation)

Intrusion Prevention System with Automated Rule Generation Using
AV R SCRE H Automata and Large Language Models from Proof—of—Concept Codes
(Dissertation Title) (BEEE=— FEHAWVWTA— v h U ERBESEET VICE -
TN—NHERT DERARIE Y X7 4)

K 4 Name) YAMAMOTO Yudai

Proof-of-concept (PoC) code in cybersecurity is very useful in that it provides information to
consider vulnerabilities and countermeasures against their exploitation, encouraging security
vendors and program creators to create patches to fix vulnerabilities. However, there is also the risk
that attackers may misuse PoC code in actual attacks or detailed information about the
vulnerability may spread, decreasing the difficulty of carrying out attacks.

Log4Shell, a vulnerability in the Apache Log4j logging library that was disclosed in December 2021,
is well-known for affecting many applications and services caused by Log4j. However, Log4Shell is
also one of the vulnerabilities in which PoC code contributed to the spread of attacks and clearly
demonstrated the inadequacy of defensive measures such as IDS.

Until now, each task in creating IDS and IPS rules has been mainly performed manually by
humans, and it takes a lot of time to create one rule. The fact that it takes a lot of time to create
rules means that it is difficult to take measures before large-scale attacks exploiting vulnerabilities
begin in a situation where the time between the disclosure of vulnerabilities and large-scale attacks
exploiting the vulnerabilities is short, as in the case of Log4Shell. Although the time required to
create rules can be reduced by automating rule generation, research conducted to date has issues
with versatility and dealing with complex attacks.

In this thesis, we proposed a method to generate rules targeting complex attack patterns such as
obfuscation and randomness by using "prior knowledge" that defines the obfuscation method used
in Log4Shell attack patterns, and a method to minimize the time required to create rules by
automatically analyzing the contents of PoC code that can obtain useful information about
vulnerability attacks.

This thesis consists of five chapters.

Chapter 1 describes the objectives of this paper and the problems to be solved: to effectively deal
with obfuscated and random attack patterns using a rule generation method that uses prion
knowledge, and to assist human rule creation by enabling attacks that exploit vulnerabilities to be
dealt with before they are launched on a large scale using an automatic rule generation method|
using LLM.

Chapter 2 explains the rules used in Log4Shell and IPS/IDS to clarify the necessity of the two rule
ceneration methods proposed in this paper, and presents methods to counter Log4Shell and

methods to automatically generate rules applicable to IPS and IDS, as well as the challenges they)

pose. It is clear that the methods proposed so far have difficulty generating rules to detect

(FI3T 2,000 FF2EE / 2L 800 FEFZE)
(about 800 words)

U7 5 (5 12 45, 5 31 £:R81%)
(*%ft 7 7E7_") (Format No.7) ¥:EE

obfuscated and random attack patterns in Log4Shell.

Chapter 3 proposes a method to generate rules by using automata to match attack patterns with
prior knowledge that defines the obfuscation methods used in Log4Shell attack patterns. This
method makes it possible to effectively deal with the obfuscation and randomness of attack patternsg
used to exploit Log4Shell, and visualization of the generated rules clarifies the relationship|
between the generated rules and the prior knowledge used to generate the rules, making it easier to
understand what the generated rules are intended to detect. In an experiment to verify the
effectiveness of the proposed method, rules targeting Log4Shell included in an existing rule set
were compared with the rules generated by the proposed method. The comparison showed that the
rules generated by the proposed method showed 100% detection performance, 60% higher than the
comparison rules, when an attack pattern was used that used only the obfuscation method given as
prior knowledge. In addition, it was shown that the rules of the proposed method can generate rules
that are 62% shorter in length than the comparison rules for the same obfuscation method, making
it clear that the proposed method can effectively deal with the obfuscation and randomness of
Log4Shell attack patterns.

In Chapter 4, we proposed a method to automatically generate rules for IDS by analyzing the
contents of PoC code using LLM. This method automates a series of tasks in rule creation, including
vulnerability analysis, which requires a lot of time when creating rules by humans. In an
experiment to verify the effectiveness of the proposed method, we used multiple PoC codes with|
different programming languages and formats to compare the detection performance of the
generated rules and the time required to generate the rules. We succeeded in generating rules that
can detect attack patterns used in attacks that exploit Log4Shell, and it was shown that for each|
PoC code, rules could be created within one minute and practical rules could be generated with only
minimal human modification. These results clarified that the proposed method is versatile and doesg|
not depend on the programming language or format used in the PoC code, and can quickly respond
to the emergence of new attack patterns.

In Chapter 5, we conclude by explaining that the method proposed in this paper can generate
effective rules for Log4Shell attack patterns, and also discuss the possibility of applying it to

malware detection and the combination of the two methods proposed in the doctoral thesis.

(FI3T 2,000 FF2EE / 2L 800 FEFZE)
(about 800 words)

