Doctoral Dissertation

L3

Prediction Mechanism Using Adaptively Linked
Composite Ensemble Networks to Enhance Robustness
and Its Application in Smart Cities

(FRAEMEZ 8D 2 7o DICHIGHR T 2 HET VY I ry bV =%
FAWTFTHA D=L A7 =T 4 ANDILH)

March 2025
SHTEIH

The Graduate School of Sciences and Technology for Innovation,
Yamaguchi University
LI TR R A BRI BB AT TE R
Division of Systems and Design Engineering
AT L THA Y IEREK

Mohd Hafizuddin Bin Kamilin

Abstract

Machine learning is often suggested to help with the processing of huge and intricate
datasets collected by sensors in smart cities, which are challenging to process or compute
using conventional approaches. In addition to improving the efficiency of urban operations,
it also enhances the quality of life for the residents and provides actionable insight to help
with decision-making. Machine learning has various applications in smart cities, such as

forecasting electricity loads to balance supply and demand.

Most of the proposed machine learning techniques for forecasting were created with
the assumption that the input variables are clean with consistent data distribution and
running on a stable system. However, the accuracy is compromised by problems such as
missing values due to packet loss from the distributed denial-of-service attacks, concept
drift that invalidates predictions due to changes in data distribution caused by seasonal or
trend changes, small perturbations introduced by adversarial attacks that fool the machine
learning into making erroneous predictions, and system instability that could bring down

the servers or Internet of Things devices that are hosting the forecasting models.

While a unified approach has been suggested, it is limited to integrating trivial solutions,
as the linear operation required to correct the input data tends to accumulate more errors
and compatibility issues between the solutions. This thesis proposes a novel approach
called Adaptively Linked Composite Ensemble Networks to solve this problem. To link
multiple solutions into one, Composite Ensemble Networks classify solutions to problems
such as missing values, adversarial attacks, and concept drift in terms of correction and
enhanced forecast. Then, it sequentially links the solutions for correction and solutions
for enhanced prediction in parallel based on the priority of the solutions. By linking the
correction solutions for a specific problem to the improved prediction solutions, the system
can effectively identify the errors from fixed missing values, adversarial attacks, and changes

in trends, which helps to continually improve the prediction accuracy.
The thesis consists of five chapters.

Chapter 1 describes the optimization of essential service operations in smart cities and

protection against cyberattacks. It then indicated the need to solve these problems in

a unified way and stated the purpose of this dissertation. To clarify the position of the
dissertation, the previous study similar to the unified solutions was compared, and the
limitations of why it is limited to simple solutions due to the errors accumulation and
compatibility issues are explained. Then, the countermeasures taken to solve these issues

in this thesis are defined.

Chapter 2 introduces the previous research done to unify the missing values, adversarial
attacks, concept drift, and single point of failure solutions. Additionally, the shortcomings
and limitations of why previous research for a unified solution are constrained to the

sequential corrections and forecasting improvement are discussed.

Chapter 3 presented the implementation of Adaptively Linked Composite Ensemble
Networks to improve the electric load forecast, in addition to anomaly detection, rules
for linking the appropriate solutions, and system hardening against single point of failure.

Furthermore, the hyperparameters to initialize and control the operations were given.

Chapter 4 demonstrated the proposed ensemble learning network implementation and
application for forecasting the electricity load in New York State and its resiliency against
missing values, adversarial attacks, and concept drift. Then, the accuracy was compared

with the previous unified method in Chapter 2, highlighting its weaknesses.
Finally, Chapter 5 summarized the works done in this thesis.

These results highlight the effectiveness of Adaptively Linked Composite Ensemble
Networks to solve missing values, adversarial attacks, and concept drift. In addition, the
implementation shows its robustness against the single point of failure by distributing
the essential components with redundancy. As society becomes deeply integrated with
cyberspace, a unified solution is not only necessary to improve essential services but also

to protect them against cyberattacks.

1

=

AR =17 4 DY —TIE SN S KB TEM R 7 — 213, /RO TTTET DU
HEL . WEESTEREIATV S, BWEEICKD, TEEOMERE L. FROE
HEOHZM EXE, F—RICEOSBERREZXETE %, Gl LT, ENHEED
THNC XD ENEMDNT Y A2 WE L, BHRMA S Y N7 =2 DLEWNPMRFTE 5,

INFTIRR ST 7R REREN HALZEDSRWANT—4& L
BELIS AT AZFHRICHAE SN TE L, L L, 7Y —EXIEERBIZL 2 AN
7T —XDRIEE, FHP ML Y FOBTT =X OMBED 272 & TTHIPENNT 5

RERVU TN BNHNRBETTHEESE 2 DICEA SN /NSBHHEL - DORE
EMTTFHARREIC R 2 FOMEIC K > THREE O TFHIREMERLTLE 5,

FATIIZE Tl IRE I N — IR R IERILENC KR X ., SMELOETIERRENE
BLTLES L WORMEDLD D, ZNEMRIIT 2 7-DIARAN G T, BBOMIRE T
M3 272012, BLEGETIHEHET VI YTty b7 =7 RER LT

WET By TNty b7 —=2F KAEME, BOHHIIKE, #ER RV 7 2 ORI
TR R, FTIEB XEFHOEILE WO BlRTHET 5, HEOMIK 2 HE S 5 72
DIT, RPRROBIIRMICHED =, FTIEH ORISR 2 IHGHRS L. TRl Z s 3 5 ik 2
WFNCHERE LTz Fio. REDRIEICN T 25T IEAORK O 1%, THlZ@s 2@
REED ATNHE T 5 Z & T, FHIE T MIETIEX N KIBE, BoTrRE, 2 LTl
FUZ FeBEL. BRI TFHRBEL2RETZ 2, V—N"ORLEMEZH -0, #
BT BTNy M= DRIRERZTSLL TRy VI =2 BRXUNY 77 v
WICH L7z, —BED/ — PR DV LEGE, IEA A =XLTHEINZ/ —) —X—
23/ — FDEREZHRHBL, XY LERRRENY 77 v T TF—=2poftio) — FIZH
LT BN TE S,

FNERE 5 DDOEDP SR I NS,

BIETIE, Av— b7 4 BT 2EANLRY —CAEHORELE, A -
DN OWTEHA L, £ LT, ZhoOMEERH—INRAFIETHRIRT 2 0B
AUy AEAGROHWZ R L. BT, PR DAE DT 2T 2720, Zh
F COMETIRRE S NIRRT B2 R U RIRSR DA ME T S T e 3 i

11

RIFRRICRON TV Z e 2R L, 2D 5 2T, R EINLEE T V>
TNy P =23 D XS CZDHRARERT 52 2m LT,

2B T, RIBME. BoTHINE, #ER RV 7 b, B—EERICONT 2R —F
57D DFATHRZREN Le Ty FATHE DM — AR AR DI 25T I FHl D
BB ICHF S IOV TR L 72,

HIETIE, BBESNLBEGEFET 2EET Y H TNy P =D, A=Y
T AERSRAT A HHUG L T — X O REMA. WY R ok, B X O TR
NERLIZ. EHIT, AT LEHED OGN A =T X=X PEWEEET LD
BERIDOTAUCE D XS ITHET 20 %2R LT, MVWT, TS AT LT —F77F v
CIRIRGEAS DS D 5 2 C. RIBME. BOTHIE, #E&FY 7 b Z L TH—-EELD
FRTREE 2 7R L 720

BHABETIE, =2—3—2MOENHERELZ T 57012, BEISHEMSIC K 2EET
YHYINAy U= RIGH L, EFEOFMMELRT 20I1T, FEEFEOBMR Y 7
DT =227 X LRRIE. BREHMHKEDSY I 2L —> a Yy EHWT, EITW5%
DE2HEOERE K L2y Z LT, RWENHEEO PTHNREEICL D, BHEICED X
S RBHENEZ OND D E iR LT,

R, BHETIE, HERXDEEZ LD,

D EOREICE D, BOESET2EE T Y 702y b — 2 3RIEME. BOTRIIK
B ZLHMERY 7 b 2H—MNCHIRTE L, EHIT. TS AT LT —F77F v L
F—REEWEEETNT—RZDNY 77y FICE DB BELAOBES fRETE 2, #
— SN R, BTHREBEDIRER 2 X X 2 — L RAOFEM L, S A N—KEITxT
LR S AT AR E WAL S, TRV ZOD U TESE 2 X TRMAIRERAY—
74 DEFNIKELS BT 2 Z e HIfFE N5,

v

Contents

1 Introduction

1.1 Research Background oL
1.2 Research Objective
1.3 Contribution.

1.4 Article

Structure

2 Previous Research

2.1 Chapter Introductiono
2.2 Countermeasure Appraisal
2.2.1 Missing Values L
2.2.2 Concept Drifto
2.2.3 Adversarial Attacks
2.2.4 Single Point of Failure
225 SUMMATY
2.3 Method Evaluationo
2.3.1 Data Preparation o
2.3.2 Model Architecture Lo
2.3.3 Missing Values oo
2.34 Concept Drift
2.3.5 Adversarial Attackso
2.3.6 SUMMATY
24 Conclusion

3 Proposed Method

3.1 Chapter Introduction

3.2 Theory

10

12
12
15
15
16
17
20
21
21
22
24
27
32
36
41
42

3.2.1 Leader Election 46

3.2.2 Redundancy Strategy 49

3.2.3 Composite Models Arrangement 52

3.3 Anomaly Detections 56
3.3.1 Missing Values 56

3.3.2 Adversarial Attacks L 57

3.3.3 Concept Drifto 60

3.4 Solutions 61
3.4.1 Missing Values 61

3.4.2 Adversarial Attacks oL 67

3.4.3 Concept Drift 69

3.4.4 Primary Meta Model L. 74

3.4.5 Training Method oL 75

3.5 Conclusion 76

4 Electricity Load Forecast 78
4.1 Chapter Introduction 78
4.2 Application 79
4.3 Result 80
4.3.1 Missing Values L 80

4.3.2 Concept Drift 83

4.3.3 Adversarial Attackso o 87

4.4 Conclusion 90

5 Conclusion 92
Acknowledgement 100
List of Publications 101

vi

1 Introduction
1.1 Research Background

Society 5.0 is a vision proposed by the Japanese government’s Cabinet Office to create a
human-centric society that aims to improve economic development and solve social issues by
integrating the physical space with cyberspace [1]. The digital transformation utilizes the
Internet of Things (IoT) to collect complex data, process it with artificial intelligence (AI),
and make data-driven choices, addressing challenges such as aging populations, climate
change, urbanization, and resource management. To realize this vision, smart cities act as
a forefront for the digital transformation [2], utilizing interconnected digital infrastructures
to manage urban resources more efficiently, improve public services, and create sustainable
living environments. Additionally, smart city implementation also opens up new market
potential in providing smart city technologies in utilities, governance, transportation, and
many more, which are estimated to reach 3,733 billion USD in 2030 in global market

size [3], as shown in Figure 1.1.

L, 4500
N

S 3733
T 3500 |

<8 2968

(o]

> 2 2500 + 2359

g2 1875

O & 1500 | 1185 =t

= 942 I I

(IE) 500 . 1 1 1 1 1 1

2024 2025 2026 2027 2028 2029 2030
Figure 1.1: Projected global smart cities market size from 2024 to 2030.

One example of digital transformation in smart cities is to balance the electricity power
distribution to meet the demand in the New York State [4], ensuring the stability of the
electricity delivery network to avoid interruption. The latest electricity load demand from
multiple zones was gathered by [oT devices, which were used by the Al-based forecasting
model to forecast the electricity load with high accuracy [5], as shown in Figure 1.2. The

forecast result assists in allocating electricity power in advance to prevent overloading the

grids [6], enhances the integration of renewable energy [7], and minimizes operational losses
during peak hours [8]. These benefits enable the provision of affordable and clean energy,
a feat that would be challenging to achieve with a conventional statistical model alone [9],

which is facing difficulties processing intricate and multivariate data.

Output ()
Llnfut X Forecasting Forecasted Load
oad Sensors Long Island
@ Capital syStem
r) Hudson Valley
Long Island

p_

Figure 1.2: Forecasting system applications in smart cities utilize multiple data from
multiple sensors to improve the accuracy.

As most of the smart city services, which include electricity production and distribution,
take time for the operation adjustment to show their effects, a forecasting model to detect
non-optimal operation helps the system operator or automated system management take

preemptive measures to optimize the operation, as shown in Figure 1.3.

Optimize

Collect :
operation

Figure 1.3: System optimization relies on prediction to anticipate suboptimal operation
to perform preemptive measures.

Based on the compound annual growth rate (CAGR) shared by Juniper Research, the
projected global cost savings from electricity distribution via smart grid technologies will
grow from 56 billion USD in 2024 to 278 billion USD in 2030 [10], as shown in Figure 1.4.
The CAGR demonstrates the advantage of smart cities in reducing wasteful electricity
generation by anticipating the electricity load demands via a forecasting model, which

helps the system operator to adjust the electricity generation.

350
300 r

278
250 r 213
200 163
150 | 125
96
100 | 56 73 I
50 _—_I_. 1 l 1 1 1 1

2024 2025 2026 2027 2028 2029 2030

Saved Electricity Cost
(Billion USD)

Figure 1.4: Projected global cost saving from electricity distribution from 2024 to 2030.

These examples show the benefits of integrating physical space with cyberspace with
regression analysis-based Al. However, most of the proposed Al, especially those based on
machine learning (ML), were made with the assumption that the input would be clean
with consistent data distributions and that the centralized model architectures would be
set up on a server that could run without interruption [11]. Because these conditions
are not guaranteed in real-world applications, forecasting accuracy often degrades when
dealing with missing values [12], inconsistent data distribution [13], adversarial data [14],
and server instability [15]. Moreover, connecting physical space with cyberspace exposes
the infrastructure and services in smart cities to cyberattacks [16]. Table 1.1 summarized

the issues, causes, and effects that degraded the forecasting accuracy.

Table 1.1: Forecasting issues encountered in the real-world application.

Issue Cause .Eﬁ'ect —
Input Noise Vulnerability

Missing Values Sensor issues, cyberattacks v

Concept Drift Season or trend changes v

Adversarial Attacks Cyberattacks v

Single Point of Failure Server failure, cyberattacks v

Although the IBM X-Force Threat Intelligence Index 2024 [17] shows the cyberattacks
against the energy sector relatively unchanged in recent years, with the average of 9.42%
for the past five years in Figure 1.5, the analysis done by the IBM X-Force estimates that
as the AI market share increases to 50%, the cybercriminals will be more incentivized to

develop tools targeting the Al technologies. For example, attackers could sabotage IoT

devices measuring electricity loads or their connections, compromising data integrity by
adding small perturbations using adversarial attacks [18] that are not readily apparent to

trick ML models into making incorrect forecasts.

20.0
16.0 r

12.0

i 11.1 107 11.1
8.2
80 b o
40 | I
0'0 1 1 1 1

2019 2020 2021 2022 2023

Cyberattacks [%]

Figure 1.5: Global cyberattack trends for the past five years, targeting the energy sector,
are relatively unchanged.

Besides adversarial attacks, the attacker could leverage Distributed Denial of Service
(DDoS) attacks. Cloudflare’s DDoS threat report for the 2024 Q2 reports a 20% increase
in DDoS attacks when compared to the previous year [19]. Additionally, over 57% of
application-layer DDoS attacks and over 88% of network-layer DDoS attacks last less than
10 minutes, which is too short for a system operator to manually apply mitigations to avoid
missing values (MV) due to packet loss or preventing the servers from going offline [20].

In these reports, IBM X-Force and Cloudflare also mentioned the increasing number of
state-sponsored attacks on specific organizations and countries and how they are utilized as
a new technique of warfare. For instance, the Russo-Ukrainian War shows how vulnerable
the existing infrastructures are to cyberwarfare [21]. Up until 17 December 2024, during
the Russo-Ukrainian War, the CyberPeace Institute recorded a total of 125 cyberattacks
on the energy sector [22], as shown in Figure 1.6. Besides causing financial losses, exposing
sensitive personal information, and eroding public trust in smart cities, it also poses threats
to national security. These problems highlight the necessity of having a distributed and

robust forecasting model.

m Distributed Denial of Service
B Malware
Defacement
m Hack and Leak
m Wiper
B Ransomware
B Cyberespionage
B Other

Figure 1.6: Distributed Denial of Service is the most commonly occurring cyberattack
against the energy sector in the Russo-Ukrainian War.

Several solutions have been suggested. For instance, ML-based imputation mitigates
missing values (MV) by complementing the MV caused by sensor issues or DDoS with
high accuracy [23]. Adversarial training injects adversarial samples as training data to
strengthen the ML models, allowing them to generalize against adversarial attacks [24].
Retraining mechanisms update the ML models to handle the latest data distribution when
concept drift (CD) occurs [25]. Finally, federated learning helps decentralize the models [26]
to avoid Single Point of Failure (SPoF) vulnerability. However, unifying these into one

solution shows problems that are not effectively addressed in the previous study.

1.2 Research Objective

As briefly discussed in Chapter 1.1, MV refers to incomplete data, which can be caused by
either a malfunction in the sensors or a DDoS attack that results in packet loss [27, 28, 29].
To solve MV, Zhang et al. [30] created a generative adversarial network to reconstruct
values close to the correct one that is missing. Additionally, Ma et al. [31] implemented a
bi-directional Long Short-Term Memory (LSTM) that uses correlation and causal data to
predict the values close to the correct one that is missing.

CD explains the situation when the current data distribution diverges from data used
to train, consequently invalidating the forecasting model [32, 33]. To solve CD, Bayram et
al. [34] proposed a dynamic framework that could detect CD without defining the limit,

which helps to retrain the MLs without external intervention. Moreover, Li et al. [35]

5

implement incremental updates by adding newly trained ML models to existing ensemble

arrangement to help the forecast adapt to the latest trend.

Adversarial attacks are defined as methods to subject the data to small perturbations to
maximize the loss of the MLs and mislead them into making incorrect decisions [36, 37]. To
solve adversarial attacks, Ren et al. [38] implemented Transformer-based causal analysis to
detect anomalies and prevent the data from being processed. Also, Kwon et al. [39] utilize
various adversarial attacks in adversarial training to harden the MLs.

Finally, SPoF refers to the potential for the entire system to fail if cyberattacks take
down the server or IoT device hosting the centralized ML model with no backup [40, 29].
Recent studies in distributed ML, such as Gupta et al. [41] and Shi et al. [42] in federated
learning, show traction to maintain privacy and solve SPoF. The compatibilities between

the solutions and their respective issues were summarized in Table 1.2.

Table 1.2: Compatibilities between the previous studies and their respective issues.

ol s Issue
Author Citation Missing Concept Adversarial Single Point
Values Drift Attacks of Failure
Zhang et al. [30] v
Ma et al. [31] v
Bayram et al. [34] v
Li et al. 35] v
Ren et al. 38] v
Kwon et al. [39] v
Gupta et al. [41] v
Liu et al. [42] v

Although there is plenty of research found in Google Scholar dated from 1 January 2019
to 31 December 2024 that covers MV, CD, adversarial attacks and SPoF based on their
specific keywords, as shown in Figure 1.7, there is only one paper that matched the “Smart
City,” “Forecast,” “Missing Values,” “Concept Drift,” “Adversarial Attacks,” and “Single
Point of Failure” keywords, which shows the difficulties of integrating multiple solutions

into one.

Rl T —
3290

"Missing Values"
"Smart City" AND "Forecast" AND
"Concept Drift"
"Smart City" AND "Forecast" AND
"Adversarial Attacks"
"Smart City" AND "Forecast" AND

"Single Point of Failure" _ 8|41 . .

0 1000 2000 3000 4000

[330
[530

Figure 1.7: The number of research papers found using the keywords on Google Scholar
from 1 January 2019 to 31 December 2024.

The research paper that has all keywords was done by Zhou et al. [43], where they
utilized interpolation to impute MV, proof-of-distribution to detect adversarial attacks for
contribution weight reduction, conformal scores comparison for retraining when CD was
detected, and federated learning for sharing the forecasting model weights to act as a
backup when one of the forecasting models is offline. Figure 1.8 shows the implementation
done in this thesis, which focuses on tuning the federated learning to reduce the negative
effect of adversarial attacks in training data via weighted averaging on the local models
and retraining the global model to keep up with the latest trends. However, it is not a true
unified solution due to weighted averaging not being applicable when facing live adversarial
attacks, and the retraining effectiveness to handle CD depends on the retraining interval

and data range used for retraining.

Input (X

put (X) Adjust Weight
Load Sensor : -
@ Capital Contribution

O Hudson Valley

Output
@ Long Island utput (7)

Forecasted Load
@ Long Island

Figure 1.8: Forecasting system proposed by Zhou et al. [43] relies on detection to

minimize the negative effects of these issues.

The reason why existing unified implementation relies on simple countermeasures or
circumvention is due to the difficulties of implementing more complex solutions. Moreover,

not all solutions are compatible with each other, as shown in the list below:

7

(i) Incompatibilities with the input data: Some solutions requires the input data to
be preprocess with other solutions first to be effective. For example, MLs hardened
against adversarial attacks cannot handle MV without it being imputed.

(ii) Incompatibilities with other solutions: Despite some solutions are aimed at
the same issue, they might not be compatible. For example, a forecaster hardened
against MV will not improve its accuracy with imputation, as it does not know the
MYV location.

(iii) Correction errors accumulation in input data: Input data preprocessing is
commonly done in sequence to resolve the noises caused by MV, CD, and adversarial
attacks. The mistakes in resolving the noises will cause the errors to accumulate,

which unintentionally lowers the forecasting accuracy.

In this thesis, the proposed Adaptively Linked Composite Ensemble Networks (ALCEN)
detect the issues found in the input data and dynamically link the solutions that satisfy the
requirements needed. By rearranging the solutions that aim to fix the abnormalities based
on their priorities in “cascading” manners, the input data are properly processed. Then, by
sharing the preprocessed output with the targeted hardened forecasting models, they could
effectively address the issues they were designed for. Finally, the concurrent output from
the forecasting models is combined in a “stacking” manner via a meta model. Figure 1.9
demonstrates the combination used by ALCEN to address MV, adversarial attacks, and
CD with correlated sensor data while SPoF was handled by sharing the model weights.

Input (X) e Output (y)

Load Sensor

@ Capital

O Hudson Valley (f=============-====---=
@ Long Island

\}
m—;—» Forecasted Load
Missing Values ! @ Longlsland
Cascading Hardened Forecast
Impute Missin .
F & Adversarial Attacks
Hardened Forecast

Concept Drift
Hardened Forecast

Attacks Correction

Differential

)
)
)
)
)
)
)
)
:
E Adversarial
)
(]
)
(]
)
(]
)
(]
L)

N Normal
Normalization
Node [oo Forecast

Figure 1.9: Constructed nodes connection by the proposed Adaptively Linked Composite

1.3

Ensemble Network.

Contribution

This thesis demonstrates the originality of ALCEN through three unique contributions

to make a robust forecasting system, which are not covered in previous research through

the modularity of each ML model, wider compatibility with different solutions, and the

adaptability to the external changes.

(i)

(i)

Modularity through unified template: The model could temporarily take the
place of another model that was not online by swapping the weights that were stored
in ALCEN’s internal database. This is possible by using the same ML model template
that was optimized for different problems, allowing seamless recovery against SPoF
due to DDoS attacks bringing the server offline without compromising the forecasting
accuracy. This breaks away from the conventional strategy, which requires an entire
forecasting system running on another server to act as a backup when the main
system failed.

Synergy through connection configuration: The countermeasures for MV, CD,
adversarial attacks and SPoF must be linked in a certain order based on the needs and
priorities of each solution, as simply linking them together won’t give the best result.
ALCEN allows different solutions that fix the input data or solutions that harden the

forecast to be unified into a single forecasting system by taking the requirements and

priorities into consideration, preventing conflicts between the solutions while ensuring
the best forecasting outcome.

(iii) Adaptability through event-driven architecture: The event-driven approach
is not only to update the ML in ALCEN when needed but also to help to detect any
anomalies in the input data and respond by adjusting the connection between the
ML models inside the composite ensemble networks. This approach of reconfiguring
the connection between the ML models allows the ALCEN to adapt to the changes
with minimal intervention from the system administrator, which is slow and reserved

only for tuning the ALCEN’s hyperparameters.

Through these contributions, ALCEN is capable of handling SPoF by swapping the
weight of ML models taken from the backup to replicate other solutions in another nodes.
Additionally, linking the ML models by considering their requirements and priorities allows
different solutions that focus on fixing the input data or hardening the forecast to be
integrated without compatibility issues. Finally, the event-driven architecture in ALCEN
allows it to dynamically adapt to the external changes without continuous input from the

system administrator. These contributions highlight the distinctions from Zhou et al. [43].

1.4 Article Structure

This thesis is divided into 6 chapters.

After introducing the research background, objective, and contribution in Chapter 1,
Chapter 2 discusses the issues plaguing the forecasting model in real-world implementation
and investigate the effectiveness of Zhou et al. [43] application in forecasting the electricity
load in New York State against MV, CD, adversarial attacks and SPoF. Then, evaluation

experiments are conducted to thoroughly assess the limitations.

Chapter 3 established the theoretical foundation for the proposed ALCEN to adapt
the composite ensemble networks with external changes, addressing the network designs,
compatibility problems, and selection hierarchies. The solutions for implementation and
assessment under the smart city framework are also described to rectify the limitation of

previous method.

10

Chapter 4 shows the implementation and deployment of ALCEN to forecast electrical
load in New York State, as well as its resilience against MV, CD, adversarial attacks SPoF,
and SPoF. Then, the accuracy was compared with the Zhou et al. [43] implementation,

highlighting its weaknesses.

Finally, Chapter 6 summarized the works done in this thesis, in addition to the future

work that was not addressed in this study.

11

2 Previous Research
2.1 Chapter Introduction

In their paper, Zhou et al. [43] proposed a robust federated forecasting system to handle
MV, CD, adversarial attacks and SPoF that could be encountered when forecasting the
electricity load. Their implementation was originally implemented to create a local model
for each user to forecast their electricity consumption. Then, the local models’ weights
will be averaged to create a global model that will be retrained to forecast the aggregated
electricity load for the residential area. Any local models that are suspected to be trained
with falsified or adversarial data will have their contribution reduced via weighted averaging
to avoid them from negatively affecting the global model. Finally, CD was resolved by
retraining the global model and MV via imputation. To ensure a result for comparison
with ALCEN could be obtained, their proposal was implemented to forecast the electricity
load in Long Island, New York State, as shown in Figure 2.1.

Input (X
put (X) Adjust Weight
Load Sensor . &
@ Capital Contribution
O Hudson Valley __ Output
@ LongIsland Retrain Impuite Missing Forecast Forecazed Ez)gd
Global Model Values @ Long Island

Figure 2.1: Zhou et al. [43] proposal was implemented to forecast the electricity load in
Long Island.

The dataset used to train and evaluate their proposal on Long Island spans from 1
January 2018 to 31 December 2020, with 5 minutes intervals of recorded electricity load [44].
In addition, the electricity load data with a strong Kendall’s 7 coefficient, such as Capital

and Hudson Valley, was used to enhance the forecast.

12

6000
5000
4000
3000
2000
1000

0
31 Dec2017 10Oct2018 2]Jul2019 1 Apr2020 31 Dec 2020

——Capital Hudson Valley ——Long Island

Electricity Load [MW]

Figure 2.2: Electricity load dataset ranging from 1 January 2018 to 31 December 2020.

Figure 2.3 shows the disturbances that could occur in the input data and negatively
affect the forecasting accuracy, such as MV due to sensor failure or DDoS attacks, CD due

to seasonal changes, and adversarial attacks crafted by the attackers to trick the MLs into

making incorrect predictions.

13

3500
. —— Electricity Load * 50% Missing
=
=)
- 3000 |
IS
o
—l
2
T 2500 r
B
g
M 2000 1 1 1 1
0:00 4:48 9:36 14:24 19:12 23:55
(a) Missing values of 50%
6000
— Train Data —— Drifted Data
=
2
< 4000
]
Q
—
2
8 2000
=
E
K 0 1 1

31 Dec 2017 22 Mar 2018 11 Jun 2018 31 Aug 2018
(b) Seasonal concept drift

3500 — -
—— Electricity Load —— Adversarial Load

[MW]

3000 r

2500 |

Electricity Load

2000 ' ' ' '
0:00 448 936 1424 1912 2355

(c) Adversarial attacks with e=0.05 of perturbation

Figure 2.3: Input disturbances that will negatively affect the forecasting accuracy.
This chapter will discuss previous research on MV, CD, adversarial attacks, and SPoF,

highlighting their advantages over Zhou et al. [43] unified approach. Then, the effectiveness
to forecast electricity load is tested to identify weaknesses that ALCEN will address.

14

2.2 Countermeasure Appraisal

In countermeasure appraisal, the previous research done to solve MV, CD, adversarial
attacks, and SPoF will be compared against the implementation proposed by Zhou et
al. [43], highlighting the potential weakness of countermeasures deployed by their proposal
to unify it in one package.

Additionally, the limitation and reasoning for why the unified solution proposed by
Zhou et al. [43] does not use a more complex solution are given, highlighting the difficulties

of integrating multiple solutions into one.
2.2.1 Missing Values

MYV that happened when forecasting the electricity load is classified as a missing completely
at random (MCAR) [45], which is shown in Figure 2.4. The reason for that is the probability
of the sensor measuring the electricity load to fail and the probability for the packet data
to be lost due to network issues or DDoS attacks occurred completely at random. The
previously introduced imputation proposed by Zhang et al. [30] and Ma et al. [31] utilizes
multivariate data with to impute the MV with high accuracy.

2750
Electricity Load ® 50% Missing
2700 |
2650 °
2600

2550 |

Electricity Load [MW]

2500 ' '
0:00 0:18 0:36 0:55

Figure 2.4: Simulated 50% missing completely at random in Long Island on 1 January
2018.

However, due to the privacy constraint from the unified method proposed by the Zhou et
al. [43], the imputation use univariate interpolation method instead, which far less accurate
than multivariate imputation. Furthermore, the type of interpolation used in their research

were not defined. To implement their proposal, this thesis utilizes spline interpolation [46]

15

of order 2 and fallback imputation value of —1 if the sequence has less than 2 real values,
as shown in Algorithm 2.1, which offer greater accuracy than polynomial interpolation for

univariate data.

Algorithm 2.1 Spline Interpolation

Input: Input sequence v;, Order order=2, Fallback value f=—1
Output: Scaled imputed sequence v
1: Function spline_interpolation(v;, k)
Create a copy of the array: v} <— copy(v;)
Set of indices for non-missing values: z_known < known_indices(v})
Set of values for non-missing values: y_known < v}[z_known|
Set of indices for missing values: x_missing <— missing_indices(v})
if x_known > order do
Get the imputation: c¢s <— CubicSpline(z_known,y_known)
Match with the missing indices: y-missing < cs(x-missing)
Impute missing values: v}[x_missing| < y-missing
else do
Impute missing values: v}[x_missing] < f
12: return v
13: End Function

= =
= O

2.2.2 Concept Drift

CD refers to a phenomenon where the current data distribution is different from the training
dataset that was used to train the ML model, which makes it less accurate [47]. While are
many reason that cause CD [48], such as changing user preferences or external factors that
are uncountable, this research focus on seasonality changes, which shows the normalized
distribution on Figure 2.5 for Figure 2.3 (b). Additionally, the inability to generalize with
CD will result in cascading effects on the entire system, which relies on the forecast to
optimize its operations. The previously introduced retraining mechanism proposed by
Bayram et al. [34] and Li et al. [35] resolves this issue by updating the forecasting model

with new trends.

16

Train Sample

Drift Sample

Frequency

-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Normalized Values (v")

Figure 2.5: Normalized values distribution comparison on train and drifted sample due to
the seasonal changes.

Zhou et al. [43] implemented a trivial retraining method on top of federated learning,
with Conformal Prediction [49] being used to determine if retraining is needed. which is
shown in Algorithm 2.2. Although its being a non-parametric method makes it easy to

implement, its sensitivity might cause unnecessary expensive retraining.

Algorithm 2.2 Conformal Prediction

Input: Calibration c_true, c_pred, Test t_true, t_pred, Confidence ¢=0.95
Output: Decision to retrain model True V False
1: Function conformal prediction(c_true,c_pred,t_true,t_pred,c)
2: Compute absolute errors: abs_errors < |c_true — c_pred|
3: Determine confidence level: quantile < percentile(abs_errors,100 x ¢, axis=0)
4 Construct upper bounds intervals: [_bounds < t_pred — quantile
5: Construct lower bounds intervals: u_bounds < t_pred 4+ quantile
6: Find coverage: coverage <— mean((t_true > [_bounds) A (t_true < u_-bounds), axis=0)
7. if any(coverage < confidence) then
8 Retrain the model: return True
9: else
10: No retraining needed: return False
11: End Function

2.2.3 Adversarial Attacks

Although currently there is no recorded adversarial attacks being used to sabotage the
electricity load forecasting system in real-world, recent cybersecurity surveys indicate a
growing research interest in adversarial attacks over traditional attacks, such as DDoS

attacks [50, 51]. Unlike DDoS attacks, which can be easily identified and trigger the

17

detection systems, adversarial attacks are crafted to exploit vulnerabilities in ML models,

leading them to make incorrect decisions without being easily apparent [36].

Figure 2.6 shows how the adversarial attacks implementation could be done without
having direct access to the forecasting model. As energy companies often share the forecast
data for transparency and help consumers make data-driven decisions, the attacker could

use it to craft effective adversarial attacks, as shown in the following steps:

(i) Train surrogate model: Use the publicly shared current and forecasted electricity
load data to train the surrogate model.
(ii) Gradient computation: Use surrogate model to forecast and optimize the gradient
needed to increase the loss score.
(iii) Adversarial insertion: Insert the generated adversarial samples to the compro-

mised IoT sensors or network.

Assigned
City Zone

System
Optimization

| Forecasted Load é J 18 1|

‘»+

Inserted Perturbed Loadi

: . o
(
0t ——
— 0 o0 Evaluate —_—
L ° Forecast 'a'
Training Surrogate Adversarial Perturbed
Data Model Generation Load

Figure 2.6: An illustration of adversarial attacks implementation against the energy
sector.

Figure 2.7 shows the up-close comparison between the observed electricity load and
the adversarial load, where the adversarial load tries to reduce the forecasting accuracy
by shifting up the electricity load to give the impression to the forecasting model that
the electricity load is going to increase. Additionally, shifting down the electricity load to

18

give the impression that it is going to decrease. To handle live adversarial attacks, the
previously introduced countermeasures by Ren et al. [38] focus on detection to prevent
adversarial data from being processed, while Kwon et al. [39] focus on model hardening to
increase the reliability and help the forecasting model to generalize well with adversarial

attacks.

3000
Electricity Load —— Adversarial Load
2800
2600
2400

2200

Electricity Load [MW]

2000 1 1 1 1
0:00 0:41 1:23 2:05 2:47

Figure 2.7: The perturbation added shifted the electricity load pattern to tricks the
forecasting model.

For the unified method proposed by Zhou et al. [43], they utilize blockchain to secure the
forecasting network and weighted averaging in federated learning to create a standardized
internal parameters m; without sharing the dataset. Compared to the typical federated
learning, where the local models (pre-averaging) only undergo simple averaging to create
a global model (post-averaging), the weighted averaging reduces the contribution w; of
the local model trained with adversarial data from negatively affecting the global model
during the training phase, as shown in Figure 2.8. However, this method cannot handle

live adversarial attacks.

$ie
o X o,
o (m; X wy) %
(; 88 s w@—>%05.0
&go Z w; O
%‘a&o
- o .
A k?‘ Welghte d Global mode]
Train averaging retrain

local models

Figure 2.8: Weighted averaging was used to reduce the contribution of forecasting model
trained with adversarial data.

19

2.2.4 Single Point of Failure

SPoF' could be caused by technical issues caused the infrastructure to become unstable or
DDoS attacks overwhelming the server with a massive amount of fake traffic [52]. As the
server is trying to handle all the incoming traffic, the processing power and bandwidth will
get, exhausted, making it difficult for the legitimate users to access the server. Similarly,
the inability of the server hosting the ML to forecast will negatively impact the systems
that depend on it for optimal operation and decision-making.

This is due to the linear flow in system optimization, as shown in Figure 2.9 where the
failure of the prediction mechanism could cause cascading failure for the next tasks that

relies on the forecasting outcome to operate.

Optimize

Predict .
operation

Collect

Single Point of Failure

Figure 2.9: Prediction mechanism act as a single point of failure that could bring the
system down due to the linear flow in optimization.

While the most trivial countermeasure against SPoF relies on creating a copy of the
forecasting model in a different location to act as a backup, distributed computing also can
mitigate the SPoF vulnerability by partitioning complex model architecture across multiple
servers with the side effect of latency [53]. Previously introduced federated learning by
Gupta et al. [41] and Liu et al. [42] is also a form of distributed computation that prioritizes
data privacy.

Similarly, Zhou et al. [43] use federated learning to distribute the forecasting model to
solve SPoF in their implementation. Algorithm 2.3 shows the simplified implementation
used to simulate federated learning in this experiment. Differ from the typical federated
learning implementation, the global model was retrained on the target forecast vj,,;,, to
help it generalize well on the target forecast without the heterogeneity issues. However,
federated learning restrict the number of forecasting model architecture to one, hence the

reason why the method proposed by Zhou et al. [43] does not deploy additional ML-based

20

data preprocessing and relies on simple statistical imputation to solve missing values.

Algorithm 2.3 Federated Learning Training Mechanism

Input: Scaled training sequences v},;,=|
Output: Global model M
1: Function federated_learning(v;, ., M)
Initialize weight storage: weights < ||
for j=0 to len(v},,;,) do
Train local model: M.train(vy, ;)
Store the weight: weights.append(M.get_weight())
Reset local model weight: M.reset_weight()
Average the weights stored: averaged_weight < average(weights)
Set global model M .set_weight(averaged_weight)
Retrain global model on the target forecast: M.train(vi,,,,)
10: return M
11: End Function

* s Vtrain,)» Model M

/ ! /
Utr(zz'no) Utraml) Utraing)

2.2.5 Summary

Compared to the previous research, the proposed method by Zhou et al. [43] relies on
simple countermeasures that are less effective to create a unified solution against MV,
CD, adversarial attacks, and SPoF. The reason for this is that federated learning makes it

difficult to manage multiple MIL-based data preprocessing across multiple global models.

Additionally, utilizing ML-based data preprocessing restricts it to linear correction,

which inadvertently accumulates errors from inadequate corrections.

2.3 Method Evaluation

In method evaluation, the unified solution proposed by Zhou et al. [43] is implemented to
forecast the electricity load in Long Island. Then the forecasting accuracy will be evaluated
against MV, CD, and adversarial attacks.

Since the problem with SPoF was completely resolved with federated learning could
create multiple identical ML models, in addition to retraining the global model on the

target forecast to avoid problems with data heterogeneity, it is not evaluated.

21

2.3.1 Data Preparation

In Figure 2.10, Figure 2.11, and Figure 2.12, the electricity load recorded for every 5
minutes shows sporadic MV due to sensor failures or network issues, accounting for only
0.0234% of MV. Using polynomial interpolation of order 2 [54], MV was imputed to create
a clean dataset for training and comparing forecasting accuracy. Outliers and seasonal

drift were purposely retained to reflect real-world conditions.

6000

—— Electricity Load X Missing Values

5000

4000

3000

2000

Electricity Load [MW]

1000 ' ' '
31 Dec2017 10ct2018 2Jul2019 1 Apr2020 31 Dec 2020

Figure 2.10: Electricity load in Long Island from 1 January 2018 to 31 December 2020.

2500 —— Electricity Load X Missing Values

1500

Electricity Load [MW]

500 1 1 1
31 Dec2017 1Oct2018 2Jul2019 1 Apr2020 31 Dec 2020

Figure 2.11: Electricity load in Hudson Valley from 1 January 2018 to 31 December 2020.

22

3000

—— Electricity Load X Missing Values

2500

2000

1500

1000

Electricity Load [MW]

500 1 1 1
31 Dec2017 10Oct2018 2]Jul2019 1 Apr2020 31 Dec 2020

Figure 2.12: Electricity load in Capital from 1 January 2018 to 31 December 2020.

After that, min-max normalization was used to rescale the values v in the training data
Virain and evaluation data veyqpuare from —1 to 1. To avoid exposing the information found
N Veyaiuate When training the forecasting models, the minimum and maximum values needed
to normalize the dataset were solely used from the vy.q,, as shown in Equation (2.1). Not
exposing the minimum and maximum values found in vyquate 18 important to simulate the

real-world scenarios, as the system administrator may not know how the trend will evolve.

V=00 (Vg qin)

v'=2 X -1 2.1
max(vtrain) _min(vtrain) ()
Finally, the v}, and v/ were sequenced into independent X and dependent y

variables to train and evaluate the forecasting models. In these experiments, the forecasting
models are set to take one hour of electricity load reading to forecast the next one hour
for short-term load forecasting, which is equal to 12 steps for the input length inlen and
output length outlen. To ensure the forecasting models could learn the intricate patterns
from vyqin, the sliding window step s to create the sequence was set to 1, while veyparuate
was set to 12 to avoid redundant values in the sequence. These parameters were parsed to

the Algorithm 2.4 to sequence the X and y for v4.4in and veparuate-

23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Algorithm 2.4 X and y sequencer

Input: Input length inlen, Output length outlen, Scaled variables v’, Step s

Output: Input array X, Output array y
1: Function data_sequencer(inlen, outlen,v’, s)
Initialize empty arrays: X <« ||
Initialize empty arrays: y « ||

for i = 0 to len(v’) —inlen — outlen 4+ 1 step s do

+ inlen))

Append sliced sequence: y.append(v'[i + inlen : i + inlen + outlen))

return X, y

2
3
4
5: Append sliced sequence: X.append(v'[i : i
6
7
8: End Function

2.3.2 Model Architecture

The forecasting model architecture used for the local and global model in federated learning
is shown in Figure 2.13, which utilizes Seq2seq LSTM architecture to forecast 1 hour of
electricity load or output 12 values that represent the load value for a 5 minutes interval

(12 <t < 24). The architecture implementation is shown in Listing 1, which utilizes the

Keras 3.8.0 [55] library with TensorFlow 2.18.0 [56] as the backend.

Listing 1: Seq2seq Long Short-Term Memory architecture.

from keras import models, losses, layers, metrics,

def seqg2seq_lstm(
encoder_input_length: int,
decoder_input_length: int,
output_length: int,
feature_number: int,
layer_number: int,
unit_number: int,

) -> models.Model:

encoder_inputs = layers.Input(shape=(encoder_input_length,

hidden_encoder_layer = encoder_inputs
for i in range(layer_number):
return_sequences = (i < layer_number - 1)
return_state = (i == layer_number - 1)
lstm_layer = layers.LSTM(
units=unit_number,
activation="tanh",
recurrent_activation="sigmoid",

recurrent_initializer="orthogonal",

24

optimizers

feature_number))

33

35

69
70
71
72

73
74
75
76
77
78
79
80

81
82

83
84
85
86
87
88
89
90
91

Hardcoded t
use_bias=True
Hardcoded t

o use bias

3

he initialized bias to zeros

bias_initializer="zeros",
Hardcoded the initialized kermnel weight using the glorot uniform

distribution

kernel_initializer="glorot_uniform",

Return sequence and state logic
return_sequences=return_sequences,

return_state=

)

Connect and get

return_state

the output

if return_state is False:

hidden_encoder_layer = lstm_layer (hidden_encoder_layer)
else:

_, state_h, state_c = lstm_layer (hidden_encoder_layer)

Get the encoder out

put

encoder_states = [state_h, state_c]

Define the decoder

decoder_inputs = layers.Input(shape=(decoder_input_length,
Initialize the input for the decoder

hidden_decoder_layer

input

= decoder_inputs

Create the LSTM layers using a loop

for i in range(layer_

number) :

feature_number))

Use return_state=True only for the last LSTM layer to get the states

return_state = (i
Define the 1lstm
lstm_layer = laye

Set the uni

== layer_number
layer

rs.LSTM(

t number

units=unit_number,
Hardcoded the activation to tanh

activation="+¢t

Hardcoded the activation to sigmoid

anh",

recurrent_activation="sigmoid",

Hardcoded t

Hardcoded t
use_bias=True

Hardcoded the initialized bias to zeros

bias_initiali

he initializer to orthogonal
recurrent_initializer="orthogonal",

o use bias

>

zer="zeros",

1)

Hardcoded the initialized kernel weight using the glorot uniform

distribution

kernel_initializer="glorot_uniform",

Return sequence and state logic

return_sequen
return_state=

ces=True,
return_state

)
Connect and get the output
if return_state is False:
hidden_decoder_layer = lstm_layer (hidden_decoder_layer, initial_state=
encoder_states)
else:
decoder_outputs, _, _ = lstm_layer(hidden_decoder_layer, initial_state=

encoder_states)
Flatten the dimensi

decoder_flatten_outputs = layers.Flatten() (decoder_outputs)

on

Construct the output layer

output_layer = layers
Number of unit
output_length,

) (decoder_flatten_out

Define the model

model = models.Model (
[encoder_inputs,
output_layer

.Dense (

puts)

decoder_inputs],

25

97
98
99
100
101
102
103
104

model. compile (
loss=losses.MeanSquaredError (),
metrics=[metrics.RootMeanSquaredError ()],
optimizer=optimizers.Adam(learning_rate=0.001),

)

return model

The architecture utilizes two different inputs, where the encoder input focuses on the
past 2 hours of historical electricity load (—24 < ¢ < 0), and the decoder input focuses on
the latest 1 hour of electricity load (0 <t < 12). This not only helps the forecasting model
to adapt to CD but also helps it not to be over-reliant on the latest data that might be

compromised. Table 2.1 shows the parameters used to initialize the architecture.

)(1—245t<0){105t<12
Y
g LSTM
,%; Hyperholilc Tangent
ol
5 LSTM
Hyperbolic Tangent
|y
LSTM
Hyperbolic Tangent r?
| g
LSTM]
Hyperbolic Tangent
]
Dense
Linear
|
v
Xtz

Figure 2.13: Seq2seq Long Short-Term Memory model architecture used to forecast.

Table 2.1: Parameters used to initialize Seq2seq Long Short-Term Memory model.

Parameter Values
Encoder input length 24
Decoder input length 12

Output length 12
Feature number 1
Layer number 2
Unit number 96

26

To prevent overfitting, an early stop function was implemented, with the minimum
delta in TensorFlow set to 0.0001, which represents the difference between the previous
and current loss score, and the patience set to 3, which represents the allowed consecutive

chances for the loss score to be less than 0.0001 before prematurely ending the training.

The reason why the forecast was set to only 1 hour of electricity load is that most of the
forecasting models used to optimize the system focus on short-term forecasts to optimize
the system with high accuracy, while long-term forecasts will have their accuracy worsened
instead. This is the trade-off between the accuracy and the forecasting horizon, where the

forecasting accuracy will fall as the forecasting horizon increases [57].

2.3.3 Missing Values

To simulate MCAR on v, ;e due to sensor failure or packet loss due to the DDoS attacks,
Algorithm 2.5 was used to randomly insert Not a Number (NaN) to represent MV. For
reproducibility of the inserted MV, the randomization seed seed=2025 was used, and the
percentage of MV percentage={0%, 10%, 20%, - - - ,90%} is the MV percentage range to

be randomly chosen.

Algorithm 2.5 Missing Completely at Random Generator

) . . ;
Input: Scaled evaluation variables v, ;.

Output: Scaled evaluation variables with missing values v
1. Function mcar_generator (v}, j, ., PETCENtAGE, Seed)
Create a copy of the array: Ugyamate,eroontage < SOPY (Vevatuate)
Set the randomization seed: random_seed(seed)
Get the total number of elements: n < lenv., .
Calculate the number of missing values: missing < percentage X n

2
3
4
5
6: Generate missing values indices: indices <—random_choice(n, missing)
7
8
9:

Percentage percentage, Seed seed
/
evaluatepercentage

Insert missing values: v/ [indices] + NaN

eval“atepercentage

: return v’

evaluatepercentage

End Function

The target forecast duration is the electricity load on Long Island, from 1 January 2019
to 30 April 2019. The MV is simulated from 0% to 90% to measure the effectiveness of
the previous unified method. Although the DDoS duration reported by Cloudflare [19] last

less than 10 minutes, the simulated MV duration were purposely increased to 4 months

27

with MV ranging from from 0% to 90% to accurately benchmark the performance.

This result should give accurate estimate on how the previously proposed unified solu-

tion by Zhou et al. [43] will perform in real-world implementation.

With scheduled federated learning denoted as T'1, T2, and T3 being done every 4 months
to keep the global model up-to-date, it was tested on v/, ... with MV ranging from 0% to
90%. In addition, the Conformal Prediction is also used to retrain the federated learning
in 2 months intervals whenever the accuracy does not satisfy the requirement. Figure 2.14

shows the visualized scheduled federated learning with the evaluation range to measure the

accuracy.

6000 T1 T2 T3 —— Evaluate
5000
4000 F
3000

2000 -

Electricity Load [MW]

1000 ' ' '
31 Dec2017 1Oct2018 2Jul2019 1 Apr2020 31 Dec 2020

Figure 2.14: Scheduled federated learning done to update the global model and the
evaluation range.

Table 2.2, Table 2.3, and Table 2.4 show the forecasting accuracies measured using the
coefficient of determination (R?), root mean squared error (RMSE), and mean absolute
error (MAE) from 1 January 2019 to 30 April 2019, with MV being incremented by 10%.

As ML is non-deterministic, the experiment was repeated 3 times to get the averaged score.

28

Table 2.2: Coefficient of determination scores against the missing values.

Missing Coefficient of Determination (R?)
Percentage Session

(%] i 5 3 Average
0 0.9827 0.9812 0.9804 0.9814
10 0.9779 0.9762 0.9768 0.9770
20 0.9612 0.9535 0.9527 0.9558
30 0.8605 0.8392 0.8250 0.8416
40 0.7536 0.6351 0.7029 0.6972
50 0.6549 04139 0.5777 0.5488
60 0.2917 -0.1707 0.2055 0.1088
70 -0.2555 -0.6823 -0.1540 -0.3639
80 -2.4321 -2.0580 -2.0229 -2.1710
90 -4.8134 -4.6257 -4.1809 -4.5400

Table 2.3: Root mean squared error scores against the missing values.

Missing Root Mean Squared Error (RMSE)
Percentage Session

(%] i 5 3 Average
0 43.641 45.562 46.491 45.231
10 49.421 51.198 50.572 50.397
20 65.404 71.636 72.221 69.753
30 124.06 133.19 138.96 132.07
40 164.88 200.63 181.04 182.18
50 195.12 254.28 215.85 221.75
60 279.53 359.37 296.07 311.66
70 372.17 430.80 356.80 386.59
80 615.34 580.83 577.49 591.22
90 800.84 787.80 756.02 781.55

29

Table 2.4: Mean squared error scores against the missing values.

Missing ~ Mean Absolute Error (MAE)

Percentage Session Averaae
[%] I 2 3 g
0 30.369 32.391 33.051 31.937
10 33.703 34.641 33.939 34.094
20 37.827 39.460 38.940 38.742
30 46.042 50.224 47.640 47.969
40 61.330 66.611 64.047 63.996
50 77.210 84.438 80.673 80.773
60 108.15 123.56 112.74 114.81
70 158.76 184.37 154.93 166.02
80 330.55 315.04 317.15 320.92
90 585.28 580.68 560.29 575.42

The results shows that as the percentage of MV rises, the forecasting accuracy will also
worsen. In addition, as MV rise to 70%, a negative R? score indicates that the prediction are
worse than simply using the mean of the observed data. Due to the univariate imputation
limitation of spline interpolation, it could only handle up to 30% of MV before the R?
score fell below 0.8. This observation is also confirmed from the RMSE scores, where the

average score rises above 150 when handling more than 30% of MV.

The accuracy could be quantify using MAE scores, which describe the averaged absolute
error of electricity load. As the MV percentage rise more than 30% the expected average
absolute electricity load loss will rise more than 132.07 [MW]. Figure 2.15, Figure 2.16,

and Figure 2.17 plotted the relationships the averaged scores against MV.

30

o 1.0000 .
8
g 01200
E
ol -1.2400
S
24
5 & 23600
=
2 -3.4800 |
O
E
8 -4.6000 1 1 1 1 1 1 1 1
)

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.15: Averaged coefficient of determination scores against missing values from 1
January 2019 to 30 April 2019.

786
=
£ 629
&)
T
=] = 472
= n
b=
c g 314
M N—"
o
42_. 157
o
&
0

0O 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.16: Averaged root mean squared errors score against missing values from 1
January 2019 to 30 April 2019.

576
—
£ 461 |
ua}
]
g 346 f
Q L
52 230
g
5 115
E - : A

0 Il 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.17: Averaged mean absolute errors score against missing values from 1 January
2019 to 30 April 2019.

31

2.3.4 Concept Drift

As shown in Figure 2.18, the dataset shows a noticeable drift every summer and a small drift
during the winter. One of the main contributors to these was confirmed by the number
of heating, ventilation, and air conditioners (AC) sold in New York State from 2018 to
2020 [58], which shows that AC is preferred during the summer compared to the electric
boiler or furnace during the winter. Conversely, this also explain why the electricity load

during the winter is low, as electricity are not mainly used to heat the building.

6000

5000

4000

3000

2000

Electricity Load [MW]

1000 ' ' '
31 Dec2017 10ct2018 2Jul2019 1 Apr2020 31 Dec 2020

Figure 2.18: Seasonal drift that occurred from May to August in each year shows high
electricity consumption.

To simulate CD, the evaluation range was set from 1 May 2020 to 31 August 2020,
which is right after the scheduled federated learning (T7) was done to update the global
model. Figure 2.19 shows the visualized scheduled federated learning with the evaluation
range to measure the accuracy. In addition, on top of CD, this experiment also simulate
MV ranging from 0% to 90% to see how the previously proposed unified solution by Zhou
et al. [43] handle multiple input noise.

32

7000

—T1 T2 T3 T4 T5 T6
E 5800 L T7 ——Evaluate
=)
T 4600 F
o
—
> 3400
2
E 2200 ‘
= 1000 ' ' '

31 Dec2017 10Oct2018 2]Jul2019 1 Apr2020 31 Dec 2020

Figure 2.19: Scheduled federated learning done to update the global model and the
evaluation range.

Table 2.5, Table 2.6, and Table 2.7 show the forecasting accuracies measured using
the R?, RMSE, and MAE from 1 May 2020 to 31 August 2020, which exhibit seasonal
drift with MV being incremented by 10%. Similar to the previous experiment, as ML is

non-deterministic, the experiment was repeated 3 times to get the averaged score.

Compared to the experiment done in Chapter 2.3.3, the R? scores shown in Table 2.5
seems to achieve better forecasting accuracy than the R? scores shown in Table 2.2, as it
can handle up to 70% of MV before the R? score fell below 0.8. However, this observation
is not supported by the RMSE and MAE scores.

Table 2.5: Coefficient of determination scores against the missing values and concept
drift.

Missing Coefficient of determination (R?)
Percentage Session

(%] i 5 3 Average
0 0.9954 0.9949 0.9907 0.9937
10 0.9883 0.9872 0.9911 0.9889
20 0.9810 0.9813 0.9839 0.9821
30 0.9647 0.9675 0.9672 0.9665
40 0.9282 0.9350 0.9310 0.9314
50 0.8248 0.8215 0.8058 0.8174
60 0.8175 0.8160 0.8069 0.8135
70 0.6714 0.6453 0.6457 0.6541
80 0.2139 0.1426 0.1705 0.1757
90 -0.7257 -0.8565 -0.8080 -0.7967

33

Table 2.6: Root mean squared error scores against the missing values and concept drift.

Missing Root Mean Squared Error (RMSE)

Percentage Session Averaae
[%] I 2 3 g
0 60.271 63.692 85.927 69.963
10 96.471 101.03 &84.192 93.90
20 123.01 122.07 113.31 119.46
30 167.84 160.92 161.80 163.52
40 239.29 227.68 234.61 233.86
50 373.87 377.35 393.55 381.59
60 381.53 383.11 392.51 385.72
70 512.01 531.93 531.62 525.19
80 791.91 827.04 8&813.46 810.80
90 1173.3 1217.0 1201.0 1197.1

Table 2.7: Mean absolute error scores against the missing values and concept drift.

Missing ~ Mean Absolute Error (MAE)

Percentage Session Averaae
(%] 1 2 3 g
0 38.546 40.540 45.196 41.427
10 56.912 59.131 51.066 55.703
20 64.370 65.576 58.629 62.858
30 79.443 78.672 74.099 77.405
40 99.220 97.335 94.042 96.87
20 133.03 131.45 130.06 131.51
60 154.53 152.61 151.95 153.03
70 221.71 224.03 224.00 223.25
80 395.98 410.87 408.00 404.95
90 784.09 81597 813.63 804.56

These disparities between the R? with RMSE and MAE are due to the nature of R?
itself, which measures how close the forecasted values matches with the real values instead
of measuring the error. With 90% of MV, the RMSE score from Chapter 2.3.3 increases by
53.803%, and the MAE score increases by 97.542%. These results indicate that although
the forecast closely follows the real values, it has more noise in it. This contributes to the

worsened forecasting accuracy when dealing with CD.

Figure 2.20, Figure 2.21, and Figure 2.22 support these observations, even though the

global model has undergone scheduled federated learning at T7 and additional retraining

34

triggered by Conformal Predictions to improve the forecast. The reason for this is the

LSTM layers utilized by the Seq2seq LSTM are better at interpolating within the last

known minimum and maximum values of normalization [59].

Coefficient of Determination
(R?)

1.0000 < <

0.6400

0.2800

-0.0800 |

-0.4400 |

_0‘8000 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Missing Values [%]

90

Figure 2.20: Averaged coefficient of determination scores against missing values and

Root Mean Squared Error
(RMSE)

concept drift from 1 May 2020 to 31 August 2020.

1200

0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Missing Values [%]

90

Figure 2.21: Averaged root mean squared errors score against missing values and concept

drift from 1 May 2020 to 31 August 2020.

35

805
-
£ 644
[na]
[
;:'; o 483
Q L
52 3
g
g 161 |
>
0 S | | | | | | | |

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.22: Averaged mean absolute errors score against missing values and concept
drift from 1 May 2020 to 31 August 2020.

2.3.5 Adversarial Attacks

In this experiment, on top of MV and CD, Projected Gradient Descent (PGD) was used to
create the adversarial attacks on the previously proposed unified solution by Zhou et al. [43].
PGD was proposed by Madry et al. [60], which uses iterative adversarial creation with
random perturbation initialization to ensure the perturbation added is within the constraint
using the projector operator IIx .. The difference from other commonly used adversarial
attacks, such as Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM),
is not only it calculated the gradient and add perturbation iteratively to make the attack
more robust, the added random perturbation initialization help PGD in exploring a wider
range of effective adversarial examples.

With § as the random perturbation taken from the uniform distribution ¢/ within the
step €, the formula to insert the random perturbation is defined in Equation (2.2). From
there, with I x . to constrain the perturbation, the formula to obtain the adversarial sample

generated with PGD is shown in Equation (2.3).

X0 =X+6 where § € U (—¢, €) (2.2)
XEaD =T (XEpra-sign (vxJ (9. X80 v))) (2.3)

For this experiment, the PGD implementation is shown in Algorithm 2.6, the random

perturbation initialization in XI(DOC),D was defined as 0 € U (—e-0.01,¢-0.01) instead, as €

36

multiplied by 0.01 is already effective in improving the robustness of PGD.

Algorithm 2.6 Projected Gradient Descent Implementation

Input: Scaled sequences X, Surrogate model ¥, Epsilon €=0.05, iteration=10
Output: Scaled adversarial sequence Xpgp
1: Function pgd_sample(X,d, ¢, iteration)

2. Get forecast: Ysorecast < U.forecast(X)

3: Create a copy of the array: Xpgp < copy(X)

4: Generate noise: noise <— random.uniform(—e- 0.01, €-0.01, len(X))
5. Add noise: Xpap < Xpgp+noise

6: Get range: minval, mazval < min(X), max(X)

7. Clip perturbations: Xpgp <—clip(Xpgp, minval, maxval)

8: Calculate the alpha: « < €/iteration

9: for j=0 to len(iteration) do

10: with GradientTape() as tape do

11: Tape on Xpgp: tape.watch(Xpgp)

12: Get prediction: Ypregict < V(Xpap)

13: Compute loss: loss <— mean_squared_error(Ysorecast, Ypredict)
14: Compute gradient: gradient <— tape.gradient(loss, Xpgp)
15: Insert perturbation: Xpap < Xpap+e - sign(gradient)

16: Clip perturbations: Xpgp <—clip(Xpgp, minval, mazval)

17: return Xpgp
18: End Function

As this experiment need to emulate the black-box scenarios where the attackers does not
have the access to the forecasting model, stacked LSTM architecture shown in Figure 2.23
was used to mimic the behavior of the forecasting model that is targeted for the attacks.
Similar to the Seq2seq LSTM, it output 12 values that represent the load value for a 5

minutes interval and utilizes the same training parameters to simplify the process.

The architecture was chosen due to it being a commonly used architecture to forecast,

with a stacking configuration to help the surrogate capture the intricate pattern.

37

Unit =32
Unit forget bias = True

Return sequences = True

Kernel initializer = Glorot uniform
Recurrent activation = Sigmoid
Recurrent initializer = Orthogonal
Use bias = True

Bias initializer = Zeros

Activation = Hyperbolic tangent

Unit =16
Unit forget bias = True

Return sequences = False

Kernel initializer = Glorot uniform
Recurrent activation = Sigmoid
Recurrent initializer = Orthogonal
Use bias = True

Bias initializer = Zeros

Activation = Hyperbolic tangent

A

! !
Vost<12 Vi2<t<24

Figure 2.23: Stacked Long Short-Term Memory architecture was used to be the surrogate
model.

Algorithm 2.7 shows the mechanism to train the surrogate models for each of their
corresponding forecasting models, which use the dependent variable obtained yforecastsrain
from forecasting non-overlapped independent variable Xj,..;, as a training label. Table 2.8,
Table 2.9, and Table 2.10 show the forecasting accuracies from 1 May 2020 to 31 August
2020 against MV, CD, and PGD-based attacks with ¢=0.05.

Algorithm 2.7 Surrogate Model Training Mechanism

Input: Scaled train sequence v, ;,., Forecasting Model m, 9
Output: Trained surrogate model

1: Function surrogate_train(m, 1)

Uérm’n?
2: Generate sequence: Xyqin, - < data_sequencer(12,12,v;,....,12)
3: Get forecast: Yrorecastias, < M -forecast(Xyqin)

4: Train surrogate: ¥.train(Xy gin, Yforecastiraim)

5: return ¢

6:

End Function

38

Table 2.8: Coefficient of determination scores against the missing values, concept drift,
and adversarial attacks.

Missing Coefficient of determination (R?)

Percentage Session Averaae
[%] I 2 3 g
0 0.9862 0.9836 0.9888 0.9862
10 0.9704 0.9824 0.9660 0.9729
20 0.9706 0.9702 0.9730 0.9713
30 0.9217 0.9368 0.9245 0.9277
40 0.8345 0.8209 0.8166 0.8240
50 0.6647 0.6454 0.5882 0.6327
60 0.6150 0.5732 0.5296 0.5726
70 0.4743 0.4328 0.4257 0.4443
80 0.0450 -0.0309 -0.0511 -0.0123
90 -0.7770 -0.8943 -0.8712 -0.8475

Table 2.9: Root mean squared error scores against the missing values, concept drift, and
adversarial attacks.

Missing Root Mean Squared Error (RMSE)

Percentage Session Averaae
[%] 1 2 3 g
0 105.020 114.46 94.554 104.68
10 153.703 118.56 164.64 145.64
20 153.09 154.14 146.86 151.36
30 249.86 224.57 245.45 239.96
40 363.33 377.97 382.52 374.61
50 517.22 531.90 573.18 540.76
60 554.19 583.48 612.58 583.42
70 647.58 672.70 676.85 665.71
80 872.82 906.86 915.69 898.46
90 1190.6 1229.3 1221.8 1213.9

39

Table 2.10: Mean absolute error scores against the missing values, concept drift, and
adversarial attacks.

Missing Mean Absolute Error (MAE)
Percentage Session

(%] i 5 3 Average
0 81.963 87.424 75928 81.772
10 85.975 89.406 80.588 85.323
20 93.590 97.419 88.106 93.038
30 116.05 116.03 110.641 114.24
40 143.28 142.43 140.27 141.99
50 193.31 193.95 195.26 194.17
60 225.61 226.98 233.24 228.61
70 281.91 287.38 289.10 286.13
80 466.32 481.29 486.89 478.17
90 812.31 842.38 844.13 832.94

These results show that with adversarial attacks of intensity e=0.05, it further worsens
the forecasting accuracy when compared to the results in Chapter 2.3.4. As the unified
solution proposed by Zhou et al. [43] could not handle live adversarial attacks, the attackers
could use DDoS to mask the adversarial attacks, making it hard to be detected. However,
as the MV rate increases, adversarial attacks effectiveness would also decrease due to the
adversarial values being missing. Hence, a good balance between MV and adversarial
attacks, such as 50% of MV with €=0.05, could increase the MAE score by 47.647%, or by
62.663 [MW]. Figure 2.24, Figure 2.25, and Figure 2.26 support these observations.

o 1.0000 ¢——v
2
E 0.6300
B
o} 0.2600 |
s
<4
< € 01100
=
g -0.4800 |
i)
£
8 -0.8500 1 1 1 1 1 1 1 1
)

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.24: Averaged coefficient of determination scores against missing values, concept
drift, and adversarial attacks from 1 May 2020 to 31 August 2020.

40

1220

—

e

5 976
T

‘3@ 732 |
b=

c g 488
m N

[«F]

..E.. 244
o

rg q

0 1 1 1 1 1 1 1 1

0O 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.25: Averaged root mean squared errors score against missing values, concept
drift, and adversarial attacks from 1 May 2020 to 31 August 2020.

840
—
£ 672
ma]
]
£ g 504
Q
52 33
g
5 168
=
0 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 2.26: Averaged mean absolute errors score against missing values, concept drift,
and adversarial attacks from 1 May 2020 to 31 August 2020.

2.3.6 Summary

These experiments show the weakness of the previously proposed solution by Zhou et
al. [43]. Due to non-live adversarial attacks countermeasure and inability to address MV,
the attacker could use these loopholes to hide the adversarial attacks with MV, making it
hard to identify and address the issue.

Additionally, the LSTM layers used in the Seq2seq LSTM make it hard to adapt with
CD, as LSTM-based models inherently perform badly when extrapolating beyond the min-

imum and maximum value range they were trained with.

41

2.4 Conclusion

Compared to previous research, the method proposed by Zhou et al. [43] employs simple
countermeasures that fall short of providing a unified solution against MV, CD, adversar-
ial attacks, and SPoF. This limitation arises because federated learning complicates the
management of multiple ML-based data preprocessing across global models, restricting it

to linear corrections and inadvertently accumulating errors from inadequate rectifications.

Furthermore, experiments reveal the weaknesses of Zhou et al.’s approach, particularly
its non-live adversarial attack countermeasures and inability to effectively address MV.
These gaps allow attackers to exploit loopholes, concealing adversarial attacks with MV,
thus complicating detection and countermeasures. Additionally, the use of LSTM layers
in the Seq2seq LSTM struggles with CD adaptation, as LSTM models inherently perform

poorly when extrapolating beyond their trained value range.

The following chapter will address this issues, by providing the method to integrate
multiple solutions into one, in addition to addressing the incompatibilities with input
data, incompatibilities with other solutions, and countermeasures to address accumulation

of correction errors.

42

3 Proposed Method
3.1 Chapter Introduction

ALCEN is a proposed distributed system housed in each server or loT device hosting the
ML model, and it is used for linking the forecasting models in a network to adapt to the
external changes observed in the input data, such as MV, adversarial attacks, and CD.
It also addresses the SPoF caused by some servers or [oT devices hosting the forecasting
models not being online by sharing the model architecture or weights to create redundancy.
This lets the other servers or IoT devices take over the forecasting work of the offline models.
Figure 3.1 represents a level-0 data-flow diagram (DFD) interaction with external entities,
where it interacts with the smart city management system to get and provide the forecasted
data, in addition to the system administrator for requesting new training data or for the

hyperparameters to be adjusted based on the operation report.

Training data

Adaptively \&

Smart City Data to forecast Linked Hyperparameter
WY EVET-LS0TE 1Ml Forecasted data Composite) Request data . S.ys‘tetrnt
System < Ensemble - N administrator
y Report operation
Network

Figure 3.1: Context diagram representation to shows how Adaptively Linked Composite
Ensemble Network interact with external entities.

An in-depth ALCEN’s internal operations are shown in Figure 3.2, which shows a level-1
DFD to represent the logical low inside the distributed system of ALCEN. The deployment
is divided into two phases that might interchange if ALCEN requires retraining or if the

system administrator updates the hyperparameters.

In the learning phase, the hyperparameters and the training data provided by the
system administrator are used to train and harden the forecasting models. Once done, the
abnormality detections for MV, adversarial attacks, and CD were prepared before moving
to the forecasting phase. ALCEN can shift back to the learning phase if the accuracy is
inadequate or if the system administrator provides new hyperparameter. In the forecasting

phase, ALCEN links the necessary ML models or solutions based on the anomalies detected

43

in the input data and forecast. Then, it compares the current input with the previous
forecast to see if retraining is necessary. If retraining is necessary, it will revert back to the
learning phase, reset the weight, and request new training data. If not, it will send the

logs to the system administrator for monitoring.

While event-driven architecture [61] of ALCEN handles automated training, hardening,
anomaly detection, retraining, and failsafe against SPoF to ensure timely response to these
issues, it relies on the system administrator to provide the hyperparameter to define how

the system should behave.

Hyperparameters in ALCEN not only refer to the parameters used to set the training
and define the ML model architecture but are also used to set the threshold detection for
anomalies, retraining conditions, and countermeasures against overfitting to ensure optimal
operation, which were summarized in Table 3.1. Although ALCEN deploys multiple ML
models to fix the input data and harden the forecast, the same architecture parameters are
used to simplify the ML model design across the solutions. This is to ensure transferability

to other servers or IoT devices if one of them is offline.

Table 3.1: Hyperparameter used when initializing the Adaptively Linked Composite
Ensemble Network.

Target Parameter
batch size
Training number of epoch
Adam learning rate
Drift threshold
Detection Adversarial threshold
Missing percentage threshold
Sliding window size
Retraining Fixed training interval
Acceptable accuracy threshold
Patience
Minimum loss delta
Kernel size
Input length
Architecture Output length
Number of filter
Number of input data

Overfitting

44

“I0M)ON O[OS
osoduwio)) peyur| Apandepy jo suorjeisdo [RUILUL 8} SMOYS 0} uoIjejuasalIdol WRISRIP MO[-RIRD [-[9AJ] [RIIS0T] :g'¢ 2InSiyq

aseyJ Sunsedsarog

_ wd)sAg
ejEp PAISEIAIO] uﬁmawwmﬁmz

1582310§ 03 BYR(] A1) prewrg

Ademdoe
ajenyeay

uorI333p
ATewrouy

Sururenjor

SU0I)29)9p
aredarg

aredaxg

A suorjerado jrodoy
Iojer)SIunupe o

wa)shg

ejep 3sanbay sSurum

[°PON

4

1vowerediad Ay

ejep ururei],
agero)g

eje(q _

S[epowr
urer],

s[opour
uaprey

4

aseyJ Sururea|

45

After introducing the internal operation of ALCEN, this chapter defines the theories
on leader election for selecting the server or IoT device to be the leader, the redundancy
strategy to ensure multiple backups of training data, model architectures, and weights
that are distributed to avoid SPoF, and composite models linking and arrangement rules
were defined. Once the theories were defined, the ML model architecture and solutions
for anomaly detection, fixing the input data, and hardening the forecasting models against

MYV, adversarial attacks, and CD were defined.

3.2 Theory

3.2.1 Leader Election

Originally proposed by Gracia [62], the bully algorithm is a method to elect a leader for
coordinating the processes in the system [63]. The election works when the current leader
has failed, triggering broadcasts from other servers or IoT devices, comparing who has the
highest-numbered servers or IoT devices to be elected as a leader. It is called a “bully
algorithm” due to higher-numbered servers or IoT devices “bullying” their way to the

leadership.

In this thesis, bully algorithm is used to elect the servers or IoT devices, which are
defined as a nodes to handle anomaly detections and delegating the task to fix the input
data and hardening the forecast to other nodes. With the assumptions that each node has
unique identifier, as shown in Figure 3.3 and they can communicate with each others, the

following shows the high-level overview of how the bully algorithm works:

(i) Initialization: When a node does not receive the response from the leader or other
nodes, it initiates an election process.

(ii) Response: When a node with higher numbering receives the election, it sends a
“response” to declare its willingness to be the leader and starts its own election
process.

(iii) Victory: If the initiating node does not receive any responses, it considers itself the
leader and broadcasts “victory” message to all nodes. Else, it waits to receive a

“victory” message from the new leader.

46

(iv) Failure: If a node fails and later restarts, it checks if it has missed any election. If
it has the highest ID among available nodes, it can start a new election process to

become the leader.

Input Output
Node 5
Node 4
Node 3
Node 2

Figure 3.3: Node numbering for each server or Internet of Thing device that host the
solutions to be elected as a leader, with higher-numbered node having higher priority.

Figure 3.4 demonstrates the bully algorithm operation example when Node 8 is offline,
triggering the election, in which only Node 7 will respond to its willingness to be a leader.
From there, Node 7 will broadcast another election to confirm that there is no node that

has a larger number than itself before announcing the victory.

a) Node 6 broadcast election. b) Node 7 broadcast response.

c¢) Node 7 broadcast election. d) Node 7 broadcast victory.

Figure 3.4: Bully algorithm operation example when Node 8 is offline, triggering the
election process.

A Python code implementation done for this thesis is in Listing 2. In addition to SPoF

47

prevention, this algorithm also helps identify the nodes that are offline, which guide the

leader to assign the tasks that need to be done to other nodes.

Listing 2: Bully algorithm implementation.

class Node:

def

def

def

def

def

def

__init__(self, node_id, nodes):
self .node_id = node_id

self .nodes = nodes

self .is_leader = False
self.alive = True

start_election(self):
print ("Node {}: Starting an election.".format(self.node_id))
higher_nodes = [
node for node in self.nodes
if node.node_id > self.node_id and node.alive
]
if not higher_nodes:
self.is_leader = True
self.announce_victory ()
else:
for node in higher_nodes:
print (
"{} sends election to {}".format (
self .node_id,
node.node_id

)

node.receive_election(self)

receive_election(self, from_node):
if self.alive:
print (
"{} received election from {}".format(
self .node_id,
from_node.node_id

)
from_node.receive_response (self)
self.start_election ()

receive_response (self, from_node):
print (
"{} received response from {}".format(
self .node_id,
from_node.node_id

)

self .is_leader = False

announce_victory (self):
print ("{} is the leader.".format(self.node_id))
for node in self.nodes:
if node.node_id < self.node_id and node.alive:
print (
"{} sends victory to {}".format(
self .node_id,
node.node_id

)

node.receive_victory(self)
receive_victory(self, from_node):

print (
"{} acknowledges {} as leader.".format (

48

self .node_id,
from_node.node_id
)
)

self.is_leader = False

def simulate_crash(self):
print ("{} crashed.".format(self.node_id))
self.alive = False

def simulate_recovery(self):
print ("{} recovered.".format(self.node_id))
self.alive = True
self.start_election ()

if __name__ __main__":

nodes = [Node(i, []) for i in range(1l, 8)]

for node in nodes:
node.nodes = nodes

nodes [0] . start_election ()

nodes [4] . simulate_crash ()
nodes [0] . start_election ()
nodes [4] . simulate_recovery ()

3.2.2 Redundancy Strategy

To distribute the training data for retraining and ML model data to replicate the solutions,
which include the architectures and weights, a replication with controlled distribution [64]

was implemented to evenly distribute the data to create redundancy.

Data replication refers to the process of creating a copy of data in another location with
the goal of creating a backup for redundancy in the event of one of the nodes becoming
offline due to technical failures or cyberattacks. This ensures ALCEN can continue running
even if one of the nodes is inaccessible. However, simply copying the data in another
location is insufficient, as it must be done in a controlled manner that can guarantee that
the system can still run in the event some of the nodes are offline. By managing the
replication rate that adheres to the storage limitation of each node, true distributed data

replication with redundancy can be achieved.

By representing the specific data to be replicated as j with D as set of data, and specific
node in the distributed system to store the data as k with N as set of nodes, the objective

function to optimize the data distribution as shown in Equation (3.1). The optimized

49

16

19

36

result must adhere to the replication rate R in Equation (3.2) and storage constraint C' for
each node in Equation (3.3). Also, each data j can be stored once on any specific node k,

as shown in Equation (3.4) to avoid duplication on the same node.

Minimize: » > D(j, k) (3.1)

jED kEN

Subject to: Z D(j,k)=R, VjeN (3.2)
kEN
Y D(j.k) < C(k), VkeN (3.3)
JjED
D(j, k) € {0,1}, Vie D,jeN (3.4)

A Python code implementation done for this thesis is in Listing 3, which is based on a
greedy implementation of controlled distribution replication. With four months of training
data and eight ML model data, the data was distributed to the nodes, with replication of
R=4 and storage constraint for each node of C=T7.

Listing 3: Greedy implementation of controlled distribution replication.

from random import shuffle, seed
from typing import List, Set

; class Node:

def __init__(
self,
id: int,
capacity: int
) -> None:

self.id: int = id
self.capacity: int = capacity
self.data: Set[str] = set()

def can_store(
self
) -> bool:

return len(self.data) < self.capacity
def store_data(
self,
data_id: str
) -> bool:
if self.can_store():
self.data.add(data_id)

return True

return False

20

def controlled_replication(

nodes: List[Nodel],
data_ids: List[str],
num_replicas: int,

randomization_seed: int = 2025
) -> None:
for data_id in data_ids:
seed (randomization_seed)
shuffle (nodes)
replicas_stored = 0
data_number = int(data_id.split(’_’)[-11)
for node in nodes:
if replicas_stored < num_replicas:
if node.id != data_number and node.store_data(data_id):
replicas_stored += 1
print (£"Data {data_id} stored {replicas_stored} times.")
if __name__ == "_ _main__":
nodes: List[Node] = [

Node (id=1, capacity=7),
Node (id=2, capacity=7),
Node (id=3, capacity=7),
Node (id=4, capacity=7),
Node (id=5, capacity=7),
Node (id=6, capacity=7),
Node (id=7, capacity=7),
Node (id=8, capacity=7),

]

model_to_replicate: List[str] = [f"model_{i}" for i in range(l, 10)]
training_data_to_replicate: List[str] = [f"month_{i}" for i in range (1, 4)]
data_to_replicate: List[str] = model_to_replicate + training_data_to_replicate
replication_factor: int = 4

controlled_replication (
nodes=nodes,
data_ids=data_to_replicate,
num_replicas=replication_factor,
randomization_seed=2025

Table 3.2 shows the data distribution outcomes subject to the R and C' limitation with
no duplication on the same node. Additionally, this implementation allows the system to
tolerate up to R—1 node failures with at least one copy of each piece of data still being

accessible.

ol

Table 3.2: Data stored in each nodes computed by greedy implementation of replication
with controlled distribution.

Data Storage

Node — 2 3 y 5 6 7

1 model 4, model .5, model 8, model 9, month_3

model 3, model 4, model 6, model 7, model 8, month_3

model_1, model 4, model 5, model 8, model9, month 2

model 3, model.7, model .8, month 2, month_3

model_1, model_ 2, model 4, model 6, model 9, month_1, month_3
model 2, model 3, model.7, month_1, month_2

model_1, model 2, model.5, model 6, model 9, month_1, month_2
model_1, model 2, model_3, model.5, model 6, model 7, month_1

CO O U i W I

This implementation, in conjunction with the bully algorithm solve the SPoF issue by
distributing the essential data and leadership role, allowing decentralized system operation

in addition to failsafe mechanism to keep the forecast running.

3.2.3 Composite Models Arrangement

As mentioned in Chapter 1, the reason why existing unified implementations, such as the
implementation done by Zhou et al. [43], rely on simple countermeasures or circumvention is
due to the incompatibilities with the input data, other solutions, and sequential operation.
To make it easier for visualizing the difference between the input and output data, the
data that need to be forecasted is denoted as X, the forecasted data is denoted as y, and

the number the data has been corrected is denoted with an asterisk mark (*).

The first issue is the input data incompatibilities due to some solutions requiring them
to be preprocessed with other solutions first to be effective. For example, a forecasting
model hardened against adversarial attacks cannot handle MV without it being imputed,
as shown in Figure 3.5. To solve this, the missing values imputation must be done first
before the hardened forecasting model could handle the adversarial attacks, as shown in
Figure 3.6. This issue shows that the solutions must be connected based on their priority

to properly solve the issues.

o2

{Slf\l/lllts(s)z Values Adversarial Attacks Output (y*)
OA dversgarial Attacks Hardened Forecast © Bad Forecasting Accuracy

Figure 3.5: Forecasted data will yield a bad accuracy if the missing values in the input
data are not dealt with.

Input (X) . . Output (X™)
© Missing Values ImplgelMlsssmg @ Adversarial Attacks
© Adversarial Attacks a e @ Missing values Imputed
]
Adversarial Attacks
Hardened Forecast

Figure 3.6: Imputing the missing values before forecasting it with adversarial attacks
hardened forecast yield a good accuracy.

Output (y*)
@ Good Forecasting Accuracy

The second issue is the incompatibilities with other solutions targeted at the same issue,
as some solutions require the input data to be unchanged for it to work. For example, a
forecasting model hardened against MV will be able to forecast input data that has MV
in it without much of an issue, as shown in Figure 3.7. However, when paired with the
MYV imputation, the accuracy will not improve as the forecasting model does not know the
position of MV in the input data, as shown in Figure 3.8. To solve this, the model is to be
modified to take the original and imputed data to improve upon imputation imperfection,

which is the improvement technique in my previous research [65], as shown in Figure 3.9.

Input (X) Missing Values Output (y*)
© Missing Values Hardened Forecast @ Good Forecasting Accuracy

Figure 3.7: Forecasting model hardened against missing values work get good accuracy
when forecasting the input data with missing values.

Input (X) Impute Missing Output (X*)
O Missing Values Values @ Missing Values Imputed

Missing Values Output (y*)
Hardened Forecast © No Accuracy Improvement

Figure 3.8: Forecasting model hardened against missing values paired with the missing
values imputation will not improve the forecasting accuracy.

23

Input (X)
@ Missing Values

Impute Missing
Values

Output (X™)
@ Missing Values Imputed

Missing Values
Hardened Forecast

Output (y*)
@ Forecasting Accuracy Improved

Figure 3.9: Parsing the original and imputed data to to the hardened forecasting model
help it to identify the imputation imperfection.

By considering the compatibilities between the input data, the input data that has
MYV, adversarial attacks, and CD must be imputed first, followed by the correction to
address adversarial attacks, and trend adjustment to solve CD. By processing the input
data in this sequence, the data compatibility issues should be rectified. Following this, the
pre-repaired input data are parsed to their corresponding hardened forecasting models to
further improve the forecasting accuracies to address the imperfection done when fixing
the data, solving the incompatibilities with each solution. However, this application is
incomplete due to the output from these hardened forecasting models only improving the
forecast for their designated problems, as shown in Figure 3.10 where there are multiple

outputs that need to be combined.

While the repairs on the input data could only be done in a predefined sequential
manner, the hardened forecasting models must be done in parallel, causing the hardened
forecast running in parallel to be incompatible with the sequential data repair. To solve
this, based on the number of issues found in the input data, a weighted average or meta

model could be utilized to combine the results, as shown in Figure 3.11.

o4

Input(X) = jem-mmoo-momooo----oo ~, 1+ Hardened Forecast

()
(. I H
OMissing Values ! Fix Data N Missin E Output,; (y*)
@ Adversarial Attacks | i ! @ Adversarial Attacks
@ Concept Drift E ! E i @ Concept Drift
] s Lt 'y] *
E l\éflil:sg : E S Adversarial || %ulf/ﬁlslstlzn(y \)/alues
! i Attacks ! & var
' i i @Concept Drift
' mame Concept ' puts
! Attacks i © Missing Values
; i | it ! @ Adversarial Attacks
i Concept Pl i Output, (v")
| Drift b Normal — @ Missing Values
' i HERES | @ Adversarial Attacks
——————————————————— 4 ‘------------------"
@ Concept Drift
P

Figure 3.10: Difficulty of combining multiple hardened forecasting models running in
parallel into one.

........................

Input (X) [(TTTTTIITTITI N E Hardened Forecast !
O Missing Values ! Fix Data s Missin i
@ Adversarial Attacks | i i Value sg E
@ Concept Drift i E ! E
1 o !
i O : : mg Adversarial E
| E E Attacks E
[} 1 .:' 7 ':__|_> KKK
] LI L
i Attacks E E Drift E
i i i
i Concept : : Normal E
i Drift ' Forecast 1
e A]

Figure 3.11: A mechanism that combines the outputs from multiple hardened forecasting
models running in parallel further improves the forecasting accuracy.

These issues that I have identified explain the difficulties of implementing more complex
solutions into a unified solution, hence the sequential approach taken by Zhou et al. [43]
to avoid the compatibility issues with other solutions and complexities when dealing with
federated learning. With the SPoF issue being addressed using the bully algorithm and
replication with controlled distribution, the compatibility issues for solving MV, adversarial
attacks, and CD are resolved by using the solution arrangement template I have proposed
for ALCEN to follow, as shown in Figure 3.12. This template uses the concept of a

cascading ensemble model to sequentially fix the input data if needed, and the stacking

25

ensemble ensures the output from the hardened forecasting models could be combined to

improve the accuracy.

Input
(X)

Output

]

)

i . (*****)
! Missing Values Y

E Hardened Forecast

)
)
E 2 Adversarial Attacks
! Hardened Forecast
1
:
)
)
)
)
)
)
1)
)
)
)
[}

Cascading

Impute Missing
Values

]
)
)
)
)
)
)
)
)
)
)
H Adversarial
)
(]
)
(]
)
(]
)
(]
)
(]
)

> Concept Drift

Attacks Correction Hardened Forecast

Differential
Normalization

]
]
]
]
]
]
[]
]
]
]
]
]
]
]
]
]
]
]
]
[]
]
]
U

Figure 3.12: A mechanism that combines the outputs from multiple hardened forecasting
models running in parallel further improves the forecasting accuracy.

The originality from the standard cascading implementation [66] is the output from
each stage of correction is parsed. In addition, the originality from the standard stacking
ensemble [67] is that the unprocessed input data are parsed as input data to identify the

imperfection from the repairs.

3.3 Anomaly Detections

3.3.1 Missing Values

The missing rate is calculated by counting NaN in the array that needs to be forecasted X;
and dividing it with the length of X}, as shown in the Algorithm 3.1. Although simple, this
implementation not only helps to detect if there is MV in the array, where missing_rate > 0
indicates MV, but also helps to intuitively know the severity of the MV due to missing_rate
representing the percentage of MV in the decimal points. Once detected, X; was imputed

first before being checked for the adversarial attacks.

Algorithm 3.1 Missing Rate Measurement

Input: Scaled input sequence X;
Output: Missing rate missing_rate
1: Function check missing rate(X;)
2: Count the missing values: sum_missing <— sum(isnan(X;))
3: Count elements in the array: sum-element < sum(X;)
4: Calculate missing rate: missing_rate <— sum_missing/sum_element
5 return missing_rate
6: End Function

3.3.2 Adversarial Attacks

Adversarial attack detection is the most challenging issue to detect, as the change is not
as apparent as MV or CD. One of the commonly used detection techniques relies on an
autoencoder to detect subtle changes between the original and the reconstructed time se-
ries data [68, 69]. However, the first technique relies on utilizing the latent information
contained in the time series itself, which might be inadequate without relying on an ad-
ditional model to make the decision. In addition, the second technique combines multiple

time series to create a makeshift image, which is too complex.

In this thesis, a Filter Encoder (FE) model is used to detect the subtle change, which
is based on my previous research of creating a “filter” to correct the input data from the
adversarial attacks [37]. Figure 3.13 shows the model implementation, where the causal
convolutional network with rectified linear unit (ReLU) is repeated to reduce the dimension
of concatenated m number of features with a length of 12 (12 x m) to one (12 x 1). The
reduction was achieved by setting the kernel width to 2, and the paddings are only utilized
on the top and bottom of the 2-dimensional concatenated data. The template to implement

the FE architecture is in Listing 4.

57

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

X105t<12 X205t<1z X3ost<1z Xmost<12
| | | | |

| — Jv i l

Concatenate
J(12, mly)e——— |

Encoder

|(12, 1, filter) €— |

12

Dense
ReLU
|

!

"
Xlosz<12

Figure 3.13: Filter Encoder model implementation that use strongly correlated time
series as an additional data to improve the reconstruction accuracy.

Listing 4: Implementation template for Filter Encoder.

from tensorflow.keras.layers import ZeroPadding2D, Activation, Concatenate, Flatten
from tensorflow.keras.layers import Reshape, Input, Dense, Conv2D

from
from
from
from

tensorflow.
tensorflow.
tensorflow.
tensorflow.

keras.
keras.
keras.

keras

def filter_encoder (

metrics import RootMeanSquaredError
losses import MeanSquaredError
optimizers import Adam

.models import Model

kernel_size: int,
input_length: int,
filter_number: int,
output_length: int,
feature_number: int

-> Model:

Create the input layer for each features
input_layers = []
for _ in range(feature_number):
input_layers.append (Input (shape=(input_length,)))
Concatenate along the second axis to create a 2D tensor
hidden_layer = Concatenate(axis=1) (input_layers)
Reshape the 2D temnsor
hidden_layer = Reshape((input_length, feature_number, 1)) (hidden_layer)
Connect the 2D tensors to the stacked custom causal Conv2D layers
for i in range(feature_number - 1):
Add 2D padding to the front of the 2D tensor for simulating causal padding
hidden_layer = ZeroPadding2D(
padding=(
(
Pad top
int ((kernel_size - 1) x (i + 1) / 2),
Pad bottom
int ((kernel_size - 1) x (i + 1) / 2),
), (0, 0)
),

28

65
66
67
68
69

I = e B B B B B |
W N oUW N~ O

]

) (hidden_layer)
hidden_layer = Conv2D(
filters=filter_number,

kernel_size=(
kernel_size,

2
))

dilation_rate=(

strides=(1, 1),

padding="valid"
) (hidden_layer)

hidden_layer = Activation("relu")(hidden_layer)
hidden_layer = Flatten() (hidden_layer)

hidden_layer = Dense(int(input_length * filter_number / 2)) (hidden_layer)

hidden_layer = Activation("relu") (hidden_layer)

output_layer Dense (output_length) (hidden_layer)

model = Model (inputs=input_layers, outputs=[output_layer])

model.compile(
loss=MeanSquaredError (),
metrics=[RootMeanSquaredError ()],
optimizer=Adam(learning_rate=0.001),

)

return model

The novelty of my proposed implementation is the simplicity and efficiency by reducing
the number of features while maintaining the length of sequences, ensuring the correlation

between the features and causality between the elements are properly utilized.

Figure 3.14 shows the FE implementation to correct the input data targeted for forecast
a into a*, before measuring the deviation with RMSE to check if it exceeds the threshold.

This help to automate the detection with ML-driven decision-making [70].

29

Filter Encoder

Encoder

Root Mean Deviation
* Squared Error Score
Figure 3.14: Filter Encoder is used to correct the target input forecast before measuring
the root mean squared error score to determine if it exceed the threshold.

Once detected, the adversarial attacks in the input data was rectified before being

checked for the CD.
3.3.3 Concept Drift

To detect CD, I have automated the overlapping histograms visualization comparison used
in my previous research [59] to detect the CD by considering how many scaled current
data distributions fall into bins that have low counts or are outside the scaled train data
distribution. Figure 3.15 shows the example to detect drifted data, where any data that
fall into the yellow area are marked as drifted data, and data that fall in the less populated

train data bin will have a high chance to be classified as drifted data.

3500
Train Data Current Data
2800 F
&
2 2100 |
Q
=}
é“ 1400 +
=~ Potential drift
700 Drifted data
0 ! 1 /-/I 1 1 1

-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Normalized Values (v’)

Figure 3.15: The visualization technique to detect the concept drift is automated by
considering the positioning of scaled current data distributions against the train data
distribution.

Although simple, it is effective in identifying the gradual and recurring drift that may

60

happen due to the seasonal changes. Algorithm 3.2 is the implementation for measuring
the weight on the current input sequence distribution X;, where weight lower than the

threshold is recognized as potentially drifted data.

Algorithm 3.2 Drift Distribution Detection

Input: Training sequences X q4in, Input sequence X;, Threshold adjustment adjust
Output: Drift detected detected
1: Function drift_distribution(Xj;)

2: Create histogram: counts, bin_edges < histogram(X.qin)

3: Estimate weights for each bin: weights < counts/sum(counts)

4: Define weights for drifted data: out_of_bound < 0

5. create list to store the current data weights: new_data_weight < ||

6: for element in X; do

7: Find bin index: bin_index < digitize(element,bin_edges) — 1

8: if bin_index < 0 or bin_index > len(weights) do:

9: Append out-of-bound weight: new_data_-weight.append(out_of _bound)
10: else do

11: Append normal weight: new_data_weight.append(weights[bin_indezx))
12: Get the average weight: average weight < mean(new_data_weight)

13: Define threshold: threshold < mean(weights) x adjust

14: if average_weight < threshold do:

15: Drift detected: detected <— True

16: else do

17: Drift detected: detected < False

18: return detected
19: End Function

Once detected, the CD in the input data was rectified. Based on the anomalies found
in the input data, ALCEN will adjust the connection between the solutions to improve the

forecasting accuracy.

3.4 Solutions

3.4.1 Missing Values

The solution for imputing the MV relies on the FE introduced in Chapter 3.3.2 to impute
the MV in the sequence. To achieve this, instead of training it with clean independent
variables (X1, .5 X2, 0 s Xspains s Xmprain) 10 get X1, Algorithm 2.5 was used to

simulate MCAR in independent variables, where the MV percentage ranged from 0% to
90%, which were masked with —1 for the model to identify.

61

Algorithm 3.3 was used to generate independent variables that were repeated ten times,
where for each repetition, the MV percentage raised by 10% and masked with —1. In
addition, the dependent variable is also stacked on itself to match the length of the newly
generated independent variables using the algorithm 3.4. This is the technique I developed
in my previous research [29, 65] to harden the forecasting model against a high percentage
of MV by purposely inducing MV masked with —1 to help the ML model to identify and
work around the MV.

Algorithm 3.3 Stacked Independent Variables with Masked Missing Values
Input: Independent variables X, utivariate = [X X

Lirain s thrain’ X3train’ T mtrain]

Output: Independent stacked variables stacked_X
1: Function mv_x_sample(X, uiivariate)
Initialize empty array: stacked_X <« []
for sequences in X, uitivariate dO
Initialize empty array: X _temp < []
for : =0 to 0.9 step 0.1 do
Simulate missing values: X _temp.append(mcar_generator(sequences,i))
Mask missing values with -1: X _temp < mask(X _temp, —1)
Stack and save: stacked_X.append(vstack(X _temp))
9: return stacked_X
10: End Function

Algorithm 3.4 Stacked Dependent Variables

Input: Dependent variables X;, .
Output: Dependent stacked variables stacked_X3,, ;.
1: Function mv_y_sample(X,,uivariate)
2: Vertical stack the dependent variables: stacked_X;,,,. < vstack([Xj,.,,] x 10)
3: return stacked_X, .
4: End Function

As this solution only works by reconstructing the input data for imputation, another
solution for hardening the forecasting model is needed to further improve the accuracy.
Figure 3.16 shows the Multivariable Convolution Encoder (MCE), which is the expanded
version of the FE designed for regression analysis design from my previous research [37].
It works by leveraging the encoder capability to fix input data and TCN to forecast the
corrected time series. Although the encoder block inside the MCE has similar function

to FE, the causal padding is only utilized on the top of the 2-dimensional concatenated

62

sequence to simulate the time flow. The template to implement the MCE architecture is
in Listing 5.

X X o X

)(1ost<12 20<t<12 “30st<12 Most<12
1 |

, : | |
@azm1 |

—
———

L
(12,1, filter) [
Causal Conv1D
Rectified Linear Unit
|

Dense
Rectified Linear Unit

L | J

v

Xlust<1z

ConvlD

Linear

[enprsay

Encoder

Figure 3.16: Multivariable Convolutional Encoder implementation that leverage the
encoder capability to fix input data and the temporal convolutional network to forecast.

Listing 5: Implementation template for Multivariable Convolutional Encoder.

1 from keras import models, losses, utils, layers, metrics, backend, callbacks, optimizers
2 # import common libraries
3 from contextlib import redirect_stdout
4 from typing import Union, Tuple, List
5 from numpy import array, floating

6 from os.path import exists, isdir

7 from numpy.typing import NDArray

8 from pandas import DataFrame

9 from os import makedirs

12 def multivariable_convolutional_encoder (

13 kernel_size: int,

14 input_length: int,

15 filter_number: int,

16 output_length: int,

17 feature_number: int,

18 causality: bool = True,

19) =-> Model:

20

21 # Create the input layers for each features
22 input_layer = []

23 for in range(feature_number):

24 # Append the input with the following shape

25 input_layer .append (

26 layers. Input (

27 # shape

28 shape=(input_length,)

29)

30)

31 # Concatenate along the second axis to create a 2d tensor (None, input_length *
feature_number)

32 hidden_layer = layers.Concatenate(axis=1) (input_layer)

33 # Reshape the 2d tensor to (None, input_length, feature_number, 1)

34 hidden_layer = layers.Reshape(

35 (

36 # Input length

37 input_length,

38 # Number of features

39 feature_number,

40 # Hardcoded to 1 channel only

41 1

42 Do

43) (hidden_layer)

44 # add skip connection

45 shortcut_layer = layers.Reshape(

46 (

47 # Input length

48 input_length,

49 # Number of features

50 1,

51 # Number of filter

52 1

53),

54) (input_layer [0])

55 # Use Conv2D to reshape the shortcut_layer to match the shape of the encoder output

56 shortcut_layer = layers.Conv2D(

57 filters=filter_number,

58 kernel_size=(1, 1),

59 padding="same",

60) (shortcut_layer)

61 # Connect the 2d tensors to the stacked padding and Conv2D layers

62 for i in range(feature_number - 1):

63 if causality is True:

64 # Simulate causal padding

65 hidden_layer = layers.ZeroPadding2D (

66 # add 2D zeros padding

67 padding=(

68 (

69 # Add 2D zeros to the front side of the 2D arrays

70 (kernel_size - 1) * (i + 1),

71 # Add no zeros to the bottom side of the 2D arrays

72 0

73), (

74 # Add no zeros to the left side of the 2D arrays

75 0,

76 # Add no zeros to the right side of the 2D arrays

T 0

78)

79) s

80) (hidden_layer)

81 else:

82 # Simulate same padding

83 hidden_layer = layers.ZeroPadding2D (

84 # Add 2D zeros padding

85 padding=(

86 (

87 # Add 2D zeros to the front side of the 2D arrays

88 int ((kernel_size - 1) * (i + 1) / 2),

89 # Add 2D zeros to the bottom side of the 2D arrays

64

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

int ((kernel_size - 1) * (i + 1) / 2),

), (

Add no zeros to the left side of the 2D arrays

0,

Add no zeros to the right side

0

) g
) (hidden_layer)
Connect to the Conv2D layer
hidden_layer = layers.Conv2D(
Number of learned kernels
filters=filter_number,
Parsed 1d kernel_size
kernel_size=(
kernel_size,
Reduce the number of features by 1
2
) g

Set the dilation_rate to increase by i for

dilation_rate=(
Length

+ 1,

Width

Lo -

),
Hardcoded the stride to (1, 1)
strides=(
1,
1
),

Hardcoded the Conv2D’s intermnal padding to

padding="valid",
Hardcoded the initialized bias to zeros
bias_initializer="zeros",

of the 2D arrays

each Conv2D layer

"valid"

to disable it

Hardcoded the initialized kernel weight using the glorot uniform

distribution

kernel_initializer="glorot_uniform",
) (hidden_layer)
Connect to the activation layer

hidden_layer = layers.Activation(
Activation function
"relu",

) (hidden_layer)

Combine the shortcut connection with the hidden_layer
hidden_layer = layers.Add() ([hidden_layer, shortcut_layer])

Reshape layer
hidden_layer = layers.Reshape(

target_shape=(input_length, filter_number),

) (hidden_layer)
Connect to the ConvlD layer
hidden_layer = layers.ConviD(

Number of learned kernels
filters=int(filter_number / 2),

Use the parsed 1d kermnel_size as it is
kernel_size=kernel_size,

Set the dilation_rate to match with the feature_number

dilation_rate=feature_number,

Hardcoded the stride to 1 to set the kernel’s y-axis movement to 1

strides=1,

Use same padding to maintain the dimension
padding="same",

Hardcoded the initialized bias to zeros
bias_initializer="zeros'",

Hardcoded the initialized kernel weight using the glorot uniform distribution

kernel_initializer="glorot_uniform"

) (hidden_layer)
Connect to the activation layer

65

S
~

@

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

hidden_layer = layers.Activation("relu") (hidden_layer)

Flatten the features extracted from the stacked causal Conv2D

hidden_layer = layers.Flatten() (hidden_layer)

Connect to the dense layer

hidden_layer = layers.Dense/(
Set the number of unit to the half of the amount of the flattened layer
int (input_length * filter_number / 4),
Hardcoded the initialized bias to zeros
bias_initializer="zeros",
Hardcoded the initialized kernel weight using the glorot uniform distribution
kernel_initializer="glorot_uniform",

) (hidden_layer)

Connect to the activation layer

hidden_layer = layers.Activation("relu",)(hidden_layer)
Connect to the output_layer
output_layer = layers.Dense(

Set the number of unit to match with the output length
output_length,
Hardcoded the initialized bias to zeros
bias_initializer="zeros",
Hardcoded the initialized kernel weight using the glorot uniform distribution
kernel_initializer="glorot_uniform",
) (hidden_layer)

Define the model

model = models.Model(
inputs=input_layer,
outputs=output_layer

)

Compile the model

model. compile (
loss=losses.MeanSquaredError (),
metrics=[metrics.RootMeanSquaredError ()],
optimizer=optimizers.Adam(learning_rate=0.001),

)

return model

To harden, eleven MCE models were prepared, where the first ten were trained with

different MV percentages ranging from 0% to 90%, and the eleventh was trained with the
input and output from the first ten to combine the outputs. This arrangement shown in

Figure 3.17 is my original implementation of stacking ensemble [65].

Missing Values Hardened Forecast

Missing rate = 0%

Missing rate = 10%

Missing rate = 20%

v

]

Missing rate = 90%

Output

Input C

Figure 3.17: Multivariable Convolutional Encoder models trained with missing values was

arranged in a stacking ensemble with input exposed to the meta.

66

Different from the typical stacking ensemble implementation [67], where heterogeneous
ML models were used as the base models, my implementation is homogeneous, in addition
to exposing the input data to the meta model. The heterogeneity that is needed to make
ensemble learning more robust came from the missing rate induced to the training data
when training the first ten models and by exposing the input to the eleventh meta MCE
model, which helped it to notice the forecast imperfection from each of the base models,

which the meta will improve upon.
3.4.2 Adversarial Attacks

Similar to the MV imputation, the adversarial attacks corrections utilize unpublicized data
with strong correlation with the target forecast, along with the FE model to correct the
adversarial attacks. This solution is part of my previous research [37], which uses additional

unaccounted ML models and input to make it harder to create an accurate surrogate model.

Different from the previous research implementation that commonly uses adversarial
training [39] which generates the adversarial sample in each batch train, which takes a
long time to complete, my implementation directly uses the adversarial samples generated
from the normal forecasting model as training data, which shortens the time to train.

Algorithm 3.5 is the modified PGD-based adversarial samples used to create training data.

67

Algorithm 3.5 Multivariable Projected Gradient Descent Implementation

Input: X, utivariates Y1,0:,5 M, €, iteration = 10
Output: Independent adversarial samples X pap
1: Function pgd multisample (X, utivariates Y105, M, €, iteration)

2: Create a copy of the array: Xpgp < copy(Xnmuttivariate)

3: Generate noise: noise < random.uniform(—e-0.01, € - 0.01, len(X, uivariate[0]))
4: Add noise: Xpgp[0] < Xpap[0]+noise

5. Get range: minval, mazval < min(Xuivariate0]), max(Xmutivariate [0])
6: Clip perturbations: Xpgp[0] —clip(Xpapl0], minval, mazval)

7. Calculate the alpha: a < €/iteration

8: for j = 0 to len(iteration) do

9: with GradientTape() as tape do

10: Tape on Xpgp: tape.watch(Xpgp)

11: Get prediction: Ypredict < M (Xpap)

12: Compute loss: loss <— mean_squared_error(yy, .. , Ypredict)

13: Compute gradient: gradient < tape.gradient(loss, X pap|0])

14: Insert perturbation: Xpgp|0] <= Xpap|0]+e€ - sign(gradient)

15: Clip perturbations: Xpgp[0] <—clip(Xpap[0], minval, mazval)

16: return Xpgp
17: End Function

The modified PGD-based adversarial sample is designed to create an adversarial sample
for multivariable models that takes Xiuitivariate = [X1,m0ims X2mains Xderains *°* s Ximgras] 0
get Xy, .. . For simplicity, it uses the normal forecasting model M instead of using a
surrogate model to compute the gradient and add small perturbation in X, . , which is
the input targeted to forecast. From there, Algorithm 3.6 was used to generate stacks
of independent and dependent variables to train and harden the FE model capability in

filtering the adversarial attacks. A PGD-based sample was chosen to create the adversarial

sample due to its robustness in negatively affecting the ML models.

68

Algorithm 3.6 Stacked independent and dependent variables with adversarial samples

Input: Training data X,,utivariate,; Y1,.:,, NOrmal forecasting model M, iteration = 10
Output: Independent and dependent stacked variables stacked_X, stacked_y

1: Function adversarial_sample(X, utivariate)

2: Initialize empty array: temp < ||

3: fore=01to00.9step 0.1 do

4 Sample: temp.append(pgd-multisample (X, uitivariates Yosm s M, €, iteration))

5. Transpose the nested list: transposed < zip(*temp)

6: Vertical stack: stacked_X <« [vstack(group) for group in transposed]

7. Create label: stacked_y < vstack([y,,,, | X 10

8 return stacked_X, stacked_y

9: End Function

As shown in Figure 3.18, the same solution used to harden the forecast against the MV
is used to harden the forecast against the adversarial attacks. The implementation uses
ten MCE models hardened with different adversarial intensities € ranging from 0% to 0.9%,
and the eleventh MCE model was used as a meta model to combine the outputs. Exposing

the original input helps the meta model to identify imperfections in the outputs.

Adversarial Attacks Hardened Forecast

!
|

Output

Input C

Figure 3.18: Multivariable Convolutional Encoder models trained with adversarial
samples was arranged in a stacking ensemble with input exposed to the meta.

3.4.3 Concept Drift

To fix the CD in the input data, this thesis uses differential normalization, which is an
extension to the radian scaling [59] to remove the trend in time series and make it stationary
by performing differencing [71] on the sequence before scaling it from —1 to 1 range using

min-max normalization. Equation (3.5) shows the differential normalization concept that

scales the sequence that has undergone differencing using min-max normalization.

v—min(Awv)

'=2
v max(Av)—min(Awv)

1 (3.5)

As differencing will reduce the sequence length by 1, it is necessary to add additional
value, which is called a pivot point, at the beginning of the sequence (¢ — 1) to maintain
the array length via spline interpolation imputation [46]. This helps to avoid modifying the
ML model architecture due to the mismatched input length that the ML model expects.

To revert the scaled sequence back to the original scale, use the inverse transformation

formula for the min-max normalization shown in Equation (3.6) before adding the pivot

point to the first element in Av and performing a cumulative sum to get v.

v +1
v=
2

- (max(Av)—min(Av)) 4+ min(Av) (3.6)

Different from the previous solution that relies on ML models to impute or filter the
anomalies in the sequence, this solution acts as a drop-in feature scaling for another ML
model to use once it was fitted to the scale of the training data. The novelty of this
technique is that it is compatible with other ML models that use the standard min-max
normalization, which helps remove the trends caused by adversarial attacks without re-

training the ML.

To harden the forecasting model against CD, the solution proposed uses a single MCE
model trained using the data scaled with radian scaling, which differs from the solutions
that use a stacking ensemble to harden the forecast against MV and adversarial attacks.
Similar to the differential normalization, it also uses differencing to get the difference
between two consecutive values. However, its purpose is to calculate the angle between the
two consecutive values instead of making the sequence stationary. It works by leveraging
the fact that the radian value 6 calculated from the difference of two consecutive values Av
in a time series will never exceed the straight angle on the y-axis, as shown in Figure 3.19.
This limitation is due to the linear time constraint, where the next value v, will always
be positioned on the succeeding time step, or in either quadrant I or quadrant IV of the

previous value v;.

70

Quadrant
II

Quadrant
I

0 rad

Quadrant
111

Quadrant
v

s
—=rad
2

Figure 3.19: The linear time constraint ensures the radian value 6 will never exceed the

straight angle on the y-axis.

Additionally, the patterns in the time series are almost always the same with a different

scale, mean, and median, as shown in Figure 3.20 that highlight gradual drift due to the

seasonal change. Radian scaling solves these issues by scaling the values to a radian,

which does not rely on scale, mean, and median found in the training data. This helps

to maintain the current normalized data distribution close to what the ML models were

originally trained on.

UV

/]

000
4000)
3000
2000

Electricity Load [MV

1000
0

30 Apr 2018

Py

Real Values

Forecasted Values

20 Jun 2018 10 Aug 2018 30 Sep 2018

Figure 3.20: The gradual drift due to the seasonal changes shows the real values still
follows the midday-to-midnight pattern, albeit on a different scale, mean, and median.

With radian scaling, the # are guaranteed to be within the range —7/2 < 6 < 7/2,

which is approximately —1.5708 < 6 < 1.5708 for the ML models to process. The hard

limit on the minimum and maximum values allows the model to generalize to sequences

71

it has not yet trained, as the values will never exceed this range, preventing normalized

values with skewed distribution when handling sequences that exhibit CD.

Figure 3.21 shows the generalization example to calculate the radian value 6, between
two consecutive values. By representing the value differences as Av; and the time step
difference between any consecutive values of At as 1, 6, can be calculated using the inverse
trigonometric function vj=tan~'(Av), which will create a bimodal distribution for the
entire dataset. However, this will degrade the forecasting accuracy, necessitating in-depth

data preprocessing and complex ML models [72, 73, 74] to work with it.

v

1 1L >t
e— At = 1 —»

Figure 3.21: The gradual drift due to the seasonal changes shows the real values still
follows the midday-to-midnight pattern, albeit on a different scale, mean, and median.

To solve this, the diminisher k£ was introduced to push the distribution to the center,
balancing between making the unimodal distribution and avoiding the scaled values being
too close to zero. Moving forward, the inverse trigonometric function can be rewritten as
shown in Equation (3.7). Additionally, the comparison between the training and evaluation
data samples that exhibit CD is shown in Figure 3.22 and Figure 3.23, highlighting radian
scaling capability in maintaining the distribution against CD.

it

vi=tan ! (%), where: k:10[10g10< nt)J (3.7)

72

5400

1Jan ~ 30 April 2018 1 May ~28 Aug 2018
4500 |
(e
§ 3600 |
5 2700 F
2 1800 |
A
900 F
0 1 1 1 1 1 I 1 1

20 -16 -12 -08 -04 00 04 08 12 1.6
Normalized values v’

Figure 3.22: Min-max normalization distribution sample comparison between the train
data (yellow) and evaluation data (green) sample.

4500 -
1 Jan ~ 30 April 2018 1 May ~ 28 Aug 2018

3600
§
= 2700 |
=]
No)
E 1800
A
2 900

O 1 1 1 1
-1.0 -0.6 -0.2 0.2 0.6 1.0

Normalized values v’

Figure 3.23: Radian scaling distribution sample comparison between the train data
(yellow) and evaluation data (green) sample.

To be paired with the differential normalization that converts the time series into a
stationary sequence, the forecasting model hardened against CD will accept the values
scaled with differential normalization. However, the reverse transformation used to unscale
the sequences back to their original scale will still rely on radian scaling, which differs from
other ML models utilized in ALCEN;, as the scaling and unscaling method will be replaced

with differential normalization when CD was detected to fix the input sequence.

Figure 3.24 shows a dual feature scaling implementation for CD-hardened forecasting
model. The baseline input representing the sequence that exhibits CD uses radian scaling,
and the fixed input from CD uses differential normalization. However, the forecasted
sequences only use radian scaling to change the forecast back to its original scale due to

radian scaling being more superior in maintaining the drifted distribution.

73

Concept Drift Hardened Forecast
Radian
Scaling

Figure 3.24: Dual feature scaling implementations are used by the forecasting model
hardened against concept drift to handle baseline and corrected input.

Radian

Baseline Input — Scaling

Forecaster

Differential
Normalization

Fixed Input —

In addition to using the convolutional layer in ML models to help it generalize with
CD, the implementation of differential normalization helps other forecasting models to be
more robust against CD. In addition, the CD-hardened forecasting further improves the
forecasting accuracy for the primary meta model to use as a guide when combining the

result from other forecasters.

3.4.4 Primary Meta Model

There are two methods to combine the output from the hardened forecasting models,
which are weighted averaging and meta model. Although average weighting is the simplest
solution to implement, it requires further tuning to correlate the severity of the issues
with their corresponding weights in order to be effective. Additionally, the severity of
an adversarial attack or CD is dependent on the context or domain knowledge needed to

quantify it in the weight used to average the results.

In ALCEN implementation, a meta model was used to combine the output from the
hardened forecasting models. To provide the context or domain knowledge of how each of
the outputs from the hardened forecasting models differs based on the problems they are
solving, the original input was parsed to the meta model as a reference. The only demerit
of using a meta model is it expects the feature numbers and the sequence length to be
constant. As the number of features will change depending on the number of issues found

in the input data, sequence filler is used to backfill empty features with the existing ones.

74

Primary Meta Model

Input Sequence

Filler Output

Missing Values Hardened Forecast Output —¢

Adversarial Attacks Hardened Forecast Output —¢
Concept Drift Hardened Forecast Output —¢

Normal forecast Output —

Figure 3.25: Primary meta model implementation to combine the output from multiple
hardened model based on the severity of the noises found in the input.

This will not only make the hyperparameter easier to use when setting up ALCEN
in Chapter 4, but it also help ALCEN make the most of the best parts of each solution

without the need to compromise.

3.4.5 Training Method

To train the models or countermeasures, it must follow the numbering shown in Figure 3.26,
as the hardened forecasting models require the output from the corrected input to analyze
the incompleteness or correction error they must work with. This is also the same for the
primary meta model, as it requires the output from the hardened forecasting model in

addition to the normal forecasting model.

Input e)
X) '
5 S R E Missing Values
! Cascading E E Hardened Forecast
: 1 !
. . b
E Implgzlﬁgs e i E < Adversarial Attacks
| i Hardened Forecast
]] :
' Adversarial] ;
| . 2 Concept Drift
E Attacks Correctio1 E E Hardened Forecast
)) 1 |C
i Differential ; H
E Normalization ' Normal
X H E Forecast

Figure 3.26: The machine learning models or countermeasures must be trained or
initialized based on the denoted number, where smaller number are prioritize first.

Once the countermeasures in the cascading group were trained in sequence, the output

75

from these countermeasures was used to train the countermeasures in number 4. As the
operation in here is in parallel, the countermeasures can be trained in any sequence. Then,
the normal forecasting model was trained, and the output was used along with the hardened

forecast output to train the meta model.

Additionally, each of the models and countermeasures requires the dependent variables
in the training data to have noises added to it. This is necessary to expose the noisy data
to the ML models during the training phase to teach them how to generalize the forecast
with this issues. Table 3.3 summarize the type of training data used to train the models

and countermeasures.

Table 3.3: Type of training data used to train the machine learning model or
countermeasures.

Training Data

Solution Normal Missing Values Adversarial Attacks
(0-90%) (e=0 ~0.1)

Impute missing values v

Adversarial Attacks correction v

Differential normalization v

Missing values hardened forecast v

Adversarial attacks hardened forecast v

Concept drift hardened forecast v

Normal forecast v

Meta v v v

3.5 Conclusion

In this chapter, the theories on how to solve the SPoF problem were given, which help to
maintain the forecasting accuracy as long as the number of offline nodes does not exceed
more than 3. In addition, the standardized template to initialize the machine model also
helps to restore the offline node functionality in a different node, simplifying the deployment
and management.

Furthermore, the anomaly detection to detect MV, CD, and adversarial attacks helps
identify the issues and rearrange the node configurations to tackle the issues head-on.
This mechanism ensures the ALCEN is able to adapt to any situation without requiring

intervention from the system operator, which might not be fast enough to rectify the issues.

76

Finally, the solution given resolves the MV, CD, and adversarial attacks not only by
repairing the data but also by enhancing the forecast to cover any mistake done when

correcting the input, which is not possible in the previous research.

The following chapter will present the ALCEN application to forecast the electricity
load in Long Island City of New York State and compare the result against the method
proposed by Zhou et al. [43].

7

4 Electricity Load Forecast
4.1 Chapter Introduction

In this section, ALCEN was applied to forecast the electricity load, and its performance
against MV, CD, and adversarial data was measured. Then the forecasting accuracy was
compared with previously proposed unified method by Zhou et al. [43]. For fair comparison,
the same 4 months interval to update the forecaster was used, with the exception of 2
months interval for retraining, as ALCEN relies on differential normalization and radian

scaling to handle CD instead of retraining.

The dataset used from the New York Independent System Operator (NYISO) [4], which
consist of 11 electricity load zones shown in Figure 4.1 and Figure 4.2. Similar to the
previous experiments done in Chapter 2, the target forecast is the electricity load in the

Long Island, New York, which is represented as LONGIL in Figure 4.2.

B WEST

B GENESE

B CENTRL
MHKVL
NORTH
CAPITL
HUDVL
MILLWD
DUNWOD

H NYC

Bl LONGIL

Figure 4.1: The electricity load zones and their corresponding zone codes.

10000
>
S 8000
g
& 6000
>
£ 4000
g
g 2000 K .
LTJ T R RIS I A s daod v Yo LY P
0 1 1 1 1 1

1Jan 2018 20]Jul2018 5Feb 2019 24 Aug2019 11 Mar 2020 27 Sep 2020

B WEST B GENESE B CENTRL MHKVL NORTH CAPITL
HUDVL MILLWD DUNWOD B NYC M LONGIL

Figure 4.2: The electricity load data sampled in at 5-minute intervals in 11 zones.

78

4.2 Application
Table 4.1 is the hyperparameter used to initialize ALCEN. Although FE and MCE models
utilizes different architecture, it use same the parameters used to initialize the models.

Table 4.1: Hyperparameter used when initializing the Adaptively Linked Composite
Ensemble Network to forecast the electricity load.

Target Parameter Value
batch size 1000
Training number of epoch 300
Adam learning rate 0.001
Drift threshold 0.5
Detection Adversarial threshold r? <09.6
Missing percentage threshold 100%
Sliding window size 4 months
Retraining Fixed training interval 6 months
Acceptable accuracy threshold 7?2 >0.96
: Patience 3
Overfitting Minimum loss delta 0.0001
Kernel size 3
Input length 12
Architecture Input features 3
Output length 12
Number of filters 8

To forecast the electricity load in the Long Island zone using the ALCEN, another
two zones that have a high electricity load correlation to the Long Island zone must be
selected. Kendall’s 7 correlation was selected due to its robustness to outliers and capability
of handling ordinal data [75]. From the test, Hudson Valley and Capital zones were selected
due to their strong correlation with the Long Island zone. Although there is no hard limit
on how much strongly correlated data can be used, the number of correlated data used is

set to 2, as the accuracy gained is minuscule with a long computation time trade-off.

Then, the solutions to fix the input and harden the forecasts were initialized, which
as defined in Table 4.1 with 12 input and output lengths, 3 input features that represent
the input sequences of Long Island, Hudson Valley, and Capital for the ML models were
prepared. Then, with training data ranging from 1 January 2018 to 30 April 2018, followed
by evaluation data ranging from 1 May 2018 to 31 December 2020, the ML models were

79

trained based on the training and overfitting parameters before setting up the anomaly
detections. Once prepared, ALCEN performance against CD, MV, and adversarial attacks

was measured.

4.3 Result

4.3.1 Missing Values

Similar to the MV experiment done in Chapter 2.3.3, the scheduled learning for ALCEN
is denoted as T1, T2, and T3 being done every 4 months to keep ALCEN up-to-date, it

was tested on v/ with MV ranging from 0% to 90%, on 1 January 2019 to 30 April

evaluate

2019. Figure 4.3 shows the visualized scheduled updates (T1, T2, and T3) with evaluation

range to measure the accuracy.

6000 T1 T2 T3 —— Evaluate
5000 |
4000
3000 Ff

2000 -

Electricity Load [MW]

1000 ' ' '
31 Dec2017 1Oct2018 2Jul2019 1 Apr 2020 31 Dec 2020

Figure 4.3: Scheduled learning done to update the adaptively linked composite ensemble
model and the evaluation range.

To simulate MCAR on from 1 January 2019 to 30 April 2019 caused by sensor failures
or packet loss from DDoS attacks, Algorithm 2.5 was utilized to randomly insert MV. For
consistency, the randomization seed set to seed=2025, with MV percentage ranging from

0% to 90%. Table 4.2, Table 4.3, and Table 4.4 show the averaged forecasting accuracies.

80

Table 4.2: Coefficient of determination scores against the missing values.

Missing Coefficient of Determination (R?)

Percentage Session Averaae
[%] I 2 3 g
0 0.9967 0.9967 0.9967 0.9967
10 0.9959 0.9960 0.9962 0.9960
20 0.9954 0.9953 0.9950 0.9952
30 0.9942 0.9940 0.9936 0.9940
40 0.9927 0.9917 0.9922 0.9922
50 0.9895 0.9895 0.9896 0.9895
60 0.9842 0.9852 0.9848 0.9847
70 0.9756 0.9744 0.9743 0.9748
80 0.9554 0.9573 0.9581 0.9569
90 0.8740 0.8727 0.8746 0.8738

Table 4.3: Root mean squared error scores against the missing values.

Missing Root Mean Squared Error (RMSE)
Percentage Session

(%] i 5 3 Average
0 51.583 51.584 51.584 51.584
10 57.384 56.391 55.415 56.397
20 60.371 61.325 63.370 61.689
30 67.979 69.06 71.179 69.407
40 76.435 81.25 79.058 78.915
50 91.741 91.41 91.190 91.448
60 112.26 108.49 110.23 110.33
70 139.57 142.86 143.15 141.86
80 188.67 184.67 182.77 185.37
90 317.01 318.74 316.32 317.36

81

Table 4.4: Mean absolute error scores against the missing values.

Missing ~ Mean Absolute Error (MAE)

Percentage Session Averaae

[%] I 2 3 g

0 36.540 36.541 36.541 36.540
10 39.401 39.591 39.222 39.405
20 42.647 42.596 42.991 42.745
30 46.498 46.937 46.676 46.704
40 52.125 53.806 53.390 53.107
50 61.175 60.818 60.918 60.970
60 74.369 73.263 73.417 73.683
70 93.653 93.749 92.602 93.334
80 124.52 12520 123.35 124.36
90 207.36 202.46 203.84 204.55

These result shows huge accuracy improvement against MV. Although the average
accuracies with low percentage of MV on Zhou et al. [43] is slightly better, this method
really shine when the MV percentage rise more than 40%. By comparing the MAE result
on 90%, ALCEN reduce the MAE score by 49.776%, which is 357.51 [MW] reduction of
averaged absolute error. The reason for this is due to the multivariate nature of ALCEN,
where multiple input values will inadvertently add small noises to the forecast. Figure 4.4,

Figure 4.5, and Figure 4.6 confirmed these observations.

c 1.0000 —s -
2 -
E 09742
&
k3, 0.9484 |
S
~
5T 09226 1
=
Y 0.8968 |
R3]
E
8 0.8710 1 1 1 1 1 1 1 1
o

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 4.4: Averaged coefficient of determination scores against missing values from 1
January 2019 to 30 April 2019.

82

318

—
2 2
= 54
T
‘3@ 191
=
c 2 127
m\/
[«F]
z
o)
&

0 1 1 1 1 1 1 1 1

0O 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 4.5: Averaged root mean squared errors score against missing values from 1
January 2019 to 30 April 2019.

205

164

123

(MAE)

82

41 |

Mean Absolute Error

0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Missing Values [%]

Figure 4.6: Averaged mean absolute errors score against missing values from 1 January
2019 to 30 April 2019.

4.3.2 Concept Drift

In this experiment, ALCEN is tested on CD, in addition to the MV that ranges from 0% to
90% to see how ALCEN deals with multiple input noises. Similar to the CD experiment in
Chapter 2.3.4, the evaluation range was set from 1 May 2020 to 31 August 2020, which is
right after the scheduled training (T7) was done to update the ALCEN. Figure 4.7 shows

the visualized scheduled learning with the evaluation range to measure the accuracy.

83

7000

—T1 T2 T3 T4 T5 T6
E 5800 L T7 ——Evaluate
=)
T 4600 F
o
—
> 3400
2
E 2200 ‘
= 1000 ' ' '

31 Dec2017 10Oct2018 2]Jul2019 1 Apr2020 31 Dec 2020

Figure 4.7: Scheduled learning done to update the adaptively linked composite ensemble
model and the evaluation range.

The R? scores shown in Table 4.5 achieve better forecasting accuracy than the R?
scores shown in Table 4.2, and this observation was supported by the RMSE and MAE
scores, as shown in Table 4.6 and Table 4.7. This is different from the experiment done in

Chapter 2.3.4, where the R? scores improved while the RMSE and MAE scores worsened.

In addition to the up-to-date multivariate countermeasures used by ALCEN, the sen-
sors data is used to impute with high accuracy and rectify the error due to incomplete
imputation. The forecasting model enhanced with radian scaling also serves as a guide
for the primary meta model to aggregate the forecast. This explains why the RMSE and
MAE scores for ALCEN do not worsen.

Table 4.5: Coefficient of determination scores against the missing values and concept

drift.
Missing Coefficient of Determination (R?)
Percentage Session Averaoe
[%] I 2 3 g
0 0.9969 0.9969 0.9969 0.9969
10 0.9967 0.9966 0.9967 0.9966
20 0.9963 0.9962 0.9963 0.9963
30 0.9956 0.9956 0.9957 0.9956
40 0.9944 0.9945 0.9944 0.9944
20 0.9926 0.9924 0.9927 0.9926
60 0.9893 0.9885 0.9889 0.9889
70 0.9803 0.9813 0.9810 0.9809
80 0.9667 0.9632 0.9654 0.9651
90 0.9022 0.8981 0.9049 0.9017

84

Table 4.6: Root mean squared error scores against the missing values and concept drift.

Missing Root Mean Squared Error (RMSE)

Percentage Session Averaae
[%] I 2 3 g
0 49.785 49.785 49.785 49.785
10 51.366 52.249 51.674 51.763
20 54.013 55.069 54.338 54.473
30 59.354 59.007 58.504 58.955
40 66.874 66.227 66.898 66.667
50 76.835 T77.772 76.113 76.907
60 92.554 95.587 94.085 94.075
70 125.30 122.05 123.00 123.45
80 162.90 171.38 166.14 166.81
90 279.40 285.17 275.45 280.01

Table 4.7: Mean absolute error scores against the missing values and concept drift.

Missing ~ Mean Absolute Error (MAE)

Percentage Session Average
(%] 1 2 3 7
0 35.939 35.939 35940 35.939
10 36.902 37.559 37.238 37.233
20 38.717 39.606 38.926 39.083
30 42.382 42131 41972 42.161
40 47.136 46.767 47.147 47.017
20 53.049 53.520 52.607 53.059
60 63.759 64.904 64.191 64.285
70 81.823 81.659 82.688 82.057
80 110.00 113.24 112.52 111.92
90 180.64 183.39 177.39 180.47

Figure 4.8, Figure 4.9, and Figure 4.10 support the observation that R?, RMSE, and
MAE scores do improve. As the countermeasures updated seven times, they are becom-
ing much better at handling MV and CD without relying on conformal predictions to
preemptively start the retraining to update the models before the scheduled update.

85

o 1.0000 —————
RS —,
E 0.9800 F
&
5 0.9600
S
a4
< € 09400
=
g 0.9200 |
O
E
é 0.9000 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 4.8: Averaged coefficient of determination scores against missing values and
concept drift from 1 May 2020 to 31 August 2020.

281
=
£ 225
E L
g
= o 169 |
=T
=
° 2 112
M N—"
[¢F]
42_. 56 ‘_
]
&

0 ! ! ! ! ! ! ! !

0O 10 20 30 40 50 60 70 80 90
Missing Values [%]

Figure 4.9: Averaged root mean squared errors score against missing values and concept
drift from 1 May 2020 to 31 August 2020.

181

145

109

(MAE)

72

36 ¢

Mean Absolute Error

0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Missing Values [%]

Figure 4.10: Averaged mean absolute errors score against missing values and concept
drift from 1 May 2020 to 31 August 2020.

86

4.3.3 Adversarial Attacks

On top of MV and CD, this experiment uses the same PGD-based adversarial attacks
used in Chapter 2.3.5 to measure the ALCEN resiliency. Using the same surrogate mode
architecture shown in Figure 2.23 and the same training mechanism, the surrogate model
copied the normal forecasting model behavior, and a PGD sample with ¢=0.05 was created
on the evaluation data that ranged from 1 May 2020 to 31 August 2020 that exhibit
seasonal drift. Then, MV percentages ranging from 0% to 90% were simulated and tested

on ALCEN.

Table 4.8, Table 4.9, and Table 4.10 show the forecasting accuracies from 1 May 2020
to 31 August 2020 against MV, CD, and PGD-based attacks with ¢=0.05. Compared to
the previous result obtained from Chapter 4.3.2, the R? suffers minimal degradation, with
the exception of RMSE scores, where the averaged forecast from 0% to 90% shows RMSE
scores increase by 49.674%. This is also confirmed on the MAE scores, where the averaged
forecast from 0% to 90% shows MAE scores increase by 73.951%, or approximately 51.265

[MW] of averaged absolute error difference.

Although the accuracy degradation shown by RMSE and MAE is considerably notice-
able, the accuracy is far better than the performance of the previously proposed method

in Chapter 2.3.5, as ALCEN reduces the MAE scores by 49.645%, or approximately 118.89

[MW] of the averaged absolute error difference.

87

Table 4.8: Coefficient of determination scores against the missing values, concept drift,
and adversarial attacks.

Missing Coefficient of determination (R?)
Percentage Session

(%] i 5 5 Average
0 0.9797 0.9797 0.9861 0.9818
10 0.9800 0.9802 0.9856 0.9819
20 0.9802 0.9804 0.9847 0.9817
30 0.9795 0.9793 0.9836 0.9808
40 0.9776 0.9790 0.9817 0.9794
50 0.9759 0.9766 0.9796 0.9774
60 0.9749 09742 0.9752 0.9748
70 0.9676 0.9681 0.9695 0.9684
80 0.9502 0.9534 0.9542 0.9526
90 0.8963 0.8895 0.8981 0.8946

Table 4.9: Root mean squared error scores against the missing values, concept drift, and
adversarial attacks.

Missing Root Mean Squared Error (RMSE)
Percentage Session

(%] i 5 3 Average
0 127.18 127.18 105.34 119.90
10 126.43 125.57 107.15 119.72
20 125.63 125.15 110.66 120.48
30 127.98 128.60 114.22 123.60
40 133.83 129.51 120.99 128.11
50 138.62 136.62 127.64 134.29
60 141.37 143.45 140.74 141.86
70 160.74 159.43 155.87 158.68
80 199.31 192.86 191.22 194.46
90 287.63 296.98 285.11 289.91

88

Table 4.10: Mean absolute error scores against the missing values, concept drift, and
adversarial attacks.

Missing ~ Mean Absolute Error (MAE)
Percentage Session Average
(%] I 2 3 g

0 112.04 112.04 87.33 103.80

10 109.28 108.62 87.94 101.95

20 106.59 105.97 91.01 101.19

30 107.49 108.13 93.20 102.94

40 109.93 107.86 98.10 105.30

50 113.07 111.17 102.73 108.99

60 112.98 115.06 110.94 112.99

70 124.87 123.60 121.38 123.28

80 14726 143.15 141.10 143.83

90 201.41 204.26 199.13 201.60

In addition to supporting the observation in Table 4.8, Table 4.9, and Table 4.10,

Figure 4.11, Figure 4.12, and Figure 4.13 also show interesting behavior where the accuracy

degradation rate is much lower than the previously proposed unified methods. These results

highlight the ALCEN’s capability of handling multiple input noises while maintaining

respectable accuracy.

g 1.0000
.8
g 09786
g
9 0.9572
S

&
5 € 09358
=
R 0.9144
.U
E
I 0.8930
@)

0

10

20

30 40

50

60 70 80 90

Missing Values [%]

Figure 4.11: Averaged coefficient of determination scores against missing values, concept
drift, and adversarial attacks from 1 May 2020 to 31 August 2020.

89

Root Mean Squared Error
(RMSE)

—_
—_
(o))

¢

¢

[}

[

O 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Missing Values [%]

Figure 4.12: Averaged root mean squared errors score against missing values, concept
drift, and adversarial attacks from 1 May 2020 to 31 August 2020.

202

162

121

(MAE)
¢
¢

81

40

Mean Absolute Error

0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Missing Values [%]

Figure 4.13: Averaged mean absolute errors score against missing values, concept drift,
and adversarial attacks from 1 May 2020 to 31 August 2020.

4.4 Conclusion

In this chapter, ALCEN was tested in the same environment as the previously proposed
unified solution, and it shows greater resiliency against MV, CD, and adversarial attacks.

With a high percentage of MV, ALCEN could strengthen the forecasting accuracy by
considering the imputation error that could negatively impact the forecasting accuracy.
Similarly, the same concept was implemented to enhance the forecast against the adversar-
ial attacks by considering the correction error that could decrease the forecasting accuracy.
Finally, the CD was resolved by using radian scaling and differential normalization to avoid

computationally expensive retraining.

90

These results highlight the composite models arrangement method that was utilized by
ALCEN to negate correction error accumulation due to sequential input corrections and

solutions compatibilities, allowing multiple countermeasures to be unified.

Finally, the experiment also highlights the potential misuse that the attackers could
utilize to weaken the forecasting model, which was shown by launching DDoS attacks to
cause MV and hide well-crafted adversarial attacks that could potentially cause a negative

impact on a forecasting system that relies only on a single countermeasure.

91

5 Conclusion

In Chapter 1, the necessity of accurate forecasting mechanisms to optimize smart city
systems was introduced. It highlights real-world challenges such as MV, CD, adversarial
attacks, and SPoF that can adversely affect forecasting accuracy. Additionally, the correc-
tion error accumulation and solution compatibility are given as the reasons why most of

the proposed solutions only focus on a single problem.

In Chapter 2, the unified method proposed by Zhou et al. [43] attempts to address
forecasting challenges but falls short due to its trivial solutions, which fail to provide a
comprehensive solution for MV, CD, adversarial attacks, and SPoF. This is due to the
federated learning complicates the management of multiple machine learning-based data
preprocessing, restricting solutions to linear corrections and accumulating errors from inad-
equate rectifications. ZThe experiments reveal weaknesses in their approach, especially its
ineffective adversarial attack and MV countermeasures. Furthermore, the Seq2seq LSTM
model struggles with CD adaptation, as it performs poorly when extrapolating beyond

trained value ranges.

In Chapter 3, the theories to solve the SPoF problem were detailed using distributed
computing and standardized templates to facilitate restoring offline node functionality,
simplifying deployment and management. Anomaly detection mechanisms identify MV,
CD, and adversarial attacks, allowing node configuration rearrangements without operator
intervention, which may be too slow to resolve issues. The proposed solution addresses
MV, CD, and adversarial attacks by not only repairing data but also enhancing forecast

accuracy, overcoming limitations of previous research.

In Chapter 4, ALCEN was tested in the same environment tested on Zhou et al. [43],
demonstrating improved resiliency against MV, CD, and adversarial attacks. ALCEN
enhances forecasting accuracy by considering imputation and correction errors that could
negatively impact results. CD issues are addressed using radian scaling and differential nor-
malization, avoiding costly retraining. The results showcase ALCEN’s composite model
arrangement, negating correction error accumulation and unifying multiple countermea-

sures. The experiment also highlights potential vulnerabilities, such as DDoS attacks

92

causing MV and concealing sophisticated adversarial attacks, which could undermine a

system relying solely on one countermeasure.

For the future works, a more in-depth investigation is needed to confirm the effectiveness
of MV or CD to hide well-crafted adversarial attacks, and their impact on the forecasting
model is necessary to further improve the resiliency and reliability of the current forecasting

mechanism.

Additionally, the current application of ALCEN relies on a meta model to perform an
adjustment to combine multiple prediction results into one. Although adversarial attack
intensity could be estimated via an autoencoder model, it is not possible to mathematically
show how much the adjustment is required. As a future challenge, we aim to develop an

explainable ML model to make the decision-making done by ML more trustworthy.

93

References

1]

2]

[11]

[12]

[13]

A. Deguchi et al., “What Is Society 5.07,” in Society 5.0: A People-centric Super-smart
Society. Singapore: Springer Singapore, 2020, pp. 1-23.

A. Deguchi, “From Smart City to Society 5.0,” in Society 5.0: A People-centric Super-smart
Society. Singapore: Springer Singapore, 2020, pp. 43—65.

Grand View Research. “Smart Cities Market Size, Share And Growth Report.” www.grandv
iewresearch.com. Accessed: 6 October 2024. [Online.] Available: https://www.grandvie
wresearch.com/industry-analysis/smart-cities-market.

New York Independent System Operator. “New York Control Area Load Zones.” www.nyis
o.com Accessed: 22 April 2024. [Online]. www.nyiso.com/documents/20142/1397960/ny
ca_zonemaps.pdf.

I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya, “Electricity load forecasting;:
a systematic review,” Journal of Electrical Systems and Information Technology, vol. 7, no.
1, 13, 2020.

J. Kruse, B. Schéfer, and D. Witthaut, “Predictability of Power Grid Frequency,” IEEE
access, vol. 8, pp. 149435-149446, 2020.

C. Sweeney, R. J. Bessa, J. Browell, and P. Pinson, “The Future of Forecasting for Renewable
Energy,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 9, no. 2, e365, 2020.

R. V. Klyuev et al., “Methods of Forecasting Electric Energy Consumption: A Literature
Review,” Energies, vol. 15, no. 23, 8919, 2022.

E. Vivas, H. Allende-Cid, and R. Salas, “A Systematic Review of Statistical and Machine
Learning Methods for Electrical Power Forecasting with Reported MAPE Score,” Entropy,
vol. 22, no. 12, 1412, 2020.

Juniper Research. “Smart Grid Cost Savings to Exceed $125 Billion by 2027” www. junipe
rresearch.com Accessed: Oct. 7, 2024. [Online.] Available: https://www.juniperresearc
h.com/press/smart-grid-cost-savings-to-exceed-125bn.

L. Myllyaho, M. Raatikainen, T. Mannisto, J. K. Nurminen, and T. Mikkonen, “On Misbe-
haviour and Fault Tolerance in Machine Learning Systems,” Journal of Systems and Soft-
ware, vol. 183, 111096, 2022.

R. Tawn, J. Browell, and I. Dinwoodie, “Missing Data in Wind Farm Time Series: Properties
and Effect on Forecasts,” Electric Power Systems Research, vol. 189, 06640, 2020.

R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, “Load Forecasting Under Concept Drift:
Online Ensemble Learning With Recurrent Neural Network and ARIMA,” IEEE Access, vol.
9, pp. 98992-99008, 2021.

R. Heinrich, C. Scholz, S. Vogt, and M. Lehna, “Targeted Adversarial Attacks on Wind
Power Forecasts,” Machine Learning, vol. 113, no. 2, pp. 863-889, 2024.

Z. Xu and J. H. Saleh, “Machine Learning for Reliability Engineering and Safety Appli-
cations: Review of Current Status and Future Opportunities,” Reliability Engineering &
System Safety, vol. 211, 107530, 2021.

94

[16]

[17]

[18]

[24]

[25]

[27]

28]

V. Demertzi, S. Demertzis, and K. Demertzis, “An Overview of Cyber Threats, Attacks and
Countermeasures on the Primary Domains of Smart Cities,” Applied Sciences, vol. 13, no.
2, 2023.

IBM X-Force. “X-Force Threat Intelligence Index 2024.” www.ibm. com. Accessed: 20 October
2024. [Online.] https://www.ibm.com/reports/threat-intelligence.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “A Survey
on Adversarial Attacks and Defences,” CAAI Transactions on Intelligence Technology, vol.
6, no. 1, pp. 25-45, 2021.

O. Yoachimik and J. Pacheco. “DDoS Threat Report for 2024 Q2.” www.cloudflare. com.
Accessed: 20 October 2024. [Online.] https://blog.cloudflare.com/ddos-threat-rep
ort-for-2024-q2/.

N. Agrawal and S. Tapaswi, “Defense Mechanisms Against DDoS Attacks in a Cloud Com-
puting Environment: State-of-the-Art and Research Challenges,” TEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3769-3795, 2019.

L. Gjesvik and K. Szulecki, “Interpreting Cyber-Energy-Security Events: Experts, Social
Imaginaries, and Policy Discourses Around the 2016 Ukraine Blackout,” European Security,
vol. 32, no. 1, pp. 104-124, 2023.

CyberPeace Institute. “Cyberattacks Impact and Harm on the Energy Sector.” cyberpeace
institute.org. Accessed: 11 December 2024. [Online.] https://cyberconflicts.cyber
peaceinstitute.org/impact/sectors/energy.

H. Alkabbani, A. Ramadan, Q. Zhu, and A. Elkamel, “An Improved Air Quality Index
Machine Learning-Based Forecasting with Multivariate Data Imputation Approach,” Atmo-
sphere, vol. 13, no. 7, 1144, 2022.

W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Adversarial Training Methods for Deep Learn-
ing: A Systematic Review,” Algorithms, vol. 15, no. 8, 283, 2022.

R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, “Load Forecasting Under Concept Drift:
Online Ensemble Learning With Recurrent Neural Network and ARIMA,” IEEE Access, vol.
9, pp. 98992-99008, 2021.

V. Venkataramanan, S. Kaza, and A. M. Annaswamy, “DER Forecast Using Privacy-
Preserving Federated Learning,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 204—
2055, 2023.

T. H. Lin, X. R. Zhang, C. P. Chen, J. H. Chen, and H. H. Chen, “Learning to Identify
Malfunctioning Sensors in a Large-Scale Sensor Network,” IEEE Sensors Journal, vol. 22,
no. 3, pp. 2582-2590, 2022.

B. Tushir, Y. Dalal, B. Dezfouli, and Y. Liu, “A Quantitative Study of DDoS and E-DDoS
Attacks on WiFi Smart Home Devices,” IEEE Internet of Things Journal, vol. 8, no. 8, pp.
6282-6292, 2021.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Fault-Tolerance and Zero-
Downtime Electricity Forecasting in Smart City,” presented at the 2023 IEEE 12th Global
Conference on Consumer Electronics (GCCE), 10-13 October, 2023.

95

[30]

31]

Y. Zhang, B. Zhou, X. Cai, W. Guo, X. Ding, and X. Yuan, “Missing value imputation
in multivariate time series with end-to-end generative adversarial networks,” Information
Sciences, vol. 551, pp. 67-82, 2021.

J. Ma, J. C. P. Cheng, F. Jiang, W. Chen, M. Wang, and C. Zhai, “A bi-directional missing
data imputation scheme based on LSTM and transfer learning for building energy data,”
Energy and Buildings, vol. 216, 109941, 2020.

F. Bayram, B. S. Ahmed, and A. Kassler, “From Concept Drift To Model Degradation:
An Overview on Performance-Aware Drift Detectors,” Knowledge-Based Systems, vol. 245,
108632, 2022.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Radian Scaling: A Novel
Approach to Preventing Concept Drift in Electricity Load Prediction,” presented at the
2023 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 23-25 Oct.
2023, 2023.

F. Bayram, P. Aupke, B. S. Ahmed, A. Kassler, A. Theocharis, and J. Forsman, “DA-
LSTM: A dynamic drift-adaptive learning framework for interval load forecasting with LSTM
networks,” Engineering Applications of Artificial Intelligence, vol. 123, 106480, 2023.

S. Li, Y. Zhong, and J. Lin, “AWS-DAIE: Incremental ensemble short-term electricity load
forecasting based on sample domain adaptation,” Sustainability, vol. 14, no. 21, 14205, 2022.

Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox Native: Fast Adversarial
Attacks to Benchmark the Robustness of Machine Learning Models in PyTorch, TensorFlow,
and JAX,” Journal of Open Source Software, vol. 5, no. 53, 2020.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Leveraging Trusted Input
Framework to Correct and Forecast the Electricity Load in Smart City Zones Against Ad-

versarial Attacks,” presented at the 2024 International Conference on Future Technologies
for Smart Society (ICFTSS), Kuala Lumpur, Malaysia, 7-8 August 2024, 2024.

M. Ren, Y.-L. Wang, and Z.-F. He, “Towards Interpretable Defense Against Adversarial
Attacks via Causal Inference,” Machine Intelligence Research, vol. 19, no. 3, pp. 209—226,
2022.

H. Kwon and J. Lee, “Diversity Adversarial Training against Adversarial Attack on Deep
Neural Networks,” Symmetry, vol. 13, no. 3, 2021.

H. H. Dreany and R. Roncace, “A Cognitive Architecture Safety Design for Safety Critical
Systems,” Reliability Engineering & System Safety, vol. 191, 106555, 2019.

H. Gupta, P. Agarwal, K. Gupta, S. Baliarsingh, O. Vyas, and A. Puliafito, "FedGrid: A
Secure Framework with Federated Learning for Energy Optimization in the Smart Grid,”
Energies, vol. 16, no. 24, 8097, 2023.

B. Shi, X. Zhou, P. Li, W. Ma, and N. Pan, "An THPO-WNN-Based Federated Learn-
ing System for Area-Wide Power Load Forecasting Considering Data Security Protection,”
Energies, vol. 16, no. 19, 6921, 2023.

Y. Zhou, Y. Ge, and L. Jia, “Double Robust Federated Digital Twin Modeling in Smart
Grid,” IEEE Internet of Things Journal, vol. 11, no. 24, pp. 39913-39931, 2024.

96

[44]

[45]

New York Independent System Operator. “Load Data.” www.nyiso.com Accessed: 22 April
2024. [Online|. https://www.nyiso.com/load-data.

K. J. Lee, J. B. Carlin, J. A. Simpson, and M. Moreno-Betancur, “Assumptions and analysis
planning in studies with missing data in multiple variables: moving beyond the MCAR /-
MAR/MNAR classification,” International Journal of Epidemiology, vol. 52, no. 4, pp. 1268—
1275, 2023.

M. Sun, L. Lan, C.-G. Zhu, and F. Lei, “Cubic spline interpolation with optimal end condi-
tions,” Journal of Computational and Applied Mathematics, vol. 425, 115039, 2023.

M. Lima, M. Neto, T. Silva Filho, and R. A. d. A. Fagundes, “Learning under concept drift
for regression—a systematic literature review,” IEEE Access, vol. 10, pp. 45410-45429, 2022.

F. Hinder, V. Vaquet, J. Brinkrolf, and B. Hammer, “Model-based explanations of concept
drift,” Neurocomputing, vol. 555, 126640, 2023.

F. Matteo, Z. Gianluca, and V. Simone, “Conformal prediction: A unified review of theory
and new challenges,” Bernoulli, vol. 29, no. 1, pp. 1-23, 2023.

B. T. Familoni, “Cybersecurity Challenges in the Age of AI: Theoretical Approaches and
Practical Solutions,” Computer Science & IT Research Journal, vol. 5, no. 3, pp. 703-724,
2024.

M. Macas, C. Wu, and W. Fuertes, “Adversarial Examples: A Survey of Attacks and Defenses
in Deep Learning-Enabled Cybersecurity Systems,” Expert Systems with Applications, vol.
238, 2024.

A. Makuvaza, D. S. Jat, and A. M. Gamundani, “Deep Neural Network (DNN) Solution for
Real-time Detection of Distributed Denial of Service (DDoS) Attacks in Software Defined
Networks (SDNs),” SN Computer Science, vol. 2, no. 2, 107, 2021.

J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer,
“A Survey on Distributed Machine Learning,” ACM Computing Survey, vol. 53, no. 2, 30,
2020.

S. M. Ribeiro and C. Castro, “Missing data in time series: A review of imputation methods
and case study,” Learning and Nonlinear Models, vol. 20, no. 1, pp. 31-46, 2022.

Chollet, F. et al. “Keras” www.keras.io. Accessed: 30 January 2025. [Online] https:
//keras.io/getting_started/.

M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), 2-4 November 2016, pp. 265-283.

X. Fan, C. Tao, and J. Zhao, “Advanced Stock Price Prediction with xLSTM-Based Models:
Improving Long-Term Forecasting,” in 2024 11th International Conference on Soft Comput-
ing & Machine Intelligence (ISCMI), 2024.

New York State Government Data “HVAC Market Share by Efficiency and Capac-
ity: Beginning 2017.” https://data.ny.gov/Energy-Environment /HVAC-Market-Share-by-
Efficiency-and-Capacity-Begin/tf22-v9nz (accessed on 21 November 2024).

97

[59]

[60]

[61]

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Radian Scaling and Its Ap-
plication to Enhance Electricity Load Forecasting in Smart Cities Against Concept Drift,”
Smart Cities, vol. 7, no. 6, pp. 3412-3436, 2024.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” stat, vol. 1050, no. 9, 2017.

M. H. Bin Kamilin, M. A. Bin Ahmadon, and S. Yamaguchi, “An Auto-Scheduling Frame-
work for the Internet of Things Based on Process and Optimizer Modules,” presented at the
2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), 15-18 October, 2019.

M. Garcia, “Elections in a Distributed Computing System,” IEEE Transactions on Comput-
ers, vol. C-31, no. 1, pp. 48-59, 1982.

V. K. Madisetti and S. Panda, “A dynamic leader election algorithm for decentralized net-
works,” Journal of Transportation Technologies, vol. 11, no. 3, pp. 404-411, 2021.

S. Liu, N. Gupta, and N. H. Vaidya, ” Approximate Byzantine Fault-Tolerance in Distributed
Optimization,” presented at the Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, 2021

M. H. Bin Kamilin and S. Yamaguchi, “Resilient Electricity Load Forecasting Network with
Collective Intelligence Predictor for Smart Cities,” Electronics, vol. 13, no. 4, 718, 2024.

I. de Zarza, J. de Curto, E. Herndndez-Orallo, and C. T. Calafate, “Cascading and Ensemble
Techniques in Deep Learning,” Electronics, vol. 12, no. 15, p. 3354, 2023.

M. H. D. M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on bagging,
boosting and stacking for short-term prediction in agribusiness time series,” Applied Soft
Computing, vol. 86, 105837, 2020.

A. Sarikaya, B. G. Kili¢, and M. Demirci, “RAIDS: Robust autoencoder-based intrusion
detection system model against adversarial attacks,” Computers & Security, vol. 135, 103483,
2023.

J. Kang, M. Kim, J. Park, and S. Park, “Time-Series to Image-Transformed Adversarial
Autoencoder for Anomaly Detection,” IEEE Access, vol. 12, pp. 119671-119684, 2024.

M. H. Bin Kamilin, M. A. Bin Ahmadon, and S. Yamaguchi, “Multi-Task Learning-Based
Task Scheduling Switcher for a Resource-Constrained IoT System,” Information, vol. 12, no.
4, 150, 2021.

U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA
and LSTM Models in Time Series Forecasting: A Comparison,” IEEE Access, vol. 10, pp.
124715-124727, 2022.

S. Ghodratnama and R. Boostani, “An eflicient strategy to handle complex datasets having
multimodal distribution,” in ISCS 2014: Interdisciplinary Symposium on Complex Systems,
2015: Springer, pp. 153-163.

M. Koosha, G. Khodabandelou, and M. M. Ebadzadeh, “A hierarchical estimation of multi-
modal distribution programming for regression problems,” Knowledge-Based Systems, vol.
260, 110129, 2023.

98

[74] D. Stefanovski, M. Schulze, and G. Althouse, “Multimodal distribution and its impact on the
accurate assessment of spermatozoa morphological data: Lessons from machine learning,”
Animal Reproduction Science, 107564, 2024.

[75] R. H. A. Shiekh and E. F. El-Hashash, “A comparison of the pearson, spearman rank and
kendall tau correlation coefficients using quantitative variables,” Asian Journal of Probability

and Statistics, pp. 36—48, 2022.

99

Acknowledgement

I am very grateful to Professor Shingo Yamaguchi for his support and encouragement to
help me explore new ideas and to not be afraid of new challenges throughout this work.
In addition, I wish to express my gratitude to Associate Professor Mohd Anuaruddin Bin

Ahmadon (Universiti Teknologi PETRONAS) for his advice and insight.

I would like to express my appreciation to the members of the examination committee
for this thesis: Professor Shingo Mabu, Professor Hideaki Nakamura, Associate Professor
Toshikazu Samura, and Associate Professor Yuanyuan Wang for their careful reading and

precious comment on this thesis.

Finally, I express my sincere gratitude to my parents for their invaluable support and

encouragement.

100

List of Publications

1]

M. H. Bin Kamilin, M. A. Bin Ahmadon, and S. Yamaguchi, “Multi-Task Learning-Based
Task Scheduling Switcher for a Resource-Constrained IoT System,” Information, vol. 12, no.
4, 150, 2021.

M. H. Bin Kamilin and S. Yamaguchi, “Resilient Electricity Load Forecasting Network with
Collective Intelligence Predictor for Smart Cities,” Electronics, vol. 13, no. 4, 718, 2024.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Radian Scaling and Its Ap-
plication to Enhance Electricity Load Forecasting in Smart Cities Against Concept Drift,”
Smart Cities, vol. 7, no. 6, pp. 3412-3436, 2024.

M. H. Bin Kamilin, M. A. Bin Ahmadon, and S. Yamaguchi, “An Auto-Scheduling Framework
for the Internet of Things Based on Process and Optimizer Modules,” presented at the 2019
IEEE 8th Global Conference on Consumer Electronics (GCCE), 15-18 October, 2019.

M. H. Bin Kamilin, M. A. Bin Ahmadon, and S. Yamaguchi, “Evaluation of Process Ar-
rangement Methods Based on Resource Constraint for IoT System,” presented at the 2020
8th International Conference on Information and Education Technology, Okayama, Japan, 23
May, 2020.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Fault-Tolerance and Zero-
Downtime Electricity Forecasting in Smart City,” presented at the 2023 IEEE 12th Global
Conference on Consumer Electronics (GCCE), 10-13 October, 2023.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Radian Scaling: A Novel
Approach to Preventing Concept Drift in Electricity Load Prediction,” presented at the 2023
IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 23-25 Oct. 2023,
2023.

M. H. Bin Kamilin, S. Yamaguchi, and M. A. Bin Ahmadon, “Leveraging Trusted Input
Framework to Correct and Forecast the Electricity Load in Smart City Zones Against Adver-
sarial Attacks,” presented at the 2024 International Conference on Future Technologies for
Smart Society (ICFTSS), Kuala Lumpur, Malaysia, 7-8 August, 2024.

101

