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Abstract

In recent years, an open source software (OSS) has been increasingly utilized in various fields of
software development. Additionally, its use in organizations that have significant societal impacts,
such as governments and financial institutions. It is growing under OSS’s social standing. Accord-
ing to Synopsys’s open source security and risk analysis (OSSRA), 96% of commercial codebase
is embedded OSS’s source code. Recently, the OSS has been incorporated into various systems.

Many systems are being developed at low cost and in short delivery times using OSS.

On the other hand, the evaluation of OSS quality is needed to ensure the quality from the per-
spective of the software quality management. Since OSS is the software created by volunteer soft-
ware engineer, the quality of the software varies depending on the OSS project. Therefore, it is
necessary to check whether there are any problems with the quality of the software before adopting

the OSS.

In the past, the software reliability model (SRM) was proposed as a reliability assessment tool
for the proprietary software to evaluate the software reliability. It is the model of the trends of
reliability indicators. Several SRMs can easily and quickly evaluation the reliability of proprietary
software. Especially, the fault detection based on software reliability growth model (SRGM) have
been proposed for the proprietary software as a method of the software reliability evaluation. The
SRGMs have been utilized in various development settings. However, it is difficult to apply several
traditional SRGMs to OSS due to the differing debugging activity of OSS directly. Therefore, it is
needed to develop the SRGM that can evaluate the reliability for OSS. This thesis focuses on the

following three debugging activities and discusses an SRGM to enable reliability evaluation in OSS:
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1. Variability in the number of users: Debugging ability varies depending on the number of OSS

users.

2. Differences in fault reporting systems: Fault recognition is delayed due to differences in fault

reporting system process.

3. Software updates: Fault occurrence trends depend on software updates.

In terms of “Variability in the number of users,” this thesis analyzes the impact of user fluctuation
on existing SRGMs. It proposes execution time that accounts for the number of users. In traditional
SRGM for proprietary software, the number of users remains relatively stable during the testing
phase. This stability results in a consistent testing environment. However, the number of users
frequently fluctuates due to factors such as software popularity and functionality. These fluctuations
make it challenging to evaluate software reliability using traditional SRGM. To address this issue,
this thesis introduces execution time that considers user fluctuations. By introducing the execution
time considering the number of users, this issue will be resolved. Applying the execution time to the
SRGM smooths the debugging capacity according to the number of users. This approach enables
OSS reliability evaluations using existing models.

In “Differences in fault reporting systems,” this thesis focuses on the effects of differences in
the software fault reporting process. This thesis proposes the method that allows for construction
of OSS reliability evaluation models quickly. OSS projects use the bug tracking systems (BTS) in
order to manage the faults like as the proprietary software development. Since OSS’s BTS is an
Open BTS and anyone can report the faults, the quality of the reported faults varies. In addition,
since the OSS projects depends on the volunteer developers. Then, the developers have the limited
time to develop software compared with the proprietary software. It takes a long time to confirm the
reported faults. Therefore, it takes time to analyze the fault data. This thesis analyzes the Open BTS
fault data and analyze the data required to build a SRGM for OSS. Furthermore, this thesis uses the
analysis results to propose the SRGM that utilizes unclosed fault data. By applying the proposed

method, the reliability of OSS can be evaluated more quickly.



In “Software updates,” this thesis proposes the SRGM considering the frequent software updates
in OSS. OSS frequently undergoes several software updates to fix the faults and improve function-
ality. Because users select versions according to the situation, the OSS versions used are highly
fragmented. No research has been conducted to analyze the impact of this on SRGM. There has
been no research of the SRGM considering the correlation with the download counts. Therefore,
this thesis makes a software repository mining for analyzing the effect of software updates. In ad-
dition, this thesis uses the data on the number of downloads by version to analyze the relationship
between the adoption status on the repository and the number of software downloads. Furthermore,
this thesis proposes the SRGM considering the effect of software update.

In conclusion, this thesis has identified several relationships between OSS debugging activities
and fault occurrence phenomena. Moreover, the proposed method was found to be highly effective
as a reliability evaluation method for OSS. Furthermore, the proposed method can be applied to the
tools used by many OSS projects. It has the potential to be used as a powerful tool selecting OSS in

software development.
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Chapter 1

Introduction

1.1 Research background

In recent years, incorporating open source software (OSS), the OSS is available for free. The IT
system development with OSS in order to reduce the development costs has become increasingly
common, not only for individuals but also at the business level. According to Synopsys’s open
source security and risk analysis (OSSRA), 96% of commercial codebases contain OSS [1]. Addi-
tionally, in 2022, the U.S. Department of Defense announced a policy prioritizing OSS in software
procurement, signaling the growing adoption of OSS at the national level [2]. OSS is becoming
a crucial part of today’s social infrastructure, and its influence on society is growing significantly.
On the other hand, in terms of adopting OSS, it is essential to conduct a pre-assessment of software
quality from the perspective of the system quality assurance. Software quality is defined by ISO/IEC
25010, as shown in the figure [3]. Among these quality attributes, the reliability is specified as an
indispensable element. It is important to select OSS with high reliability when adopting it.

However, it is difficult to develop the quantitative method for OSS reliability evaluation. Re-
search on software reliability has predominantly focused on proprietary software. Among these
studies, some software reliability models have been statistically proposed by fault data obtained
from the software testing phase. Figure 1.1 shows a classification of the various software reliability
models (SRM) that have been proposed in the past [4—7]. In particular, the dynamic models are re-
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Figure 1.1: The classification of SRM.

ferred to as Software Reliability Growth Models (SRGMs). These SRGMs have been widely used to
evaluate the reliability of proprietary software, due to their applicability to test data and their ability

to represent the fault occurrence trends. The representative SRGMs include as follows [8—11]:

* Exponential SRGM (Exp)

* Delayed S-shaped SRGM (Delayed)

* Inflection S-shaped SRGM (Inf)

* Logarithmic Poisson Execution Time Model (Log)

However, these models were designed for the proprietary software. It is well known that apply-
ing these models to OSS is challenging due to the significant differences in the characteristics of
proprietary software and OSS. It is difficult to apply the conventional SRGMs to OSS because of

the following factors:

1. Variability in the number of users

2. Differences in fault reporting process

3. Software updates



From above factors it difficult to evaluate OSS reliability using the traditional SRMGs. As a
result, the selection of OSS in actual development projects has required developers with a deep
understanding of the characteristics and properties of OSS. Therefore, there is a need for an SRGM

tailored to OSS that can quantitatively evaluating software reliability.

1.2 Purpose

This thesis focuses on the developing SRGM for OSS. Especially, this thesis focuses on the
three issues listed in Section 1.1 that is problem for developing SRGM for OSS.

In terms of “Variability in the number of users,” this thesis analyzes the impact of user fluctuation
on existing SRGMs. It proposes execution time that accounts for the number of users. In traditional
SRGM for proprietary software, the number of users remains relatively stable during the testing
phase. This stability results in a consistent testing environment. However, the number of users
frequently fluctuates due to factors such as software popularity and functionality. These fluctuations
make it challenging to evaluate software reliability using traditional SRGM. To address this issue,
this thesis introduces execution time that considers user fluctuations. By introducing the execution
time considering the number of users, this issue will be resolved. Applying the execution time to the
SRGM smooths the debugging capacity according to the number of users. This approach enables
OSS reliability evaluations using existing models.

In “Differences in fault reporting systems,” this thesis focuses on the effects of differences in
the software fault reporting process. This thesis proposes the method that allows for construction
of OSS reliability evaluation models quickly. OSS projects use the bug tracking systems (BTS) in
order to manage the faults like as the proprietary software development. Since OSS’s BTS is an
Open BTS and anyone can report the faults, the quality of the reported faults varies. In addition,
since the OSS projects depends on the volunteer developers. Then, the developers have the limited
time to develop software compared with the proprietary software. It takes a long time to confirm the
reported faults. Therefore, it takes time to analyze the fault data. This thesis analyzes the Open BTS

fault data and analyze the data required to build a SRGM for OSS. Furthermore, this thesis uses the



analysis results to propose the SRGM that utilizes unclosed fault data. By applying the proposed
method, the reliability of OSS can be evaluated more quickly.

In “Software updates,” this thesis proposes the SRGM considering the frequent software updates
in OSS. OSS frequently undergoes several software updates to fix the faults and improve function-
ality. Because users select versions according to the situation, the OSS versions used are highly
fragmented. No research has been conducted to analyze the impact of this on SRGM. There has
been no research of the SRGM considering the correlation with the download counts. Therefore,
this thesis makes a software repository mining for analyzing the effect of software updates. In ad-
dition, this thesis uses the data on the number of downloads by version to analyze the relationship
between the adoption status on the repository and the number of software downloads. Furthermore,

this thesis proposes the SRGM considering the effect of software update.

1.3 Structure

This thesis is structured as follows:

Chapter 1 describes the background and purpose of this research.

Chapter 2 compares the proprietary software and the OSS by focusing on differences in devel-
opment methods and characteristics. Then, this thesis summarizes the challenges of conducting
reliability evaluations for OSS.

In Chapter 3, this thesis attempts to adapt the existing non homogeneous Poisson process (NHPP)-
based SRGMs for OSS by applying the execution time based on the number of users in several OSS
projects. The NHPP-based SRGMs are one of SRGM used for evaluating software reliability. The
NHPP-based SRGMs have the characteristic of determining the fault convergence when the debug-
ging activity is constant. In this chapter, this thesis addresses the problem of difficulty in determin-
ing the fault convergence using NHPP-based SRGMs for OSS by applying the execution time that
considers the number of software users.

Chapter 4, this thesis analyzes the trends in faults reported in OSS projects. Also, this thesis

attempts to develop the methods to accelerate the reliability evaluations. This thesis analyzes the



range of data that can be used for software reliability evaluations by examining the fault reporting
trends in OSS projects. This allows us to expand the range of data needed to build NHPP-based
SRGMs and develop a model using more recent data. This thesis also focuses on the optimized
predictive values.

Chapter 5, this thesis uses the repository mining to analyze software usage. In particular, this
thesis analyzes the process by the users migrated to new versions of OSS. This thesis also analyzes
the effect of version upgrades from the perspective of a versioning method based on the semantic
versioning that is widely used in software development. Based on the results of our analysis, this
thesis proposes the model considering the effect of version upgrades.

Chapter 6, this thesis proposes the extended model by arranging the model proposed in Chapter
5. This thesis discusses the necessary input data in Chapter 5. Then, this thesis proposes the method
to modeling with fewer data than Chapter 5.

Finally, Chapter 7 provides the summary of this research and proposes future directions. In
particular, this thesis focuses on the reliability evaluation using the data from software repository.
Historically, many researchers have proposed the probabilistic models aimed at evaluating the reli-
ability of commercial software. Almost researches focus on the specific BTS. On the other hand,
recent OSS projects uses different BTS such as repositories hosting service’s BTS.

This thesis proposes the method to evaluate software reliability using widely used software
repository’s fault data. By applying the proposed method, it will enable to evaluate the software
reliability of many OSS projects. Moreover, the proposed method is the practical method for evalu-

ating the reliability of OSS projects.



Chapter 2

Background of Open Source Software and

Software Repository

2.1 OSS
2.1.1 OSS in society

OSS is software that can be used freely without charge. It is utilized in the development of
many systems in today’s society. The use of software source code has been practiced since the
early days when computers began to run software. It was widely adopted in research institutions
and academic fields. In the recent software development, the concept of “reinventing the wheel” is
widely recognized as a software development anti-pattern [12, 13]. The use of OSS has benefits in
terms of development costs, productivity, and quality [14]. There are several definitions of OSS,

one of the most widely accepted is as follows [15]:

* Free Redistribution:
The license must allow selling or giving away the software as part of a larger distribution,

without royalties.

* Source Code:

The program must include source code. The source code distribution must be allowed.
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¢ Derived Works:
The license must allow modifications and redistribution of derived works under the same

terms.

* Integrity of The Author’s Source Code:
The license may restrict modified source distribution. However, it must allow patch files to
modify the program at build time. Additionally, it must permit redistribution of software built

from modified source code.

* No Discrimination Against Persons or Groups:

The license must not discriminate against any person or group.

* No Discrimination Against Fields of Endeavor:

The license must not restrict use in any field, such as business or research.

¢ Distribution of License:

The rights must apply to all recipients without needing an additional license.

* License Must Not Be Specific to a Product:

Even when bundled with other software, the original OSS license must remain independent.

* License Must Not Restrict Other Software:

The license must not impose restrictions on other software distributed with it.

* License Must Be Technology-Neutral:

The license must not be dependent on any particular technology or interface.

As described above, the restrictions on distribution and modification are weaker than those for
proprietary software. Thus, OSS is easy to use for both individuals and companies. In general,
these definitions are explicitly stated in the OSS licenses. Typical examples are the MIT License
and the GNU General Public License [16,17]. According to a survey by Japan Ministry of Economy,

Trade and Industry, the benefits of using OSS is as follows: [18]



* Reduction of development costs and shortening of development time through increasing effi-

ciency.

* Ensuring high stability, quality, and transparency.

* Creation of new value through a wide variety of options and avoidance of vendor lock-in.

Due to these benefits, OSS has increasingly been adopted in commercial systems. In 2023, 66% of
organizations had established either an Open Source Program Office or OSS initiatives within their

companies for the promotion use of OSS [19].

2.1.2 Selection of OSS

Today, numerous OSS projects are underway as the use of OSS becomes more active. As a
result, there are often multiple OSS options available for selection. Therefore, the developers need
to choose the most suitable OSS for their projects. According to a survey by the Japan Ministry of

Economy, Trade, and Industry, the essential for selecting OSS is as follows [18]:

¢ Selection Evaluation

* Licensing

* Vulnerability Response

* Maintenance and Quality Assurance

* Supply Chain Management

* Personal Competence and Education

* Organizational Structure

* Community Activities



It is necessary to select the OSS from these perspectives. The software reliability is included in “Se-
lection Evaluation”However, the quality of software reviews depends on the skills of the software
developers. Then, it is needs to develop the methods that support for reliability evaluation.

In particular, the OSS is used by multiple users with the software. Therefore, there is a high risk
of similar attacks being executed when an OSS-specific vulnerability was discovered. This risk was
particularly exposed in 2014 with the OpenSSL “HeartBleed” fault [20,21]. The HeartBleed fault
was injected to maintain secure sockets layer (SSL) sessions for the extended periods in accordance
with the mechanism defined in “RFC 6520 Transport Layer Security and Datagram Transport Layer
Security Heartbeat Extension” [22]. It had been discovered by several developers before it was
reported. However, it took long time for it to fix. Even after it became public, the attacks targeting
the vulnerability continued. It caused further issues such as private data leakage. Since it is virtually
impossible to develop fault-free software, it has become increasingly important to select OSS with

as low a risk of faults as possible. The SRM supports to select OSS by reliability evaluation.

2.2 SRGM
2.2.1 SRGM in reliability evaluation

The SRGM is positioned as a reliability model within the dynamic models of SRM. In the
software development, it is extremely difficult to create software without defects. Additionally,
due to the vast number of test cases in the software, there are limitations to methods that rely on
the source code or the test cases in order to measure the reliability. The SRGM is a model that
evaluates the reliability by modeling the transition of reliability-related indicators, e.g., the number
of faults detected during software operation or testing. In software development, SRGM is known as
the progress control of development, the improvement of software reliability, and the indicators of
reliability evaluation. In particular, the fault detection models represent the reduction in the number
of faults detected as time procedures go on. It has been empirically observed that the fault detection
process varies depending on the software development approach and the skills of the developers.

Therefore, various researchers have proposed models that evaluate the reliability [23-26]. These



models are classified into three categories: the time measurement models related to occurrence
time, the count measurement models related to the number of occurrences, and the availability
models focusing on the temporal behavior of the software. In particular, the count measurement

model is based on the concept that the fault occurrence as shown in Figure 2.1.
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Figure 2.1: The software-failure occurrence phenomenon.

Where S;, is the k-th fault occurrence time, X} is the time-interval. In this case, the occurrence

of faults in the subsequent process can be treated as an NHPP.
1. The number of detected faults is O at time # = 0.
2. The number of latent faults is finite except for some models.
3. The software fault detection phenomena.
4. The number of detected faults depends on the number of remaining faults.
5. The fault is detected. Then, the detected faults are removed immediately.

The probability function for the number of faults n to be detected by time 7 is obtained as follows:

Pr{N(t) = n} = %exp(—F(ﬂ) (n=0,1,2,...), @.1)



where N(t) is the number of faults up to time 7, and H (¢) is the mean value function. The represen-
tative mean function models include the exponential SRGM, delayed S-shaped SRGM, inflection
S-shaped SRGM, and logarithmic Poisson execution time model. [8—11]. Examples of the wave-

forms of these models are shown in Figures 2.2-2.5.

The exponential SRGM is a simple model in which the number of detected faults decreases
exponentially according to the time procedure [8]. It shows the process of finding many bugs in the
early stages of testing and decreasing the number of remaining faults as the test progresses. It is as
follows:

E(t)=a(l—e™), (2.2)

where a is the number of latent faults, b is the fault detection rate.

The delayed S-shaped type SRGM considers the delay in fault detection and recognition [9].
This assumes that the detected faults are corrected immediately. However, it is difficult to fix faults.
Moreover, the failures may not always be recognized immediately. The mean value function is as
follows:

S() :a{l —Q +bz)e—b’}, 2.3)

where a is the number of the latent faults and b is the fault detection rate.

The inflection S-shaped SRGM considers the skill of programmer debugging [10]. In general,
the software developers become accustomed to debugging as time elapsed from the initial software
development. The inflection S-shaped SRGM considers the feature. The mean value function is as

follows:

1— e—bt

(t)=a ———
(1) =a 1 +ce b’

(2.4)

where a is the number of latent faults. b is the fault detection rate, ¢ is the inflection rate.

The logarithmic Poisson execution model is structured from the initial failure intensity and the
decreasing rate of the failure intensity [11]. In Egs. (2.2)-(2.4), this is assumed that the number of

latent fault is the finite. It can be useful when it is needed to estimate the number of faults. However,



most of OSS projects continue to develop. The source code will be changed with time elapsed. In
this case, the number of latent fault will be also changed until the end of OSS development. The
logarithmic Poisson execution time model assumes that the number of latent fault is infinity. It is

not affected by changing the number of latent fault. This model is as follows:

Ft) = %log(l 01+ 1), 2.5)

where A is the initial failure intensity, and 0 is the decreasing rate of the failure intensity for each
software failure. By estimating the parameters of these mean value functions using NHPP, it is
possible to predict future trends based on fault detection data. The parameters can be estimated
using the maximum likelihood estimation method. When observing y; to y, faults between times #;

to t,,, the likelihood is given as follows:

L=P(t)P(tz)--P(ty)

(2.6)
=Pr{N(t;) =y1 } Pr{N(2) = y2} ---Pr{N(t,)) = yn}.
In Poisson process, the number of faults occurs from u to s as follows:
n=N(s)—N(u)
2.7)
=ys—yu (s>u).
Then, the Eq. (2.6) is as follows:
L=Pr{N(t;) =y1} Pr{N(t2) = N(t1) = y2 —y1} Pr{N(13) = N(2) = y3 —y2} -~ 2.8)

Pr{N(ty) = N(ta_1) =Yn —Yn 1}
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Figure 2.2: Exponential SRGM.
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Figure 2.3: Delayed S-shaped SRGM.
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Then, the likelihood function is as follows:

{H(n) —H(n) P> ™

L= U oo h(n))
V1

(2 —y1)!
{H (t"><;fi(;nnll)>}zyn —exp(—(H () ~ H(ty 1)) e

nofg — H(t,_ )V Vi1
:kl;ll{ () —H (1)}

(k= Yr—1)!

exp(—(H(12) —H(11))) -~

exp(—H (t,)).

Thus, the log-likelihood function is given by

K K
L=y (yi—yx 1)In[H (1) —H( 1) =H(x) = Y, In[(g =y 1)), (2.10)
k=1 k=1

where #; is time at k. k is the number of datasets. y; is the cumulative number of detected faults
at k. By using the optimization methods such as the simplex method [27] to find the parameters
that maximize the Eq. (2.10), optimal parameters of mean value function can be obtained. After
completing the parameter estimation, it is possible to estimate the future trend of fault occurrence
by drawing the SRGM. If the fault does not tend to converge, you can respond by estimating the
number of testing steps or increasing the number of efforts. It is sometimes used in combination with
the progress management methods such as earned value management to manage the development
cost [28,29]. By using the SRGM, it is possible to determine the tendency of faults. On the other
hand, the fault tendency differs from project to project in software development. In the software
development, the tendency of fault occurrence differs from project to project. Therefore, the optimal
SRGM differs depending on the project. Therefore, it is necessary to evaluate models using the

evaluation criteria for selecting model [30].
2.2.2 Evaluation criteria

The occurrence trend of faults varies depending on the software project. Therefore, it is impor-
tant to select the optimal model in order to evaluate the software reliability. Additionally, several
evaluation metrics are used for model selection. The representative evaluation criteria include the

mean absolute error (MAE), the mean absolute percentage error (MAPE), and Akaike’s Information



Criterion (AIC) [31].

MAE is an evaluation criterion that takes the average of the errors. It can be used to evaluate not
only NHPP models but also models constructed using machine learning. Since it handles all errors

as they are, it is considered a robust metric against outliers. MAE is expressed by the follows:

AR
MAE:NZ\y,-—yi\, (2.11)
i=1

where N is the number of the data, y; is the predicted value, y; is the actual value.

MAPE is an evaluation criterion of error expressed as a percentage of the actual value and
averaged. It has the advantage that the error is independent of the unit. On the other hand, if the

actual value is small, it may not be possible to make an appropriate evaluation.

Vi —

100 N
MAPE = — 2.12
N ; (2.12)

where N is the number of the data, y; is the predicted value, y; is the actual value.

AIC is the evaluation metrics that is considering the balance between the fitting and over-fitting
caused by complex model. When creating a model, complex model tends to fitting the training
data [31]. However, the parameters may overfit the noise. It causes decreases the model estimation
performance. It is necessary to reduce the number of parameters to prevent over-fitting. On the
other hand, is difficult to create a high-performing model with a few parameters. AIC gives the one
of the answers. AIC is given by

AIC = —2InL+2m, (2.13)

where L is the likelihood function of the model, m is the number of the free parameters. In most of

the cases, the optimum model is the case that the AIC becomes small.



2.3 Software repository

2.3.1 Relationship between software repository and OSS

The disclosure of source code is required for OSS. In the early days of OSS, distribution was
done using personal FTP servers, among other methods. For example, the Linux kernel was dis-
tributed via FTP, and patches were shared using mailing lists [32]. With the advancement of soft-
ware development technologies, by the late 1990s, the Concurrent Versions System (CVS) was
developed, enabling distribution through repositories utilizing version control systems [33]. Today,

distribution primarily relies on Git [34].
2.3.2 Version control system

In OSS, version control systems (VCS) are made public on repositories to track software changes,
support distributed development, and ensure source code transparency. Using VCS allows develop-
ment to proceed while avoiding conflicts in changes. The CVS and Subversion have been widely
used for software version control in the past [33,35]. Today, Git is the predominant tool that allows
for the distributed management of the entire source code among clients. An example of development

using branches is shown in Figure 2.6.

main main

O—(D——O——0)

develop develop

Figure 2.6: The example of branch.

Branches can be created as needed for individual software units, versions, or faults, allowing ed-
its to be made without affecting other files. Additionally, by analyzing these edit histories through
repository mining, the data can be used for reliability evaluations. Many researchers have already

conducted analyzes of software using repository mining [36—40]. These studies have advanced the



analysis of fault identification, the developer contributions, and the analysis of software develop-
ment. On the other hand, there are few models of SRGM by performing the repository mining for
OSS. The detailed information obtained from repository mining can further advance the study of

SRGM.
2.3.3 Bug tracking system

The detected faults in the software are reported to the developer for the fixing. The bug tracking
system (BTS) is widely used for the fault management. Bugzilla [41], Redmine [42], GitHub Issues
[43], and GitLab Issues [44] are known as the typical BTS. The information registered in BTS
records the information about faults occurred in software. Various methods of software reliability
assessment have been proposed the research in the past [45—48]. In addition, several researchers
have proposed the research that converts detailed fault data registered in the BTS into features.
Several researchers use these features to predict the time to fix the fault [49-51] and the fault severity
[52-54] using deep learning. Similarly, the fault management is carried out using the public BTS in

OSS. Figure 2.7 shows the process of a user reporting a fault in an open BTS.

0SS Developper | =—— > Released 0SS
£3 | ]

Download 0SS

BTS <= 0SS User

Report Bug
Figure 2.7: The fault fixing process.

The fault discoverer submits the information necessary for fixing the fault, such as the envi-
ronment information, the software version, the reproduction steps, and the description of the fault.
The OSS maintainer assigns the OSS developer to fix it based on the urgency of the fault and the
availability of personnel. In long-established projects like Linux [32], the traditional BTS such as
Bugzilla [41] and Redmine [42] have been used. In recent years, bug tracking functionality has been

integrated into software repositories themselves, such as GitHub Issues [43] and GitLab Issues [44].



The source code is easily linked to the fault on the repository. Many OSS projects are now utilizing
the built-in BTS of their repositories. The fault is assigned to a person in charge, after the fault

reporting. Then, the fault is fixed through the process illustrated in Figure 2.8.

‘ Accept ‘ |:> Apply Changes

Apply changes to

Fixing faul
|:> ixing faults source code

Confirmed Fault

Create Bug Report ‘|:> ‘ Discussion ‘

Discuss the bug
with developer

and other users |:>

Reported Fault

Open issue on the
repository

‘ Reject ‘

Closed if no fixes are needed

Rejected Fault

Figure 2.8: The confirmation process for the fault reporting.

The reported faults are discussed in the case. After a discussion between the reporter and other
users, including developers, the developers determine whether it is a bug and proceed with the
fix. A similar bug identification process exists in the proprietary software. However, since OSS is
maintained by volunteer developers, there are the constraints on the available personnel and time
for development. As a result, software reliability can be evaluated only with the old fault data due
to prolonged confirmation of the faults. Therefore, it is necessary to develop a method to evaluate

the reliability using the pre-confirmation fault data.



Chapter 3

Execution Time

3.1 Introduction

In the software development, the testing is an important process that determines the quality of
the software. Because software is created by humans, it is difficult to avoid the faults caused by mis-
understanding of the design or miss-definition of variables. In the large-scale system development,
there are an enormous number of system states. It makes faults more likely to occur. Therefore, it is
necessary to ensure the quality of the software by checking the input and output of the software in
the testing and discovering faults as much as possible. There are numerous software development
models. Especially, the waterfall model is known as a famous model [55]. Figure 3.1 shows the
process of the waterfall model. Testing is positioned as a process in software development. When
there are many people performing tests in the software testing process, more tests can be performed
on the software in a shorter period of time. On the other hand, it has been reported that having too
many people do not lead to shorter delivery times [56]. In addition, the costs are required according
to the number of people. Therefore, the software development managers need to develop software
by balancing the human resources, effort, and quality. The SRGM have been used by many devel-
opers as tools to grasp the progress of testing and the estimation of work hour. In particular, the
software fault detection model is one type of SRGM. This model has been used to understand the

convergence status of the number of faults.
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|L> System Test

B

Figure 3.1: Waterfall development process.

The fault detection model consists of the cumulative number of faults on the vertical axis and
the number of test cases or time on the horizontal axis. In the waterfall development, it is possible
to evaluate the convergence status of the accumulated number of faults by applying the fault data of

the system test.

On the other hand, in the case of OSS, the development for the purpose of fixing faults and
modifying functions to the source code is conducted even after release. Therefore, it is difficult to
apply the existing model to OSS. In OSS, the agile-like development such as Figure 3.2 proceeds.
Since the faults are discovered and corrected even after release, it is necessary to apply all reported

fault data after the software release to the SRGM when applying the fault data of OSS.

It is the OSS users who report faults, and the number of users fluctuates depending on the
functionality of the OSS. Therefore, the number of testers and debugging capacity fluctuates. As a
result, the probability of discovering faults also varies. At this time, there is a discrepancy between
the conventional SRGM assumption and the actual. Therefore, it is necessary to standardize the

testing effort depending on the number of users. This thesis considers new model for OSS. In the
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Figure 3.2: Agile development process.

past, the researches has been standardized the testing process for complex systems [57]. Moreover,
the research papers have also been published by considering the variability of debugging capabilities
[58]. These studies have demonstrated the effectiveness of fault data standardization. However,
there has been no research on standardization that takes into account the number of testers.

This chapter focuses on the relationship between the software users and the faults by analyzing
the data. This thesis also proposes the execution time model that takes into account the tester

variations. Moreover, this thesis proposes the conventional model applicable to OSS.

3.2 Data collection

It is known that the number of users affects the number of issues in fault tracking systems.
To investigate this phenomenon, fault data was collected from GitHub. This thesis focuses on the

effects of an increasing number of users. Accordingly, the fault data was collected as follows:

* Selected Node.js library because the number of users is increasing.

* Selected the building tool library that number of users tends to fluctuate.



¢ Collected the number of downloads as users from software downloader.

* Collected the fault data from software repository.

This thesis focuses on GitHub as a software repository [43]. Moreover, npm is used as the distributor

[59]. As aresult, following OSS projects faults data were collected:

N-DS1: Nx [60]

N-DS2: SWC [61]

N-DS3: webpack [62]

N-DS4: Vite [63]

The software faults in the collected dataset have been classified according to the reporter. The
software faults have been categorized by the bot, user, and development members, respectively.
This thesis has removed the reported faults from bot because it isn’t caused by the internal source

code.

3.3 Effects of the number of users to the number of faults

3.3.1 The relationship between number of cumulative faults and time

Figure 3.3 shows the relationship between the cumulative number of faults and the time. It
can be seen that the cumulative number of faults tends to be less likely to increase in the early
stages of release for N-DS1, N-DS2, and N-DS4. In addition, the cumulative faults of N-DS1 and
N-DS2 increase exponentially. Furthermore, it is difficult to grasp the convergence trend of faults
from any OSS. In conventional SRGM, the software reliability has been evaluated based on the
convergence of faults. However, Figure 3.3 shows that it is difficult to evaluate software reliability
from the convergence trend. Therefore, it is needed to develop other model for evaluating software

reliability.



Cumulative number of faults

35001 1400
(]
30001 S 1200+
o
2500 ‘5 1000
2000- é 8001
15001 2 6001
2
10001 E 4001
]
5001 £ 2001
=}
O
01 0
2017-08 2019-04 2020-12 2022-07 2019-04 2020-05 2021-06 2022-07
Date (year-month) Date (year-month)
(a) N-DS1 (b) N-DS2
400
1000 @
E
8001 « 3001
o
600- é
3 200
400 )
=
©
200+ 3 1007
£
5
0_
2015-12 2018-03 2020-05 2022-07 2020-08 2021-05 2022-01 2022-09
Date (year-month) Date (year-month)
(¢) N-DS3 (d) N-DS4

Figure 3.3: Relationship between cumulative detected faults and time.



3.3.2 The relationship between number of faults and number of downloads

Figure 3.4 shows the relationship between the number of faults and the number of downloads.
In case of N-DS3, the number of downloads has been gradually increasing after its initial release.
Many faults in N-DS3 were discovered in the early stages of its release. On the other hand, the
number of faults and users of N-DS1 and N-DS2 have continued to increase since the release. It can
be seen that numerous faults were not reported even after the number of users became very large.
N-DS4 shows a similar trend to that observed in the early stages of N-DS3. The number of detected
faults also increases around 2021, when the number of downloads of N-DS1 and N-DS2 increases
sharply.

It is generally known that the number of faults discovered in OSS projects tends to increase as
the number of users increases. From Figure 3.4, it can be seen that the number of faults does not

increase in proportion to the increase in the number of users.
3.3.3 Summary of the OSS fault data features

From Sections 3.3.1 and 3.3.2, these results show as follows:

* It is not always the case that many faults will be discovered in the early stages of an OSS

release.

* It is difficult to observe the convergence of the number of faults on calendar time.

* The number of faults is not proportional to the number of downloads.

From these results, the previous SRGM is not suitable method to assess the reliability. Furthermore,
previous mean value function was not assessed the feature of OSS because it was made for general

development software. Thus, a re-examination of SRGM for OSS is required.

3.4 Proposed method

In Section 3.3.3, it was shown that the previous method is not suitable in the number of users

fluctuates greatly situations. Thus, OSS SRGM needs to be re-examined. Generally, in case of
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more there are testers, the software testing process can be completed faster. Moreover, the number
of downloads means the number of users. Furthermore, SRGM’s mean value function supposes the
software testing process will proceed according to time. However, it doesn’t consider the testing
speed fluctuation. Thus, it is needed to correct the time to actual testing time. Ideally, it is the best
to use the cumulative actual using time by all user. However, it is difficult to collect. On the other
hand, the number of downloads is an indicator to the number of the users. Multiply the number of
the downloads by elapsed time to get an indicator that corresponds to the actual execution time. It

is represented by

i
T; = ZAIka, (3.1)
k=1

where i is the number of unit time, Az is the elapsed time at k-th, N is the number of downloads
at k-th. The number of testing user is constant in the general software. In this case, N in Eq. (3.1)
is a constant. Thus, software execution time is an extension of time. Moreover, it can also assess
general software. This method can calculate the time considering the variation of the number of the
users. Figure 3.5 shows the result when the proposed method is applied. From Figure 3.5, most
of the fault are found early phase after the release. Moreover, it can observe the convergence of

SRGM. It could not be evaluated by previous methods.

3.5 Numerical example

In order to examine the proposed method, this thesis compare it with previous methods. 95%
of the data collected in Section 3.2 was used as training data. The training data was then opti-
mized using the simplex method [27], and Eq. (2.10) was maximized. Optimization was performed
using Eqgs. (2.2)-(2.5) as the mean value function. Furthermore, the SRGM was evaluated using
Eqgs. (2.11)-(2.13) to compare the results. Figure 3.6 shows the optimization result of previous
method. From Figure 3.6, the logarithmic Poisson execution time model has the transition closest
to the measured value. On the other hand, the other methods are less accurate.

Figure 3.7 shows the optimization result of previous method. From Figure 3.7, the logarithmic

Poisson execution time model has also the transition closest to the measured value. Furthermore,
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Figure 3.6: The relationship between the number of faults and the time using previous method.

the proposed method showed high accuracy even in cases where existing methods were significantly
less accurate.

Tables 3.1-3.4 show the result of model evaluation metrics. The proposed model shows the
smaller values of Egs. (2.11)-(2.13) in most of the cases. Comparing the proposed method and the

previous method, the proposed method gives better results.

3.6 Summary

In this chapter, this thesis has discussed the effect the number of users to the number of faults
in OSS. As a result of data collection, it was found that the rapid increase in the number of users

affects the number of reported faults. Moreover, there is no linear relationship between the number
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Table 3.1: The comparison results of goodness-of-fit (N-DS1).

MAE MAPE AIC
Previous | Propose | Previous | Propose | Previous | Propose
Exp 1.34e+03 | 1.20e+02 | 7.20e-01 | 4.00e-02 | 5.45e+03 | 9.55e+03
Delayed | 3.41e+01 | 1.22e+02 | 1.00e-02 | 4.00e-02 | 1.52e+03 | 2.29e+04
Inf 1.32e+03 | 1.21e+02 | 7.00e-01 | 4.00e-02 | 5.36e+03 | 1.10e+04
Log 2.59e+03 | 1.31e+02 | 4.15e+00 | 4.00e-02 | 1.33e+04 | 2.28e+03
Table 3.2: The comparison results of goodness-of-fit (N-DS2).
MAE MAPE AIC
Previous | Propose | Previous | Propose | Previous | Propose
Exp 5.69e+02 | 3.98e+01 | 7.90e-01 | 3.00e-02 | 2.66e+03 | 1.82e+03
Delayed | 3.14e+01 | 4.00e+01 | 2.00e-02 | 3.00e-02 | 9.54e+02 | 4.35e+03
Inf 3.10e+02 | 3.98e+01 | 3.20e-01 | 3.00e-02 | 1.01e+03 | 2.25e+03
Log 7.78e+01 | 3.24e+01 | 5.00e-02 | 3.00e-02 | 1.18e+03 | 9.41e+02
Table 3.3: The comparison results of goodness-of-fit (N-DS3).
MAE MAPE AIC
Previous | Propose | Previous | Propose | Previous | Propose
Exp 8.87e+01 | 1.60e+01 | 1.00e-01 | 2.00e-02 | 1.90e+03 | 3.92e+03
Delayed | 3.73e+01 | 1.41e+01 | 4.00e-02 | 1.00e-02 | 1.97e+03 | 7.52e+03
Inf 2.72e+01 | 1.61e+01 | 3.00e-02 | 2.00e-02 | 1.93e+03 | 4.53e+03
Log 1.16e+00 | 2.47e+00 | 1.00e-02 | 1.00e-02 | 1.89e+03 | 1.86e+03
Table 3.4: The comparison results of goodness-of-fit (N-DS4).
MAE MAPE AIC
Previous | Propose | Previous | Propose | Previous | Propose
Exp 1.34e+03 | 1.66e+01 | 7.20e-01 | 5.00e-02 | 5.45e+03 | 7.64e+02
Delayed | 3.41e+01 | 1.90e+01 | 1.00e-02 | 5.00e-02 | 1.52e+03 | 1.42e+03
Inf 1.32e+03 | 5.43e+00 | 7.00e-01 | 1.00e-02 | 5.36e+03 | 9.04e+02
Log 2.59e+03 | 2.54e+01 | 4.15e+00 | 7.00e-02 | 1.33e+04 | 5.36e+02

of users and the number of faults. These show the impact of a rapid increase in the number of users
and the number of faults. In particular, the SRGM can assess the number of cumulative faults. The
SRGM is also affected from the cumulative detected faults. It is difficult to assess the reliability by
using SRGM in case that the number of the user increases rapidly.

This thesis has studied NHPP based SRGM by considering the number of users. This thesis

proposed the execution time of SRGM that considers the number of downloads as the number



of users. The results have shown that the appropriate SRGM even in case of the fluctuation for
the number of users. Moreover, the results have shown that most faults are found early in the
software’s release period. It is similar to general proprietary software. Furthermore, this thesis has
demonstrated the numerical example by comparing previous method with the proposed one. As the
result, the proposed method has shown better results in most cases. Especially, it is difficult to apply
SRGM to the data using Eqgs. (2.2)-(2.4) in previous methods. Since the proposed method corrected
to the execution time, it is easy to apply it to actual situations.

On the other hand, there may be some possible limitations in the proposed method. In the
proposed method, the execution time per user is treated to be the same. However, it is possible
that the users’ OSS execution times differ depending on the start time using the software by users.
Therefore, the execution time may not be estimated accurately for some OSS.

In the future, the execution time per user will be analyzed from software repositories to estimate
more accurate execution times using repository mining. Moreover, the proposed method will be

applied to other NHPP-based SRGMs to compare estimation accuracy.
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Chapter 4

Considering Uncertain Fault Model

4.1 Introduction

The fault data registered in the BTS is frequently used in order to evaluate the software relia-
bility. In the software reliability evaluation, the typical evaluation metrics include the mean time
between failure, the mean time to failure, and the availability. Many researchers have proposed the
reliability evaluation indices [64—67]. The data is based on the time of fault occurrence. Therefore,
there are research papers focus on calculating these indices using the BTS. It has also been used in
many studies to build SRM. Evaluating the reliability of software, it is important to use the most
up-to-date data. In particular, in the case of software that is frequently updated, the reliability of
the software frequently changes due to the updates. Therefore, by utilizing the most up-to-date data
when constructing SRGM, the accuracy of extrapolation estimation can be improved. It is crucial

to keep the fault data obtained from BTS as current as possible.

On the other hand, the open BTS includes the confirm process shown in Figure 2.8. Addition-
ally, it can take time for faults to be confirmed. This can lead to delays in fault confirming the
fault in BTS. The period of the obtained data becomes outdated. This thesis compares the SRGM
constructed using the number of reported faults and the number of confirmed faults. Based on the

analysis results, this thesis proposes the SRGM that by utilizing the fault data before confirm.
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4.2 Data collection

The fault dataset was collected to analyze the difference in trends between reported faults and
confirmed faults from the open BTS. This thesis focuses on hyper text transfer protocol (HTTP)
client OSS that is technically mature and does not have numerous functions. Moreover, popular
HTTP client OSS from the Python Package Index were narrowed down to collect a small noise

dataset [68]. The selection of OSS is based on the following criteria:

* Including “HTTP ” word in the OSS description on PyPI.

Include HTTP Client function in the OSS.

* Top 4 libraries in terms of downloads that meet the above two criteria on PyPI from March

24th to 31st, 2024.

* Not maintained by company.

As aresult, HTTP client OSS were selected as shown in Table 4.1. Among the top 100 software
downloads on PyPI, 11 OSS were tagged with HTTP. Seven of these were non-HTTP client OSS,

such as HTTP servers. Therefore, this thesis selected following OSSs:

* P-DSI: urllib3 [69]

* P-DS2: requests [70]

* P-DS3: aiohttp [71]

« P-DS4: h1l1 [72]

This thesis analyzed the four selected OSS using fault data reported in the issue section of
GitHub [43] and the number of version-specific downloads data on BigQuery [73] collected by the
Linehaul [74].



Table 4.1: Top 4 most downloaded HTTP clients on PyPI from March 24th to 31st, 2024.

Total rank | OSS | Number of downloads
3 P-DS1 128802654
5 P-DS2 110197755
63 P-DS3 27269399
99 P-DS4 18254159

4.3 Analysis of fault reported on the open BTS

4.3.1 Fault detection trends

It is known that the number of faults in OSS tends to not converge easily. Therefore, it is verified
whether the selected OSS exhibits this characteristic. Figure 4.1 shows the relationship between
cumulative faults and time. From Figure 4.1, it can be observed that in all OSS, faults shows the
nearly linear increase. It can be seen that convergence trend isn’t observed. Thus, it is confirmed that
reliability evaluation based on Figure 4.1 is difficult. By applying Eq. (3.1) to Time, the relationship
between the execution time and the cumulative faults is shown in Figure 4.2. Eq. (3.1) reveals that

in all OSS, a convergence trend in faults is observed. It makes reliability evaluation possible.

4.3.2 Relationship the confirmed fault and the rejected one

This thesis considers the SRGM based on NHPP curve. The SRGM based on NHPP is cal-
culated to measure the degree of fault convergence. In popular OSS, the number of reported and
confirmed faults is enormous. Therefore, if the tendency of each occurrence is the same, the SRGM
based on NHPP curves are expected to be similar. This thesis allows to compare the two curves
using normalization. This thesis normalized the x-axis and y-axis of the SRGM based on NHPP
by dividing by each maximum value. The SRGM is built using the execution time proposed in
chapter 3. Figure 4.3 shows the normalized SRGM based on NHPP.

The fitting of the curve is also considered based on the mean absolute error (MAE). Given the

coordinates (x1,y;) and (x2,y2) of two points, (x3,y3) between them is calculated as:

2=
X2 — X1

V3 (x3 —x1) + 1. 4.1)
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Figure 4.1: The relationship between cumulative the number of faults and time.

From the linearly interpolated function, the average error is obtained by dividing the execution
time into 100 equal parts. Table 4.2 shows the MAE of normalized SRGM based on NHPP. From
Table 4.2, it can be seen that there is no significant difference between the curves of reported fault
SRGM based on NHPP and confirmed fault SRGM based on NHPP. Also, it can be seen that there
is no significant difference in each error rate depending on the number of downloads. These results
show that the curves of the reported and confirmed fault SRGM based on NHPP are similar. It is
also shown that there is the possibility to estimate the curve of certified fault SRGM based on NHPP

from reported fault SRGM based on NHPP.
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Figure 4.2: The relationship between cumulative the number of faults and execution time.

4.3.3 Relationship between confirmed fault and rejected fault

The relationship between confirmed faults and rejected faults was investigated for the SRGM

curve based on NHPP. The number of reported faults consists of the number of confirmed fault and

the number of rejected fault. Then, this thesis analyzed the relationship between confirmed fault and

rejected fault. Figure 4.4 shows the scatter plot and regression line for confirmed fault and rejected

fault. The regression line was derived using the following equation as follows:

min || Xw — |13,
w
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Figure 4.3: The normalized SRGM.

where w is the coefficients of liner function. A no correlation test was also performed on each OSS.
The significance level is set at 5% and the population correlation coefficient is assumed to be zero.
Table 4.3 shows the correlation coefficients and p-values for confirmed and rejected faults for each
OSS. From Table 4.3, the p-value is well below the significance level and the hypothesis is rejected
for each OSS. Therefore, it can be seen that each OSS is not uncorrelated. Moreover, correlation
coefficients exceeding 0.3 are observed for P-DS1, P-DS2, and P-DS3. It was found that when the
number of reported faults is large, the correlation coefficient between rejected faults and confirmed
ones tends to be proportional. On the other hand, when the number of reported faults is small, the

results of P-DS4show that there is no proportional relationship.



Table 4.2: The evaluation result by MAE for normalized SRGM based on NHPP.

Total rank | OSS MAE
3 P-DSI1 | 1.702x10~7
5 P-DS2 | 2.728x10 2
63 P-DS3 | 3.339x 1072
99 P-DS4 | 1.057x10~*

4.3.4 Distribution of each type of the faults

It is known that the distribution of the number of faults occurrences follows Poisson distribution.
Since the software fault detection process is NHPP, it does not show the perfect Poisson distribution,
although it does show close form. On the other hand, reported fault includes rejected fault that didn’t

confirm. Therefore, the distribution of each type of fault is analyzed.
Figure 4.5 shows the distribution of fault types in each OSS.

Figure 4.5 shows that the confirmed and rejected fault results are closer to the strong Poisson
distribution than the reported result for each OSS. In addition, the reported faults do not show
the distribution that deviates significantly from the Poisson distribution. Therefore, the number of

reported faults can be treated as an NHPP as well as the number of confirmed faults.

In SRGM based on NHPP, the mean value function is H(¢) in Eq. (2.1). Furthermore, it fluctu-
ates continuously. Therefore, if the original measurements are data from NHPP, the trend is removed
and the data show Poisson distribution centered at about zero. Then, moving average is subtracted
from the measured values to check whether each data is NHPP. Figure 4.6 shows the distribution
of the number of faults detrended by moving average for each OSS. Figure 4.6 shows the normal

distribution for all fault types. Therefore, it can be seen that each fault follows NHPP.

Table 4.3: The evaluation result by correlation coefficient.

0SS Correlation P-value

P-DS1 | 5.680x10~! | 2.599x 10~ 1
P-DS2 | 6.405x10~ " | 2.988x10~2!
P-DS3 | 3.415x10° ! | 4.416x107°
P-DS4 | 2.177x1071 | 2.713x1072
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Figure 4.4: The scatter plot of the number of rejected faults and the number of confirmed ones.

4.4 Numerical examples

From Section 4.3, there was no significant difference between the curves of SRGM based on
NHPP constructed with reported faults and SRGM based on NHPP constructed with confirmed
faults. The analysis also showed that the proportionality relationship where the number of rejected
faults increases as the number of confirmed faults increases, and that SRGM based on NHPP curves
equivalent to those of confirmed faults can be obtained even if only reported faults are constructed.
Therefore, each SRGM based on NHPP was estimated. The errors were then compared. Here, it
is necessary to correct the SRGM based on NHPP for the number of reported faults and the curves

for Confirmed faults. Therefore, the SRGM was normalized for each SRGM based on NHPP. This
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Figure 4.5: The distribution for each types of faults.

thesis applies the exponential model, the delayed S-shaped model, the proficiency S-shaped model,
and the logarithmic poison execution time model proficiency model as the mean value function
[8—11]. This thesis demonstrated estimation based on the maximum likelihood estimation method
using each mean value function and compared the differences in curves. Figure 4.7 shows the results

of SRGM based on NHPP estimation in each OSS. Table 4.4 shows evaluation results by MAPE.

From Figure 4.7, the MAPE of the SRGM based on NHPP curves is about within 5%. In
particular, the logarithmic type shows the high accurate MAPE except for the P-DS1. It can be seen
that the reported fault SRGM based on NHPP and confirmed SRGM based on NHPP curves are very

similar. Furthermore, no significant difference in estimation accuracy is observed even for P-DS4,
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Figure 4.6: The fault distribution based on the moving average for each types of faults.

Table 4.4: The evaluation results by MAPE of the reported fault and the actual SRGM based on NHPP in

each OSS.
0SS Exp Delayed Inf Log
P-DS1 | 4.259x107% | 42261072 | 1.173x 10! | 1.123x 107!
P-DS2 | 4.810x107% | 5.734x1072 | 5.617x 1072 | 3.190x10~*
P-DS3 | 6.598x 1072 | 7.423x1072 | 6.840x 102 | 9.447x10~*
P-DS4 | 5.147x1072 | 6.468x107% | 5.364x 107~ | 1.505x 10>

which has the fewest reported faults among the four. This thesis compared the models using MAPE
and found that the number of reported faults can be used to predict the confirmed fault SRGM based

on NHPP, even when the number of reported faults is small.



=
o
=]

0.75 /,,,,,,,,, PUPRPRE LS e

Confirmed
Reported
-~ Estimate(Exp, Confirmed)
-- Estimate(Exp, Reported)

0.50

Estimate(Delayed, Confirmed)

Rate (Cumlative number of faults)

=
o
o

o
3
al

0.50

Rate (Cumlative number of faults)

Confirmed
Reported
-~ Estimate(Exp, Confirmed)

-- Estimate(Exp, Reported)
Estimate(Delayed, Confirmed)

0.25 5 Estimate(Delayed, Reported) 0.25 P Estimate(Delayed, Reported)
f —- Estimate(Inf, Confirmed) il ~- Estimate(Inf, Confirmed)
l -~ Estimate(Inf, Reported) ,,{’,,"r -~ Estimate(Inf, Reported)
K. -~ Estimate(Log, Confirmed) A, -~ Estimate(Log, Confirmed)
0.00 [t — Estimate(Log, Reported) 0.00 — Estimate(Log, Reported)
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Rate (Execution time)

(a) P-DS1

=
o
=]

0.75

Confirmed
Reported
-- Estimate(Exp, Confirmed)

-- Estimate(Exp, Reported)
Estimate(Delayed, Confirmed)
Estimate(Delayed, Reported)

0.50

0.25

Rate (Cumlative number of faults)

1.25

1.00

0.75

0.50

Rate (Cumlative number of faults)

Rate (Execution time)

(b) P-DS2

Confirmed
Reported
Estimate(Exp, Confirmed)

- Estimate(Exp, Reported)
Estimate(Delayed, Confirmed)
Estimate(Delayed, Reported)

—- Estimate(Inf, Confirmed) 0.25 ~- Estimate(Inf, Confirmed)
-~ Estimate(Inf, Reported) -~ Estimate(Inf, Reported)
Estimate(Log, Confirmed) Estimate(Log, Confirmed)
0.00 4 — Estimate(Log, Reported) 0.00 — Estimate(Log, Reported)
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Rate (Execution time)

(c) P-DS3

Rate (Execution time)

(d) P-DS4

Figure 4.7: The estimated SRGM.

4.5 Summary

In this chapter, the relationship between reported faults and confirmed faults on the open BTS
for popular HTTP libraries on PyPI was analyzed. Additionally, the distribution of each type of
fault for OSS was examined. The applicability of the reported fault SRGM based on NHPP was
considered for estimating the confirmed fault SRGM based on the NHPP curve by comparing the
curves of the estimated mean value functions. As a result, it was found that the SRGM curves based
on NHPP for confirmed and reported faults are very similar. It was also observed that confirmed
and rejected faults are not uncorrelated. Furthermore, it was demonstrated that each type of fault

follows an NHPP. The errors in the SRGM curves based on NHPP estimated using reported faults



were found to be small.
In future work, the applicability of this research will be further examined by analyzing fault data

of OSS initial stage of development.
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Chapter 5

Major Version Model

5.1 Introduction

The internal structure of software changes with the updates. It is known that if the number
of undiscovered latent faults in the software increases significantly, the probability of the detected
faults increases and the number of reported faults increases. At this time, the phenomenon of soft-
ware fault occurrence deviates from the assumptions of the model. Then, the estimation accuracy
decreases. Therefore, several researchers have proposed the models considering the multiple re-
leases [75-77]. Also, many models have been proposed that treat new releases as the change-points.
Several researchers have proposed the models considering the change-points other than the software
updates [78—81]. On the other hand, a large number of releases have been made for OSS in recent
years. In particular, the developments of many OSS cause to many OSS releases. In this case, it is
difficult to develop the model in case of many releases of new version.

In addition, when a new OSS is released, there are the users who continue to use the old OSS out
of concern about the impact on existing systems. At this time, it is considered that the debugging
ability of the new version of OSS will decrease. However, no research has been clarified the effect
on the debugging ability.

This thesis collects an actual usage data of OSS from the software repository by repository min-

ing. Moreover, this thesis analyzes the effect of software updates for SRGM from the perspective
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of the semantic versioning. This thesis also compares the version-specific download data with the
status recorded on the software repositories. Furthermore, this thesis proposes the SRGM based on

the analysis results.

5.2 Software version

5.2.1 Versioning

Until recently, there was no standard for the format of the software versioning. As a result, the
developers used their own versioning styles, utilizing numbers or letters in various ways. These
formats were inconsistent in terms of the scope of changes and the formatting of version numbers.
It makes difficult to grasp from version number in case that the changes had been made in the new
version. It was especially problematic in the systems with many dependencies. Then, version man-
agement required significant effort. As simplify version management, most software uses Semantic
Versioning today [82]. It was proposed in 2010. The semantic versioning standardized the version-
ing formats. It had become customary in software development at the time. The version numbers in
semantic versioning are expressed in the form X.Y.Z. The version numbers in the semantic version-

ing are changed as follows:

* Major version (X): When making changes that are not backward compatible.

* Minor version (Y): When making improvements or deprecation while maintaining backward

compatibility.

* Patch version (Z): When fixing faults while maintaining backward compatibility.

When the higher version number is changed, the lower numbers are reset to 0. Additionally, when
the Major version is 0, it indicates that the software is under development. It does not guarantee
the backward compatibility. The developers can utilize these version numbers to implement flexible
version management. For example, it is possible to immediately upgrade only the patch version

updates.



5.2.2 Version control

Since OSS have multiple versions, it is necessary to specify the version when adopting them
in the software. In this case, the version specifiers are used for the version control. In the python,
the version specifiers standardized in python enhancement proposals (PEP) 508 [83] are utilized.
The specifiers standardized in PEP 508 are shown in Table 5.1. Figure 5.1 shows the example of

configuration file of the everyonecancode [84] that is released by Microsoft.

Table 5.1: The specifiers available for version specification.

Specifier Behavior
== Install the specified version
= Install any version except the specified one

>= Install versions greater than or equal to the specified version
<= Install versions less than or equal to the specified version
> Install versions newer than the specified version
< Install versions older than the specified version
= Install the specified major and minor version

Specify multiple conditions
=== Equivalent to ==

ujson==5.9.0
urllib3==2.2.1
uvicorn==0.29.0
uvloop==0.19.0

Figure 5.1: The configuration file in everyonecancode.

As shown in Figure 5.1, the external dependency packages and their versions used by the pack-
age are recorded. By tracking the change history of these configuration files in the software reposi-
tory, it is possible to understand the adoption status of the software. This thesis utilizes this feature
to make a repository mining on the software repository and collect data regarding the adoption

status.



5.3 Data collection from repositories
5.3.1 Analysis target

To investigate the relationship between the number of downloads and the adoption ratio, the
adoption status was obtained from public repositories on GitHub under the following conditions
[43].

To ensure non-biased data, the OSS with the highest number of downloads was selected. The

top five downloads from February 22nd to February 29th, 2024, are shown in Table 5.2.

Table 5.2: Top 5 most downloaded software on PyPI from February 22nd to February 29th, 2024.

Rank | Software name | Number of downloads
1 boto3 294967601
2 botocore 150476752
3 urllib3 (P-DS1) 49799383
4 wheel 43085892
5 requests 42860438

This thesis focuses on the effect of version specification of developer. The boto3 and the boto-
core are developed for cloud service [85,86]. It may be forced to be updated depending on the cloud

service. Therefore, this thesis selected the P-DS1.

5.3.2 Retrieve data from software repository using repository mining

Data collection was focused on major version 2, as it has a large amount of data available on the
software repository. The following steps were taken to collect data on the update status of version
2 of P-DS1 from public repositories. Versions 2.0.2 to 2.2.1 were targeted, excluding any versions

that had been retracted. The data was collected from the software repository as follows:

» Search for files named “ requirements.txt ” that specify version 2 of P-DS1 using specifiers

in their content.

* Based on the obtained repository, project name, and file path, search for commits and extract

the date and version.



This thesis obtained the number of data points resulting from query executions for each specifier
on the repository to investigate whether each specifier has a sufficient amount of data for analysis.
The results are shown in Table 5.3.

Table 5.3: The amount of data for each specifier in the query execution.

Specifier | == | >=| <= | &= | ===
Count | 68.4k | 402 | 32 | 288 | 35

As shown in Table 5.3, the results for each search, except for the specifier “==," were less
than 1% of the search results for the specifier “==." Therefore, this thesis collected the data from
repository mining using “==." This thesis analyzed the extracted data from the perspective of major,
minor, and patch updates, respectively. The software was categorized into two groups: software
adopting P-DS1 for the first time and software that had undergone one or more version updates.
The adoption trends of new adoptions and update adoptions were then analyzed. Furthermore, this
thesis analyzed the relationship between the software repository data and the number of downloads

by the version.

5.4 The effect of software update

5.4.1 Major version

This thesis analyzed the trends in major version adoptions. Among the retrieved update histories,
3,401 repositories included version 1. When these repositories first transitioned to version 2, it can
be considered that they make a major version upgrade. The results of the first updated version are
shown in Table 5.4. Figure 5.2 shows the number of days obtained for the major version to be
updated after the release date.

It is evident that version 2.1.0 is the most common in the updated OSS. Additionally, many users
take the considerable amount of time to update to the new major version while some users update
immediately after release. Therefore, it is generally understood that it takes time for major versions
to be updated. The version first adopted in major version 2 was analyzed. Table 5.5 shows the

first adopted version. Additionally, the number of days from the release of the major version to the



Table 5.4: The updated major version.

Version | Count
2.0.1 6
2.0.2 16
2.0.2 454
2.0.3 351
2.0.4 459
2.0.5 72
2.0.6 200
2.0.7 404
2.1.0 607
2.2.0 140
2.2.1 692

100 200 300
Time (days)

Figure 5.2: The number of new adoptions for each version.

adoption of major version 2 is shown in Figure 5.3.

These results show that it takes time for the new major version to be widely adopted by users.
This thesis analyzed the similar trend in the number of downloads. Figure 5.4 shows the trend in
the number of downloads for major versions. Even after version 2 was adopted, the number of
downloads for version 1 has not decreased. Furthermore, the number of downloads for version 2 is
also increasing such as version 1. The download numbers also shows that it takes time for the new

major version to be widely adopted by users.



Table 5.5: The updated major version.

Version | Count
2.0.0 6
2.0.1 19
2.0.2 3187
2.0.3 4096
2.0.4 5498
2.0.5 1516
2.0.6 2184
2.0.7 6153
2.1.0 | 11851
2.2.0 2812
2.2.1 5593

2.0 1
2.1 1

Table 5.6: The number of adoptions for each version.

| Version |  Release Date | New | Updated |
2.0.2 May 4, 2023 1596 578
2.0.3 June 7, 2023 2529 704
2.04 July 20, 2023 3481 1161

2.0.5 | September 20, 2023 | 733 379
2.0.6 October 3, 2023 1064 1003
2.0.7 October 18, 2023 2872 1408
2.1.0 | November 13, 2023 | 9432 1833
2.2.0 January 31, 2024 1748 762
2.2.1 February 18,2024 | 16360 | 2346

5.4.2 Minor version

This thesis analyzed the trends in minor version adoptions. Table 5.6 shows the release date of
each version, as well as the number of new adoptions and update adoptions made during the latest

release period for each version.

From Table 5.6, it can be seen that the ratio of newly adopted software to the updated software
is not constant. In particular, the ratio of updated software fluctuated significantly from about one-
quarter to one-half when minor updates were made from version 2.0.7 to 2.1.0. Thus, the difference

in trend can be seen between new and updated adoptions. The focus is on the average number of
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Figure 5.4: The number of downloads for each version.

adoptions. The average number of adoptions is calculated as follows:

n=—, S.D

where 7 is the average number of adoptions, a is the number of adoptions, and ¢ is the latest release
period. Table 5.7 shows the update contents and the average number of adoptions for each version.

From Table 5.7, it can be seen that the average number of adoptions for newly adopted software
tends to increase with each version. Additionally, the average number of adoptions for the updated

software tends to decrease as the release period becomes longer.



Table 5.7: Updates and average number of adoptions for each version.

Average number of adoptions
Version | New | Updated | Latest release days
202 | 46.24 16.74 34.51
2.0.3 | 5992 16.68 42.20
2.04 | 55.56 18.53 62.65
2.0.5 | 59.05 30.53 12.41
2.0.6 | 70.85 66.79 15.01
2.0.7 | 107.24 | 52.57 26.77
2.1.0 | 120.74 | 23.46 78.11
220 | 9235 41.13 18.52
22.1 | 13587 | 19.48 120.40

The distribution of version adoption status was analyzed. Figure 5.6 shows the adoption status
for new adoptions. Figure 5.6 shows the adoption status for updates. The number of adoptions
is low immediately after release and tends to increase over time in new adoptions. In contrast,
regardless of minor or patch versions for updated adoptions, the highest number of adoptions is
observed immediately after release according to the decrease trend. Moreover, the number of users
who update immediately after release is smaller compared to patch versions in case of the minor
updates to 2.1.0 and 2.2.0. The users refrained from updating immediately due to consideration of
the impact of the update. Furthermore, there were users who updated to older minor versions even
after minor updates. As with major versions, there were users who refrained from adopting minor

version updates immediately after the update.

Figure 5.7 shows the trend of the adoption status of each version for new adoptions. Figure 5.8
shows the trend of the adoption status of each version for update adoptions. Figure 5.9 shows the
daily totals for new adoptions and update adoptions. Even after a minor update, there are new
and updating users who continue to use the old minor version. Additionally, new minor versions
are more adopted earlier than major versions. Figure 5.10 shows the daily download counts for
each version. The same trend in the number of downloads as in the adoption situation on the
repository. From the perspective of semantic versioning, minor updates are generally guaranteed to

be backward compatible. Therefore, it is thought to be easier for users to adopt than major versions.
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Figure 5.5: New adoption.
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On the other hand, there are some users who are temporarily refraining from updating because it

takes time to update the version.
5.4.3 Patch version

This thesis analyzed the trends in patch version adoptions. Figures 5.5 and 5.6 shows that patch
versions are used by many users soon after release. Moreover, Figures 5.7-5.9 shows that old patch
versions are no longer used after a patch update. Figure 5.10 shows a similar trend in the number of
downloads. From the perspective of semantic versioning, patch version updates are intended only
to fix faults. Therefore, there are no concerns about backward compatibility. It is likely why many

users are quick to adopt them.
5.5 Proposed method

From Section 5.4, the following versions can be understood for each type of update:

* Major version: Users decrease in the early stages of the release, and a certain number of users

continue to use the older major version.

* Minor version: After the release, users update to the new minor version, but a certain number

of users continue to use the older minor version.

* Patch version: After the release, users immediately adopt the new patch version.

In particular, it is confirmed that many users tend to refrain from using a major version im-
mediately after its release. This is likely due to the fact that, according to the rules of Semantic
Versioning, the backward compatibility is not guaranteed during a major version upgrade, leading
some users to continue using the older major version. At this time, as the number of users adopting
the latest major version decreases upon its release, the debugging activity on the OSS source code
also decreases. On the other hand, since new major version includes changes that do not guarantee
backward compatibility, as per the rules of Semantic Versioning, the number of latent faults signifi-
cantly increases. In this case, a mixed process of reduced debugging capability and increased faults

occurs during the release of a major version.



Regarding debugging capability, the specific debugging capability of a version can be calculated
by applying Eq. (3.1) to the number of downloads of the new major version. Additionally, when
the number of latent faults increases significantly, the probability of fault detection also increases
markedly, similar to when new software is released. Therefore, this thesis proposes the method to
divide the software reliability growth curve at major versions and use the number of downloads of
the major version to calculate execution time. By using the number of downloads for a specific

major version, the proposed method is expected to improve the estimation accuracy.

5.6 Numerical examples

The proposed method was applied to version 2 of P-DS1, and an SRGM. The mean value func-
tions are used the exponential, delayed S-shaped, inflection S-shaped, and logarithmic Poisson exe-
cution time models, respectively. Figure 5.11 shows the estimation results using the execution time
for all versions, only major versions, and only the download counts of the latest version. Table 5.8
shows the evaluation result by MAE, MAPE, and AIC. In most cases, the download counts of major
versions shows better results. In particular, the performance of the inflection S-shaped SRGM when
using major versions is remarkably high. Additionally, it is confirmed that the estimation results
for the model using the latest version’s download counts and the model using the major version’s

download counts are the same result.

5.7 Summary

In this chapter, the usage trends of P-DS1 were investigated using data from software repos-
itories. Moreover, this thesis analyzed the relationship with the number of OSS download. The

analysis results are as follows:

* There is the proactive trend in updating and using the patch versions.

* There is also a positive trend observed in the updating and use of minor versions. The trend

was weaker than for the patch versions.
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* The similar proactive trend in patch version updates was observed in the software repositories,

comparable to download numbers.
* The passive trend was observed in adopting new major versions in the software repositories.

Additionally, this thesis proposed the version-specific reliability growth curves based on the analy-
sis results. Furthermore, this thesis analyzed the range of versions used in calculating the execution
time for the version-specific reliability growth curves. As the result, the proposed models esti-
mated using download counts of major versions showed better estimation results in many existing
models compared to models using all versions or only the latest version for execution time. More-

over, the learning S-curve model provided the best estimation results. The proposed model enables



Table 5.8: Comparison of Results.

(a) The result of all versions.

Exp | Delay Inf Log

MAPE | 0.19 1.47 1.15 0.29

MAE | 31.33 | 25.69 | 38.31 | 31.31
AIC | 616.24 | 608.10 | 562.81 | 542.34

(b) The result of the latest major version.

Exp | Delay Inf Log

MAPE | 0.14 1.23 0.18 0.31
MAE | 22.16 | 2240 | 19.35 | 52.02
AIC | 545.45 | 570.65 | 523.44 | 606.12

(¢) The result of the latest version.

Exp | Delay Inf Log

MAPE | 0.14 1.06 0.16 0.30
MAE | 25.77 | 25.13 | 22.47 | 50.88
AIC | 590.74 | 587.27 | 559.63 | 654.22

more accurate reliability evaluations in OSS where frequent updates occur. Additionally, the pro-
posed method, by constructing reliability growth models for each major version, could evolve into
a method for selecting major versions in OSS. On the other hand, the accuracy may decrease when
the software has few users because this study was applied to OSS with numerous downloads on
PyPL. In addition, the estimation accuracy may decrease for OSS when the OSS does not follow to
the semantic versioning.

In future work, the method will be applied to OSS in the early stages of development to analyze
its effect. Additionally, the impact on estimation accuracy will be investigated when OSS does not

adhere to semantic versioning.
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Chapter 6

Share Ratio Model

6.1 Introduction

In chapter 5, this thesis focuses on the improving of estimation accuracy by applying SRGM
to download numbers by major version. By utilizing version-specific download data, it becomes
possible to estimate the reliability of OSS with higher precision. However, in some cases, such
as OSS on node.js, the version-specific download numbers cannot be obtained. In such OSS, the
method proposed in chapter 5 cannot be applied. On the other hand, several researchers have studied
modeling the number of shares and users in the past. Then, the method proposed in chapter 5 can
be replicated through modeling by using the share ratio to convert the total download numbers
into version-specific download numbers. Therefore, this thesis focuses on the share ratio of major
versions in this chapter. The method to construct an SRGM with high accuracy by utilizing the
download numbers of all versions is proposed. In this chapter, the analysis of P-DS1 continues, as

presented in chapter 5.

6.2 Prediction of the share ratio

Predicting the number of users is effective in estimating future business prospects in product
development and marketing. For example, businesses can determine strategies based on forecasts

of how many users will be needed in the future once the number of product users begins to increase.
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It is known that the number of users tends to show a growth ratio that gradually decreases and
converges to a certain value, similar to market size. Many studies have been done to use this feature
to predict the number of users, market size, and technology life cycles [§7-92]. The SRGM has
similar concept in estimating fault numbers. In these researches, Gompertz function (Gomp) and
exponential function have been used factually.

Exponential curves are models used in SRGM, where the value increasing per unit time is pro-
portional to the remaining quantity. It can be modeled by replacing a with the saturation value of
Eq. (2.2).

The Gompertz curve is a formula that shows that the amount of increase decreases exponentially
over time [93]. It has the characteristic of initially increasing gradually. Finally, it converges to a

saturation point. It is expressed as follows:

f(t) = Kb 6.1)

where K is the saturation point, b is the displacement, c is the growth ratio. Similar to SRGM,
it is possible to estimate the parameters of the curve by applying data to the model and using the
maximum likelihood estimation method. In this chapter, this thesis constructs a model that takes

into account the increase in user share rates by utilizing these models.

6.3 Share ratio of major version

In order to examine a model that takes market share into account, changes in market share for
P-DS1 are analyzed. The data used for the analysis is the same as that used in chapter 5. The
number of downloads for each major version is tallied, and the share ratio is calculated. P-DS1 has
major versions 0, 1, and 2. Version 0 is excluded from the statistics from the perspective of semantic
versioning. The changes in market share are shown in Figure 6.1.

It can be seen that it has had the certain share since the initial release of version 2. The PyPI
returns the latest version when the user does not specify a version. It may be one of the factors

for the existence of the initial share ratio. There are also observed points where the initial share
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Figure 6.1: The share ratio trend of P-DS1 version2.

ratio temporarily declines. The Version 1.2.6.16 was released on May 23, 2023. It is thought to be
due to the increase in downloads of version 1. As time goes on, the share of version 2 is gradually
increasing.

Figure 6.2 shows the change in share ratio over time. It can be seen that there are no major
differences in the curves since the share ratio increases gradually. From these data, it can be seen
that modeling is not difficult since there is no extreme fluctuation in the share ratio in version 2 of

P-DS1.

6.4 Proposed method

6.4.1 Share ratio function

In order to analyze the overall trend of the share ratio, the maximum likelihood estimation
method was used to derive the estimated curve for the increasing trend. It is known that the number

of software users follows an exponential or S-shaped curve.

* Certain the number of users already exist when new version is released.

* Finally, the share ratio reaches saturation value.
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Figure 6.2: The estimated result using the corrected execution time.

Therefore, the share ratio trend function is derived, considering the offset of the initial and final
share ratios. Considering the offset and the final share ratio in the exponential function, it is as

follows:

e(t) =a(l —exp{—b(t+torf)}), (6.2)

where a is the final share ratio, b is the ratio parameters, and 7, is the offset of initial share ratio.

If the latest version eventually gets all the shares, the exponential share ratio function is as follows:

e(t)=1—exp{—b(t+1,/r)} (6.3)

Considering the offset and the final share ratio in the Gompertz function, it is as follows:
f(1) = KpPPI=cl+tors)} (6.4)

where K is the final share ratio, b is the displacement, c is the growth ratio, and 7,5 is the offset

of initial share ratio. If the latest version eventually gets all the shares, the Gompertz share ratio



function is as follows:

f(r) = pPieltrtop)} (6.5)
6.4.2 The correction functions

This thesis proposes the model that enables highly accurate estimation even when using data
from those distributors. This thesis corrects the execution time by considering the percentage for
users of the latest major version. The corrected execution time ¢,,; using the usage ratio of the latest
version can express as follows:

tmi = lﬂ"(li), (66)

where r(t;) is the share ratio of the latest version at time #;, #; is the execution time for all version at
t, and i is the number of observations, respectively. The share of the latest major version is expected
to increase and reach 1 if new major version wasn’t released. Therefore, this thesis introduces the
share ratio trend that reach to 1 finally. Substituting Egs. (6.3) and (6.6) into Eq. (6.6), the corrected

execution time based on exponential function ,,; is as follows:

tmi = Y Ni(1—exp{—b(t +1,7¢) })ATy. (6.7)
k=1

Substituting Egs. (6.5) and (6.6) into Eq. (6.6), the corrected execution time based on exponential
function t,,; is as follows:

fi = Z Nk(beXP{—C(f+fo_f_f)}) AT;. (6.8)
k=1

6.5 Numerical examples

The proposed method is applied to the version 2 fault data of P-DS1 and compared with the
previous method. Furthermore, data from April 27th, 2023 to February 29th, 2024 are used. 90& of
the dataset is employed to estimate the parameters of the mean value function using the maximum
likelihood estimation method. The exponential model, delayed S-shaped model, inflection S-shaped

model, and logarithmic Poisson execution time model are applied as the mean value function [8—11].



Figure 6.3 and Figure 6.4 show the estimation results when using the exponential system cor-
rection model and the Gompertz correction model, respectively. Table 6.1 shows the results of
model evaluation using MAE, MAPE, and AIC. The results in Table 6.1 show that the function with
the highest accuracy varies depending on the mean value function. For this reason, when actually

applying the method, it is necessary to use both models and select the one with the highest accuracy.

The evaluation indices of the estimated results are compared with those in Table 5.8. When
compared with Table 5.8a, it can be seen that the proposed method is able to estimate with high
accuracy, except for the delayed S-shaped model. Furthermore, when compared with Table 5.8b,

the results obtained are found to be close to the accuracy of the model in Table 5.8b.
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Figure 6.3: The estimated result using the exponen-
tial function.

Figure 6.4: The estimated result using the Gompertz
function.

Table 6.1: The evaluation result of the models.

Exp Delayed Inf Log
Exp Gomp | Exp Gomp | Exp Gomp | Exp Gomp
MAPE | 0.15 0.16 0.67 0.67 0.24 1.42 0.22 0.22
MAE | 23.74 29.35 | 3953 3954 | 1693 3885 | 13.28 47.20
AIC | 57336 555.14 | 677.38 679.38 | 530.66 582.64 | 509.58 526.16




6.6 Summary

This thesis proposed the SRGM considering the growth of the major version share ratio. As a re-
sult, a model has been structured that can be applied even when the number of downloads by version
cannot be retrieved. chapter 5’s model requires the number of downloads by version. Therefore,
the number of applicable OSS is limited. By applying the proposed method, the model proposed
in chapter 5 can be used with more OSS. In addition, the proposed model showed an estimation
accuracy similar to that when the number of downloads by version is used. The proposed method
is expected to be useful for the reliability assessment of more OSS. Furthermore, by improving the
share ratio function in the future, more accurate estimation can be expected.

On the other hand, since this model does not assume that the share ratio of the major version
will decrease, if the quality of the released major version is low, the share ratio may not increase and
the estimation accuracy may decrease. In addition, the share ratio of OSS with the small number of
downloads may fluctuate drastically. It may reduce the accuracy of the proposed method.

In the future, data on the trends of the share ratio will be collected from additional OSS projects

to study the optimal share ratio function.
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Chapter 7

Conclusion

This thesis focuses on the three issues listed in Section 1.1 for the developing SRGM for OSS. The

following points are discussed in this thesis:

1. Variability in the number of users: Methods to build the SRGM considering the number of

users.

2. Differences in fault reporting process in BTS: Methods to utilize the fault data quickly in OSS
BTS.

3. Software updates: Methods to build the SRGM considering the software update.

In “Variability in the number of users,” this thesis analyzed the publicly available data on the
number of OSS downloads and the number of faults. Moreover, this thesis proposed the new method
to calculate the execution time considering the number of users for standardizing the test time for
OSS. Furthermore, this thesis evaluated the compatibility of the proposed method with the existing
SRGM. The results showed that the proposed method showed the trends similar to the results ob-
served in the traditional proprietary software SRGM. It indicates that the proposed method could
potentially be applied for the reliable software evaluations.

It has been previously known that the traditional SRGM can be applied to OSS, it tends to show
the linear increase in the faults. However, even with highly reliable OSS, SRGM tends to evaluate
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its reliability low. There is a discrepancy between the evaluation results and the reality. By using
the proposed method to standardize the test time based on the number of users, it becomes possible
to evaluate similarly to the traditional SRGM. It enables the developers to apply the same reliability
assessments for OSS like the proprietary software. Additionally, it can be applied directly to any
SRGM that developers wish to use since the proposed method does not interfere with parameters
other than time in existing SRGM. It allows for the flexibility in performing reliability evaluations,
considering various scenarios as necessary.

The proposed method showed the higher degree of model fit compared to previous methods from
the perspective of model evaluation metrics. In the software reliability assessments, models with a
high degree of fit are essential for accurate evaluations. Traditional SRGM have shown tendencies
to overfit certain aspects of the model, reducing overall accuracy. By adopting the proposed method,
it becomes possible to conduct reliability assessments with higher precision.

In “Differences in fault reporting process in BTS,” this thesis proposed the method to accelerate
the acquisition of the fault data necessary for the SRM in OSS. Since OSS is often developed by
the volunteer developers, it typically takes longer to confirm the software faults compared to the
proprietary software. Additionally, the popular software with a large user base may experience a
high volume of the fault reports. It can delay the process of confirming the fault report. As a result,
it took time to use the fault data from the BTS in the reliability evaluations.

This thesis focused on the trend of SRGM curves that reflect both the unconfirmed and the
confirmed fault data. This thesis proposed the method for SRGM using the unconfirmed fault data.
As the result, this thesis proposed the SRGM that enables highly reliable evaluations. It close to
the evaluations based on the confirmed faults even when using the unconfirmed failure data. In
highly active OSS projects, the source code is frequently updated. The reliability assessments using
old fault data may estimate inaccurate results. By applying the proposed method, the fault data
can be used for real-time reliability evaluations at the point when faults are reported. OSS project
developers can quickly assess the reliability of OSS and accurately estimate the necessary testing

period before releasing the software. Additionally, OSS users can perform real-time reliability



assessments for OSS. It can be possible to help to select high-reliability OSS for their purposes.

In “Software updates,” this thesis proposed the SRGM considering software updates in OSS. Un-
like the proprietary software, OSS undergoes updates not only for debugging but also for enhancing
the functionality. It leads to the variations in the number of latent faults in the source code. It can
affect the accuracy of SRGM. This thesis analyzed the OSS updates from the perspectives of major
updates, minor updates, and patch updates. Moreover, this thesis proposed the models considering
the software major update. As a result, it was found that OSS users tend to be more proactive in
updating the minor and patch versions. It is thought to be due in part to the fact that the effect of
changes associated with updates is small. On the other hand, major updates were less frequently
executed. Generally, the software updates are recommended from the security and the performance
perspectives. However, concerns regarding compatibility with the existing systems and the risk of
introducing unknown faults often lead to a delay in implementing updates, necessitating further in-
vestigation. However, the effect on software reliability evaluation was not understood. This thesis
shows that the effect of the software updates can be reduced by dividing the fault data in the major
updates. Furthermore, this thesis proposed the method for SRGM for each major version based on
the analysis. It achieved more accurate estimates compared to the models that do not differentiate
between the versions. By applying reliability evaluations for each major version, this method may
help to the better version selection strategies.

In conclusion, the proposed methods successfully addressed three challenges in SRGM for OSS,
enabling the construction of an SRGM that provides reliable evaluations. These methods hold po-
tential as tools for selecting high-reliability OSS and improving software reliability when utilizing
OSS. Additionally, OSS projects that adopt the proposed methods may contribute to the develop-

ment of more reliable OSS.
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