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(Abstract)

This study explores the innovative applications of depth cameras combined with Graph Convolutional
Networks (GCN) for action recognition in two critical domains: elderly care and smart education. We
harness the capabilities of depth cameras to capture spatial and temporal features, alongside our
robust GCN algorithm, to develop models capable of accurately recognizing and classifying human
actions. In elderly care, our model is particularly focused on detecting and analyzing falls, which are
crucial for enhancing care safety and supporting the independence of elderly individuals. Experimental
results demonstrate that our depth camera-based action recognition model achieved an impressive
average accuracy of 96.3% in fall detection within real-world scenarios, while also maintaining low
rates of false positives and false negatives. In the realm of smart education, our depth camera-based
model is specifically designed to recognize students’ hand-raising actions in real-time, which is crucial
for comprehensively assessing student engagement in the class, and accordingly adjusting teaching
strategies. Experimental results show that our model achieves an average accuracy of 89.7% in real-
world scenarios, while maintaining low rates of false positives and false negatives. Overall, this study
showcases the powerful potential of integrating depth cameras with GCNs for action recognition,
significantly enhancing both the safety and efficiency of elderly care, as well as the interactivity and
educational quality of smart education.
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1. Introduction

Human action recognition is a challenging and engaging research task within computer
vision. It has a wide range of applications including video understanding, smart surveillance,
robotics, industrial automation, healthcare, and education [1,2,3]. In recent years, many re-
searchers have dedicated efforts to recognizing and analyzing human actions from RGB videos

[4,5]. However, methods based on RGB often fail to achieve satisfactory results in practical
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Figure 1. Applications of depth cameras in real-world scenarios. (a) Application of depth cameras
in elderly care, focusing on the recognition and analysis of falling actions. (b) Application
of depth cameras in smart education, concentrating on detecting students” hand-raising
actions. (Source: Created by the authors)

applications due to their inability to robustly handle environmental noise such as changes in
viewpoint, lighting conditions, background colors, and clothing [6,7].

The rapid advancement of depth camera technology has opened up new possibilities for
action recognition. Depth cameras, such as Azure Kinect DK [8], utilize Time-of-Flight (ToF)
technology to capture depth information, enhancing understanding of complex environments
and interactions. Moreover, depth cameras offer advantages such as being unaffected by light-
ing conditions and preserving privacy [9]. Consequently, methods that use three-dimensional
coordinates of human joints as input have attracted widespread attention [10,11]. However, in
specific practical applications, such as elderly care and smart education, technologies based on
depth cameras and Graph Convolutional Networks (GCNs) have not been fully developed or
applied.

In elderly care, medical surveys have shown that falls are a leading cause of both fatal and
non-fatal injuries among the elderly [12]. The incidence of falls among the elderly ranges from
32% to 42%, and timely medical intervention after a fall can reduce the risk of death by 80%
[13,14]. Therefore, accurately and effectively monitoring elderly falls is of great importance.
However, due to the sudden nature of falls and the rapidity of the falling process, traditional
monitoring methods often fail to capture the entire event in real-time. This necessitates the
adoption of more advanced technological means, such as depth cameras, which can precisely
capture the entire process of a fall and provide detailed three-dimensional spatial information,
thereby laying a solid foundation for the accurate identification of falls. Furthermore, by utiliz-
ing GCNs to analyze these complex three-dimensional data, we can extract key features from
structured spatial relationships and the continuous temporal dimension, achieving more accu-
rate recognition and analysis.

In smart education, recognizing students’ hand-raising behavior plays a crucial role as it
helps analyze classroom engagement to assess teaching processes and optimize educational
strategies [15]. Traditionally, many studies have used two-dimensional cameras, ie., RGB vide-

0s, to record and analyze student behavior to evaluate teaching quality and student attitudes
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[16]. However, this method inherently lacks depth information of the targeted objects and
cannot robustly handle environmental noise. Depth camera technology, which provides richer
three-dimensional spatial information, has the potential to significantly enhance the accuracy
and reliability of student action recognition, yet its application in smart education is still in an
exploratory stage. Depth cameras, combined with the analytical power of GCNs, offer a prom-
ising avenue for capturing and understanding complex student behaviors through enhanced
three-dimensional data analysis.

This study initially explores the application of depth cameras and Graph Convolutional
Networks (GCNs) for action recognition, focusing on elderly care and smart education, as il-
lustrated in Figure 1. We introduce a method that integrates these technologies to develop a
Spatio-Temporal Fusion Graph Convolutional Network (STF-GCN), tailored for real-time action
recognition. Our approach involves deploying depth cameras to capture three-dimensional data
in practical scenarios, processed and analyzed by the STF-GCN. This network effectively ex-
ploits the spatio-temporal features of the depth data, ensuring precise action recognition. To
facilitate real-time applications, we convert the trained STF-GCN model into the ONNX format,
significantly enhancing its portability and deployment efficiency on depth cameras. We conduct-
ed extensive experiments on fall detection in elderly care and hand-raising detection in educa-
tional settings. The results validate our method’'s effectiveness and demonstrate the promising

potential of integrating depth cameras with GCNs for future applications.

2. Related Works

Next, we will discuss the related works from two perspectives, including action recognition

in elderly care and action recognition in smart education.

2.1 Action Recognition in Elderly Care

Action recognition plays a pivotal role in enhancing the safety and quality of life for the
elderly, a demographic that often requires continuous monitoring due to a higher risk of falls
that could necessitate immediate medical attention. Jang et al. [1] proposed a network called
Four Stream Adaptive CNN (FSA-CNN), which has three main properties: robustness to spa-
tio-temporal variations, input-adaptive activation function, and extension of the conventional
two-stream approach. Shu et al. [17] proposed a Expansion-Squeeze-Excitation Fusion Network
(ESE-FN), which learns modal and channel-wise ESE attentions for attentively fusing the mul-
ti-modal features in the modal and channel-wise ways. Zin et al. [18] introduced a system that
integrates feature extraction methods from previous works and utilizes depth frame sequences
provided by depth cameras. The system locates individuals by extracting different Regions
of Interest (ROI) from UV-disparity maps. Tabbakha et al. [19] introduced the development

and testing of a wearable device featuring motion detection and indoor localization based on a

7817



Journal of East Asian Studies

random forest classifier. The action recognition phase utilizes a gyroscope and an accelerome-
ter to detect various types of movements.

Among the methods discussed, only several methods [18,19] involved actual model deploy-
ment and testing. The remaining methods did not implement the proposed algorithms in prac-
tical settings. Although Zin et al. [18] employ depth cameras, they only use depth information
for locating individuals and do not fully utilize them in the action recognition phase. Instead,
the action recognition phase of their method involves a strategy of randomly sampling frame
sequences, a process that can lead to inconsistent results and potentially miss critical motions,
reducing the overall effectiveness and accuracy of the action recognition. In contrast, the meth-
od proposed in this paper utilizes depth cameras to capture the three-dimensional information
of all human joints and employs our proposed STF-GCN in the action recognition phase. Finally,
we convert our model into a deployable ONNX format to conduct tests in real-time within

real-world scenarios.

2.2 Action Recognition in Smart Education

As educational technologies evolve towards personalized learning and data-driven feed-
back, action recognition in smart education becomes increasingly important. Recognizing spe-
cific actions, such as hand-raising, plays a key role in assessing student engagement, facilitating
classroom interaction, and optimizing teaching strategies. Therefore, some studies have focused
on detecting hand-raising. Zhou et al. [20] proposed an algorithm for recognizing hand-rais-
ing actions. It accomplishes the recognition of hand-raising through three tasks: hand detec-
tion, pose estimation, and heuristic matching. Si et al. [21] integrated a feature pyramid into
their model architecture, thus designing a region-based fully convolutional network to detect
hand-raising gestures. This design somewhat improves the detection capability for low-resolu-
tion hand gestures. The method proposed by Liao et al. [22] includes two stages: pose estima-
tion and gesture recognition. The goal of the pose estimation stage is to estimate human joint
positions, which are then used to recognize gestures through predefined relationships among
the joints. Similarly, Lin et al. [2] employed a process akin to that of Liao et al. [22], utilizing
CNNs to classify actions.

Although these methods have achieved commendable results, they are all based on RGB
videos, which lack depth information and are highly susceptible to variations in lighting and
clothing. Additionally, these methods typically segment an action into frames to perform recog-
nition, which can lead to fragmentation of contextual information and potential loss of continui-
ty in action sequences. In contrast, our approach leverages depth camera technology combined

with our STF-GCN to overcome these limitations.
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3. Methodology

In this section, we will delineate our methodology across three aspects, including the sys-

tem architecture, skeleton data preprocessing and the STF-GCN.

3.1 System Architecture

The overview of the proposed system is shown in Figure 2. Initially, the system uses a
depth camera to capture real-time three-dimensional skeletal data of individuals. This is fol-
lowed by a skeletal data preprocessing stage, where the collected skeletal sequences are con-
verted into a format suitable for input into the STF-GCN, a graph neural network specifically
designed by us. Structurally, the STF-GCN includes two encoding modules, i.e., TDE (Temporal
Dimension Encoding) and SDE (Spatial Dimension Encoding), and five STF (Spatial Temporal
Fusion) modules, followed by GAP (Global Average Pooling) and FC (Fully Connected) layers
for action classification, as detailed in Section 3.3. After the training phase, we obtain a trained
STF-GCN model. The next step is to convert this trained model into an ONNX model that can
be deployed on depth cameras, which offers the advantages of being lightweight and fast for
inference. Finally, in the inference phase, we can use the depth cameras equipped with the

ONNX model to detect actions such as falls and hand-raising in real-time.

Depth Camera i _“,_*__5".69‘ ﬁﬁﬁﬁﬁﬁﬁﬁ

Main Stream
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Action Result +————— ONNXModel  {uemsssms  Trained Model

Figure 2. System overview. The black arrow indicates the training phase, while the blue arrow
indicates the inference phase. TDE stands for Temporal Dimension Encoding, SDE
stands for Spatial Dimension Encoding, STF denotes Spatial Temporal Fusion, GAP
represents Global Average Pooling, and FC refers to the Fully Connected layer. (Source:
Created by the authors)

3.2 Skeleton Data Preprocessing

This study utilizes the Femto Bolt depth camera. Figure 3 demonstrates visual examples
of the depth camera’'s RGB field of view (Figure 3a) and infrared intensity visualization (Figure
3b) from a distance of 1.5 meters from the front. It is evident that the RGB field of view does
not contain spatial information about the scene, such as the distance of objects. In contrast,
Figure 3b represents the intensity of infrared reflection captured by the depth camera, where
the grayscale variations indicate the strength of the reflected infrared signal. Depth information

is stored as pixel-wise attributes in the depth data. And then, using the API provided by Azure

7837



Journal of East Asian Studies

Kinect Body Tracking SDK [23], we can capture 32 human body joints (marked in yellow in
Figure 3b). Figure 4a displays the specific meanings of these 32 joints.

According to preprocessing protocols established by prior research [9,17], which have been
proven effective and widely adopted, the input joint count for GCNs is set at 25, as shown in
Figure 4b. Since the number and sequence of the 32 joints captured by the depth camera do
not align with the input format required by the GCNs, it is necessary to map these captured
joints to the 25 joints required by the GCN. This mapping is detailed in Table 1, which provides
a comprehensive cross-reference of each joint from the depth camera output to its correspond-
ing joint in the GCN input.

Based on the mapping relationships outlined in Table 1, we first use Algorithm 1 to con-
vert the one-dimensional vector of 32 joints captured by the depth camera into a one-dimen-
sional vector containing 25 GCN joints. The input format for the GCN is a five-dimensional
tensor, 1e. [Batchsize, Channels, Fram__Count, Joint_Count, Person_Count]. Subsequently, we
employ Algorithm 2 to transform the one-dimensional vector of 25 joints into a five-dimensional
tensor suitable for GCN input.

After successfully constructing the five-dimensional tensor, we can then use our proposed
STF-GCN to perform model training and inference on the action data captured by the depth

camera.

a. Azure Kinect DK format. b. Input format for GCNs.

Figure 4. Comparison of depth camera-derived human skeletal outputs and GCNs input formats.
(Source: Created by the authors)
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Table 1. Joints mapping from Kinect DK output to GCN input. (Source: Created by the authors)

Joint Name Kinect DK Joint Number GCN Input Joint Number
Pelvis 0 1
Spine Nanal 1 2
Neck 3 3
Head 26 4
Shoulder Left 5 5
Elbow Left 6
Wrist Left 7 7
Hand Left 8 8
Shoulder Right 12 9
Elbow Right 13 10
Wrist Right 14 11
Hand Right 15 12
Hip Left 18 13
Knee Left 19 14
Ankle Left 20 15
Foot Left 21 16
Hip Right 22 17
Knee Right 23 18
Ankle Right 24 19
Foot Right 25 20
Spine Chest 2 21
Handtip Left 22
Thumb Left 10 23
Handtip Right 16 24
Thumb Right 17 25

Algorithm 1. Convert kinect skeletons to GCN skeletons
Input: Kinect_Skeletons // A one-dimensional vector composed of 32 joints captured by
the depth camera.
Output: GCN_Skeletons // A one-dimensional vector composed of 25 GCN joints.
1. kinectToGCNMap = [0, 1, 3, 26, 5, 6, 7, 8, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 2,
9, 10, 16, 17]
2. Initialize GCN_Skeletons as an empty vector of floats.

3. Initialize genJointsTemp as an array of floats of size Joint count * 3. // Each joint is
represented by (x, v, 2)

4. For each person in Person_Count do

5. For each skeletonPair in Kinect_Skeletons do

6. For genlndex from O to Joint_Count - 1 do

7. kinectIndex <+ kinectToGCNMap[gcnIndex]

8. Set genJointsTemp([genlndex*3+0] to skeletonP air.person.joints[kinectIndex].
position.xyz.x

9. Set genJointsTemp[genIndex*3+1] to skeletonP air.person.joints[kinectIndex].
position.xyz.y

10. Set genJointsTemp[genlndex®3+2] to skeletonP air.person.joints[kinectIndex].
position.xyz.z

11. End For

12. Append genJointsTemp to GCN_Skeletons

13, End For

14. End For
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Algorithm 2. Transform a one-dimensional vector to a five-dimensional tensor, ie.,
[Batchsize, Channels, Frame_Count, Joint_Count, Person_Count]

Input: GCN_Skeletons

Output: GCN_Tensor // A five-dimensional tensor

1. Initialize rearranged_data as a vector of floats with size
Batchsize*Channels*Frame_Count*Joint_Count*Person_Count

2. Initialize index to 0

3. For channel from 0 to Channels - 1 do

4. For frame from 0 to Frame_Count - 1 do

5. For joint from 0 to Joint_Count - 1 do

6. For person from 0 to Person_Count - 1 do

7. Calculate original_index using: original_index <« frame * Joint_Count *
Person * Channels + joint * Channels + person * Channels * Joint_Count +
channel

8. Set rearranged_data[index] to GCN_Skeletons[original_index]

9. Increment index

10. End For

11. End For

12, End For

13. End For

14 Convert rearranged_data to GCN_Tensor by using torch:from_blob function

3.3 STF-GCN

To learn the features of the skeletal data captured by the depth camera, we have devel-
oped the STF-GCN. The overall network structure of the STF-GCN is illustrated in Figure 2. It
includes SDE, TDE and STF modules.

3.3.1 SDE and TDE

SDE represents features related to joints, bones, and spatial angles [24, 25]. The TDE we
propose focuses on two types of temporal dimension features, L.e., temporal motion features and
temporal angle features. Each type of temporal feature includes three encoding strategies, ie.,
general encoding, reinforced encoding and united encoding.

As depicted in Figba, the general encoding of the human skeleton is rooted in the natu-
ral connections between skeletal joints. By analyzing the temporal dimension relationships of
each joint across two distinct frames, this encoding strategy comprehensively captures the
subtle temporal movement and angle variations that spatial dimension features may overlook.
Specifically, the temporal angle is formed by the vector (shown as the purple vector) that con-
nects a joint at frame ¢ to its neighboring joints, and the temporal motion feature (portrayed as
the blue vector) pertinent to that joint.

Different actions typically manifest distinct limb motion patterns and positional variations.
Additionally, the positions and movements of human limbs often convey semantic cues related
to the performed actions. Therefore, we introduce the reinforced encoding scheme, designed

to capture the intricate characteristics and semantic nuances inherent in limb motions. As
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a. General encoding of human b. Reinforced encoding of c. United encoding of human
skeleton. human limbs. limbs.

Figure 5. Three encoding strategies. Red and orange dots represent skeletal joints at frames t and t+1,
respectively. Blue vectors symbolize temporal motion features; angles between blue and purple
vectors are temporal angle features. (b) For clarity, features of only the right arm and leg are de-
picted. (c) Visualized features between joint No. 10 of the upper body and the joints of the lower
body. (Source: Created by the authors)

depicted in Figbb, we designate joint No. 21 as the rootnode and select the limb joints of the
human body (shown as red and orange dots) to constitute four joint sequences: left arm, right
arm, left leg and right leg. Reinforced encoding is suitable for actions dominated by either the
upper limbs or lower limbs.

Human actions typically involve intricate interactions and coordination among various
limbs. Furthermore, the synchronized motions of these limbs can indicate the consistency and
coherence of specific actions. To capture these inter-limb relationships and enhance the model's
capacity to distinguish between diverse actions, we introduce the united encoding approach for
human limbs. As depicted in Figbc, considering the shoulder, elbow and wrist joints account
for the primary range of motion in the upper limbs, we select joint No. 21 from the upper body,
accompanied by both elbow and wrist joints, as representative of the upper body's movements.
Similarly, we choose the joint No. 1, along with both knee and ankle joints, to represent the low-
er body's motions. Subsequently, we apply united encoding to these selected joint sequences.

United encoding is designed for actions involving coordinated movements of all limbs.

3.3.2 STF Module

As depicted in Fig6, the STF module is designed to process input features through a
multi-layered architecture. C X T'X V represents the dimensions of the input features, where C
stands for the number of channels, 7" for the number of temporal frames and V for the number
of joints. The principal components of STEF encompass the Spatial Graph Convolution (SGC) [11],
the Temporal Receptive Field (TRF) block. @ represents concatenation. © represents pairwise
subtraction.

Within each TRF block, as shown on the right side of Figure 6, large kernel and small
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Figure 6. Overview of STF module. (Source: Created by the authors)
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Figure 7. Architectural design of Large Kernel Block. (Source: Created by the authors)

kernel blocks are arranged in an alternating cascading sequence. This configuration advocates
for the combined use of large and small kernel convolutions. The small kernels excel at identi-
fying fine-grained and small-scale temporal patterns. Conversely, large kernels are pivotal for
capturing sparse and extensive temporal features, vital for analyzing time series with signifi-
cant relational dependencies.

The large kernel block is illustrated in Figure 7. It comprises a Receptive Field (RF)
layer, a Squeeze-and-Excitation (SE) block [26], a Feed Forward Network (FFN) and Batch
Normalization (BN). The symbol ® represents element-wise multiplication. The only difference
between a small kernel block and a large kernel block is that the former replaces the RF layer
with a Conv 3 X 1. Initially, the RF layer applies a convolution operation to the input data. The
sequence of convolutions, starting from Conv 1X1 to Conv 9 X1, with increasing dilation rates
from 1 to 9, allows for an expansive temporal analysis, covering both immediate and extend-
ed temporal contexts. The parallel pathways process the input through Conv 3x1 kernels at
varying dilation rates, enabling the block to assimilate temporal features with different granu-
larities. SE block is an efficient structure that performs both inter-channel communications and

temporal aggregations to increase the depth of network.
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4. Experiments

Our experiments focus on fall detection in elderly care and hand-raising detection in smart
education. Initially, we train our proposed STF-GCN using publicly available datasets [1,27]
and use it as a pre-trained model. Subsequently, we utilize transfer learning to fine-tune our
model on fall and hand-raising data collected by the depth camera. Finally, the trained model
is converted into an ONNX format, which can be deployed on depth cameras for testing and

evaluation.

4.1 Datasets

ETRIActivity3D (EA3D) [1] is currently the largest elderly action recognition dataset
collected in real-world monitoring environments, comprising 112,620 samples of 50 elderly in-
dividuals and 50 young adults performing actions across 8 synchronized sensors. The elderly
participants range in age from 64 to 88 years, while the young adults are around 20 years old.
All videos are categorized into 55 types of actions.

NTU-RGB+D 60 (NTU60) [27] is a large-scale laboratory indoor dataset provided by [15],
comprising 60 action categories. The authors of the dataset recommend two benchmarks: (1)
Cross-Subject (X-sub), which includes 40,320 training samples and 16,560 evaluation samples,
dividing 40 subjects into two groups. (2) Cross-View (X-view) uses videos captured by cameras
2 and 3 as training samples (37,920 videos) and videos captured by camera 1 as evaluation sam-
ples (18,960 videos).

We collected fall and hand-raising data by recording videos, each lasting one minute.
Following the data preprocessing protocols established in [11,17], we set the Frame_Count in
Algorithms 1 and 2 to 64, a setting that is suitable for both falling and hand-raising actions. We
created 88 samples from one-minute videos using a stride of 20 frames. To increase the quanti-
ty and diversity of samples, we also produced 58 samples from one-minute videos using a stride
of 30 frames. Thus, a single one-minute video could generate 146 samples. We collected a total
of 6,000 samples using the depth camera, with 3,000 samples for each type of action to fine-tune
the STF-GCN model. Of these, 2,500 samples were used as the training set and 500 samples as
the test set.

4.2 Depth Camera Settings

Figure 8 illustrates the specific setup details of the depth camera used during data col-
lection. Specifically, the RGB camera was set to 1080p mode with a frame rate of 30. In depth
mode, we used the NFOV Unbinned (640x576) mode, also at a frame rate of 30. The distance
between the camera and the subject ranged from 1.5 to 2.5 meters, which aligns with the opti-
mal operating conditions of the depth camera. And the camera was positioned 70 cm above the

ground.
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Figure 8. Field of view for depth and RGB cameras (the perspective seen by the sensors) and
field of view at a distance of 1.5 meters from the front. (Source: Created by the authors)

4.3 Implementation Details

For the training phase, programming was conducted in Python on Ubuntu 22.04. We use
SGD optimization with 0.1 as the base learning rate and a weight decay of 0.0005. All the mod-
els are trained on two GeForce RTX 3090 with a batch size of 200, using ReduceLROnPlateau
to update the learning rate. For fall detection, we initially pre-trained using the EA3D data-
set, setting epochs to 100, and then fine-tuned the model with datasets collected by the depth
camera. Similarly, for hand-raising recognition, we pre-trained using the NTU 60 dataset with
epochs set at 100, followed by fine-tuning with datasets collected by the depth camera. The
fine-tuned model is in PyTorch format. Finally, we convert the PyTorch model into an ONNX
format model that can be deployed on a depth camera.

For the inference phase, programming was conducted in C++ using Microsoft Visual
Studio Community 2019. The computer used for this purpose was equipped with a 12th Gen
Intel(R) Core (TM) 19-12900 and 32GB of RAM. The depth camera employed was the Femto

Bolt, which is a collaborative production by Microsoft and Orbbec.

4.4 Evaluation Metrics

We evaluate our model's performance using several key metrics: FPR (False Positive Rate),
FNR (False Negative Rate), Acc (Accuracy), PT (Preprocessing Time) and IT (Inference Time).
These metrics collectively assist in assessing the effectiveness, efficiency and operational speed
of our system.

FPR is defined as the proportion of negative cases that were incorrectly classified as pos-
itive. It represents the probability of falsely identifying a negative instance as positive and is
calculated using the formula (1). FNR is the proportion of positive cases that were incorrectly
classified as negative. It measures the probability of failing to identify a positive instance and
is calculated as (2). Acc measures the proportion of true results (both true positives and true
negatives) among the total number of cases examined. It provides an overall effectiveness of
the model and is expressed as (3). PT and IT specifically measure the time our system takes

during the data preprocessing and model inference phases, respectively, highlighting the
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operational efficiency.

FP
FPR = FP+TN
FN
FNR = FN+TP
oo TP+TN
T TP+FEN+FP+TN

4.5 Experimental Results of Fall Detection

The STF-GCN model for fall detection was initially tested on the EA3D dataset, achieving
an accuracy of 92.9% as detailed in Table 2. The test results of the STF-GCN on the EA3D

dataset are presented using a confusion matrix, as illustrated in Figure 9. To enhance its per-

formance specifically for fall detection tasks, the model underwent a fine-tuning process. This

adjustment involved retraining the model using our collected falls data, which improved its

accuracy to 97.6%. These results not only affirm the model's improved effectiveness but also

underscore the benefits of fine-tuning for specific scenarios.

Table 2. Accuracy of the STF-GCN model on EA3D dataset before and after
fine-tuning specifically for fall detection. (Source: Created by the authors)

Acc
Initial Testing on EA3D 92.9%
After Fine-tuning for Fall Detection 97.6%

Figure 9. The confusion matrices of our STF-GCN model on EA3D. The horizontal axis repre-
sents the predicted labels, while the vertical axis represents the true labels. (Source:
Created by the authors)
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Table 3. Fall detection accuracy and processing times from various orientations.
(Source: Created by the authors)

Front Back Left Right Avg
FPR 25% 0 0 0 6.25%
FNR 0 33.3% 0 0 8.33%
Acc 92.9% 92.3% 100% 100% 96.3%
PT 0.148s 0.136s 0.139s 0.138s 0.14s
IT 0.047s 0.043s 0.047s 0.044s 0.045s

After fine-tuning, the model size is 8.07 MB. We then convert the fine-tuned model into an
ONNX format that can be deployed on a depth camera. The size of the ONNX model is only 1.55
MB.

After deploying the ONNX model to the depth camera, we conducted real-time perfor-
mance tests in real-world scenarios. Due to the limited detection range of the depth camera,
these tests were performed with only one individual. Specifically, we simulated falls of an el-
derly person from four different orientations including front, back, left, and right. The results
presented in Table 3 demonstrate our method’s effectiveness and efficiency from various
orientations. The system achieves 100% accuracy in both the Left and Right orientations, il-
lustrating the robustness and reliability of our fall detection system in these views. However,
the accuracy for Front and Back orientations does not reach 100%, primarily due to increased
false positive rates in the Front and elevated false negative rate in the Back orientation. These
discrepancies highlight challenges in accurately detecting falls when the individual is facing to-
wards or away from the camera, which may be influenced by the depth camera’s angle and the
overlap of body parts in these orientations. Table 3 also details preprocessing and model infer-
ence times, further highlighting the operational efficiency of our system in real-world scenarios.
These metrics collectively demonstrate the capability to our method in real-world scenarios.

Figure 10 provides visual examples of the detection process from these various

c. Left d. Right

Figure 10. Visual examples of fall detection tests conducted from four orientations using a depth
camera. Each subfigure (a) Front, (b) Back, (c) Left and (d) Right displays the detection
outcome: “This person is standing” when the individual is upright, and “This person
has fallen down” following a fall. (Source: Created by the authors)
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orientations. These images demonstrate the system'’s real-time response and its ability to accu-

rately recognize falls, which is crucial for ensuring the safety of the elderly.

4.6 Experimental Results of Hand-Raising Detection

The STF-GCN model tailored for hand-raising detection was first evaluated on NTU 60
X-sub and NTU 60 X-view, where it reached accuracies of 91.4% and 95.9% as detailed in Table
4. The testing outcomes on the NTU 60 datasets are depicted in the confusion matrices shown
in Figures 11a and 11b. To optimize it further for hand-raising actions, the model was fine-
tuned. This enhancement process included retraining the model with our specifically collected
hand-raising data, which boosted its accuracies to 95.1% and 985%. These findings effectively
underscore the improvements in model performance due to specialized fine-tuning for dedicat-
ed tasks.

For the two fine-tuned models listed in Table 4, we selected the model with the higher
accuracy to be converted into an ONNX model for deployment on a depth camera. The sizes
of the fine-tuned model and the ONNX model are 807MB and 1.55MB, respectively. Finally, we
deployed the ONNX model on a depth camera and conducted subsequent testing in real-time

within real-world scenarios.

a. Confusion matrix on NTU60 X-view. b. Confusion matrix on NTUB60 X-sub.

Figure 11. The confusion matrices of our STF-GCN model on NTU60 X-view and NTU60 X-sub. The hori-
zontal axis represents the predicted labels, while the vertical axis represents the true labels.
(Source: Created by the authors)
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Table 4. Accuracy of the STF-GCN model on NTU 60 dataset before and after
fine-tuning specifically for hand-raising. (Source: Created by the authors)

Acc

Initial Testing on NTU 60 X-sub 91.4%

After Fine-tuning for Hand-raising 95.1%
Initial Testing on NTU 60 X-view 95.9%
After Fine-tuning for Hand-raising 98.5%

Due to the limited detection range of the depth camera, tests were performed only in
scenarios involving one person and two people. Specifically, we simulated the detection of stu-
dent hand-raising actions in a classroom setting and recorded the number of hand-raising in
real-time. Table 5 presents the FPR, FNR, Acc, PT and IT for scenarios involving one and two
people. For one person, the system achieved a higher accuracy of 93.1% with lower false posi-
tive and false negative rates compared to the two-people scenario, where accuracy dropped to
86.2%. This indicates the system’s efficiency in simpler scenarios, while highlighting challenges

in more complex settings with multiple individuals.

Table 5. Hand-raising detection accuracy and processing times for one and two
scenarios. (Source: Created by the authors)

One Person Two People Avg

FPR 5.9% 13.3% 9.6%
FNR 8.3% 14.3% 11.3%
Acc 93.1% 86.2% 89.7%
PT 0.142s 0.137s 0.14s

1T 0.02s 0.039s 0.03s

\

v oL

.

T

a. One person. b. Two people.

Figure 12. Visual examples of hand-raising detection tests conducted using a depth camera, for
scenarios involving one person (a) and two people (b). The left side of each sub-plot
displays real-time updates by our system that records the number of hand-raising ac-
tions detected. (Source: Created by the authors)

Figure 12 provides visual examples of hand-raising detection tests conducted using a depth
camera for scenarios involving (a) one person and (b) two people. On the left side of each sub-
plot, the system’s real-time updates are displayed, which include the number of hand-raising
actions detected. These images illustrate the system'’s capability to accurately monitor and re-

cord hand-raising actions, showcasing its real-time effectiveness in different individuals settings.
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5. Conclusion

In this study, we demonstrated the effectiveness and efficiency of our proposed STF-GCN
model in two key applications, namely fall detection in elderly care and hand-raising detection
in smart education. (a) For fall detection, our model initially achieved an accuracy of 92.9%
during the pre-training phase and was subsequently fine-tuned for specific fall scenarios, which
boosted its accuracy to 97.6%. In real-world scenario tests, the model demonstrated substantial
accuracy and rapid response capabilities, achieving an average accuracy of 96.3%, with a false
positive rate of 6.25% and a false negative rate of 8.33%. The average inference time was a
mere 0.045 seconds. (b) For hand-raising detection, targeted fine-tuning improved the model's
accuracy from 959% to 98.5%. Tests in real-world scenarios confirmed the model's excellent
performance, maintaining an average accuracy of 89.7%, a false positive rate of 9.6%, and a
false negative rate of 11.3%. The average inference time was only 0.03 seconds. In summary,
this study highlights the potential of the STF-GCN model to enhance action recognition in both
elderly care and smart education, demonstrating high accuracy and efficiency in real-world
scenarios.

This study represents the initial phase of our exploration into the integration of depth
cameras and GCNs for action recognition. The findings detailed in this study not only validate
the viability of our approach but also underscore its considerable potential for future advance-
ments. This study is merely the first step in our research trajectory. Moving forward, we plan
to expand our dataset significantly and establish benchmarks that will aid in the systematic
evaluation of our methodology. Additionally, future work will involve a thorough assessment
of external environmental factors that could impact the efficacy of our system. By addressing
these elements, we aim to refine our models further and enhance their applicability in re-

al-world scenarios, thereby continuing to advance the field of action recognition.
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