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Abstract
Input–output tables provide important data for the analysis of economic states.
Most regional input–output tables in Japan are not publicly available; therefore,
they have to be estimated. Input coefficients are pivotal in constructing pre-
cise input–output tables; thus, accurately estimating these input coefficients is
crucial. Non-survey methods have previously been used to estimate input coeffi-
cients of regions as they require fewer observations and computational resources.
However, these methods discard information and require additional data.
The aim of this study is to develop a method for estimating input coefficients
using artificial neural networks with improved accuracy compared to conventional
non-survey methods. To prevent overfitting owing to limited data availability,
we introduced a data augmentation technique known as mixup. In this study,
the vector sum of data from multiple regions was interpreted as the composition
of the regions and the scalar product of regional data was interpreted as the
scaling of the region. Based on these interpretations, the data were augmented
by generating a virtual region from multiple regions using mixup.
By comparing the estimates with the published values of the input coefficients
for the whole of Japan, we found that our method was more accurate and stable
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than certain representative non-survey methods. The estimated input coefficients
for three Japanese cities were considerably close to the published values for each
city.
This method is expected to enhance the precision of regional input–output table
estimations and various quantitative regional analyses.

Keywords: regional input–output table, deep learning, non-survey method, data
augmentation, mixup

1 Introduction
Input–output tables record the flow of products and services by the industry for a given
region and period. These tables are crucial in various quantitative analyses, such as
economic spillover effects and general equilibrium analyses. In general, input–output
tables are not available for all regions and periods because the compilation thereof
requires vast amounts of primary data and significant effort. The only input–output
table for Japan that is strictly derived from primary data is that of the entire country;
it is not available region-wise. Although estimated input–output tables are available
for prefectures and certain cities, numerous smaller administrative units (i.e., cities,
towns, and villages) do not publish their input–output tables. Therefore, estimation
of input–output tables becomes necessary to analyze a small region using these tables.

The estimation methods for input–output tables can be classified as survey, non-
survey, or hybrid methods. Non-survey and hybrid methods are commonly used in
small regions. Richardson (1985) summarized specific methods that are commonly
used to estimate regional input–output tables. The survey method derives an input–
output table by synthesizing primary data that are obtained from firm and consumer
surveys related to the economy of the target region. This method is highly accurate
because it uses information from individual firms and consumers, but it requires vast
amounts of primary data for estimation. Consequently, survey methods are often used
for entire countries but rarely for small areas such as cities. In comparison, non-
survey methods are generally simpler and more cost-effective for estimating input–
output tables as they require fewer data inputs. Hybrid methods estimate the table
by combining another survey or dataset with the results of a non-survey estimation.

Accurate estimation of the input coefficients is pivotal in constructing precise
input–output tables. The input coefficient refers to the transfer of output between
industries (intermediate input) divided by the gross output of each industry. These
coefficients are summarized in an input coefficient matrix. By estimating the input
coefficient matrix, it is possible to derive the intermediate inputs, which are calculated
as the product of the input coefficients and gross output. This contributes significantly
to the estimation of the complete input–output table. Even if the full input–output
table cannot be estimated, economic spillovers are calculated by estimating the input
coefficient matrix.

Numerous studies have presented non-survey methods for estimating the input
coefficients of regional input–output tables. The location quotient (LQ) and RAS
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methods are representative non-survey methods for estimating the input coefficients
for a region.

According to Isserman (1977), the LQ is defined as “the ratio of an industry’s
share of the economic activity of the economy being studied to that industry’s share
of another economy.” The LQ method uses LQs to estimate the input coefficients
of the target region from the coefficients of the reference region. The estimation of
input coefficients using LQs includes derivatives such as cross-industry LQ (CILQ),
Round’s semilogarithmic LQ (RLQ), and Flegg’s LQ (FLQ) (Flegg & Tohmo, 2013,
2016). An early study that considered estimating regional input coefficients using the
LQ method was conducted by Schaffer and Chu (1969). Bonfiglio and Chelli (2008)
compared the estimation accuracy of methods using LQ and demonstrated that the
accuracy of FLQ and the augmented FLQ (AFLQ) could exceed that of other methods.
Morrissey (2016) analyzed the current state of industrial specialization and clustering
by estimating input coefficients using the LQ method for the two largest regions in
Ireland. Lamonica and Chelli (2018) verified the estimation accuracy, variation, and
bias of each variant of LQ based on the input–output table for countries. New methods
such as FLQ+ by Flegg, Lamonica, Chelli, Recchioni, and Tohmo (2021) have also
been developed in recent years.

The RAS method, which was originally introduced in the study of Stone
(Bacharach, 1970), estimates an input coefficient matrix by iteratively adjusting the
initial coefficients based on the total intermediate demands, total intermediate inputs,
and total gross outputs of each industry. 1 The RAS method is highly accurate in esti-
mating input coefficient matrices. For instance, Hewings (1977) successfully applied
the RAS method to estimate the input coefficient matrix for Kansas in 1965 using the
input coefficient matrix for Washington in 1963 as a basis. Several improvements to
the RAS method have also been proposed. Lenzen, Moran, Geschke, and Kanemoto
(2014) extended the RAS method to ensure that the sign of the input coefficients is
not preserved in the iteration. Junius and Oosterhaven (2003) introduced the gener-
alized RAS (GRAS), which can use input coefficient matrices that contain negative
values as initial values. Several improvements to the GRAS method have been pre-
sented (Lemelin, 2009; Lenzen, Wood, & Gallego, 2007; Temursho, Oosterhaven, &
Cardenete, 2021). 2 The estimation of regional input coefficient matrices using the
RAS method has also been improved by numerous researchers. For example, Hira-
matsu, Inoue, and Kato (2016) attempted to improve the estimation accuracy of
the inter-regional input–output table of Japan using RAS with a real-code genetic
algorithm. Holỳ and Šafr (2023) developed a multidimensional RAS and applied the
method to estimate regional input–output tables in the Czech Republic.

Estimating input coefficients using non-survey methods relies on significant
assumptions. Extensive debates have arisen regarding the practicality of these assump-
tions and the estimation accuracy in non-survey methods. Round (1983) provided a
critical perspective on the theoretical aspects of non-survey methods. In terms of the
empirical problems of non-survey methods, Riddington, Gibson, and Anderson (2006)
estimated the economic spillovers of tourism expenditures for a group of small regions

1The total intermediate demands and total intermediate inputs of each industry are equal to the row and
column sums, respectively, of the intermediate input matrix.

2Lahr and De Mesnard (2004) and Lenzen et al. (2014) summarized several other extensions of RAS.
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in Scotland and demonstrated that estimates using the simple LQ and CILQ may lead
to erroneous conclusions. Szabó (2015) highlighted that the non-survey method has
both theoretical and empirical shortcomings, but argued that non-survey methods are
necessary for estimating the input coefficients in data-deficient regions.

The non-survey method faces challenges in terms of reduced estimation accuracy
owing to limited data availability and instability caused by data selection. Although
the construction of an input–output table requires vast amounts of primary data, non-
survey methods attempt to estimate the input coefficients using a relatively smaller
dataset. In all variants of LQ, the quotients of the target region are obtained for a few
variables, such as the total outputs of industries. In FLQ+ (Flegg et al., 2021), which is
a relatively new derivation of LQ, a process for estimating additional coefficients exists,
but the essential estimation method remains the same. As noted previously, the RAS
method uses only the values based on input–output tables. Owing to the limited data
that are used for estimation, a significant amount of data regarding the local economy
is inevitably disregarded. Such discarding of information can negatively impact the
estimation accuracy. In addition, both LQ and RAS must use input coefficients and
other data from outside the time and region that are being predicted. For example,
Holỳ and Šafr (2023) estimated intermediate inputs with multidimensional RAS when
the total intermediate demands and total intermediate inputs of the target regions
were known. In actual estimation, information on the input–output tables of the
regions is often limited; therefore, in applying RAS, the total intermediate demands
and total intermediate inputs of the regions must also be estimated. The accuracy of
these methods relies heavily on the data that are used for the estimation.

In addition to these non-survey methods, other methods are available for esti-
mating input coefficients using regression. Limited previous studies on estimation
using regression, rather than LQ and RAS, exist. Gerking (1976) proposed a method
to calculate input coefficients as estimates of partial regression coefficients through
regression analysis, with the intermediate input as the objective variable and the gross
output as the explanatory variable. Gerking’s method aims to avoid the effects of mea-
surement errors in the intermediate input and gross output data on the estimation
results. Applying Gerking’s method directly is difficult in small regions where these
data are generally unavailable. Papadas and Hutchinson (2002) constructed an artifi-
cial neural network (ANN) as a forecasting model for the input coefficients, obtained
forecasts of input coefficients for 1992 based on 1984 data from the United Kingdom,
and attempted to compare them with those of RAS. In their study, the ANN was con-
figured with input coefficients as the target variable. The ratio of intermediate demand
to gross output in the input source industry and the ratio of intermediate input to
gross output in the input target industry were used as the two explanatory variables.
The model was trained with 49 observations in seven industries in the input–output
table. However, the model was limited to two explanatory variables and one hidden
layer, and a single model was applied to all 49 input coefficients. These limitations
may have hindered the achievement of predictive accuracy beyond RAS.

Although various restrictions and drawbacks exist in predicting input coefficients
using regression, it can alleviate certain issues that are associated with current main-
stream non-survey methods. When input coefficients are predicted using regression
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methods, various variables representing the local economic state can be included as
explanatory variables. Therefore, more information can be included in the estimation
than in LQ or RAS and higher prediction accuracy can be expected. Furthermore,
unlike LQ and RAS, regression methods do not require additional data. Therefore,
regression methods can avoid the instability in estimation accuracy that is associated
with the estimation or selection of additional data. Recent developments have emerged
in deep learning methods, which involve the estimation and utilization of multilayer
ANNs for prediction. The introduction of deep learning into the forecasting of input
coefficients using regression is expected to improve the prediction accuracy. The effec-
tiveness of ANN-based forecasting in economics and finance has been demonstrated in
several studies (Abbasimehr, Shabani, & Mohsen, 2020; Law, Li, Fong, & Han, 2019;
Ramyar & Kianfar, 2019). However, when the dataset that is available for model esti-
mation is small, overfitting can reduce the forecast accuracy. The available data for
estimating regional input coefficients are generally limited in size. Therefore, over-
fitting is inevitable when deep learning is applied directly to predict regional input
coefficients.

To mitigate the effects of overfitting, data augmentation, which involves manipu-
lating the original data to increase their size, is used extensively in machine learning,
particularly for data types such as images, text, and audio. Several studies have
demonstrated the effectiveness of data augmentation (Dao et al., 2019; Wu, Zhang,
Valiant, & Ré, 2020).

The objective of this study is to develop a deep learning method to predict more
accurate and stable input coefficients than in conventional non-survey methods. To
achieve this, we attempt to prevent overfitting by extending the mixup of H. Zhang,
Cisse, Dauphin, and Lopez-Paz (2018) to regional data and augmenting the dataset
that is used for model estimation. 3 First, for the input–output table and various
macroeconomic variables, the data for virtual regions are augmented with the mixup
from the data for prefectures and specific cities for which estimated input–output
tables are available. We generate the data for the input coefficients and each explana-
tory variable used in the model estimation from these data of virtual regions. Next,
we use these data to estimate an ANN with the input coefficients as the objective vari-
able. Finally, the input coefficients are predicted using the ANN for the entire Japan
and three Japanese cities.

The remainder of this paper is organized as follows. Section 2 describes the input
coefficient prediction methodology using an ANN with mixup. Section 3 presents the
results of predicting the input coefficients using our method. The results are discussed
in Section 4, and the conclusions and limitations of this study are presented in Section
5.

3In a paper published in Japan in 2021, the author attempted to estimate the input coefficients by
applying a partial mixup, focusing only on the additivity of regional data, and demonstrated that it could
predict the coefficients for two regions in Japan with the same level of accuracy as RAS. However, the
additivity-specific mixup can only use limited data as explanatory variables to ensure the vicinity of regions
with different economic sizes. Building on the previous research, this study introduces a full mixup that
considers scalar products for regional data, allowing more types of information to be included as explanatory
variables. In addition, we attempt to make more accurate predictions by adding a new procedure for the
establishing regional vicinity when training the model.
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2 Extension of mixup to regional input coefficient
prediction

Data augmentation is used to process the original data to generate new data. In general
image recognition, machine learning is performed using the numerical information of
the image as the explanatory variable and the label as the objective variable. A model
that is trained using machine learning can tend to be overfitted if the amount of data
used for training is small. Overfitting causes the trained model to fit the training
data excessively well, resulting in poor prediction accuracy for unknown data. Data
augmentation diversifies the training dataset by generating new data from the existing
data. For image data, a new image is generated by slightly rotating and scaling the
image in the original data; however, the label remains the same as that in the original
image. In this manner, data augmentation creates new image–label pairs, thereby
increasing the data size.

We review the procedure for data augmentation using a mixup based on H. Zhang
et al. (2018). For the i-th individual in the data of size n (i = 1, . . . , n), xi is the value
of the explanatory variable, yi is the value of the objective variable, and the original
training data are (xi, yi). In the mixup, a new individual (x̄, ȳ) is generated from two
individuals (xA, yA) and (xB , yB) that are randomly selected from the training data,
as follows:

x̄ = λxA + (1− λ)xB (1)
ȳ = λyA + (1− λ)yB , (2)

where λ ∈ [0, 1] and λ ∼ Beta(α, α). When a mixup is performed, the random number
that is generated from this beta distribution is used as λ.

Let xi be the numerical density of each pixel in the grayscale image and yi be the
label of that image. 4 In this case, let us suppose that two images (x1, y1) and (x2, y2)
are randomly selected. The mixup produces a new composite image by diluting x1

to λ× 100% and x2 to (1− λ)× 100%. The label of the new image is set as a linear
combination with weights (λ, 1−λ) of the labels of the two original images. According
to H. Zhang et al. (2018), a mixup is equivalent to vicinal risk minimization (Chapelle,
Weston, Bottou, & Vapnik, 2000) with a certain generic vicinity distribution for each
observation (xi, yi). In addition, L. Zhang, Deng, Kawaguchi, Ghorbani, and Zou
(2021) demonstrated that the loss function in a mixup contains regularization terms.

Data augmentation generates data based on prior information or knowledge. In
conventional data augmentation, which transforms single-image data, the prior knowl-
edge is the invariance of the image data; that is, the labels remain unchanged with
respect to image rotation and scaling. In a mixup, the prior knowledge is that “linear
interpolation of feature vectors should lead to linear interpolation of the associated
targets” (H. Zhang et al., 2018).

We apply the mixup to quantitative regional macroeconomic variables for the
regions. Mixup can only be applied to specific data types. For example, it is difficult to
adapt the prior knowledge that a mixup assumes for qualitative values such as gender

4If the images are categorized by one-hot encoding, yi is a vector.
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(a) Composition (b) Scaling

Fig. 1 Images showing the composition and scaling of regions. Maps of Nagano and
Gifu prefectures in Japan are shown as examples, which were created using Matplotlib
and GeoPandas in Python based on the Digital National Land Information (admin-
istrative area data) of the Ministry of Land, Infrastructure, Transport and Tourism
(https://nlftp.mlit.go.jp/ksj/index.html)

and occupation and rating scales such as technical support satisfaction. However,
operations such as vector sums and scalar products of variables can be meaningful
for numerous quantitative regional macroeconomic variables. For instance, the total
population of North American countries such as the United States, Canada, and
Mexico is equal to that of North America. The same holds for quantitative variables
such as income and number of establishments. That is, if rk is a vector that consists
of the quantitative economic variables for region k(k = 1, . . . ,K), the vector sum
of the quantitative economic variables for each region,

∑
k rk, corresponds to the

hypothetical composite of these regions (Figure 1a).
The scalar product of a quantitative variable implies the scaling of values. If the

North American population is r, half of it can be calculated as 0.5× r. For a vector r
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comprising quantitative economic variables, λr multiplies all quantitative variables in
r by λ. This operation implies the hypothetical expansion or contraction of a region
(Figure 1b).

A new virtual region can be generated using a linear interpolation that combines a
set of regions by scaling them. The observation vector of the virtual region is generated
using the following equation:

r̄ =
∑

λkrk, (3)
where rk (k = 1, . . . ,K) is the vector of observations and λk, (k = 1, . . . ,K) is a
constant that scales them for region k.

The variables in our model were calculated from the observation of a virtual region
that was obtained using the linear interpolation described above. The values con-
tained in r̄ become the values of the quantitative variables. When indices or ratios
are used as variables, the quantities that are the sources of the indices and ratios are
included in rk, and the values of these variables are calculated after linear interpola-
tion. For example, when using the unemployment rate as an explanatory variable, the
number of unemployed individuals and labor force are incorporated into rk. Subse-
quently, the unemployment rate can be calculated based on data from a virtual region
obtained through linear interpolation. For a competitive import type input–output
table, the intermediate inputs of a region include inputs from other regions. How-
ever, as explained in the Appendix, the sum of the intermediate inputs for a group
of regions is equal to the intermediate inputs of the combined group of these regions
measured as a single region. The scalar product of the intermediate inputs of a region
is equal to its intermediate inputs when the region is scaled by the scalar value. These
properties also hold for the gross output. 5 Therefore, it is feasible to calculate the
input coefficient of a virtual region obtained by linear interpolation as the ratio of the
intermediate input to the gross output.

We make the following assumption to derive prior knowledge, which is a prereq-
uisite for the mixup:
Assumption. Let the input coefficient ai,j from industry i to j be the objective variable
and x∗ = (x1, . . . , xm)′ be the explanatory variable. Subsequently, ai,j = f∗

i,j(x
∗) holds

uniquely for all regions.
This is similar to the usual econometric model assuming one regression equation

for all observed individuals, which means that the input coefficient ai,j is determined
by only one function f∗

i,j for all regions, including the virtual region generated by
linear interpolation. The values in the input–output table are calculated from various
primary data based on predefined rules. In principle, these rules are the same for all
regions; therefore, making the above assumption for input coefficient predictions is
natural. With this assumption, if we denote the values of the primary data as x∗ and
the rule for calculating the values of the input–output table from the primary data as
the function F ∗, the input–output table can be expressed as F ∗(x∗). For the input
coefficients, if f∗

i,j is the rule for computing ai,j from the primary data,

ai,j = f∗
i,j(x

∗). (4)

5As shown in the Appendix, the sum of the gross output of a group of regions is equal to the gross output
of the regions when they are considered as a single region.
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Based on the above assumption, if the primary data vector of a hypothetical region
v generated by linear interpolation is x∗

v, its input coefficient can be calculated as
f∗
i,j(x

∗
v). However, the input coefficient avi,j for region v is already obtained by the

mixup. Thus, avi,j = f∗
i,j(x

∗
v). Eq. (4) is the prior knowledge in this analysis. That is,

the mixup can be applied to estimating the input coefficients by changing the prior
knowledge of the original mixup, as follows: For a virtual region obtained by linear
interpolation, the feature vectors should lead to an associated target.

The regional composition and scaling in the above mixup do not represent actual
regional mergers and divisions. If two cities merge, the values of the economic variables
after the merger should differ from the sum of the values before the merger owing to
changes in the economic structure. Alternatively, even if the area of a city is divided
into two equal parts, this does not necessarily translate to equal populations in those
parts. Our mixup approach involves composition and scaling, where the data values
are derived from the synthesis of individual areas as well as from the scaling of an area
by a constant factor. These operations do not assume any changes in the economic
structure.

In this study, f∗
i,j is approximated using a multilayer ANN. In general, the primary

data required to compute input–output tables are not sufficiently measured in small
areas such as cities. In this case, the original explanatory variable x∗ must be replaced
by another variable x that is derived from the available data. Similarly, the actual
function f∗

i,j is approximated by the function fi,j(x). Because this study aims to
predict the input coefficients in a small region with high accuracy, a multilayer ANN
is established as fi,j(x).

3 Empirical analysis for Japan
Following data augmentation by mixup for some prefectures and ordinance-designated
cities in Japan, deep learning was performed using the input coefficients as the objec-
tive variable. We verified the prediction accuracy of the trained model for the input
coefficients for all of Japan and predicted the input coefficients for certain cities in
Japan. This section details the forecasting methodology and results.

The data used in this analysis are presented in Table 1. 6 All input–output tables
used in the analysis are of the competitive import type. Data from 2015 were used
to predict the input coefficients for 2015. For the data that were used as explanatory
variables, where the data for 2015 were unavailable, we substituted data from the most
recent available year, such as 2013 or 2014. The index c attached to some variables
in Table 1 means industry. For each variable with c, there were 619 industries in the
minor classification (c = 1, . . . , 619) and 17 industries in the large classification (c =
1, . . . , 17). Data with non-numeric values were excluded before training the model.
The regions for which all of these data are currently available were included in the
analysis (Table 2). Regions with outliers were excluded from the analysis even if all
data were available. Japan is divided into 47 prefectures, each of which is further

6All data used in this study are publicly available from public institutions and can be obtained from
the sources listed in Table 1. Links to the input–output table for each region were compiled on the Pacific
Rim Association for Input–Output Analysis (PAPAIOS) website (http://www.gakkai.ne.jp/papaios/en/
io_j.html). The formatted datasets are available from the corresponding author upon request.
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Table 1 Dataset used in this study. The minor and large classifications refer
to the industry classifications of the Economic Census
Variable name Data Source

SFirmc,k Number of establishments 2014 Economic Census
(minor classification) for Business Frame

SEmpc,k Number of employees Ibid.
(minor classification)

VAc,k Added value (large classification) 2012 Economic Census
for Business Activity

Salesc,k Sales (large classification) Ibid.
Firmc,k Number of establishments Ibid.

(large classification)
Incomek Taxable income Statistical Observations

of Prefectures 2015 and
Statistical Observations
of Municipalities 2015

TPk Taxpayer Ibid.
PopLFk Population in labor force Ibid.
Unempk Number of unemployed persons Ibid.
Pop15k Total population (15 and over) Calculated by the author from

Statistical Observations of
Prefectures 2015 and Statistical
Observations of municipalities 2015

Ai,j,k Intermediate input (12 industries) Calculated by the author from
the input–output table for each
prefecture and city.

Yj,k Gross output (12 industries) Ibid.

divided into several cities, towns, and villages. The names of the cities in Table 2
are followed by the prefectures in which they are located. Among the regions in the
table, the targets of the forecast (Japan, Gujo City in Gifu Prefecture, Sapporo City
in Hokkaido, and Okayama City in the Okayama Prefecture) were excluded to obtain
the values of the input coefficients and explanatory variables in Table 3 using mixup.
The input coefficients were calculated after recompiling the input–output tables for
each region to ensure that there were 12 industry sectors, as shown in Table 4. For an
input coefficient ai,j , i and j indicate the values of the order in Table 4. For example,
a1,2 represents the input coefficients from agriculture to mining.

The data for the model estimation were augmented by the mixup based on the
data in Table 1 for prefectures and some cities for which the estimated input–output
table is publicly available, excluding the regions to be inferred. Because most of the
target areas are prefectures, as shown in Table 2, if a mixup is performed directly on
these data, the generated data are likely to be concentrated close to the prefectures.
Consequently, the trained ANN reflects the prefectures rather than all of Japan or its
cities.

In this analysis, the sizes of all regions were scaled based on a single variable
before the mixup and the generated regions were converted to the size of the region
to be predicted. Prior to performing the mixup, a scalar product with (1/Pop15) was
calculated for the observed values of each prefecture and city. This transformation
ensured that these areas were scaled so that the population aged 15 years and above
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Table 2 Target areas for analysis. The city names are followed by the name of the
prefecture to which the city belongs
For training
Prefectures Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima, Ibaraki,

Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, Niigata, Toyama,
Yamanashi, Nagano, Gifu, Shizuoka, Aichi, Mie, Shiga, Kyoto, Osaka, Hyogo,
Wakayama, Shimane, Okayama, Hiroshima, Yamaguchi, Tokushima, Kagawa,
Ehime, Kochi, Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima

Cities Saitama (Saitama), Yokohama (Kanagawa), Kawasaki (Kanagawa),
Fukuoka (Fukuoka)

For inference
Japan, Gujo (Gifu), Sapporo (Hokkaido), Okayama (Okayama)

Table 3 Variables used for analysis
Name Definition

Input coefficient = Ai,j,k/Yj,k

Number of establishments (minor classification) = SFirmc,k

Composition ratio of number of = SFirmc,k/
∑

c SFirmc,k

establishments (minor classification)
Number of employees (minor classification) = SEmpc,k
Composition ratio of number of = SEmpc,k/

∑
c SEmpc,k

employees (minor classification)
Added value (large classification) = VAc,k

Added value per firm (large classification) = VAc,k/Firmc,k

Sales (large classification) = Salesc,k
Sales per firm (large classification) = Salesc,k/Firmc,k

Taxable income = Incomek
Taxable income per taxpayer = Incomek/TP
Population in labor force = PopLFk
Labor force population ratio = PopLFk/Pop15k
Unemployment rate = Unempk/PopLFk

had a value of one. After performing a mixup on these data, the generated virtual
regions were expanded such that the value of the population aged 15 years and above
was close to the level of those of the regions to be forecasted. For the projection
of the input coefficients for the entire Japan, a scalar product was calculated for
each observation obtained by the mixup, with the Pop15 of Japan as a constant. To
predict the input coefficients for a city, we first established a uniform distribution with
the minimum and maximum of Pop15 in all Japanese cities as the lower and upper
bounds, respectively. Then, each time the values of a virtual area were created in the
mixup, a scalar product was obtained for these values using a random number that
was generated from the uniform distribution as a constant. This transformed dataset
was used for training.

In this mixup, two to five regions were randomly selected to generate data for
a virtual region. Unlike the original mixup, the current mixup is not limited to two
observations. In the original mixup, λ is assumed to follow a beta distribution B(α, α),
whereas in this method, (λ1, . . . , λK) is assumed to follow a Dirichlet distribution. In
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Table 4 Industry classification
Order Industry

1 Agriculture (agriculture, forestry, and fisheries)
2 Mining
3 Manufacturing
4 Construction
5 Energy (electricity, gas, and water)
6 Trade
7 Finance (finance, insurance, and real estate)
8 Transportation (transportation and postal)
9 Communication (information and communication)
10 Public business
11 Services
12 Other industry

addition, the K parameters of the Dirichlet distribution are assumed to share the same
value, α. The number of regions (= K) for the mixup is a random number that is gen-
erated from a discrete uniform distribution with a lower bound of two and an upper
bound of five. Generating data from numerous regions can improve the extrapolation
accuracy as the data differ from the original set of regions. However, in the prelimi-
nary analysis, when the mixup was performed for numerous regions, the accuracy of
the predictions made by the trained model tended to decrease. This may be because
the features of the generated data are homogenized when numerous regions are com-
posited. Therefore, to prevent the number of target regions from becoming excessively
large, the maximum value was set to five and the number of regions was randomly
selected. During the mixup, prefectures and cities in an inclusion relationship were not
selected simultaneously. For instance, Sapporo was included in Hokkaido, so we did
not select a group of regions that included these two regions. This is because obtain-
ing the sum of these areas for values that include transfers, such as the intermediate
input and gross output, is infeasible.

The values of the input coefficients and their explanatory variables were calculated
using a dataset generated by the mixup. These variables are summarized in Table 3.
When training the model, the principal component scores of the explanatory variables
were calculated and used as inputs. We used 50 principal component scores from the
highest cumulative contribution ratio. Some input coefficients were sufficiently small
such that the derivative calculated by backpropagation could approach zero. There-
fore, the following transformation, which is similar to standardization, was performed
on the input coefficients during deep learning:

âi,j =
ai,j − aL

aU − aL
(5)

aL = max(0, amin
i,j )

aU = min(1, amax
i,j + 0.5(amax

i,j − amin
i,j )),

where amin
i,j and amax

i,j are the minimum and maximum values of ai,j in the training
data, respectively. This transformation uses amax

i,j +0.5(amax
i,j − amin

i,j ) as the candidate
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for the maximum value. This is because our transformation tended to be slightly
more accurate than the transformation obtained using amax

i,j as the candidate for the
maximum value in a preliminary analysis for the entire Japan. The trained model then
predicted âi,j . By transforming âi,j inversely, we obtained the estimated value of ai,j .

The multilayer ANN used for this training is shown in Figure 2. The multilayer
ANN had a relatively standard shape, with a fully connected layer with 512 nodes and
a batch normalization layer as a single pair; ten of these pairs were connected as an
hidden layer. In the output layer, âi,j was obtained by feeding a linear combination of
the hidden layer outputs into a sigmoid function. In the fully connected layers of the
hidden layer, the activation function was set as an exponential linear unit (ELU) and
the initial values of the parameters were determined using the method in He, Zhang,
Ren, and Sun (2015).

For training of the ANN, L2 regularization with a hyperparameter value of 0.01 was
applied to all weight parameters of the fully connected layers. The learning rate varied
exponentially and cyclically, with minimum and initial values of 0.0001, a maximum
value of 0.01, and a step size of 50 (Smith, 2017). When training the model, the
parameters were estimated using stochastic gradient descent with the mean squared
error as the loss function and the mini-batch size was set to 32. The parameters were
updated using the Nesterov accelerated gradient (NAG) with a momentum of 0.9 to
accelerate the optimization. 7 The step size for optimization was set to a variable value
(the maximum number was 200) with early stopping. Specifically, the optimization
process was halted when the mean squared error from the validation data increased
for ten consecutive steps. The model obtained before the increase in the mean squared
error was then selected as the final training result. 8

The specific analytical procedure is described below. The data for prefectures and
cities in the “For training” row of Table 2 were the initial data in our analysis. After
transforming the original data using a scalar product with (1/Pop15) as a constant,
a mixup was used to generate data for 50,000 regions. The value of α of the Dirichlet
distribution was set to one according to the prediction accuracy in the preliminary
analysis. This setting renders the Dirichlet distribution a multivariate uniform distri-
bution. The generated data were scaled by the population value of individuals aged
15 years or older in the target regions to obtain data for the virtual regions close
to the targets. From these data, the values of the input coefficients and explanatory
variables were calculated. The input coefficients were transformed using Eq. (5). The
principal component scores computed from the explanatory variables were used as
inputs to the model. Among the data generated by the mixup, 40,000 instances were
used for training, 10,000 were used for testing, and 20% of the training data was used
for validation. The ANN shown in Figure 2 was trained to obtain a prediction model
for the input coefficients using the training data. Thereafter, we verified the predic-
tion accuracy of the trained ANN with the test data. For each region to be predicted,
âi,j was calculated from the prediction model using the principal component scores of
the explanatory variables as inputs. The predicted value of the input coefficient (ai,j)

7The NAG was proposed in a 1983 paper authored by a Russian scholar named Yurii E. Nesterov. For
more information on the NAG, refer to Botev, Lever, and Barber (2017).

8These settings in this model training are based on Géron (2019).
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Fig. 2 Multilayer ANN in this analysis. This figure was created using Inkscape
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Table 5 Prediction errors of input coefficients for the entire Japan
ANN FLQ RAS (based on RAS (based

prefectures) on 2011)
Min Mean Max Min Mean Max

STPE 0.0434 0.3527 1.0329 3.1693 0.0679 0.1697 0.2829 0.1105
MAD 0.0017 0.0136 0.0398 0.1221 0.0026 0.0065 0.0109 0.0043
U2 0.0468 0.4615 1.7153 5.4916 0.0750 0.2257 0.3913 0.1148
RMSE 0.0035 0.0344 0.1279 0.4094 0.0056 0.0168 0.0292 0.0086
MAPE 0.0764 0.3519 0.9990 3.7559 0.1162 0.3270 0.8963 0.1940

was calculated by performing an inverse transformation of Eq. (5). Figure 3 shows the
flow of the above procedures. 9

The aforementioned model training and inferences were performed for each input
coefficient. In this study, industries were classified into 12 categories; therefore, the
number of input coefficients covered was 12 × 12 = 144. However, input coefficients
that were consistently zero across all prefectures and cities in the original data were
excluded from the training, resulting in a final predicted value of zero for those
coefficients. Thus, 131 input coefficients were predicted.

First, we verified the accuracy of the ANN-based predictions of the input coeffi-
cients for the entire Japan. The published input–output table for Japan was estimated
with relatively high accuracy using the survey method. We verified the accuracy of
the proposed method by comparing the estimates of the input coefficients. Table 5
lists the prediction accuracy indices that were derived from the differences between
the predicted and published values of the input coefficients, with smaller values indi-
cating higher accuracy. Refer to Hosoe (2014) for the indices in Table 5, which were
calculated using the following equations:

STPE =
∑
i,j

|ãi,j − ai,j | /
∑
i,j

ai,j

MAD =
∑
i,j

|ãi,j − ai,j | /Na

U2 =

√∑
i,j

(ãi,j − ai,j)
2
/

√∑
i,j

a2i,j

RMSE =

√√√√[∑
i,j

(ãi,j − ai,j)
2

]
/Na

MAPE = (1/Na)
∑
i,j

|(ãi,j − ai,j)/ai,j | ,

where ai,j is the published value of the input coefficient and ãi,j is its estimated
value. The ANN column shows the prediction accuracy of the deep learning method.

9F# was used for the mixup and other data processing, and TensorFlow was used for deep learning and
prediction in Python.
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The FLQ columns show the prediction accuracy of ãi,j obtained using the following
estimation equation from Flegg et al. (2021):

ari,j =

{
ãi,jFLQi,j FLQ < 1

ãi,j FLQ ≥ 1

FLQi,j =

{
λ(xr

i /x
n
i )/(x

r
j/x

n
j ) i 6= j

λ(xr
i /x

n
i )/(x

r/xn) i = j

λ = [log2(1 + (xr/xn))]
2
.

In the inference using FLQ, xr
i is the gross output of industry i in region r, xn

i is the
gross output of industry i nationwide, xr is the gross output in region r, and xn is
the gross output nationwide. We set δ = 0.1. 10 From this equation, the predicted
value of the input coefficients in the national input–output table was calculated as
ãi,j when the actual input coefficients for each of the 42 prefectures were provided
for ari,j . The RAS columns indicate the accuracy of the input coefficients estimated
using RAS. The RAS results are shown for the case based on the input coefficients for
each prefecture in 2015 and for the case based on the input coefficients for the entire
Japan in 2011. The minimum, average, and maximum accuracies for FLQ and RAS
are listed side by side because the prediction results differed depending on the data
that were used as a reference. In addition, because RAS used actual values from the
2015 national input–output table for intermediate inputs, intermediate demands, and
gross outputs, the forecast errors, which may occur in practice, were zero and did not
affect the prediction accuracies of the input coefficients.

The values in Table 5 indicate that the deep learning method achieved higher and
more stable accuracy in predicting input coefficients for the entire Japan compared to
FLQ and RAS. We can observe that the prediction errors of the deep learning were
smaller than those of FLQ and RAS; that is, the proposed method could accurately
predict the national input coefficients. In addition, FLQ and RAS had different predic-
tion errors depending on the reference input coefficients. However, such fluctuations
in the errors did not occur at all with the deep learning. Moreover, the deep learning
errors were still lower than those of RAS, which uses actual values for intermediate
inputs, intermediate demands, and gross outputs.

Our next step was to examine the prediction accuracy of the city-level input coeffi-
cients. Unlike the national input–output tables, the published city-level input–output
tables are typically inferred by hybrid or non-survey methods, which have larger infer-
ence errors for true input–output tables than survey methods. Therefore, rigorously
measuring the accuracy of the input coefficient forecasting methods for cities is dif-
ficult. The following part of this section presents the prediction results of the input
coefficients using deep learning for three cities (Gujo, Sapporo, and Okayama) and
discusses their characteristics based on the errors against published input coefficients.

10For δ, we adopted the value from the candidates (0.1, 0.2, 0.3, . . . , 0.9) with the smallest overall errors
in Table 5.

17



Table 6 Prediction errors of input coefficients in the
three cities

Gujo Sapporo Okayama
ANN RAS ANN RAS ANN RAS

STPE 0.2508 0.2753 0.2971 0.2728 0.2422 0.1811
MAD 0.0104 0.0104 0.0116 0.0097 0.0097 0.0066
U2 0.3156 0.5190 0.4190 0.3820 0.3335 0.1991
RMSE 0.0234 0.0368 0.0298 0.0259 0.0239 0.0136
MAPE 0.3959 0.0818 0.8203 0.6214 0.5141 0.2884

Gujo City was selected as the forecast target to represent cities with relatively small
economies. Sapporo and Okayama were randomly selected to represent large cities. 11

Table 6 lists the prediction errors relative to the published values of the input
coefficients for each city, as shown in Table 5. The forecast error of RAS is shown
for comparison with that of the ANN forecast. In the inference of RAS, the input
coefficients of the prefecture in which each city is located were used as initial values
and the actual estimates published by each city were used for the total intermediate
demands, total intermediate inputs, and total gross outputs.

Table 6 shows that the prediction accuracy varied by city. While the error values
of the ANN were smaller in Gujo, except for MAPE, the error values of RAS were
generally smaller in Sapporo and Okayama. However, published estimates of the total
intermediate demands, intermediate inputs, and gross outputs were used to calculate
RAS. Thus, the actual RAS forecasts would include those estimation errors.

The prediction errors for each input coefficient were examined for these cities.
Figures 4a, 4b, and 4c show the deep learning predictions (ANN) and published
city estimates (Published) for Gujo, Sapporo, and Okayama, respectively. In all
figures, the input coefficients are indicated on the horizontal axis in the order
a1,1, a1,2, . . . , a12,11, a12,12. These figures were prepared according to the method
described in Papadas and Hutchinson (2002).

For the input coefficients of the three cities, the ANN estimates were generally
close to the published values. However, the estimates and published values differed
substantially for certain input coefficients, such as a1,1 and a8,2.

4 Discussion
To predict the input coefficients in the regional input–output table with higher accu-
racy, we developed a method using an ANN and forecasted the coefficients of Japan
and three of its cities. Our method can effectively predict the input coefficients for
relatively large regions. For the entire Japan, the prediction accuracy of our method
was higher and more stable than that of the conventional non-survey methods. In the
forecast for the three cities in Japan, the method produced results that were generally
close to the published values. Compared to the results of Papadas and Hutchinson
(2002), this study achieved an improvement in the prediction accuracy of the ANN,

11In Japan, the economic scale of ordinance-designated cities, such as Sapporo and Okayama, is larger
than that of other cities.
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Fig. 4 Predicted input coefficients for the three cities using deep learning. These
figures were created using Matplotlib in Python

which reached the same level as that of RAS. In addition, our method requires fewer
assumptions than LQ and RAS and can therefore address the predictive instability of
these methods.

Compared to the application of ANNs, such as image recognition, the proposed
method achieved highly accurate prediction of the input coefficients using a relatively
simple model. The high accuracy achieved in this study may be attributed to the less
complex process of generating an input–output table. The process of image recogni-
tion is extremely sophisticated and requires complex models for its approximation.
However, the rules for compiling an input–output table have been defined and are
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simpler than those for image recognition. Therefore, a relatively simple model can
approximate the process of generating input coefficients.

In recent years, various models have been developed to improve the prediction
accuracy in machine learning. In this study, a simple ANN was used as the predic-
tion model; however, the prediction accuracy of the input coefficients can be further
improved by applying these more advanced models.

The model trained in this study integrates the various methods used to estimate
the input–output table for each prefecture and city. Most input–output tables pub-
lished by prefectures are estimated using available primary data and independent
surveys according to the general guidelines set by each prefecture. For cities, input–
output tables are estimated using different methods for each city, such as hybrid and
non-survey methods, because the primary data for constructing input–output tables
are extremely limited. 12 As this study assumes a single model fi,j(x) for the input
coefficient estimation method, the trained model is a synthesis of the estimation meth-
ods for each region. Thus, the methodology used in this study has a meta-analytical
aspect.

The training of deep learning models is time consuming. In this study, model
learning was performed for each of the 131 input coefficients, and the computation time
required for model learning and prediction was extremely long compared to that of
conventional estimation methods. However, this problem can be solved by improving
the computing resources. For example, if the models to be trained are distributed over
n computers, the computation time can, in principle, be reduced to 1/n compared
with the case in which only one computer is used. Alternatively, the speed can be
increased using fast processors. Therefore, the computational time required for deep
learning becomes minimal if sufficient computing resources are available.

5 Conclusion
We have presented an estimation method using an ANN with mixup to predict input
coefficients more accurately and stably than the conventional non-survey method. The
approach in this study can be applied to forecast input coefficients of other areas and
countries. This would contribute to further refinement of the estimation of regional
input–output tables and the quantitative analyses of the regions, such as spillover
effects. The method can be further extended to other economic data, such as price
indices, where the generation process can be expressed as a single function.

However, this method currently has the following limitations:
First, our method may be less accurate for regions with specific industries. In large

regions such as prefectures, resources are distributed among numerous industries,
whereas in small regions such as towns and villages, resources may be concentrated
in specific industries. As the mixup employed in this study generates a virtual region
from prefectures and cities, the distribution of resources in this virtual region is sim-
ilar to that in the original regions. Hence, for cities, towns, and villages that are
heavily reliant on a specific industry, the dissimilarity between these areas and the

12However, explanations of detailed estimation methods for input–output tables are seldom provided in
these cities.
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region created by the mixup process reduces the accuracy of the predictive model. The
predictions for the cities in this study exhibit deviations between the predicted and
published values for certain input coefficients. These differences may be because the
ANN does not fully capture information regarding the characteristics of each indus-
try included in the published values. However, the published values for each city also
contain estimation errors with respect to the true values.

Second, from a prediction accuracy perspective, applying the proposed method to
future predictions is difficult. Using our method, we trained an ANN on 2011 data,
predicted the input coefficients for 2015, and found that the accuracy was extremely
poor. As in most econometric models, the current situation at the time of measurement
is captured in the ANN through the dataset. Because economic conditions changed
between 2011 and 2015, predicting the input coefficients for 2015 accurately using a
model trained with a 2011 dataset was difficult.

Third, the original dataset must be of a certain size to achieve a high degree of
prediction accuracy. Model learning with the dataset generated by mixup is equivalent
to preventing overfitting by regularizing model learning with the original dataset (Wu
et al., 2020). Therefore, if the original dataset is excessively small, the prediction
accuracy of the trained model remains low, even if the dataset is augmented by a
mixup.

Further, the model trained by our method is significantly influenced by outliers.
Similar to ordinary linear regression, deep learning is affected by outliers. In addi-
tion, owing to the nature of the mixup, one outlier is spread across hypothetical
observations, making the effect of outliers even more impactful.

To perform a mixup, augmented variables are limited to those that can be compos-
ited and scaled. For example, indicator variables such as interest rates are not subject
to the mixup because they are difficult to compose and scale directly.

In applying the mixup proposed in this study, the prior knowledge that “for a
virtual region obtained by linear interpolation, the feature vectors should lead to an
associated target” needs to be established. If this prior knowledge is not satisfied, the
mixup cannot be performed. For example, learning a production function that does
not have a constant return to scale through the mixup is difficult. Let yi be the output
of region i and xi be the production factor vector. If the production function g is not
a constant return to scale, the prior knowledge required for mixup is not satisfied,
which can be expressed as follows:

λ1y1 + λ2y2 6= g(λ1x1 + λ2x2).

As mentioned previously, the mixup between a prefecture and its city is also incor-
rect. For these regions, obtaining a sum of values that includes transfers is infeasible;
therefore, the composition cannot be meaningful. The same holds for regions between
different points in time, and if the composition is performed, the treatment of transfers
between regions must be considered.

By addressing these limitations, the methods in this study could be applied to
forecasting a wider range of economic data.
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Appendix A On the sum of intermediate inputs and
gross outputs between regions

In this appendix, we show for intermediate inputs and gross outputs that the sum of
the values for two regions is equal to the value when these regions are considered as
one. 13

13This explanation was originally presented in a Japanese article authored in 2021. I translated it into
English and restated it.
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Let us consider the creation of a single region R12, which is the composition of
any two regions (denoted as R1 and R2). The intermediate input of R12 is equal to
the sum of the intermediate inputs of R1 and R2 for a regional input–output table of
the competitive import type.

The intermediate input in a regional input–output table of the competitive import
type comprises the aggregate of inputs that are exchanged between industries within
the region, the inputs received from other regions within the country, and the inputs
imported from abroad by industries within the region (Fujimoto, 2019). That is, for
the intermediate input mi,j from industry i to industry j in a region, if m̂i,j is the
input within the region, ṁi,j is the input from other regions of the country to industry
j in the region, and m̃i,j is the import from abroad to industry j in the region,

mi,j = m̂i,j + ṁi,j + m̃i,j .

The intermediate inputs in R1 are denoted as (mR1
i,j , m̂

R1
i,j , ṁ

R1
i,j , m̃

R1
i,j ). Similarly, those

in R2 are denoted as (mR2
i,j , ṁ

R2
i,j , ṁ

R2
i,j , m̃

R2
i,j ). Adding the intermediate inputs of these

two regions yields

mR1
i,j +mR2

i,j = m̂R1
i,j + ṁR1

i,j + m̃R1
i,j + m̂R2

i,j + ṁR2
i,j + m̃R2

i,j .

The inputs within R12(m̂R12
i,j ), inputs from other regions of the country to R12(ṁR12

i,j ),
and foreign inputs to R12(m̃R12

i,j ) are

m̂R12
i,j = m̂R1

i,j + m̂R2
i,j + (input from R2 out of ṁR1

i,j )

+ (input from R1 out of ṁR2
i,j )

ṁR12
i,j = (input from all other regions of the country except R2 out of ṁR1

i,j )

+ (input from all other regions of the country except R1 out of ṁR2
i,j )

m̃R12
i,j = m̃R1

i,j + m̃R2
i,j .

The intermediate input mR12
i,j of R12 is the sum of m̂R12

i,j , ṁR12
i,j , and m̃R12

i,j . Thus,

mR12
i,j = m̂R12

i,j + ṁR12
i,j + m̃R12

i,j

= m̂R1
i,j + m̂R2

i,j

+ (input from R2 out of ṁR1
i,j )

+ (input from R1 out of ṁR2
i,j )

+ (input from all other regions of the country except R2 out of ṁR1
i,j )

+ (input from all other regions of the country except R1 out of ṁR2
i,j )

+ m̃R1
i,j + m̃R2

i,j

= m̂R1
i,j + m̂R2

i,j + ṁR1
i,j + ṁR2

i,j + m̃R1
i,j + m̃R2

i,j

= mR1
i,j +mR2

i,j .
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Therefore, the sum of the intermediate inputs for any two regions is equal to the
intermediate input when these two regions are aggregated and considered as a new
region.

We confirm that the gross output Y R12
i of industry i in R12 is equal to the sum

of the gross output of R1 and R2. In the input–output table of the competitive
import type, in addition to intermediate inputs, the final demand for R12 can also be
calculated as the sum of the final demand for R1 and R2. As the exports in R12 are
equal to the sum of exports in R1 and R2 and the imports in R12 are similar, the
net exports (the differences between the exports and imports) in R12 are equal to the
sum of the net exports in R1 and R2. Shipping to the other regions of industry i in
R12, LR12

i , is obtained as follows:

LR12
i = LR1

i + LR2
i −

∑
j

(input from R1 out of ṁR2
i,j )

− (input from R1 out of FR2
i )

−
∑
j

(input from R2 out of ṁR1
i,j )

− (input from R2 out of FR1
i ),

where FR1
i is the final demand for industry i in R1 and FR2

i is the final demand
for industry i in R2. Receiving from the other regions of industry i in R12, NR12

i , is
calculated in the same manner as LR12

i . Thus,

NR12
i = NR1

i +NR2
i −

∑
j

(input from R2 out of ṁR1
i,j )

− (input from R2 out of FR1
i )

−
∑
j

(input from R1 out of ṁR2
i,j )

− (input from R1 out of FR2
i ).

From these equations, the net transfer of industry i in R12 is equal to the sum of net
transfers in R1 and R2, as follows:

LR12
i −NR12

i = LR1
i + LR2

i −NR1
i −NR2

i .

The gross output is the sum of the total intermediate demand (= the row sum of
intermediate inputs), final demand, net transfers, and net exports. Thus, the output
Y R12
i in R12 is calculated as Y R1

i + Y R2
i .

27


	Introduction
	Extension of mixup to regional input coefficient prediction
	Empirical analysis for Japan
	Discussion
	Conclusion
	On the sum of intermediate inputs and gross outputs between regions

