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Abstract 
 

In China, there are about 800,000 congenital diseases among 20 million newborns, of which nearly 

200,000 fetuses have serious defects or diseases. The birth of these sick fetuses brings serious economic 

burden and social problems to the family and even the society. It is therefore important to carry out early 

fetal monitoring in order to detect fetal defects and diseases as early as possible. Umbilical artery blood 

signals contain important information about fetal growth and development, reflecting various problems 

during pregnancy, such as intrauterine growth retardation IUGR , hypoxia and maternal hypertension, 

which can be determined by umbilical artery blood signals. Therefore, the analysis of umbilical artery 

blood signals is important for prenatal monitoring and fetal health status diagnosis. 

The acoustic spectral parameter method is a conventional technique for analyzing the umbilical artery 

blood signals and consists of three parameters that serve as clinical diagnostic criteria: resistance index (RI), 

pulsesatility index (PI) and maximum systolic/end-diastolic umbilical flow velocity (S/D). However, these 

parameters ignore phase properties of the signal, such as phase delay, phase frequency and phase mode, and 

focus only on the fundamental statistical parameters of blood velocity, such as maximum, minimum and 

mean values. This may lead to clinical misdiagnosis.  

Umbilical artery blood signals have complicated structures and nonlinear characteristics in addition to 

changes in signal amplitude. This paper presents a comprehensive new approach for characteristics 

parameter extraction and classification of umbilical artery blood signals using fractal theory and Chaos 

theory in order to handle these complex structures and nonlinear properties of the signal. First, by focusing 

on the fractal characteristics of umbilical artery blood signals, the fractal dimension (BD) and the 

correlation dimension (CD) are obtained to verified that BD is positively correlated with the gestational 

week and CD is effective in discriminating normal from abnormal. Next, we obtain the maximum 

Lyapunov exponent (MLE) of the chaotic characteristics of umbilical artery blood time series, and verified 

its effectiveness in distinguishing normal signals from abnormal signals. Finally, a diagnostic model is 

proposed by applying particle swarm optimization-support vector machine (PSO-SVM) to the conventional 

feature parameters (RI, PI, S/D) and newly obtained parameters (BD, CD, MLE) to classify and diagnose 

the umbilical blood signals in the four statuses (normal, oligohydramnios, umbilical cord around neck, fetal 

malposition). 

This doctoral dissertation consists of 6 chapters. 

Chapter 1 introduces the background and means of umbilical artery blood study as well as reviewing 

the current research situation. The outline of this dissertation is also given. 

In chapter 2, the fundamentals of fetal hemodynamics are described. The clinical significance and 



Doctoral Dissertation 

2 

normal reference values of umbilical artery blood signal parameters are outlined. Details of the umbilical 

artery signal acquisition equipment, data classification and acquisition process are explained. 

In chapter 3 the fractal dimension box-counting method (BD) and the correlation dimension (CD) are 

used to investigate the nonlinear characteristics of the umbilical artery blood signals based on fractal theory. 

First, the BD of the umbilical artery blood signals is calculated and the fractal characteristics of the signals 

are analyzed. Results show a positive relationship between the fractal dimension of umbilical artery blood 

signals and gestational weeks. Abnormal and normal umbilical artery signals are then classified into 

abnormal group and normal group. The Grassberg-Procaccia algorithm (GP algorithm) is used to calculate 

and analyze the CD of the two groups. The overall CD of normal umbilical artery blood signals is greater 

than that of abnormal signals. CD is significantly better at discriminating the normality of the umbilical 

artery blood signal compared to conventional parameters. Furthermore, the Hurst exponent of umbilical 

artery blood signal is calculated and analyzed by Lo method. The results show that umbilical artery blood 

signal belongs to non-sta s.  

In chapter 4 chaotic phase space diagram method and maximum Lyapunov exponent (MLE) are used 

to determine the chaotic characteristics of umbilical artery blood signals from qualitative and quantitative 

perspectives. The attractor reconstruction of umbilical artery blood signals is performed in three-dimension 

(3D) and two-dimension (2D) phase space. The results show that the chaotic phase diagram of the time 

series for  

appears to converge. Application of the receiver operating characteristic (ROC) curve to the obtained 

maximum Lyapunov exponent (MLE) shows that the rate of discrimination of normality of the umbilical 

artery blood signal is significantly better than the conventional feature parameters. 

In chapter 5 an artificial intelligent classifier is proposed to classify the four states of umbilical artery 

blood signals (normal, oligohydramnios, umbilical cord around neck and fetal malposition). The support 

vector machine (SVM) classifying method is constructed based on the conventional parameters, S/D, PI 

and RI. The particle swarm optimisation-support vector machine (PSO-SVM) classifier is also constructed 

using the fractal dimension (BD), correlation dimension (CD) and maximum Lyapunov exponent (MLE) 

derived in Chapters 3 and 4 as feature parameters. The results of the classification tests show that the 

PSO-SVM classifier is more accurate, confirming the usefulness and effectiveness of the proposed 

classification method. 

In Chapter 6, summary of this dissertation and future work are described.  
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Chapter 1  

Introduction 

1.1 Background 

In China, of the nearly 20 million newborns born each year, about 800,000 are born with congenital 

diseases, and nearly 200,000 of them have serious defects and diseases [1]. The birth of these sick fetuses 

brings serious economic burdens and social problems to families and even to society. 

In 2022, China's neonatal mortality rate will be 3.1 per 1,000 and maternal mortality rate will be 0.157 per 

1,00000[2]. The Chinese government aims to reduce the national maternal mortality rate to below 0.12 per 1,000 

and the national neonatal mortality rate to below 3.0 per 1,000 by 2030 respectively [3]. 

World Health Organization (WHO) has issued two reports which state two points, the first being high 

maternal mortality in undeveloped countries [4], and the second being stalling progress in improving 

maternal and newborn survival [5]. 

At present, the main methods of real-time dynamic 

evaluation of intrauterine development and health status of 

the fetus for fetal monitoring are fetal cardiac monitoring, 

ultrasonography, fetal oxygen saturation monitoring, fetal 

scalp stimulation test and observation of amniotic fluid 

properties [6]. 

The umbilical cord is the only link between mother 

and fetus, and its umbilical artery blood signal contains a 

wealth of maternal and infant information, and its blood status can reflect fetal development, maternal 

blood pressure and intrauterine hypoxia [7-8]. Therefore, the study and analysis of the characteristics of the 

umbilical artery blood signal can achieve timely and dynamic monitoring of fetal health status, and its 

application to prenatal fetal monitoring is of great theoretical and social significance in predicting and 

reducing the birth rate of fetuses with hereditary and congenital diseases. 

The current method of clinical monitoring of the fetus is Doppler ultrasonography of the umbilical 

artery [9]. Doppler ultrasound-based signal acquisition and analysis of umbilical artery blood information 

Fig.1-1 Mortality rates of maternal, infant, and 
neonatal  



Doctoral Dissertation 

2 

consists of:  extraction of the short-time Fourier transform of the umbilical artery blood signal;  

calculation of the acoustic parameters to display the signal spectrogram; and  making a clinical 

diagnosis. 

Most signals in nature are non-linear, and the complexity of life mechanisms leads to stochastic and 

non-linear biological systems, and the umbilical artery blood signal, which contains fetal vital signs is a 

non-linear signal [10]. Current clinical methods of fetal monitoring and umbilical artery Doppler ultrasound 

detection lack much of the information contained in the original signal, resulting in a lack of valid 

information [11]. Therefore, it is difficult to accurately diagnose fetal health based solely on Doppler signal 

detection. For this reason, appropriate non-linear processing methods and tools are important to accurately 

analyses the umbilical blood signal and detect the fetal health status. 

As biological systems are strongly non-linear, the development of biomedical fields such as brain 

science, physiology and cardiac systems has benefited from the integration of biomedical and non-linear 

dynamics. As Glaick et al. [12] pointed out in 1988, the new mathematical tool of chaos theory will give 

rise to a new kind of physiology that will help researchers gain insight into complex human systems that are 

independent of local details. The application of chaos theory to the study of irregular complex dynamics in 

biomedicine has become inevitable. 

The application of non-linear kinetic systems to physiological, pathological, and clinical research is of 

great significance. It not only provides a rich theoretical basis and experimental data for nonlinear theory, 

but also allows the exploration of the nature of various complex physiological phenomena and pathological 

processes through nonlinear theory, such as the application of nonlinear dynamics to the study and 

diagnosis of the cardiac system and the prediction of the severity of cardiovascular diseases. As chaotic 

characteristic parameters are more sensitive than traditional physiological monitoring parameters, their 

application as a non-invasive and quantitative tool in the diagnosis of cardiovascular diseases has been 

highly appreciated by researchers [13]. 

The paper uses fractal and chaos theory and machine learning methods to analyze and extract features from 

umbilical artery blood signals, with a view to accurately monitoring the growth of the fetus, detecting potential fetal 

diseases as early as possible and taking appropriate measures for timely management, reducing the rate of perinatal 

disability and mortality, and safeguarding the health of mothers and infants. By analyzing the fractal and chaotic 

characteristics of the umbilical artery blood signal, we can determine the difference between healthy and 

pathological blood signals and the characteristics of aberrant signals from both qualitative and quantitative 

perspectives, form a theoretical system for non-linear analysis of umbilical artery blood signals, and reveal the 

correlation between abnormal umbilical artery blood signals and maternal and fetal diseases, so as to build a 
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real-time monitoring mechanism for maternal and fetal health with higher accuracy and greater robustness. This will 

provide a more reliable, efficient, and scientific diagnostic index system for fetal development, and provide a 

theoretical basis and implementation method for improving the existing fetal monitoring and diagnosis methods. 

1.2 Overview 

The umbilical cord is the sole conduit for fetal nutrient acquisition, gas exchange with the mother and 

excretion of metabolic products. Alterations in cord hemodynamics are manifested as resistance to cord-placental 

blood flow circulation, which directly reflects certain physiological or pathological changes in the placenta, fetus, 

and mother [14]. The collection and analysis of umbilical artery blood signals can yield important information 

about fetal growth and development [15]. 

1.2.1 Conventional analysis methods of umbilical artery blood signal 

In 1957, Satomura [16] first used Doppler to assess blood flow. In 1983, Campbell et al [17] first used 

Doppler velocimetry to measure uterine artery blood flow, resulting in a safe and non-invasive method for 

the analysis of uterine artery blood flow during pregnancy, which has led to ongoing research to date. In 

clinical obstetric diagnosis, ultrasound Doppler is often used to obtain information on fetal heart sounds and 

umbilical artery blood to detect fetal anomalies early and take action to reduce the probability of congenital 

diseases by early intervention [18]. 

Umbilical artery blood signals have complex time-varying characteristics and are typically 

non-stationary. The traditional methods of analysis of umbilical artery blood signals are acoustic 

spectral parameter method [19-20]. 

Doppler spectral parameters can be used to determine whether the umbilical blood signal is abnormal. 

Common spectral parameters include: maximum systolic umbilical flow velocity/end-diastolic umbilical 

flow velocity (S/D ) [21]; Resistance Index (RI); and Pulsatility Index (PI) which are clinical diagnostic 

criteria. Hima [22] calculated the acoustic parameters of the middle cerebral artery and umbilical artery 

Doppler flow signals in pregnant women with intrauterine growth retardation (IUGR) versus normal 

pregnant women and found that the umbilical artery flow signals were better for the diagnosis of IUGR 

disease. Blanco et al. [23] extracted umbilical artery Doppler flow signals and calculated acoustic spectral 

parameters to detect pregnancy abnormalities, which can effectively provide information for fetal health 

assessment; Dai et al. [24] showed that the acoustic spectral parameters S/D values, PI and RI of umbilical 

artery blood were lower in pregnant women with acute intrauterine distress. 
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1.2.2 Study of non-linear analysis of umbilical artery blood signal 

Most linear signals in nature are only somewhat approximate and are strictly non-linear. Complex 

biological signals are mainly characterized by strong background noise, nonlinearity, and stochasticity, 

while the human body is a typical nonlinear dynamical system [25]. In contrast to earlier experiments and 

observations on biosignals based on linear theory, the development of nonlinear theory has given a strong 

theoretical foundation and technical support for the study of nonlinear properties of organisms. 

As an important discipline for solving nonlinear problems, fractal and chaos theory has achieved good 

research results and practical applications in engineering, materials, chemistry, biology, and medicine, 

especially in biomedical signal processing [26-27]. Fractal and chaos theories have been applied to the 

detection of physiological signals, medical image analysis, aided functional diagnosis and protein structure 

prediction [28-29]. Shang et al [30] found a positive correlation between the degree of cranial artery 

narrowing and the maximum Lyapunov index value of the flow signal based on chaos theory. Sladana et 

al.[31] calculated the Higuchi fractal dimension of cortical signals in the brain before and after damage and 

obtained the result that the fractal dimension of EEG signals changed with changes in brain alertness. 

Etehadtavakol et al. [32] compared the chaotic non-linear dynamics of breast temperature spectra of normal 

and abnormal lesions, showing that the Lyapunov index reflects the reliability of temperature recordings for 

breast tumor detection and can also differentiate between different types of breast lesions. Bogaert et al. [33] 

compared the correlation dimension of heart rate variability signals in heart transplanted patients and normal 

subjects and showed that the correlation dimension can clearly reflect the gender and physiological 

differences of patients with heart rate variability signals; Feng Yinbo et al. [34] analyzed the lumbar 

vertebral cancellous bone region images and calculated the fractal dimension of the grey-scale texture of 

lumbar cancellous bone CT images. metamorphosis, suggesting that fractal theory can be used for 

quantitative medical diagnosis based on CT images. 

In summary, fractal and chaos theory can be applied to scientific medical diagnosis through the 

analysis of typical non-linear biomedical features such as Electrocardiography (ECG), arterial Doppler flow 

signals and Electroencephalography (EEG), i.e. the implicit information based on fractal and chaotic 

features can be obtained. Fractal and chaos theoretical analysis methods are more accurate and robust than 

traditional parametric methods, which are more powerful in processing non-linear information and provide 

a more complete picture of the deeper information in the signal, not only qualitatively but also 

quantitatively. Therefore, the analysis of umbilical artery flow Doppler signals using fractal and chaos 

theory is of great theoretical importance and application for real-time monitoring of maternal and fetal 

health status. 
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In the study of fractal theory for the analysis of umbilical artery blood signal, Chang et al. [35] 

calculated the fractal dimension of umbilical artery blood signal and explored its application value in fetal 

monitoring, which showed that the fractal dimension of umbilical artery blood signal in pathological state 

characterized the self-similarity of its digital signal, therefore, the fractal dimension can reflect the changes 

of umbilical artery blood in a more detailed and objective way than the traditional S/D value, and reflect the 

complex characteristics of umbilical artery hemodynamics. To demonstrate that the fractal dimension can 

better reflect the umbilical artery blood parameters, Wu et al. [36] analyzed the umbilical blood signals of 

118 fetuses by comparing the fractal dimension of the Doppler audio signal during the cardiac cycle with 

the acoustic spectrum method. 

 [37] recorded umbilical artery Doppler signals from 20 normal pregnant women at 18 

to 20 weeks' gestation and calculated fractal dimension curves using the Hurst index; RI, PI and S/D indices 

were calculated from the maximum frequency envelope of the Doppler sonogram and the fractal dimension 

curve, respectively, showing that the Doppler indices obtained from the fractal dimension curve had the 

same sensitivity as those obtained from the maximum velocity curve and that the PSD (Hurst) index was 

more sensitive than conventional Doppler indices in detecting changes in umbilical artery blood. 

At present, the application of chaos theory to blood flow Doppler signals is rare. Pallavi et al. 

[38]proposed an algorithm to identify the umbilical and uterine arteries from a set of four different maternal 

and fetal arteries using Doppler features and correlation dimensions. To distinguish between these arteries, 132 

Doppler signals were collected from pregnant women between 24 and 40 gestational weeks, filtered and 

de-noised,  with a sensitivity and specificity of >95% for the identification of uterine arteries. 

1.2.3 Current state of medical diagnosis research based on machine learning 

Over the years, many statistical and machine learning methods have been used for medical data 

classification and disease diagnosis, including Linear Discriminant Analysis (LDA), Classification and 

Regression Tree (CART), Support Vector Machine (SVM), Artificial Neural Network (ANN), Radial Basis 

Function Neural Networks (BFNN), Multilayer Perceptron Neural Networks (MLPNN) and Random Forest 

(RF) algorithms, etc., and has achieved many innovative research results. 

In the field of medical diagnosis, different machine learning methods are used to process datasets 

based on the classification of data features to make real-time predictions of diseases and achieve assisted 

diagnosis functions [39]. 

Based on the experimental results of ECG data from the European ST-T database, Jinho et al. proposed 
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an SVM and Kernel Density Estimation (KDE)-based ECG method for detecting ischemia. 355 ST-segment 

ischemia samples were successfully identified from 367 using the SVM classifier, and their sensitivity and 

specificity were 0.941 and 0.923, respectively. 0.923 [40]. For patients with Alzheimer's disease, Joao 

Maroco et al used seven nonparametric classifiers such as multilayer perceptron MLPNN, SVM, BFNN 

and RF and three traditional classifiers such as LDA and logistic regression to analyze the 

neuropsychological test data of the patients, and the results showed that the sensitivity, specificity, and 

accuracy of LDA algorithm and RF algorithm were better than other algorithms [41]. Baek et al. [42] used 

SVM and logistic regression to predict the onset of diabetic nephropathy based on clinical data from 292 

diabetic patients, and the study showed that SVM showed the best results in predicting the onset of diabetic 

nephropathy. Liu Hongbo et al. [43] conducted research on early diagnosis of colorectal cancer with early 

colorectal cancer diagnostic data and developed an SVM-based laser-induced early colorectal cancer 

assisted diagnosis system with good clinical practice results. Wang Gang et al. [44]proposed a hepatitis 

diagnosis algorithm based on the UCI dataset (University of California Irvine, UCI), and the results showed 

that the algorithm based on SVM, and rough set has better diagnostic accuracy than neural network and 

SVM alone. Cai Dongmei et al. [45] proposed an epileptic EEG detection algorithm based on Hurst index 

and SVM, and the accuracy of automatic detection of epileptic brain waves reached 98.75%. Zhang Huimin 

et al. [46] established diagnostic models based on SVM, BP neural network and RBF neural network for 

predictive diagnosis of Alzheimer's disease, and the analysis results of clinical data prediction: SVM has 

good adaptability in predictive diagnosis compared with BP neural network and RBF neural network 

methods. Sang Xiu li et al. [47] established Least Squares Support Vector Machine (LS-SVM) parsing 

model for classification and diagnosis of breast tumors on 1569 breast cancer patient data based on 

neighborhood rough set simplification and obtained better clinical diagnosis results. Wu Cui ying et al. [48] 

proposed a new trimodal computer-aided diagnosis method based on integrated SVM for positron emission 

computed tomography/electron computed tomography of lung tumors. 

Although machine learning has been widely used in medical diagnosis with good results, it has not 

yet been applied to fetal monitoring and fetal health prediction.  

1.3 Aim and organization of this dissertation  

Fractals and Chaos have been widely used in different fields as important mathematical tools for 

non-linear analysis. Fractal methods can quantitatively describe the intrinsic laws of things in nature. Chaos 

and fractals are both different and related: chaos is fractal in time, while fractals are chaotic in space, fractal 

dimension is a quantitative method to describe the characteristics of chaotic motion [49], and fractals are a 
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geometric language to describe chaotic motion.  

Therefore, this study will use fractal and Chaos theories to perform a systematic and comprehensive 

non-linear characterization of the umbilical artery blood signal to obtain the box dimension, CD, MLE and 

chaotic time series feature parameters in the implied umbilical artery blood signal and the correlation with 

the fetal health status. Based on this, an artificial intelligence algorithm is used to classify and evaluate the 

clinical data of umbilical artery blood to build an intelligent diagnostic model, providing a theoretical basis 

and a way to implement clinical diagnosis of fetal health. The outline of the dissertation is shown in Figure 

1-2. 

 

Fig.1-2 The outline of this dissertation 
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Chapter 2 

Acquisition of umbilical artery blood signal 

2.1 Fetal Hemodynamics 

Hemodynamics is the study of the physics of flowing blood and all the solid structures through which 

it flows [1]. Blood is a heterogeneous fluid with high viscosity, and the solid structures through which it 

flows include the heart and blood vessels at all levels. Blood vessels are elastic tubes that can contract and 

dilate, and the factors that affect their diameter are mainly blood pressure, blood pH, oxygen partial 

pressure and the diastolic activity of the smooth muscles of the walls, whose flow is characterized by 

pulsatile non-stability [2]. 

2.1.1 Fetal blood circulation 

Figure 2-1 shows the fetal blood circulation. In the fetal 

circulation, a large amount of blood returns to the fetal heart 

and contains a large amount of nutrients, and at different 

locations, venous and arterial blood converge to varying 

degrees. Fetal blood circulation differs from adult blood 

circulation in that two umbilical veins and one umbilical 

artery are connected to the placenta, and the umbilical vein 

and inferior vena cava are connected to the intrahepatic 

venous catheter. Fetal blood flows from the right atrium to 

the left atrium through the foramen ovale in the atrial septum, 

and the aorta is connected to the pulmonary artery trunk by 

an arterial canal portal [4]. 

 
Fig.2-1 Fetal blood circulation [3] 
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2.1.2 Placental development process

During pregnancy, the placenta develops to meet the growing metabolic needs of the fetus, which is 

achieved through the transfer of nutrients and oxygen from the mother and the transfer of metabolic waste 

from the fetus. In addition, the placenta protects the fetus from the 

maternal immune system and secretes hormones and growth 

hormones to regulate the physiological functions of the pregnant 

woman during pregnancy [5-6].

Anatomically, the human placenta can be divided into three 

components: the uterine placenta (maternal part), the fetal 

placenta and the substrate [ 7 ], as shown in Figure 2-2.

Oxygen-rich maternal blood passes through the uterine artery into 

the uteroplacental vessels, forming spiral arteries that increase in 

diameter as gestation increases and as the chorionic gaps widen, increasing the flow of blood to the uterine 

artery [8-9].The intervillous space is a large interconnected area consisting of a pool of maternal blood, 

separated from the fetal placental vessels by the substrate [10].The maternal vasculature in the basal plate 

region contains trophoblast cells, and these placenta-specific cells are involved in vascular reconstruction 

and hormone secretion. Although both fetal and maternal uterine placental vessels develop as low 

resistance vascular beds during gestation, the structure of the fetal placenta differs significantly from that of 

the uterine placenta [11].The circulation of the fetal placenta is as follows: the hypoxic blood pumped from 

the fetal heart flows along the descending aorta into each branch of the internal iliac artery, and these 

branches converge to form a single umbilical artery [12], and two umbilical arteries surround the umbilical 

vein and branch into repeating functional umbilical cords called cotyledons. Within each cotyledon, the 

umbilical arteries continue to bifurcate into dichotomous/fractal arteries of progressively smaller diameter, 

the smallest of which form capillaries. The embryonic trophoblast prevents the mixing of fetal and maternal 

blood due to the microvilli it contains, allowing the fetus to draw additional nutrients from maternal blood

[13].

In addition, the capillaries between the villi and chorion form a maternal-fetal exchange zone where 

the waste products expelled by the fetus diffuse back into the Figure 2-2 Composition of the placenta blood 

in the maternal uterine veins and oxygen and nutrients are transported to the trophoblastic layer of the 

uterus (the villi) and into the venous vessels of the placental villi. These vessels eventually enter the 

umbilical vein, which delivers nutrient-rich blood to the fetal organs. Finally, the umbilical cord and the 

cotyledons (15-28 per placenta) form the disc-shaped fetal placental vascular system.

Fig. 2-2 Placental composition
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2.1.3 Umbilical cord structure and characteristics 

The diameter, length and average length of the umbilical cord are: 1-2.5 cm, 30-80 cm and 54-61cm 

respectively [14]. The umbilical cord is considered too short when it is less than 30cm and too long when it 

is more than 80cm. The white amniotic membrane covers the surface of the umbilical cord and the arteries 

and veins inside the cord are surrounded by a translucent matrix called Wharton jelly. The umbilical vein 

surrounds the umbilical artery as it is longer than the umbilical artery. Unlike the isolated, atrophied 

umbilical cord, which has been completely emptied of blood, the umbilical cord is full of blood vessels in 

the living body and the veins are particularly thick because of the internal flow of blood [15] . 

2.2 Umbilical artery wave dynamics 

An understanding of umbilical artery wave mechanics is required prior to studying the detection of 

Doppler ultrasound signals in the umbilical artery. The waveform of blood flow velocity observed in the 

umbilical artery is determined by the function of the fetal heart and the placenta. When the fetal heart 

contracts, the umbilical artery generates a positive waveform that moves along the umbilical artery. When 

this positive waveform crosses the blood flow waveform of the vessels downstream of the placenta, a 

portion of the positive waveform is reflected due to a mismatch with the impedance of the fetal placental 

vessels. Thus, the observed umbilical artery Doppler velocity waveform is a superimposed waveform of 

reflected waves (placental action) moving in the forward direction (cardiac function action) and moving in 

the reverse direction (cardiac function action). It is possible to isolate the placenta-specific Doppler signal 

for the purpose of detecting placental vascular abnormalities using wave dynamics theory. 

2.2.1 Constant pressure-flow relationships 

The cardiovascular system transports nutrients and oxygen to the body and carries metabolites from 

rhythmically into the heart in an oscillating pressure gradient to ensure that the cells are always adequately 

nourished and that their metabolic needs are met. The pressure-flow relationship in the arterial part of the 

circulatory system is usually described based on Poiseuille's law [16]: 

4  2-1  

Where:  is the intravascular blood flow;  is pressure difference; L  is vascular length;  is  
vascular radius;  is blood viscosity. 

Rewriting Equation (2-1) as a proportional relationship between pressure gradient and flow rate: 
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4
8p L

Q r
 2-2  

It is possible to better understand Poiseuille's law, which states that the pressure difference required to 

drive a fluid through a vessel is related to the geometrical parameters of the vessel and the physical 

properties of the fluid. The pressure-flow ratio is related to the degree of vascular resistance to flow which 

is expressed by the parameter R, defined as vascular resistance : 

 2-3  

Where: R is the flow resistance of blood in a given segment of blood vessel, also known as peripheral 

resistance, derived from elastic shear stress. 

From Equation (2-2) and Equation (2-3), we have: 

4
8p LR

Q r
 2-4  

From Equation (2-4), the radius of the blood vessel has a large effect on the resistance to flow: the 

resistance is proportional to the inverse of the fourth power of the vessel radius. 

The resistance to flow characterizes the dissipation of energy, with the viscous friction between the 

blood and the wall of the tube preventing the flow of blood resulting in a loss of energy [17]. 

Although resistance of computational hemodynamic can help to provide a comprehensive 

understanding of the pathology for the disease, it is assumed that the resistance of Equation (2-4) is only 

valid under conditions of constant, fully developed laminar flow with a rigid vessel wall. When the flow is 

predominantly pulsation-driven and the vessel wall is elastic, wave propagation and reflection in the arterial 

system will occur and Poiseuille's law will not be valid [18]. 

Due to the elasticity of the vascular wall, the vessel dilates in response to an increase in intravascular pressure 

P  and the corresponding volume increases. To express the relationship between vascular pressure and volume, 

the vascular compliance parameter C was introduced. Vascular volume has the property of increasing pressure but 

not rupture and is defined as the volume of the vessel corresponding generally to a change in pressure units. 

dVC
dP

 2-5  

Where: dV  is the volume variable; is the pressure change. 

From above definition, C is the vascular volume corresponding to a change in unit pressure and is an 

indicator describing the dilatable capacity of the vascular; a larger C indicates greater Vaso dilatability [19]. 



Chapter 2 Acquisition of umbilical artery blood signal 

15 

2.2.2 pressure-flow relationship  

According to Poiseuille s law, if the velocity of blood flow does not change over time at a particular 

location in the vascular, it is constant flow. Conversely, if the blood flow exhibits unstable or pulsatile flow, 

the flow velocity at a fixed location in the vessel varies with time and becomes non-constant. 

 
a Constant flow (b) Poiseuille's flow 

As seen in Figure 2-3 (a): the flow profile is constant at a fixed position along the vascular at different 

time points (t1, t2, t3); whereas in the pulsatile flow of Figure 2-3 (b), the variation in blood velocity makes 

the flow unstable and oscillatory, due to the systolic-diastolic cycle caused by rhythmic contraction of the 

heart. 

When the oscillatory pressure difference increases, there is a time lag before the blood flow rate 

increases, i.e., the peak blood flow lags the peak pressure. This is caused by fluid inertia resisting the 

pressure changes that drive fluid flow, and it is a form of resistance called inertia. 

Fig. 2-3 Pressure-flow relationship  
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In addition, the elasticity of the arterial vessels allows 

Doppler waves to propagate and be reflected. In elastic vascular, the 

increase in local pressure caused by ventricular ejection during 

systole causes the vessel wall to dilate outwards; accordingly, the 

elasticity of the vascular wall resists the change in pressure. As the 

pressure decreases during diastole, the vascular protrudes less 

outwards and blood flows forward along the vascular wall. As the 

vascular dilate and contract with each heart rate cycle, the pressure 

and hence the flow propagates through the arterial system at a finite 

rate like a wave, as shown in Figure 2-4. 

As can be seen in Figure 2-4(A), during systole, the   increase in local pressure at one end of the 

elastic vessel drives the blood vessel wall outward, while in diastole, as the pressure decreases, the locally 

dilated vessel contracts, and advances at a limited rate. With the continuous systolic-diastolic oscillatory 

pressure cycle, a series of pulse waves propagate along the vessel. In addition, physical properties such as 

vessel diameter, elasticity, vessel bifurcation and blood viscosity change as the pulse wave travels along the 

vessel, and a portion of the wave is reflected. These changes in the physical properties of the vessel 

determine the resistance and reactance of the system, where resistance represents the resistance to flow due 

to the viscous friction of the blood along the vessel wall. On the other hand, reactance represents the 

impedance to which the wave is subjected as it travels along the vessel and is caused by the combined 

effect of the inertia of the fluid and the elasticity of the vessel. 

The combination of impedance and reactance is known as impedance, in other words, the reflection of 

a wave occurs in the presence of impedance, i.e. when the physical properties of the vessel and blood 

change. Because impedance exists for wave propagation, viscous frictional resistance causes impedance 

and reflection of waves, and therefore vascular impedance occurs at a random frequency [20]. 

2.2.3 Input impedance  

In hemodynamics, the ratio of pulsating pressure to flow in the presence of a reflected wave is called 

the input impedance (Zi): 
( )( )
( )

m
i

m

P fZ f
Q f

 2-5  

Where:  is the frequency; mP  and mQ  are the measured pressure and flow respectively. 

Fig. 2-4 Intravascular pulse wave 
propagation 
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In contrast to characteristic impedance, which depends only on the local physical properties of the 

blood vessel (e.g., the radius or elasticity of the vessel), the input impedance is determined not only by the 

local conditions of the blood vessel in a given cross-section, 

but also by the physical properties of the blood vessel distant 

from the cross-section. For example, when the physical 

properties of the blood vessel in a continuous vessel segment 

change continuously in a branching blood vessel network, a 

mismatch in the characteristic impedance of the vessel will 

produce a reflected wave that propagates in the opposite 

direction towards the input vessel. If the impedances of the 

blood vessels are matched, no reflected waves are generated.

Thus, as the cardiac pressure wave generated by the fetal heart moves forward along the umbilical 

artery, a continuous mismatch of vascular impedance along the fractal network will generate multiple 

reflected waves as it encounters a fractal network of smaller placental artery diameters, as shown in Figure 

2-5.

In Figure 2-5, these reflected waves combine to form a composite wave in the opposite direction to the 

forward net flow wave. Thus, a single reflected wave in the umbilical artery feeding into the placental 

system provides information about the placental artery vasculature downstream of where the reflected wave 

is generated. The composite reflected wave in the umbilical artery Figure 2-5 Schematic diagram of the 

placental vascular system represents the sum of multiple reflected pulse waves that occur at sites of 

impedance mismatch in the fetal placental vascular system, with arrows indicating the direction of pressure 

wave propagation.

2.2.4 Pulse wave propagation and wave velocity

The speed of propagation of a pulse wave along a vessel is denoted as PWV and it depends mainly on 

the elasticity size of the vessel, the relationship is usually expressed by the Moens-Korte Weg Equation [17],

where the wave speed PWV is defined as:

2
EhPWV

r
2-6

Where: E is the Young's modulus, i.e. the ratio of stress to strain; is the fluid density; h is the vessel 

wall thickness and r is the vessel radius. As can be seen from (2-6), for stiffer blood vessels (i.e. high 

Young's modulus), the pulse propagates at high velocity along the vessel wall. Studies have shown that the 

aorta in humans becomes less elastic with age and PWV increases. In general, PWV in the human arterial 

Fig. 2-5 Schematic of the placental vascular 
system
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system decreases from 6m/s-8m/s in the aorta to 2m/s in the pulmonary arteries. In fetal sheep, PWV of the 

umbilical artery is close to 6m/s, like the value in the human aorta [21]. 

Another way to estimate PWV is not to measure elasticity directly, but to estimate it from the 

characteristic impedance and plasticity of the vessel [22]. The magnitude of the characteristic impedance 

cZ value depends on the physical properties of the local vessel and is defined as the ratio of pressure to 

flow in the absence of wave reflection: 
/cZ P Q  2-7  

In addition, the plasticity of blood vessels  is the ratio of the change in cross-sectional area of 

blood vessels A  to the change in pressure P : 

 2-8  

The relationship between the plasticity of the blood vessels  and c cZ  is as follows

1
cZ

A C
 2-9  

Where: is the blood density;  is the cross-sectional area of the blood vessel. Because of the presence 

of reflected waves, direct measurement of cZ  is not possible and measurement of pressure changes 

requires insertion of a catheter. Substituting cZ  into Equation (2-7), the plasticity expression is as follows: 

 

cZ Q P  2-10  
/cZ P A C  2-11  

/cZ A C Q  2-12  

1 A
A C C Q

 2-13  

2
A AC
Q

 2-14  

Since the relationship between plasticity and PWV is as follows: 
1APWV
C

 2-15  

Substituting equation (2-14) into Equation (2-15) yields PWV 
 

QPWV
A

 2-16  

PWV can therefore be estimated by measuring the slope of the flow area curve during the 

reflection-free period. It is generally assumed that there are no reflected waves early in the contraction. 

2.3 Conventional diagnostic parameters of umbilical artery blood 

Upstream and downstream of the umbilical arteries vessels are the fetal heart and the umbilical cord lateral 
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placental vascular bed, which travels in the amniotic fluid, respectively. Under normal conditions, the umbilical 

artery measures placental blood flow velocity decreases with the progression of pregnancy, whereas the uterine and 

umbilical arteries are more abundantly vascularized and have relatively fast blood velocity during contraction, 

which ensures normal fetal growth. When pregnancy is abnormal, the uterine and umbilical artery flow is decreased 

during diastole and there is also antegrade flow during diastole. Additionally, there is a substantial heavy waveform 

trace during systole [23]. The umbilical artery blood velocity waveform is shown in Figure 2-6.

Fig.2-6 Schematic diagram of umbilical artery blood velocity waveform

In Figure 2-6, the highest point of systole is A and the lowest point of end-diastole is B. B greater than zero 

means that there is still positive blood flow at end-diastole. a indicates systolic acceleration time and dT

indicates diastolic time. The slope of the acceleration wave at the beginning of systole with respect to the 

baseline is the acceleration angle , which is related to the intensity of myocardial contraction [24].

2.3.1 Clinical diagnostic parameters for umbilical blood signals

The most used three diagnostic parameters for umbilical artery blood velocity are defined as flowering 

Figure 2-7. This schematic diagram is derived from the envelope of the spectrogram of the umbilical artery 

blood signal (see section 2.5.2).

1. 

2-17

Fig.2-7 Schematic diagram of the definition of the umbilical artery blood velocity index
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In the Equation (2-17), /S D indicates the peak-to-valley ratio(the maximum systolic/end- diastolic 

umbilical flow velocity); 
pV is the highest systolic peak; dV is the end-diastolic peak; the 

value /S D reflects the magnitude of the change in blood flow velocity during the cardiac cycle and reflects 

vascular compliance. Normal values are shown in Figure 2-8. 

It is generally accepted that the S/D value decreases gradually with increasing gestational weeks in 

normal pregnancy. As the gestational week progresses, the S/D ratio decreases rapidly under the influence 

of the dual factors of gradually decreasing placental blood flow resistance and increasing umbilical blood 

decreases to 2.7; after 30 weeks of gestation, SD <3, and in late gestation, SD <2.2±0.3, with an upper limit 

of 3.01 as the normal value [25].

Clinically high S/D value can occur in hyperemesis, hydramnios, intrauterine growth retardation 

(IGUR) and tangled or short umbilical cords.

Fig. 2-8 Normal reference values for S/D

In Figure 2-8, the horizontal coordinate is gestational week, the vertical coordinate is S/D value, and 

the green area is the normal reference value.

2. PI
p d m 2-18

Where PI indicates the beating index; mV is the mean value of frequency change. PI reflecting vascular 

elasticity, the more disparate the ratio of the drop in diastolic blood flow velocity to the average velocity of 

the heart, the greater the PI value. 
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Fig.2-9 Normal reference values for PI

In Figure 2-9, the horizontal coordinate is gestational week the vertical coordinate is PI value, and the 

green area is the normal reference value.

3. RI
2-19

A resistance index called RI denotes peripheral resistance. When there is a low impedance cycle, RI shows 

that the blood flow velocity fluctuations have an amplitude that is getting close to the maximal end-systolic 

blood flow velocity.

Fig.2-10 Normal reference values for RI

In Figure 2-10, the horizontal coordinate is gestational week, the vertical coordinate is RI value, and 

the green area is the normal reference value.

4. FVR fast blood flow ratio 

1 2-20

Where: is the total blood flow in a single cardiac cycle, reflecting the preload and pumping function of 

the heart; Q1 refers to the rapid ejection phase blood flow, i.e., the blood flow contained when the velocity 

of blood flow is greater than 0.707 times the highest blood flow velocity at the end of systole.
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2.4 Detection of umbilical artery blood signal

Direct measurement of fetal umbilical blood flow is mostly performed by ultrasound Doppler 

technique, i.e., the measurement of aortic blood flow. For blood vessels with a constant flow model, blood 

flow can be calculated by the formula , where: V is the mean blood velocity and A is the 

cross-sectional area of the vessel. However, in obstetric applications, there are many factors that affect the 

accuracy of the measurement; therefore, direct measurement is not currently used to measure fetal blood 

flow.

2.4.1 Doppler effect of moving sound sources

When ultrasound waves emitted by a source at a fixed frequency encounter an active interface, there is 

a difference between the frequency of the returned sound waves and the fixed emitted frequency; that is: as 

the interface moves away from the vibrating source, the frequency of the returned sound waves decreases; 

conversely, the frequency increases [26]. Clinically, blood flow velocity can be measured according to the 

principle of the Doppler effect.

In Figure 2-11 below, the sound source S is moving in a uniform linear motion with a velocity vector 

V.

Fig. 2-11 Motion sound source

    Let t 0be the time when the sound source is at the origin S and the phase of 

the vibration is zero. At time 't , the location of the sound source is ' and the phase of the vibration 

is . At time , the vibration phase propagates to the point r, then:

' '( )r Vt t t c 2-21

The partial derivative of the phase with respect to time is the angular frequency, so the received 

frequency at the point is
'

0
t

t t
, and the derivative of on both sides gives
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' ' '( )- (1 )
'

V r Vt t t c
r Vt t t

2-22

If the angle between the vector 'r Vt and from the source to the receiver is ,

the left-hand side of the above equation is 0 0 . Here: V V is the motion velocity of the 

sound source. Thus 
' 1

1
t
t

, where cos is substituted into the above equation to 

obtain:

0 2-23

The above equation is known as the Doppler equation.

  In summary, the analysis shows that the frequency received is different from the 
frequency of the sound source due to its motion. The change in frequency is 0 , 

usually referred to as f /2 as the Doppler shift, which is proportional to the frequency and speed of the 
sound source. The Doppler shift is direction dependent, if the source is moving towards the receiving point, 
the frequency increases at ;if the source is moving back towards the receiving point, the frequency 

decreases at 
2

; and when , the distance between the source and the receiving point is constant, 

the frequency is also constant. 

2.4.2 Ultrasonic Doppler velocimetry

Common measurements of blood flow velocity is as follows: the sound source emits sound, which 

travels through a fluid medium to a location and is reflected by an object and then received by the source. 

Some of this will be reflected in the external medium, mainly by red blood cells in blood, and the frequency 

shift can be expressed as:

s 2-24

Where: V is the flow velocity, sf is the emission frequency and c is the velocity of sound propagation in 

the medium. The sensor is placed outside the blood vessel and is oriented at an angle to the axial 

direction of the blood flow, the velocity measured by the sensor is only a component of the axial velocity of 

the blood flow, so a correction to the Doppler frequency shift equation is required:

s 2-25

To calculate the axial velocity of the blood flow, the Doppler frequency shift equation can be 

expressed as :

2-26
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or 

 2-27  

It can be obtained Equation (2-26) that the ratio of the reflected velocity to the sound wave velocity is 

proportional to the ratio of the frequency shift to the wave source frequency. From Equation (2-27), the 

frequency shift shifts upwards with the direction of relative motion, while the direction of relative motion 

shifts downwards, so the installation direction of the ultrasonic Doppler velocimetry device is selective. To 

facilitate the velocity information from the Doppler frequency shift waveform, the following processing of 

the received acoustic signal is required: 

1. The received signal consists of a mixture of the transmitted signal and the frequency-shifted signal. 

Figure 2-12 below shows the process of extracting the frequency-shifted information. 

 

In this process, many combinations of addition and subtraction of frequency signals are obtained, 

where the subtracted signal frequency does not exceed , and the summed signal frequency does not 

exceed . When all signals are passed through a low-pass filter, only the Doppler shift signal is retained. 

2. Phase-domain demodulation allows the separation of frequency-shifted up-shifted signals from 

down-shifted signals. 

3. Quantization calculation of the frequency of the analogue signal. 

The three steps of the signal processing process can be achieved using zero crossing detection (ZCD) 

and the Fourier transform. 

Fig. 2-12 Phase quadrature demodulation 
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Continuous wave Doppler detection devices can transmit and receive signals continuously without 

spatial resolution, so that the location of the velocity measurement cannot be determined. Therefore, for a 

given continuous wave spectrum, the velocity needs to be presented over the entire supersonic range, so 

that peak signals can be read without regard to where the maximum value is obtained at the supersonic 

velocity.

2.4.3 Detection of umbilical artery blood signal 

Using the Doppler effect of the relative motion of the blood flow and the probe, the angle of relative 

motion and the magnitude and sign of the frequency shift can be measured using an umbilical flowmeter 

with a 4MHz probe, which in turn can be used to derive the velocity and distribution of the umbilical artery 

blood, and finally, combined with imaging and digital signal processing techniques to form an acoustic 

spectrum of the umbilical artery blood [27].The peak-to-valley ratio S/D, resistance index RI and pulsatility 

index PI of blood flow can be calculated according to hemodynamic theory and calculate the peak-to-valley 

ratio S/D, resistance index RI and pulsatility index of the blood flow according to the hemodynamic theory 

PI and other indicators.

The Doppler ultrasound probe emits an ultrasound signal with a frequency of to the fetal 

umbilical artery and the probe receives an ultrasound echo signal of U ,the superposition expression of 

this mixed signal is:

tbtaUUU i
i

i )cos(cos 0021 2-28

Where: a and b are the amplitudes of the signals  and i respectively; is the 

Doppler frequency; represents the th red blood cell in the umbilical artery. 1 0cosU a t is the 

acoustic and electrical leakage signal between the internal emission and reception of the probe and the 

Fig. 2-13 Fast Fourier transform of Doppler signal
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reflection from the human tissue interface;  is the Doppler shift signal of the 

umbilical artery blood [28].  

A block diagram of the umbilical artery blood detection system is shown in Figure 2-14 below: 

 

2.5 Acquisition of umbilical artery blood signal 

2.5.1 Acquisition equipment 

Clinical data were collected in Ehu Branch of Xishan People's Hospital, Wuxi, Jiangsu Province, China, 

using the MDF-OBM umbilical artery blood detecting device (Fig.2-15). The device includes umbilical 

blood detection software V2.3, a 4.0 MHz-CW continuous wave Doppler probe (Figure 2-16) and a 

high-performance PC with a sampling frequency of 11025 Hz. 

  
a Side view b Rear view 

Fig. 2-14 Block diagram of umbilical artery blood monitor system 

Fig. 2-15 Umbilical artery blood diagnostic system 
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The continuous Doppler probe specification parameters are shown in Table 2-2. 

Table 2-2 Probe Parameters 

No. Parameters Values 

1 Nominal Frequency 4.0MHz 

2 Working frequency (4.0±10%) MHz 

3 Peak negative sound 
pressure P-<1MPa 

4 Output beam sound 
intensity Iab<30mW/cm2 

5 Spatial peak time-averaged 
sound intensity Ispta<200mW/cm2 

6 Ultrasonic output intensity Isata<30mW/cm2 

7 Working mode Continuous wave ultrasound 
Doppler 

8 Effective ultrasonic 
emission area 31.8±15% mm2 

2.5.2 Signal acquisition process 

The umbilical artery blood signals of pregnant women with different ages, different gestational weeks 

and with or without pathological features were used as the study subjects. The acquisition process was as 

follows: 

1. Preparation: turn on the detecting device and enter the measurement state. 

2. Monitoring: The pregnant woman is in supine or semi-recumbent position with the abdomen 

exposed. Place the probe on the contralateral side where the stronger fetal heart sounds are heard and look 

for the umbilical artery site probe side. One strand of the umbilical artery is on the side of the fetal limb, 

and only by placing the probe in the best position can we obtain a good quality signal of umbilical artery 

blood signal. 

Fig. 2-16 4.0 MHz continuous wave Doppler probe 



Doctoral Dissertation 

28 

 

3. Data acquisition 

1 In the real-time monitoring display section of the umbilical blood detection system MFM-OBM. 

A typical umbilical artery blood spectrogram appears on the screen and freezes this image. The peak - 

trough values of 10 consecutive wave patterns are measured, their average value is taken, and the value is 

automatically displayed.

In Figure 2-18 above, the umbilical artery blood sonogram display area shows the umbilical artery 

blood spectrum signal in real time, with the horizontal coordinate indicating the acquisition time (s) and the 

vertical coordinate indicating the umbilical artery blood velocity (cm/s). 

The spectrum display area shows the searched umbilical blood spectrum as shown in Figure 2-19 

below. The umbilical artery blood display box on the right will show the calculated parameters for the 

selected monitoring record, including S/D, PI, RI, FVR, FHR (fetal heart rate) and calculated cycles. 

Fig.2-17 Diagnostic chart of umbilical artery blood 

Fig.2-18 Acoustic spectrum of umbilical artery blood  
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(2) Extraction of the envelope for umbilical artery blood sonograms 

1. Convert the acquired colored sonograms to grey scale.

2. Scan the grey-scale sonograms point by point from left to right and from top to bottom to find the 

points with different pixels from the first adjacent point in each column.

3. Mark the coordinates of these points and connect all the points to obtain the outer envelope of the 

sonograms, as shown in Figure 2-20 below, which shows the umbilical artery blood velocity curve signal 

extracted by the above method.

2.5.3 Ethics

This study was approved by the Clinical Ethics Committee of Ehu Branch of Xishan People's Hospital

(2018-EHIRB-001), and written informed consent was obtained. All participants signed informed consent 

forms prior to the study.

2.5.4 Database of umbilical artery blood signals

According to the principle and method of umbilical artery blood signal acquisition, umbilical artery 

blood signals of 104 pregnant women aged between 22 and 43 years old and between 26 and 40 weeks of 

Fig2-19 Acoustic spectrum of umbilical artery blood with measured parameters

Fig. 2-20 Time series signal of umbilical artery blood 
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gestation were collected from March to July 2020. Another 198 umbilical artery blood signals were collected 

from January 2021 - July 2021.The data collected were compared using a Philips IU-22 color Doppler 

ultrasound machine to derive the fetal health status. The signals are classified as normal, abnormal, and 

other unspecified conditions(12 cases)  and the abnormal status was classified into three conditions: 

umbilical cord around neck, oligohydramnios, and fetal malposition. The number of cases for normal and 

abnormal signals is shown in the table 2-3 below. 

Table 2-3 Number of signals for four conditions 

Lable Status Number of cases 
1 Normal state 178 

2 Oligohydramnios 38 

3 Umbilical cord around neck 40 

4 Fetal malposition 34 

The normal fetal umbilical artery blood signal tracing chart and the abnormal fetal umbilical artery 

blood signal tracing chart are shown in Tables 2-4 and 2-5 below respectively. 

Table 2-4 Sample of normal fetal umbilical artery blood signal tracking record sheet 

No Name Gestation 
week PI RI S/D Acoustic 

Spectrogram No. Signal Serial No. 

1 ** 

21    N1 21 S1 21 
22    N1 22 S1 22 
23    N1 23 S1 23 
24    N1 24 S1 24 
25    N1 25 S1 25 
26    N1 26 S1 26 
27    N1 27 S1 27 
28    N1 28 S1 28 
29    N1 29 S1 29 
30    N1 30 S1 30 
31    N1 31 S1 31 
32    N1 32 S1 32 
33    N1 33 S1 33 
34    N1 34 S1 34 
35    N1 35 S1 35 
36    N1 36 S1 36 
37    N1 37 S1 37 
38    N1 38 S1 38 
39    N1 39 S1 39 
40    N1 40 S1 40 
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Table 2-5 Sample of abnormal fetal umbilical artery blood signal tracking record sheet 

No Name Gestation 
week PI RI S/D Acoustic 

Spectrogram No. Signal Serial No. 

1 ** 

21    AN1 21 AS1 21 
22    AN1 22 AS1 22 
23    AN1 23 AS1 23 
24    AN1 24 AS1 24 
25    AN1 25 AS1 25 
26    AN1 26 AS1 26 
27    AN1 27 AS1 27 
28    AN1 28 AS1 28 
29    AN1 29 AS1 29 
30    AN1 30 AS1 30 
31    AN1 31 AS1 31 
32    AN1 32 AS1 32 
33    AN1 33 AS1 33 
34    AN1 34 AS1 34 
35    AN1 35 AS1 35 
36    AN1 36 AS1 36 
37    AN1 37 AS1 37 
38    AN1 38 AS1 38 
39    AN1 39 AS1 39 
40    AN1 40 AS1 40 

2.6 Problems with conventional parameters 

Figure 2-21 below shows an example of two cases whose values for the three conventional parameters 

are shown in Table 2-6. According to the parameter reference criteria in the previous sections 2.3.1, the values of all 

three conventional parameters of (a) and (b) are within the normal range and both should be diagnosed as normal. 

However, the actual situation is that the left one is an abnormal case named umbilical cord around neck. 

This shows that it is not possible to fully distinguish between normal and abnormal by the conventional 

three parameters.   

(a) Acoustic spectrum of abnormal case (umbilical cord 
around the neck)  

(b) Acoustic spectrum of normal case 
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Table 2-6 Three conventional parameters values of abnormal case and normal case 

Parameter values of abnormal case Parameters values of normal case 

S./D PI RI S./D PI RI 

3.726 1.322 0.612 3.454 1.406 0.692 

What could generate the clinical misclassification? These reasons are: 1. Conventional parameters 

only consider the maximum, minimum and average values of blood velocity within a certain period, 

ignoring the phase features of the signal: e.g., phase delay, phase frequency, phase mode; 2. The values 

derived from the S/D, RI and PI are independent of each other and do not integrate these phase features. 

 Physiological signals such as electrocardiograms (ECG) signals and electroencephalograms (EEG) 

signals are quasi-periodic time-varying signals that exhibit complex periodic variations, and that these 

signals are highly non-linear and non-stationary, i.e., their vibrational modes and amplitudes may change 

significantly in time. Currently, fractal theory and Chaos based on phase space reconstruction are widely 

used in the processing of physiological signals such as ECG and EEG with good results.  

Considering fractal and chaotic analysis methods not only focuses on the amplitude change of blood 

velocity. By considering these phase features together, we can have a more comprehensive understanding of 

umbilical artery blood signals. A detailed description of the application of chaos theory and fractals to the 

study of umbilical artery blood signals is given in Chapter 3 to Chapter 5. 

2.7 Summary 

1. The fundamentals of fetal hemodynamics are described, including the fetal circulation, placental 

developmental processes and the physiological characteristics of the umbilical cord. A brief introduction to 

the mechanics of the umbilical artery waves that produce the umbilical velocity waveform.  

2. The clinical means of umbilical artery blood signal parameters and normal reference values such as 

S/D, PI and RI are illustrated. 

3. Acquisition of umbilical artery blood signals and monitoring data: The Doppler effect, the principle 

of ultrasound Doppler velocimetry and the principle of umbilical artery flow signal detection hardware are 

(c) Envelope curve of abnormal case   (umbilical cord 
around the neck) 

(d) Envelope curve of abnormal case  

Fig. 2-21 Normal and abnormal cases with similar parameter values 
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described. Based on the discussion of umbilical blood acoustic spectrograms, details of the umbilical artery 

Doppler signal data acquisition equipment, data classification, acquisition process and the establishment of 

the umbilical artery blood signal and detection database are presented. 

4.The problem of misdiagnosis caused by conventional parameters is raised and the rationale for 

analysing umbilical artery blood signals by fractal versus chaotic methods is described 

2.8 References 
 

[1] Feng Y Z; translated by Dai K G. Biokinetics of blood circulation [M]. Changsha: Hunan Science and 
Technology Press, 1986. 

[2] Liu Z.R, Li S S. Principles and methods of hemodynamics [M]. Shanghai: Fudan University Press, 

1997. 

[ 3 ]  Sa k a i ,  K Y  

Liaoning Science and Technology Press, 2013.  

[4] Yu X M, Yuan Y H. Fundamentals of anatomy [M]. Beijing: People's Military Medical Press, 2015: 

241-242. 

[5] Cross J C, Simmons D G, Watson E D. Chorioallantoic Morphogenesis and Formation of the Placental 
Villous Tree[J]. Annals of the New York Academy of Sciences, 2010,995(1): 84-93. 

[6] Regnault T R H, Galan H L , Parker T A , et al. Placental Development in Normal and Compromised 
Pregnancies-A Review[J]. Placenta, 2002,23(supp-SA): S119 S129. 

[7] Wang Y, Shuang Z. Placental Blood Circulation - Vascular Biology of the Placenta- NCBI Bookshelf[J]. 
Morgan & Claypool Life Sciences, 2010. 

[8] Brosens I , Robertson W B , Dixon H G . The physiological response of the vessels of the placental bed 
to normal pregnancy[J]. The Journal of pathology and bacteriol, 1967,93(2): 569-579. 

[9] Kaufmann P, Black S, Huppertz B. Endovascular Trophoblast Invasion: Implications for the 
Pathogenesis of Intrauterine Growth Retardation and Preeclampsia[J]. Biology of Reproduction, 
2003,69(1): 1-7. 

[10] Georgiades P, Ferguson-Smith A C , Burton G J . Comparative Developmental Anatomy of the Murine 
and Human Definitive Placentae[J]. Placenta, 2002,23(1): 3-19. 

[11] Stafford I A, Dashe J S, Shivvers S A, et al. Ultrasonographic cervical length and risk of hemorrhage in 
pregnancies with placenta previa[J]. Obstetrics & Gynecology, 2010,116(3):595-600. 

[12] Meyer W W, Lind J. Iliac arteries in children with a single umbilical artery: Structure, calcifications, 
and early atherosclerotic lesions[J]. Archives of Disease in Childhood, 1974,49(9): 671-679. 

[13] Boyd P A. Quantitative structure of the normal human placenta from 10 weeks of gestation to term.[J]. 
Early Human Development, 1984,9(4): 297-307. 

[14] Hua K Q, Feng Y J. Practical obstetrics and gynecology (fine) [M]. Beijing:People's Health Publishing 

House, 2013. 



Doctoral Dissertation 

34 

 

[15] Chen Z N, Du X G, Liu B N. Obstetrics and gynecology pathology [M]. Shanghai: Shanghai Medical 
University Press, 1996. 

[16] Milnor W, Hemodynamics[M]. Williams & Wilkins, 1982. 

[ 17
experimental, and clinical principles[M]. CRC Press, 2011. 

[18] Zamir M. The Physics of Coronary Blood Flow[M]. Springer US, 2005. 

[19] Qin T W. Fundamentals of clinical biomechanics. Beijing: Military Medical Science Press, 2015: 51- 

52. 

[20] Segers P, Rietzschel E R, De Buyzere M L, et al. Noninvasive (input) impedance, pulse wave velocity, 
and wave reflection in healthy middle-aged men and women[J]. Hypertension, 2007,49(6): 1248-1255. 

[21] Adamson S L, Whiteley K J, Langille B L. Pulsatile pressure-flow relations and pulse-wave 
propagation in the umbilical circulation of fetal sheep[J]. Circulation Research, 1992,70(4): 761-772. 

[22] Serge Vulliémoz, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI[J]. 
Magnetic Resonance in Medicine, 2002,47(4): 649-654. 

[23] Guo F J, Fan Z P, Tian J Y, et al. Clinical value of uterine artery Doppler flow monitoring in pregnant 
women with hypertensive disorders during pregnancy[J]. China Maternal and Child Health Care, 
2016,31(13):2592-2593. 

[24] Lin Q H. Difficult obstetrics and gynecology [M]. Wuhan: Hubei Science and Technology Press, 2002:  

198-199. 

[25] Zhang Y P, Yu J H, Wang X, et al. Correlation analysis of ultrasound detection of fetal hemodynamic 
changes in pregnant women with gestational hypertension and pregnancy outcome[J]. Journal of 
Medical Imaging,2018,28(2): 308-312. 

[26] Zhang H L. Theoretical acoustics [M]. Beijing: Higher Education Press,2007: 303-304. 

[27] Tang S H. Fetal ultrasound Doppler umbilical cord flowmetry detection principles and maintenance[J]. 
China Medical Device Information, 2012(12): 68-70. 

[28] Xu J F, Lu Y S. Study of fetal umbilical blood flow detection circuit[J]. Medical and Health Equipment, 
2014, 35(2): 4-7. 

 



Chapter 3 Fractal characterization of umbilical artery blood signals 

35 

Chapter 3 

Fractal characterization of umbilical artery blood signal 

In this chapter, the fractal dimension of the umbilical artery blood signal is calculated and analyzed to 

investigate the differences between normal and abnormal umbilical artery blood signals based on the non-linear 

theory and to reveal the fractal characteristics of the umbilical artery blood signal. 

3.1 Foundations of fractal theory 

Smooth geometric shapes are mathematically continuous and differentiable everywhere and are the object of 

classical Euclidean geometry. But things that exist in nature have the everywhere continuous but non-differentiable 

nature of nature, such as colorful clouds, complex intertwined blood vessels, undulating mountains, leafy trees, 

rough and uneven surfaces, flying snowflakes and fluctuating stock markets. The creation of fractal geometry has 

ects with certainty. 

Fractal geometry has had a profound impact on the development of the natural and social sciences, 

with applications covering the fields of medicine, biology, management, philosophy, computing, chemistry, 

architecture, materials, physics, economics, and mathematics, in addition to the sciences, and even the arts 

such as music, art and film [1]. 

3.1.1 Definition of fractal 

e, marking the birth of the concept of fractals [2], and in 1973 and 1975 Mandelbrot 

[3]

books on fractal theory marked the birth of fractal geometry as a separate discipline [4-5]. 

Fractal geometry is closer to the nature of the world, it is a science that studies infinitely complex 

figures of nature with a certain self-similarity as well as structures. 

Falconner describes fractals as follows [6]: 

1. The fractal dimension is greater than its topological dimension. 

2. Have approximate or statistically significant self-similarity. 

3. Have arbitrarily small ratios of detailed and fine structure. 

4. Cannot be expressed both locally and comprehensively in terms of traditional geometric languages. 
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5. Can be generated in most cases by iteration, recursion, etc.

Also, there are many researchers who believe that fractals are visually detected, and it is difficult to 

make a rigorous proof of them. There is also a widely accepted view in domestic and international research 

that, based on a qualitative understanding of the self-similarity of the object of study, determines whether it 

is a fractal based on the presence or absence of a series of scale-free intervals in a double logarithmic 

curve . Figure 3-1 below shows a typical self-similarity graph.

3.1.2 Classical fractal structure

Fractal research subjects are typically discovered in the natural world. Koch curves, Cantor sets, 

Sierpinski triangular cushions, and other typical symmetric fractals are listed here. They are also referred to 

sections will use two examples of traditional fractal structures to further clarify the idea of fractals.

1. Koch Curve

The Koch curve is built as depicted in Figure 3-2 and was discovered by the Swedish physicist Helge 

von Koch. A line segment of length unit 1 in the two-dimensional plane is illustrated in Figure 3-2(a); in 

step 1, the segment is trisected, the middle third is removed, and is then replaced with the other two sides of 

an equilateral triangle with a side length of 1/3, yielding Figure 3-2. (b); in step 2, each line segment in 

Figure 3-2(b) is trisected again according to step 1 and continues to be replaced with the other two sides of 

an equilateral triangle of side length 1/32, resulting in Figure 3-2(c). the process is then repeated numerous 

times to obtain a Koch curve with numerous turning points, continuous at all points but not derivable at all.

Fig. 3-1 Self-similar graph

a Unit line segment b One iteration



Chapter 3 Fractal characterization of umbilical artery blood signals 

37 

  

2. Sierpinski shim 

In 1916, the Polish mathematician Sierpinski proposed a method of fractal generation[7]. The iterative 

operation was repeated for the equilateral triangle shown in Figure 3-3(a): connecting the midpoints of each 

side of the equilateral triangle, dividing it equally into four smaller equilateral triangles, removing the 

smaller triangle at the centre (shown in Figure 3-3(b)), and repeating the above operation over and over 

again, the final figure obtained was the Sierpinski shim. 

  

  

Both sets of figures above have the characteristic that each part is similar in shape to the figure itself, 

which is called self-similarity. The formation of such figures is characterized by the fact that they can be 

generated iteratively by a certain defined rule. However, objects in nature are by no means truly and simply 

symmetrical, and therefore the above figures are not truly representative of objects in nature. Nonetheless, 

they adequately represent the basic features of fractal things, such as self-similarity and scale-invariance. 

3.1.3 Fractal dimension 

Dimension is the number of independent coordinates needed to determine the position of a point in a 

geometric object, and it is an important characteristic quantity for describing geometric objects. In Euclidean 

space, dimension is a natural number [9], while the fundamental covariate for quantitatively describing a fractal 

c Second iteration d Three iterations 
Fig. 3-2 Koch Curve 

a  b  

c  d  
Figure 3-3 Sierpinski shims 
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in a non-linear system is the fractal dimension, which is a fraction or decimal between integers, usually 

exceeding its topological dimension, and is an invariant under the scalar transformation [10]. The topological 

dimension of a curve is 1, as shown in Figure 3-4, and the size of the fractal dimension varies for different 

types of curves as the complexity of the curve increases.

Fractal dimension describes the fractal characteristics of complex things in numerical form, which is 

convenient, concise, and intuitive. One can make quantitative judgments and distinctions about the fractal 

characteristics of things by means of numerical values as well as analyze the fractal characteristics of 

different things by means of specific numerical values [11].

Definitions of fractal dimensions include Hausdorff dimension, self-similarity dimension, information 

dimension, correlation dimension, box dimension and Lyapunov dimension [12]. Among them, box 

dimension and correlation dimension are most used in time series nonlinear analysis [13].

1. Hausdorff dimension

The theoretical basis for the measurement of fractal dimensionality is the theory of Hausdorff's 

dimensionality, founded by F. Hausdorff.

Let a subset class on a metric space ( , )X of finite diameter not exceeding be iU and Y be 

a subset on X if 
1

i
i

Y U , then the subset class iU is said to be a cover of the set Y .

LetY be any bounded subset of the metric space d , , and for any , define:

ii
S 3-1

where iU is the a cover of the set Y ,which denotes the diameter of the set iU , As the value of

becomes smaller, the coverage class of - that can coverY becomes smaller. Thus the value of s

is non-decreasing, so the limit is the Hausdorff dimension.

Figure 3-4 Fractal dimension of different types of curves with increasing complexity
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s s  3-2  

Theorem 3-1 Let the set Y  be a finite subset of the metric space d  , then there exists a 

unique real value 0  such that: 

0

0

,
( )

0,
s s s

H Y
s s

 3-3  

Definition 3-2 Let the setY  be a subset of the metric space d  , the unique real number 0  

determined by Theorem 3-1 is called a Hausdorff dimension and is denoted . 

2. Self-similarity dimension 

Self-similarity can be assessed in a quantitative way by using the fractal dimension. In the finer 

resolution case, the self-similarity dimension describes how many new fractals are observed that are 

geometrically like the whole object. This fractal dimension can be defined by extending one of the classical 

self-similarity sets, such as line segments, planes, or cubes. 

If we use a factor F to change the scale and have N segments similar to the original, then give the 

self-similarity dimension  as: 

 3-4  

self  3-5  

3. Information dimension 

Let ip  represent the probability that a fractal set belongs in the cover iU , then the information 

dimension is: 

1
0

ln
dim lim

ln

N

i i
i

I

p p
 

3-6  

From the definition of the information dimension dim I  it follows that: 

1
( ) ln

N

i i
i

S p p  3-7  

3-7 is the Shannon entropy of the system, then the information dimension dim I can also be written as: 
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0

( )dim lim
lnI
S

 3-8  

4. Box dimension 

Box dimension is a metric parameter used to describe the irregularity of complex images. It can be 

applied not only to one-dimensional time series analysis, but also to two-dimensional images, which has 

become a widely used method to calculate fractal dimension [14]. The box counting method proposed by 

Chaudhuri and Sarkar expressed the fractal dimension as [15]: 

r
 3-9  

Where: D is fractal dimension,  is grid scale, rN is total number of boxes. 

The calculation principle of box dimension is as follows: divide the image with squares of different 

scales to obtain the effective number of covering squares of the image, and constantly change the size of the 

squares to count the number of covering squares of the corresponding size to form a series of points. The 

fractal box dimension of the image is the slope of the line obtained by linear fitting of these points. The 

calculation principle is shown in Fig.3-5: set the side length of the square box as 1, which contains the whole 

Sierpinski triangle gasket. The triangle gaskets are covered by 1/2, 1/4, and 1/8... square boxes with side 

length respectively, and boxes with side length ir  are obtained one by one, ir  is called grid scale. 

 
 

 

 
 

 

 
 

 

The box counting algorithm is as follows: first, determine a series of side lengths and sizes as ir and then 

calculate the number of boxes covering the full form with this series of boxes ( )iN r , and finally i  

and corresponding to different grid scales are obtained, namely, the fractal dimension. The results 

are shown in Table 3-1. 

a  b  c  

Fig.3-5 Sierpinski triangle gasket box counting method 
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Tab.3-1 Calculation statistical table for box dimension method 

 0 1 2  n 

      

 0( )N r  1( )N r  
2( )N r   ( )nN r  

      

 ))(ln( 0rN  1  2   n  

The least square method is used to linearly fit the data set ( , ), and the straight line as 

shown in Figure 3-6 is drawn in the logarithmic coordinates. The slope obtained is the fractal dimension 

D. , the algorithm process of calculating fractal dimension of image based on MATLAB is 

as follows: the image file is read for image gray processing; After edge picking and binarization, the box 

length ( ir )  and the logarithmic data group 

( , ) corresponding to number of covered grids ( ) . After linear fitting, its slope is the 

fractal dimension (D) of the image.  The calculation process is shown in Figure 3-7. 

  

Fig.3-6 Diagram of box dimension calculation Fig.3-7 Box dimensional program running N-S flow 

Although the principle of box counting is very mature and widely used, the dimension in the 

algorithm is more delicate. Because of the large number of iterations and loops in the program compilation, 

a small error at one step will lead to a large difference between the final calculation result and the actual 

result. A regular fractal image with known theoretical fractal dimension is used to calculate its fractal 
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dimension by the box counting method and compare it with the theoretical fractal dimension to check the 

accuracy of the box counting method, and the results are shown in Table 3-2 below. 

Table 3-2 Fractal dimensions of regular fractal geometry 

Images       

Name Straight 
 line Square Sierpinski spacers Vicsek graphics Koch Snowflake Sierpinski 

triangular shims 

Theoretical 
dimension 1 2 1.8928 1.4650 1.2618 1.5850 

Calculating 
dimensions 0.9938 1.9422 1.7430 1.4452 1.3468 1.6289 

Error 0.0062 0.0289 0.0791 0.0135 0.0674 0.0277 

Comparing the theoretical and computed values of the dimensional box dimensions of the graphs in Table 3-2 

above shows that there is some error in the computed values. There are two reasons for the error: (1) the limited 

amount of computation makes the calculated values only exist as an approximation to the theoretical ones; (2) the 

theoretical fractal image contains infinite details, while the specific fractal image has limited details, thus causing 

some error. 

5. Correlation dimension 

The correlation dimension (CD) is an important parameter for describing the non-linear characteristics 

of a system and is used to characterize the fractal complexity of attractors in phase space. The CD reflects 

the correlation of the data points in the set in terms of point-to-point correlation. The CD has the advantage 

that the attractor dimension of a non-linear time series can be calculated directly from the time series data 

obtained from systematic observations alone, which makes it very useful for a wide range of practical 

applications. 

Complex dynamical systems in a multi-degree-of-freedom space can only measure a single variable in 

practice, although the motion characteristics are determined by multiple variables. One possible way to 

understand non-linear dynamical systems is to obtain the geometry of the phase space of the system from real 

measured one-dimensional time series data, Packard et al. performed phase space reconstruction with time 

delay technique [16]. Takens reconstruction theorem has proved that the reconstructed system is equivalent 

to the original system, i.e.: there are intrinsic interactions and connections between the components of a 

dynamical system during its evolution. 
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In 1983, Grassberger and Procaccia published an article entitled 'measuring the singularity of strange 

attractors [17]. They proposed a method to directly calculate the correlation dimension from time series 

according to the embedding theory and the idea of phase space reconstruction when analyzing and studying 

the singularity of attractors, which is G-P algorithm [18]. The principle of the algorithm is as follows:

Let the original signal time series be 1 2, , , Nx x x , then it can be formed a phase space of 

length mN and dimension m. m is the embedding dimension of the reconstructed phase space, and the 

reconstructed phase space matrix can be expressed as:

2 ( 1)
T

i i i i i m 3-10

Where: is the delay time; 1,2, , mi N , mN is  the  number  of  vectors  in the  reconstructed phase  

space  and ( 1)mN N m . Then:

2
1 1

1 ( )
m mN N

r i j
i jm

C H r X X
N

3-11

where: H is the step function, ; ; r is the radius of the hypersphere in 

phase space and i j is Euclidean distance between the two vectors. rC is the correlation integral, 
i.e., the proportion of the total number of point pairs in which the distance is less than r to the total number 
of point pairs. When , the correlation integral rC has the following relationship with r:

3-12

where: mD is CD:

3-13

Choosing different embedding dimension m means that one-dimensional time series are embedded 

into different phase spaces, and the development degree of the system is different.

Therefore, for the same signal sequence, the calculated CD is also different under different embedding 

dimensions. mD increases continuously with the increase of m and does not tend to saturation. For 

deterministic systems, when the embedding dimension increases to a certain value, mD tends to saturation. 

In other words, the double logarithm curve of has a scale-free interval, which indicates that 

such a time series has fractal characteristics and is the CD of the time series when reaching saturation. At 
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the same time, the corresponding embedding dimension is called saturated embedding dimension, 

which represents the number of degrees of freedom of the system.

The feasibility analysis and verification of the G-P algorithm is carried out below using the Lorenz 

system as an example. The Lorenz equation: 

( )
( )

dx dt y x
dy dt x z y
dz dt xy z

3-14

The equation is solved using the fourth-order Runge-Kutta method, with the 

parameters =10 8 3 28b r and initial values (-1,0,1) , the sampling time and step size 

and respectively, and the directional time series with sample length , 

which is analyzed for feasibility using the correlation dimension method, and the time series fluctuations 

are shown in Figure 3-8.

Based on the G-P algorithm, the embedding dimensions m = 4, 6, ...... and 20 were chosen for the CD 

analysis of the X-direction time series of the Lorenz system, respectively. Figure 3-9(a) shows the 

corresponding double logarithmic curves of the association integral versus the scale r when different 

embedding dimensions are chosen.

Fig. 3-8 Lorenz system x-direction time series
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In Figure 3-9(a), the correlation integral  remains constant at ln -0.5r  and the double 

logarithmic curve forms a straight line parallel to the scale axis;  , as shown in Figure 3-9(a) , 

the red diagonal region is the scale-free interval, and the double logarithmic curve in the interval is a series 

of approximately parallel tilted straight lines. At this embedding dimension, the value of the slope of the 

sloping curve obtained by linear fitting with least squares is the correlation dimension. In Figure 3-9(b), the 

horizontal and vertical coordinates are the embedding dimension and the correlation dimension respectively; 

when , the correlation dimension increases with the increase of the embedding dimension; and 

when  , the correlation dimension becomes stable and reaches the saturation value of 2.1088, so the 

saturation embedding dimension of mD  is taken as 12. The correlation dimension of this time series is 

2.1088, which is consistent with the non-integer dimension and the existence of scale-free interval 

characteristics, indicating that the signal time series has fractal characteristics. the G-P algorithm can well 

reflect this characteristic and realize the saturation phenomenon of correlation dimension calculation, so the 

algorithm is feasible. 

3.2 Fractal dimensions of umbilical artery blood signal 

3.2.1 Box dimensional analysis of umbilical artery blood signal 

1. Data sources and calculations 

Clinical Data were collected in Ehu Branch of Xishan People's Hospital, Wuxi, Jiangsu Province, China, 

using the MDF-OBM umbilical blood detecting device (Fig. 2-15). According to the principle and method of 

umbilical artery blood signal acquisition, umbilical artery blood signals of 104 pregnant women aged 

between 22 and 43 years old and between 26 and 40 weeks of gestation were collected from March to July 

2020. Umbilical artery blood signal spectrogram and detection parameters were obtained. Figure 3-10 shows 

the acoustic spectrum of the umbilical artery blood signal in a normal pregnant woman at 30 weeks. Figure 

3-11 shows the acoustic spectrum of the umbilical artery blood signal in a abnormal pregnant woman at 32 

weeks. 

 

a Double logarithmic curves b  The variation relationship of Dm with m  
Fig.3-9 Correlation dimension Analysis for the X-direction time series of the Lorenz system 
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Figure 3-12 displays the results of the analysis and recording of 104 umbilical artery blood S/D value, 

pulsatile index (PI), and resistance index (RI).

a PI  results

Fig. 3-10 Acoustic spectrum of normal umbilical artery blood with30 gestational weeks

Fig. 3-11 Acoustic spectrum of abnormal umbilical artery blood with 32 gestational weeks
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Fig. 3-12 Umbilical artery blood signal indexes of fetus at different gestational weeks

According to Figure 3-12, 104 fetal umbilical artery blood signals were clinically diagnosed and 

analyzed, and the results were as follows: 61 cases were normal, and 43 cases were abnormal. According to 

the values, there are 28 exceptions . According to the normal range of pulse index PI, 14 cases had 

abnormal PI, among which 4 cases had higher PI. Nine patients presented with other clinical symptoms and 

low PI index. According to the diagnosis of normal RI value range, there were 18 cases of abnormal umbilical 

artery blood signal, mainly manifested as low umbilical artery flow resistance.

2. Box dimensional calculation and results of umbilical artery blood signal

The box dimension of 104 umbilical artery blood acoustic spectrograms were calculated and analyzed 

using the box dimension algorithm. Figure 3-13 below shows the results of the box dimension calculation for 

the acoustic spectrogram of umbilical artery blood signal in 61 normal signals.

b RI  results

c results
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The box dimension of umbilical artery blood acoustic spectrograms were calculated and analyzed in 43 

abnormal pregnancy group, and the results were shown in Figure 3-14 .

According to the Figure 3-13 above, the fractal dimension of acoustic spectrogram of umbilical artery

blood in normal group is between 1.718 and 1.776, indicating that gestational week is correlated with box

dimension, that is, the box dimension generally increases with the increase of gestational week.

As can be seen from Figure 3-14, the box dimension of acoustic spectrogram of umbilical artery blood

in abnormal group ranged from 1.753 to 1.901. It can be obtained that the box dimension of the abnormal 

umbilical artery blood sonogram is more sensitive than the conventional sonogram parameters by comparing 

with the clinical diagnostic results. The box dimension of umbilical artery blood acoustic spectrogram 

increased with gestational week, which was similar to that of normal gestational group.

2. Analysis and conclusions

Figures 3-13 and 3-14 can be compared to observe that, overall, the abnormal group s umbilical artery 

blood acoustic spectrogram box dimension is larger than that of the normal group. The reasons are as follows: 

Fig. 3-13 Box dimension of normal umbilical artery blood acoustic spectrogram 

Fig.3-14 Box dimension of abnormal or doubtful umbilical artery blood acoustic spectrogram
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the fetus blood supply is insufficient or unstable in the abnormal pregnancy group due to pathological defects, 

which causes the umbilical artery blood signal to fluctuate and result in a larger box dimension. The normal 

pregnancy group had a more stable umbilical artery blood supply, which consequently led to a more stable 

umbilical artery blood signal. 

The fractal characteristics of the umbilical artery blood acoustic spectrogram were analyzed and the 

correlation between the box dimension of the umbilical artery blood acoustic spectrogram and the gestational 

weeks and the fetal health status were obtained. The main conclusions are as follows: 

(1) Box dimension can be used as an indicator for quantitative detection of fetal health status. The results 

show that the box dimension increases with the gestational week and therefore there is a positive correlation 

between the box dimension and the gestational week. 

(2) The box dimension of the umbilical artery blood acoustic spectrogram can reflect the maternal blood 

supply to the fetus, specifically: the box dimension of abnormal umbilical artery blood signal is higher than 

that of the normal signal, so the fluctuation of the umbilical artery blood in abnormal pregnant women is 

more complicated and more intense. 

3.2.2 Correlation dimensional analysis of umbilical artery blood signal 

1. Data sources 

According to the principles and methods of umbilical artery blood signal acquisition, fetal umbilical 

artery blood signals were acquired from 198 pregnant women aged between 22 and 38 years between Jan 

and July2021, and umbilical artery blood sonograms and test parameters were obtained. The signal 

acquisition method can be found in 2.5.2. From these acoustic spectrograms, 36 normal signals and 36 

abnormal signals with good graphical effects were selected and their envelopes were extracted. Thus, the 

obtained umbilical artery blood time series signal is shown in Figure 3-15. 

 

3-15 Umbilical artery blood time series signal 
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2. Correlation dimension calculation of umbilical artery blood signal

Thirty-six abnormal umbilical artery blood flow signals were selected to form the abnormal group and 

thirty-six normal umbilical artery blood signals to form the normal group, and the correlation dimension of 

the two groups was calculated separately. Figure 3-16 shows the double logarithmic curve and the slope of 

the curve for the correlation dimension of a normal umbilical artery time series signal.

a Double logarithmic curves b Variation of Dm with m

Fig.3-16 Correlation dimension analysis of a normal umbilical artery signal

Thirty-six umbilical artery blood signal correlation dimensions were calculated for the normal group, 

and part of the double logarithmic plots were obtained separately as shown in Figures 3-17 below.

a Double logarithmic curve No.1 b Double logarithmic curve No.2
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The partial corresponding CD are shown in Table 3-3 below.

Table 3-3 CD of umbilical artery blood signal for the normal group

Serial 
number 1 2 3 4 5 6

CD 9.2 9.7 10.1 9.5 10 2 8.8

Serial 
number 7 8 9 10 11 12

CD 9.3 9.9 8.9 9.1 10.1 9.4

Figure 3-18 shows the double logarithmic curve and slope of the curve for the correlation dimension 

of the time series signal of an abnormal umbilical artery blood.

c Double logarithmic curve No.3 d Double logarithmic curve No.4

e Double logarithmic curve No.5 f Double logarithmic curve No. 6

Fig. 3-17 Double logarithmic curve of CD for the normal group of umbilical artery blood signal
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a Double logarithmic curve b Variation of Dm with m

Fig.3-18 Correlation dimensional analysis of the abnormal umbilical artery blood signal

The correlation dimension of the six umbilical artery blood signals in the abnormal group was calculated and a 

double logarithmic plot was obtained separately as shown in Figure 3-19 below.

a Double logarithmic curve No.7 b Double logarithmic curve No.8

c Double logarithmic curve No.9 d Double logarithmic curve No.10
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e Double logarithmic curve No.11 f Double logarithmic curve No.12

Fig. 3-19 Double logarithmic curve of the correlation dimension of the umbilical artery signal in the abnormal group

The partial corresponding abnormal group CD values are shown in Table 3-4 below.

Table 3-4 CD of umbilical artery blood signal for the abnormal group

Serial 
number 1 2 3 4 5 6

CD 8.3 8.4 8.9 8.5 7.7 8.2

Serial 
number 7 8 9 10 11 12

CD 9.3 8.6 9.7 8.4 7.7 7.9

The CD of the abnormal umbilical artery blood signal is significantly reduced compared to the normal 

umbilical artery signal.

The correlation dimension of umbilical artery blood time series signal shows that the embedding 

dimension m and correlation dimension mD of abnormal umbilical artery blood signal are significantly 

reduced, which indicates that there is an obvious nonlinear dynamic difference between abnormal umbilical 

artery blood signal and normal umbilical artery blood signal, The complexity of time series signals of 

abnormal umbilical artery blood is higher than that of normal signals.

3. Analysis and conclusions

The box plot and ROC curves of the calculations are shown in Figure 3-20 and Figure 3-21 below.



Doctoral Dissertation 

54 

 

Fig.3-20 Box plot of correlation dimension  

In Figure 3-20, it is evident that the median CD values of the normal group and the abnormal group 

exhibit a significant difference of approximately around ten percent. This observation is of paramount 

importance as it suggests that CD values may serve as an effective indicator for distinguishing data between 

the normal and abnormal groups in clinical practice. Furthermore, an in-depth analysis of the box plot 

reveals additional insights into the performance of CD values in distinguishing between these two data 

groups. The positions of the 25th and 75th percentile lines indicate the distribution range of CD values and 

the distribution of data points within this range. This aids in understanding the relative distribution of CD 

values in the abnormal group as compared to the normal group. However, it is important to note that the 

maximum CD value in the abnormal group exceeds the 75th percentile line of the normal group, implying a 

certain degree of overlap. This overlap could potentially lead to some misdiagnoses when using CD for 

disease diagnosis. Therefore, a more in-depth examination of the performance and accuracy of CD values is 

necessary to determine optimal thresholds or standards, with the goal of minimizing misdiagnosis. 

On the other hand, there are some values in the abnormal group that are close to those of the normal 

group. This may have a significant impact on the diagnostic results, especially when using CD values for 

diagnosis. These outliers close to the normal group may interfere with the modelling, making it difficult to 

accurately predict the state. Therefore, it is necessary to perform screening and elimination operations on 

these outliers before building the diagnostic model to ensure the robustness and reliability of the model. 

This step is essential to maintain the accuracy of diagnosis and the effectiveness of treatment decisions. 
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Fig.3-21 ROC of correlation dimension 

Through the observation of Figure 3-21, the excellent performance of the CD method in ROC 

analysis becomes distinctly evident. Specifically, the ROC area under the curve (AUC) for CD reaches 

0.80305, a value that significantly surpasses that of other methods, including S/D with an AUC of 0.70567, 

RI with an AUC of 0.68898, and PI with an AUC of 0.63964. It is worth emphasizing that the CD method 

exhibits a significantly higher true positive rate (TPR) compared to other methods, underscoring its lower 

misdiagnosis rates and heightened accuracy in terms of diagnostic performance. 

These results clearly highlight the excellent performance of the CD method in the diagnosis of 

umbilical artery blood, especially when compared with other methods under ROC analysis. This result 

emphasises the low misdiagnosis rate of the CD method, which is essential to ensure accurate diagnosis and 

effective therapeutic decisions. 

3.3 Signal analysis of umbilical artery blood based on Hurst index 

Hurst exponent, as an important indicator of nonlinear characteristic analysis of data signals, is widely 

used in time series data analysis in the middle of the 20th century [19]. The Hurst exponent can be 

calculated by R/S method, Whittle method, period graph method and aggregation scale absolute value 

method. As a non-parametric analysis method, R / S analysis method has been applied to the study of 

nonlinear systems in many fields [20]. The biggest advantage of this method is that it is not necessary to 

assume whether the measure of time series is normally distributed or not, and the R/S method can obtain 

effective and reliable results. R/S analysis method can analyze the fractal characteristics and long-range 

correlation of time series signals based on Hurst exponent, to distinguish the randomness and 

non-randomness of the time series [21]. Fetal umbilical artery blood signals do not have random non-linear 

time series signals. Therefore, Hurst exponent is used to study them to explore the signal characteristics and 
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predictability of umbilical artery blood, which can provide early theoretical reference for using umbilical 

artery blood signal time series to carry out fetal early diagnosis, disease monitoring and early treatment. 

3.3.1 Hurst Index 

Hurst exponent (H) is a statistic between 0 and 1. H values in different ranges represent different 

meanings. It can be used to measure the long-term correlation and self-similarity of time series. Long range 

correlation reflects the statistical correlation of two time series data within a period, while self-similarity 

reflects the similarity of time series fluctuations. For a time series: 
(1) indicates that the time series is an unstable signal; The time series is a random signal similar 

to Brownian noise when =1.5H .  

(2) / f 

signals in the future can be predicted based on current data signals when 1H . 

(3) indicates that the time series has long-term positive correlation, that is, if the 

fluctuation characteristic of a time series signal increases in a certain interval, the probability of the next 

interval also shows an increasing trend, and vice versa; When the H value is between 1/2 and 1, the larger 

the H value is, the stronger the long range correlation of time series signal is, and vice versa. 

(4)  indicates that the time series signal has no long-range correlation and is a random process 

standard geometric Brownian motion. The variables are completely random and unrelated. The current data 

signal has no influence on the future data signal, and the predictability is poor. 

(5)  indicates that time series has long-term negative correlation, that is, if time series 

shows a downward trend in a certain interval, it is highly likely to show an increasing trend in the next 

interval, and vice versa. 

3.3.2 R/S analysis method 

1. CR/S analysis method 

H E Hurst proposed CRS analysis method [22], the CRS analysis principle is as follows: 

(1) The length of time series  is N,  which is divided into  non-overlapping continuous 

sub-intervals with growth degree of N , ( 1,2, , )aI a A , where each element is , . 

(2) For each sub-interval, calculate its standard deviation , cumulative mean deviation  and 

range IR  respectively. 

 3-15  
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, ,
1

( )
k

k a i a a
i

x P e  3-16  

 3-17  

Where: a is the mean value of the sequence a . 

3 Calculate the rescale range ( / )I IR S  of each sub-interval and the average rescale range  

of  A interval: 

 3-18  

4 Change the length n in step (1) and repeat Step (1)-(3) to calculate the range under different 

sub-interval lengths n. There is a linear relationship between  and log( / )nR S : 

 3-19  

(5) The slope  is obtained by linear fitting the sub-interval length and average range drawn on the 

lg-lg-coordinate graph by the least square method, which is the exponent. 

4. Method of Lo 

In 1991, Lo considered that the CRS analysis method will be biased if the time series show strong 

short-term correlation [23]. Therefore, Lo revised CRS analysis by introducing covariance: 

 3-20  
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 3-21  

In the Equation, 2 2
,

1

n

a k a a
k

,  ( q n ) is called Bartlett weight, 2
a is 

the variance of the a-th 1 2 )3(a a A  sub sample , 1

n
k a k

m , and j is   the sample autocovariance 

of order j. , 1

n
k a k

. How to select q value directly affects the accuracy of R/S analysis results. Therefore, Lo 

provides the optimal selection equation of q: 

 3-22  
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3-23

Where: is the estimated value of the first-order auto-correlation function. Lo method is CRS method

when 0q . Because the short-term correlation of time series signals is removed, Lo method is better for 

detecting the long-term correlation of time series.

3-24
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* * * *

1
1

N

a j a
n

3-25

5. V/S method

Some scholars believe that time series with significant long-term correlation cannot be accurately 

dealed with by Lo analysis method [24]. Therefore, V/S analysis method based on Lo analysis method is 

proposed:

3-26

3.3.3 A comparative study of R/S classic analysis method

To determine the optimal exponential analysis method of umbilical artery blood signal, the power 

spectrum Fast Fourier Transform (FFT) method is used to generate the sequence data of Fractional 

Gaussian Noise (FGN) with known exponent. Three R/S analysis methods were compared to determine the 

best method to calculate the Hurst exponent of umbilical artery time series in our research.

1.FGN

J.w. Vanness and Mandelbrot put forward the complete long memory model in 1968 [25]. The 

sequence of fractal Gaussian noise (FGN) is defined as the first-order difference process of fractal 

Brownian motion with Hurst exponent ( )HB t :

0
( 1) ( )t t H H t

y y B t B t 3-27

and its self-covariance function of order is:
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 3-28  

Where:  , is any positive number, and H is the Hurst exponent between 0 

and 1. 

 FGN sequence can be generated by power spectrum FFT: firstly, the density function of Fractional 

Brownian Motion (FBM) is constructed, and the corresponding FBM sequence is obtained by inverse 

transformation of the density function. Then the first order difference is adopted for FBM sequence and the 

Hurst exponent (H) is selected reasonably to realize the simulation of FGN sequence. 

Flandrin [26] proved that the time-averaged power spectrum of the H-sssi process is: 
 

3-29  

In the Equation (3-29), F  is the frequency of the H-sssi process,  is the Hurst index, and  is the 

intensity of the process. 

The periodogram belongs to an estimate of the power spectrum [27], defining the periodogram of the 
data segment 1

0

N  as: 

 3-30  

Where:  ,  indicates a rectangular window and  is the DTFT of the 

window. Using Equation (3-29) with Equation (3-30) we get: 

 
3-31  

The above equation constitutes a sufficient condition for the synthesis of fractal Brownian motion, 

which allows the establishment of a frequency domain relationship for FBM sampling with Hurst exponent 

between 0 and 1. The FGN sequence is then obtained by first order differencing of the FBM sequence. 

Since the length of the 4-second ( 11025s Zf H  ) umbilical artery time series in this study is 44000, the 

length of the simulated FGN series is also set to 44000. Figure 3-20 (a) and (b) show the FGN time series 

for different Hurst indices in the FFT simulation, respectively. 
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a H=0.6

b H=0.9

2. Evaluation results of R/S analysis method based on FGN sequence

In our research, FGN time series with known Hurst exponent is reverse-generated to simulate real 

umbilical artery blood signals, and the three methods are verified to obtain the best method for analyzing 

Hurst exponent of umbilical artery blood signals. Five kinds of FGN time series with H values between 0.5 

and 0.9 are generated by power spectrum FFT method, and the accuracy of Hurst exponent calculation of 

three kinds of analytical methods is compared and studied. In our research, the time series length of each 

umbilical artery signal is 44,000, so FFT simulation is used to generate FGN sequences of the same length. 

Since FGN sequences are randomly generated, 100 FGN sequences are generated under each specific H 

value to evaluate the three R/S analysis methods respectively. Then calculate the mean value of Hurst 

exponent of these 100 FGN sequences, and the calculation formula is as follows:

100

1

1
100 i

i
H H 3-32

Where: is the Hurst estimation value of 100 randomly generated FGN sequences. 

The FGN time series with each particular Hurst index were first simulated five times to obtain 100 sets 

Fig.3-20 FGN time series under FFT simulation



Chapter 3 Fractal characterization of umbilical artery blood signals 

61 

of FGN series each time, then the series were analyzed for Hurst index using three R/S class analysis 

methods, and finally the Hurst index was calculated for the 100 sets of FGN series obtained from each run 

and the mean value was calculated ( ), the results of which are shown in Figure 3-21. 

 

In the above figure, the X coordinate is the number of runs and the ideal Hurst exponent, and the Y 

coordinate is the average Hurst exponent. The Hurst exponent obtained by three R/S analysis methods is as 

follows: when H=0.5 and H=0.6, the average Hurst exponent obtained by the three methods is slightly 

larger than the true value, but CRS method is the closest to the true value. Lo method and V/S method both 

have large errors, among which V/S method has the largest error. When H=0.7, the Hurst exponent of the 

three methods are both lower than the true value and greater than the true value, but the calculation results 

of CRS method are still better and closer to the true value, when H=0.8 and H=0.9, the Hurst exponent of 

CRS method are both smaller than the true value and have the largest error, while the calculation results of 

Lo method and V/S method are close to the true value and there is little difference between the two 

methods, that is to say: If the Hurst exponent of the time series of umbilical artery blood signal is between 

0.5 and 0.7, the CRS method is used to analyze the Hurst exponent. However, if the Hurst exponent of the 

time series of umbilical artery blood signal is around 0.8~0.9, the Lo method is more accurate. When 

calculating Hurst exponent of time series of umbilical artery blood signal with length of 44,000, it is found 

that its value is around 1. Therefore, Lo method is selected in this research. 

3.3.4 Hurst exponent analysis of umbilical artery blood signals  

Based on the above FGN time series and the verification results of three R/S analysis methods, Lo 

method is more accurate for Hurst index analysis of 44000-length umbilical artery signal time series. 

Therefore, Lo method was adopted in this section to study umbilical artery blood signals and 

goodness-of-fit tests of the calculation process to ensure the accuracy of the calculation results. 

Figure 3-21 Calculated average values of Hurst index for FGN series (  ) 
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As a statistic for linear regression analysis, the goodness of fit (R2) is an important indicator of the 

goodness of fit of linear regression [28]. The value of goodness of fit ranges from 0 to 1. The closer the 

value to 1, the more accurate the calculated Hurst index is, indicating a better fit and the stronger the 

self-similarity of the umbilical artery blood  signal time series. The calculation principle is as follows: 

 3-33  

Where: i ,  is the log rescaled polar deviation for each subinterval  , H is the 

Hurst index,  is the average log rescaled polar deviation value for all subintervals , lg  is a 

constant. 

The correlation degree of the umbilical artery blood time series was analyzed by the Lo method, and 

the Hurst index was obtained by calculating a linear fit to the double logarithmic coordinates and testing the 

goodness of fit over all subinterval lengths. The linear regression of a particular umbilical artery blood time 

series is shown in Figure 3-22, with a goodness of fit R2 of 0.9976; slope 1.0992 (Hurst index). 

y = 1.0992x - 1.3946
R² = 0.9976

0.0

1.0

2.0

3.0

4.0

1.0 2.0 3.0 4.0 5.0
lg(S)  

According to the Hurst exponent analysis and goodness-of-fit tests mentioned above, Hurst exponent 

analysis was performed on time series of 12 normal umbilical artery blood, and the results are shown in 

Figure 3-23. 

Fig.3-22 Double logarithmic plot of extreme deviation versus subinterval length 



Chapter 3 Fractal characterization of umbilical artery blood signals 

63 

 

In Figure 3-23, the X coordinate is the 12 umbilical artery blood time series, and the Y coordinate is 

the results of Hurst exponent. It can be seen from Figure 3-23 that the Hurst exponent of time series of 

umbilical artery blood signal based on Lo method is different from each other, the maximum is 1.0898, the 

minimum is 0.87919. However, the Hurst index of all the time series of umbilical artery signals is close to 1. 

The results showed that the time series of signal of umbilical artery blood showed a long-range positive 

 f -of- it test 

was carried out for 12 umbilical artery blood samples. If the fitting results of Hurst exponent calculation 

process were better, the value of R2 is between 0.990 and 0.999. It indicates that the time series of umbilical 

artery signal has obvious self-similarity. 

3.4 Summary 

In this chapter, the basic concepts of fractal and fractal dimension are explained, the self-similarity and 

scale-invariance of fractal are described, and the algorithms for counting box dimension and correlation 

dimension are introduced in detail. 

The box dimension of the umbilical artery blood signals and detection data of 104 pregnant women are 

calculated, and the fractal and nonlinear characteristics of those signals are analyzed. The results indicate 

that there is a positive correlation between the box dimension of umbilical artery blood signals and 

gestational weeks. Secondly, thirty-six time series signals of abnormal umbilical artery blood and 36 time 

series signals of normal umbilical artery blood are composed into the abnormal group and the normal group. 

The CD of abnormal umbilical artery blood signal decreased significantly. CD is significantly superior to 

conventional parameters in distinguishing the normality of umbilical artery blood signals. The results show 

that the time series signals of umbilical artery belonged to non-

acteristic.  

Fig.3-23 R/S analysis and goodness-of-fit test results 
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Chapter 4  

Chaotic characterization of umbilical artery blood signal 

4.1 Chaos theory 

Systems in which the equations of time evolution are non-linear are defined as non-linear systems, i.e. 

systems in which the dynamic variables describing the properties of the system (i.e. position, velocity, 

acceleration and pressure etc.) appear in the equations in a nonlinear form are non-linear systems. In 

various fields of research, non-linear systems are more appropriately referred to as non-linear dynamics, i.e. 

the study of the dynamical behavior of non-linear systems. 

Chaos is a complex and irregular behavior arising from nonlinear systems prevalent in nature. In 

deterministic systems, chaos is both seemingly random and similarly irregular [1], a new form of existence in 

nonlinear systems [2]. Chaotic systems are predictable in the short term but unpredictable in the long term and are 

an important tool for quantitative analysis of nonlinear systems [3].  

At present, the application of chaos theory in biomedicine is still in its infancy compared to other 

fields, and although the scope of its application is still relatively narrow, it has expanded new ideas and 

provided new ways for the analysis of biomedical signals. 

4.1.1 Origin and development of Chaos 

Dynamics is considered as an important conceptual scheme between mathematics and other 

sciences, and under a common geometric model, dynamics unifies physical, biological, and social 

sciences, and mathematics, applied sciences and experimental sciences are the three br anches of 

disciplines developed by dynamics. In 1903, Poincaré [4]combined the study of topology with dynamical 

systems to formulate the Poincaré conjecture, which dominated the field of dynamical systems research. A 

dynamical system is defined as anything that moves, changes, or evolves over time. A dynamical system is 

-

outcomes can be chosen from a probability distribution. 

In the 19th century, a few classical physicists and mathematicians considered dynamical systems. In 

1898, Hadamard [5] first observed previously proposed solutions to initial condition sensitivity in a special 

system known as geodesic flow. Poincaré [6] initially highlighted the sensitivity to initial conditions and the 

unpredictability of the philosophical aspect of science in 1908. In 954 Kolmogorov [7

that conservative and dissipative systems are both chaotic, giving rise to the prototype of the KAM theorem. 



Chapter 4 Chaotic characterization of umbilical artery blood signals 

67 

In 1963, Lorenz [8

French astronomer Héno [9] discovered the Hénon map, which led to the theory of thermal gravitational 

collapse. With the development of mathematics, in 1971, the French mathematician and physicist Ruelle 

and the Dutch scholar Takens [10] were the first to propose a new argument for describing the mechanism 

of turbulence formation in terms of chaos, finding that dynamical systems have singular attractors, such as 

limit cycles leading to periodic solutions, and ring surfaces leading to quasi-periodic solutions, a study that 

stimulated the interest of researchers in different fields in chaos. Since 1975, chaos-related publications 

have developed very rapidly, with Hao Berlin [11] compiling several reference papers on chaos into one 

reference. Campbell [12] and Marek and Schreiber [13] having extensive reviews of chaos theory in their 

literature. In 1975, the Chinese-American scholar Li Tianyan and the mathematician Yorke [14] proposed 

the Li- 

logistic equations by American mathematical ecologists led to a joint study of chaos in various fields [15]. 

The first international chaos symposium held in Italy in 1977 further laid the foundation for chaos research 

[16]. The Feigenbaum number discovered by Feigenbaum in 1978 implies the emergence of a universal 

theory of one-dimensional mapping chaos phenomena [17]. 

In the early 1980s, Farme, Packard and Takens et al. proposed a delayed method for the calculation of 

phase space reconfigurations by dynamical orbits; Grassberger and Procaccia calculated the statistical 

characteristics of singular attractors based on experimental systems, thus evolving chaos analysis from the 

theoretical to the practical application stage.Since the mid-1990s, chaos science has permeated other 

sciences. Chaos theory and nonlinear dynamical theory have been used in a wide range of fields, including 

turbulence research in physics [18], epileptic brain research in biology [19], epidemiological mechanisms 

of disease occurrence [20], simulated economic dynamics [21] , ocean water level predictability in 

geology[22], and halo laser research in communications[23]. 

Researchers in the biomedical community disagree on the application of chaos, with Glass et al. [24] 

arguing that physiological rhythms in healthy bodies are regular and that chaotic phenomena cannot 

represent regular disease, while Goldberger et al. [25] argue that physiological rhythms in normal bodies 

are chaotic and that a disease state is a lack of variability in physiological rhythms. 

The linear and non-linear behavior of biomedical signals reflects the normality of human physiological 

parameters. In recent years, the study of nonlinear characteristics of biomedical signal time series has 

attracted great interest from a wide range of scholars [26-27]. Chaos is widely used in research areas such 

as the identification and parameter extraction of ECG signals, heart sound signals and breath sounds, EEG 

signals, biofeedback systems, EMG signals, neonatal respiratory dynamics, and cellular metabolism [28]. 
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4.1.2 Basic concept of Chaos

It is possible to trace the origin of the concept of chaos in physics to a related work written by L. 

Boltzmann in the 19th century. Chaos is currently characterized by the following characteristics, even 

though there is no clear definition of it [29]: initial condition sensitivity; chaotic attractor property; 

dimensional property; long-term unpredictability; positive Lyapunov exponent; ergodicity 

and boundedness; power spectral density property; and bifurcation property.

Tianyan Li and Yorke jointly proposed the LI-Yorke theorem [30].

Definition 4-1: Let : be a continuous self-map on the closed interval M if the following 

requirements are met.

(1) No upper bound on the period of the f cycle point.

(2) There exist uncountable sets S on M , S containing no periodic points and satisfying:

1) Same as , , , with .

2) , , , with .

3) and the cycle point with n n

n
.

In the above equations, ( )nf denotes the iteration of the function , then : is said 

to be chaotic on S .

Definition 4-2 A map over a bounded closed domain is chaotic if the following 

requirements are met.

(1) It is initial value sensitive and there exists such that for any x X and any neighborhood

B of , there exists and a natural number satisfying: .

(2) It is topologically transmitted, i.e. for any two open sets , there exists a 

natural number such that .

(3) It has dense periodic orbits in X.

4.2 Phase space reconstruction

A phase space is the set of every state of a dynamical system, which is a vector space with embedded 

dimensions. An important marker of the transition from theoretical to applied chaos science is the 

development of phase space reconstruction theory, 

chaotic properties of nonlinear dynamical systems by obtaining the 

structure of their attractors. The theory of phase space reconstruction makes it possible to obtain indirectly the 
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approximate trajectories of the attractors of evolving systems.

The recovery of attractors in higher dimensions is the aim of phase space reconstruction. Although all 

chaotic attractors are singular, not all singular attractors are chaotic. In other words, the chaos condition is 

necessary non-sufficient for the singularity condition of attractors. Attractors eventually fall into specified 

trajectories in chaotic systems as they change in time. The basic idea of reconstructing phase space is that 

the evolution of a component of a dynamical system is influenced by other components that are 

interconnected with it [31]. The relevant components can be characterized by a single component, and this 

single variable leads to a new multidimensional phase space, which contains many of the properties of the 

original phase space. Therefore, the state of the system trajectory in the 3D phase space can be used as a 

theoretical basis for qualitatively determining the characteristics of Chaos [32].

The delay coordinate approach is the most used phase space reconstruction technique in the study of 

nonlinear time series Chaos [33]. In 1981, Takens [34] proved that a reasonable choice of delay time and 

embedding dimension can reconstruct the regular trajectory of the time series in the phase space, i.e.:

embedding the m-dimensional metric space [35] and constructing the phase space structure of the original 

system based on the one-dimensional time series [36]. Let the nonlinear time series be , 

embedding this series into the m-dimensional space and reconstructing the phase space to obtain a sequence 

of phase points as:

1 ( 1)1 11

2 ( 1)2 22

( 1)

m

mm

N mN NN

xx xX
xx xX

R

xx xX

4-1

Where, is the delay time, is the embedding dimension ( 2 1m d and the dimension of 

original dynamic system is d ), and indicates that the phase points become

phase points when the dimension time series is reconstructed from the time series .

4.2.2 Determination of phase space reconstruction parameters

The morphological characteristics of chaotic attractors in phase space reconstruction are influenced by 

the delay time and the embedding dimension m. Among them, the delay time is selected by C-C 

algorithm, autocorrelation function method and average mutual information method [37], while the 

autocorrelation function method is simple to calculate but prone to error, which is not suitable for nonlinear 



Doctoral Dissertation 

70 

time series. The average mutual information method is cumbersome to calculate and less applied [38]. In 

this paper, a correlation-integration-based C-C algorithm is used to reconstruct the phase space of the 

umbilical artery flow Doppler signal time series, which can calculate the embedding dimension and delay 

time simultaneously, and is easy to operate, computationally compact and noise-resistant. 

The C-C algorithm [39] constitutes a statistic through the correlation integral of a time series with 

delay times and time windows  satisfying =( -1)m m , which can be obtained from the relationship 

between the correlation integral and the delay times to determine the embedding dimension m. The 

correlation integral is defined as: 

 

1

2( , , ) ( )
( 1) ij

i j M
C m r H r d

M M

 
4-2  

where : r is the neighborhood radius; M is the number of phase points;  is the hypersphere 

radius in phase space and  is the Heaviside step function, defined as: 

1 ( 0)
( )

0 ( 0)
H

 
4-3  

Dividing the umbilical artery blood signal time series  into t non-overlapping 

subseries, get: 

s
1

1( , , , ) [ ( , / , , ) (1, / , , )]
t

m
s

s
S m N r t C m N t r t C N t r t

t

 
4-4  

 Take the mean value of all . 

1 1

1 ( , , )
M J

j
m j

S S m r t
M J

 
4-5  

where: M, J are the embedding dimension and the number of r, respectively. Defining  as the 

maximum deviation from the value of r, then: 

j j
 

4-6  

where: , ,  is the standard deviation of the time series [40]. The 

following three variables are calculated separately: 
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4-9  

From the above three equations, the optimal delay time is the time corresponding to the first zero of 
( )S t in Equation (4-7) or the time corresponding to the first local minima of in Equation (4-8); the 

time corresponding to the minimum of  in equation (4-9) is the time window  and the embedding 

dimension . 

 

4.3 Chaotic characteristic recognition of umbilical artery blood signal  

Umbilical artery blood signal time series chaotic characteristics recognition methods can be divided 

into qualitative and quantitative recognition. The qualitative method of identifying chaos can be 

distinguished from other signals, such as random, periodic, and quasi-periodic signals, by revealing the 

special spatial structure of the time series in the time or frequency domain. The quantitative identification 

method identifies chaotic behavior by calculating the characteristic values of the singular attractors of the 

time series. The main parameters for characterizing the singular attractors are the proximity orbit dispersion, 

which characterizes the dispersion rate of the proximity orbit, and the Kolmogorov entropy, which reflects 

the complexity of the information [41]. In the following, both qualitative and quantitative chaotic 

characteristics of the umbilical artery blood flow signal will be identified using the phase diagram method 

and the Maximum Lyapunov Exponent (MLE) index method. 

4.3.1 Phase diagram method 

For nonlinear systems, the time series phase diagram can be described as the trend of state change over 

space of the system shows repeated folding, extension and non-periodic motion that never intersects in a 

finite space, the system can be qualitatively determined as chaotic with singular attractors and has chaotic 

characteristics [42-43]. The phase diagram method can be used to qualitatively determine the chaotic of the 

umbilical artery blood signal based on the specificity of the time series in space. To visualize the attractor 

morphology and structure, the phase diagram method usually determines the optimal delay time for phase 

space reconstruction and then reconstructs the time series into a three-dimensional phase space to observe 

the attractor characteristics. The time series with chaotic characteristics are transformed into points in the 
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three-dimensional phase space, which will form a certain regular trajectory and form singular attractors, 

while the random time series transformed into points in the three-dimensional phase space are only 

scattered throughout the phase space without any regularity and will not form a specific trajectory, i.e., no 

attractors will be formed.

The phase diagram method was used to qualitatively identify chaotic features in the normal umbilical 

artery blood time series signals collected in 2021. One umbilical artery blood signal from the normal group 

was taken. Firstly, the C-C algorithm was used to calculate the delay time of each umbilical artery blood 

signal time series, as shown in Figure 4-1, which shows the variation curve of each statistic of the C-C 

algorithm for a fetal umbilical artery blood signal time series. As can be seen from the graph, the first local 

minima of the correlation integral ( )S t occurs at ms48 and therefore the best delay time is 

taken .

In my research, thirty-six normal umbilical artery blood signals were selected, and 36 abnormal 

umbilical artery blood signals were selected. Figure 4-2 shows part of normal umbilical artery blood signals, 

while Figure 4-3 shows part of abnormal umbilical artery blood signals. 

Figure 4-1 Time series C-C algorithm plot of umbilical artery blood signal

a Normal sample No. 1                   b Normal sample No. 2
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c  Normal sample No. 3                   d  Normal sample No. 4 

e  Normal sample No.5                    f  Normal sample No. 6 

Figure 4-2 The time series of umbilical artery signals in the normal group 

a  Normal sample No. 7                  b  Normal sample No. 8 

c  Normal sample No. 9                  d  Normal sample No. 10 
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Using =48s as the optimal delay time for phase space reconstruction, the umbilical artery blood 

signal time series was embedded into the three-dimensional phase space, and its phase diagram is shown in 

Figure 4-4, where Figure (a) is the three-dimensional phase diagram and Figure (b) is the two-dimensional 

phase diagram.

From the phase diagram, the time series are locally folded and repeatedly entangled in space to form 

singular attractors, and their phase trajectories are neither reciprocal nor random motion of periodic 

functions, which can determine that the umbilical artery blood signal time series have chaotic 

characteristics. The phase space reconstruction of the remaining 11 samples showed a similar pattern of 

singular attractors, indicating that the time series of umbilical artery blood signals were chaotic.

Another five normal umbilical artery blood time series are shown in Figure 4-5 as three-dimensional 

phase diagrams as well as two-dimensional phase diagrams.

e Normal sample No.11                    f Normal sample No. 12
Figure 4-3 The time series of umbilical artery signals in the abnormal group

a Three-dimensional phase diagram b x-y two-dimensional phase diagram
Fig. 4-4 Time series phase diagram of umbilical artery blood signal of normal sample No.1
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a-1 Three-dimensional phase diagram of            a-2 x-y two-dimensional phase diagram of
  normal sample No. 2                            normal sample No. 2  

b-1 Three-dimensional phase diagram of            b-2 x-y two-dimensional phase diagram of   
normal sample No. 3                               normal sample No. 3

c-1 Three-dimensional phase diagram of              c-2 x-y two-dimensional phase diagram of
normal sample No. 4                               normal sample No. 4

d-1 Three-dimensional phase diagram of             d-2 x-y two-dimensional phase diagram of
normal sample No. 5                                 normal sample No. 5
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e-1 Three-dimensional phase diagram of                e-2 x-y two-dimensional phase diagram of
normal sample No. 6                                 normal sample No. 6

Fig 4-5 Three-dimensional phase diagram and two-dimensional phase diagram of umbilical artery blood signal time 
series in normal group

The phase diagram method was used to reconstruct the phase space for the abnormal umbilical artery 

blood time series to obtain chaotic phase diagrams for each umbilical artery blood signal time series, part 

results are shown in Figures 4-6 below for abnormal three-dimensional phase diagrams and 

two-dimensional phase diagrams of the umbilical artery blood time series, tagged as abnormal samples No. 

7-12.

a-1 Three-dimensional phase diagram of                a-2 x-y two-dimensional phase diagram
abnormal sample No. 7                             of abnormal sample No. 7

b-1 Three-dimensional phase diagram of                  b-2 x-y two-dimensional phase diagram
abnormal sample No. 8                              of abnormal sample No. 8
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c-1 Three-dimensional phase diagram of                  c-2 x-y two-dimensional phase diagram
anomaly sample No. 9                                 of anomaly sample No. 9

d-1 Three-dimensional phase diagram of               d-2 x-y two-dimensional phase diagram
Abnormal sample No. 10                             of abnormal sample No. 10

e-1 Three-dimensional phase diagram of               e-2 x-y two-dimensional phase diagram
abnormal sample No. 11                            of abnormal sample No. 11

f-1 Three-dimensional phase diagram of              f-2 x-y two-dimensional phase diagram
abnormal sample No. 12                             of abnormal sample No. 12
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Figure 4-6 Three-dimensional phase diagram and two-dimensional phase diagram of umbilical artery blood 
signal time series in abnormal group 

Compared to Figure 4-5, the chaotic 2-D phase diagram of the abnormal umbilical artery blood signal 

time series shown in Figure 4-

randomness of the signal caused by the heterogeneity of the flow fluctuations due to different pathologies. 

Chaotic phase diagrams can therefore qualitatively determine the abnormality of umbilical artery blood 

fluctuations. 

4.3.2 Maximum Lyapunov Exponent method  

In the last two decades of dynamical systems theory, the Lyapunov exponent has been widely used to 

identify chaotic behaviour. When the initial state of a system changes slightly, the trajectory lines resulting 

from two extremely close initial values separate exponentially in phase space over time, a phenomenon that 

can be described quantitatively by the Lyapunov exponent [44]. For n-dimensional systems with n 

Lyapunov exponents in the state space, there must be at least one positive Lyapunov exponent to determine 

that the system is chaotic. 

In 1983, Gribo proved that whether the Maximum Lyapunov Exponent (MLE) is greater than 0 can be 

used as a basis for determining whether a time series is chaotic [45]. The basic idea is that after phase space 

reconstruction, a positive Lyapunov exponent measures the average divergence exponent of two 

neighboring trajectories, which are initially close and gradually separate over time. The more positive the 

Lyapunov exponent, the faster they move, then the distance between nearby orbits increases exponentially 

in time and the system exhibits a sensitive dependence on the initial conditions; while a negative Lyapunov 

exponent measures the convergence index of two neighboring trajectories, the trajectories converge in time 

and the dynamical system is insensitive to the initial conditions. If for a time series, this indicates that it is 

stochastic or periodic. Therefore, whether the MLE can be greater than 0 is an important criterion for the 

presence of chaotic behaviors of the system. 

Although Abarbanel et al. [46], Iasemidis [47] and Mccaffrey et al. [48] have proposed improved 

algorithms for calculating Lyapunov indices from observations, Wolf's method [49] is still considered the 

most classical MLE algorithm. 

Let the chaotic time series be , the embedding dimension is  , the 

delay time is , and the phase space reconstruction of the time series be 

1 2 ( 1) 1( ) [ ( ), ( ), , ( )]m T
i N mR X t X t X t X t . Take the initial point , set its distance from 
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the nearest neighbor to , trace the time evolution of these two points until the distance 

between them exceeds a certain fixed value at the moment , i.e. '
0 0 1 , 

keep , and find the other nearest neighbor of , 

making 1 1 1 1( ) ( )L X t X t , and continue the above process as shown in the schematic diagram in 

Figure 4-7.

Fig.4-7 Schematic diagram of the Wolf method

Until reaches the end of the time series, the total number of iterations M of the tracking 

evolution process is counted, and the MLE is expressed as:

'

00

M
i

iM i

4-10

For the 36 normal and 36 abnormal umbilical artery blood signals, the MLE was computed based on 

the MLE calculation concept, and part results are displayed in Tables 4-1 and 4-2, respectively.

Table 4-1 Part results of the MLE for the normal group

Serial 
number 1 2 3 4 5 6

MLE -0.3884 -0.2703 -0.2429 -0.1690 -0.5396 -0.0605

Serial 
number 7 8 9 10 11 12

MLE -0.0378 -0.7557 -0.5874 -0.5936 0.0116 -0.4869

Table4-2 Part results of the MLE for the abnormal group

Serial 
number 1 2 3 4 5 6

MLE 0.6173 -0.0054 0.2937 0.6715 0.7844 0.3288

Serial 
number 7 8 9 10 11 12

MLE 0.3730 0.1427 -0.0197 0.2061 0.9310 0.9249

4.3.3 Box plot and ROC of MLE

The box plot and ROC curves of MLE are shown in Figures 4-8 and Figure 4-9.
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Through Figures 4-8, we can clearly see the significant difference in MLE values between the normal 

and abnormal groups. Specifically, the median MLE value for the abnormal group is greater than zero, 

indicating that more than half of the data points in the abnormal group are located at or above zero. 

Conversely, the median MLE value for the normal group is below zero, signifying that over half of the data 

points in the normal group are positioned at or below zero. This observation is of paramount importance, as 

it has the potential to serve as a potential parameter, aiding in the differentiation of individuals between 

normal and abnormal states. 

However, it is important to note that despite the conspicuous median difference, the maximum MLE 

value in the normal group still exceeds zero, while the minimum MLE value in the abnormal group falls 

below zero. This implies the presence of an overlap, which could potentially result in a certain degree of 

misdiagnosis when employing MLE for diagnosis. Therefore, in practical applications, it is imperative to 

conduct a more comprehensive exploration of the distribution characteristics of MLE values to determine 

suitable thresholds and standards, thereby mitigating the potential risk of misdiagnosis. 

 

Fig.4-8 Box plot of MLE 
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A more detailed examination of Figure 4-9 reveals that the Receiver Operating Characteristic (ROC) 

area under the curve (AUC) for the Maximum Likelihood Estimation (MLE) method is 0.90395. This result 

is significantly superior to other methods, such as S/D with an ROC AUC of 0.73727, RI with an ROC 

AUC of 0.72153, and PI with an ROC AUC of 0.70822. This indicates that the MLE method demonstrates 

exceptional diagnostic accuracy, enabling a more precise differentiation between healthy and abnormal 

states. It is particularly noteworthy that the MLE method exhibits a significantly higher true positive rate 

(TPR) compared to other methods, signifying its heightened sensitivity in correctly diagnosing patients 

with the disease. This is of paramount importance, especially for diagnosis and treatment decision-making, 

as a high TPR aids in capturing status promptly, facilitating timely intervention. 

These experimental findings underscore the immense potential of the MLE method in umbilical artery 

blood diagnosis, especially when compared to other methods. In ROC analysis, it demonstrates a larger 

area under the curve and superior diagnostic performance. This highlights the significance of the MLE 

method in achieving accurate disease diagnosis and improving the quality and timeliness of medical 

decision-making. 

4.4 Summary  

Through introducing the background, development process and basic concepts of chaos theory and 

phase space reconstruction theory, we focus on the calculation methods of phase space reconstruction 

parameters. On this basis, the chaotic characteristics of the signal time series of umbilical artery blood are 

identified using qualitative and quantitative methods. 

Fig.4-9 ROC of M LE and conventional parameters 
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1. The time series of the umbilical artery blood signal is reconstructed in three and two-dimensional 

phase space based on delay time attractors, and the chaotic characteristics of the time series of the umbilical 

artery blood signal are determined qualitatively. 

2. The chaotic characteristics of the umbilical artery blood signal time series were determined 

quantitatively by studying the Wolf method of Lyapunov index and calculating the MLE of the umbilical 

artery blood signal time series. Receiver Operating Characteristic Curve (ROC) of MLE shows that MLE is 

significantly superior to conventional parameters in distinguishing the normality of umbilical artery blood 

signals. 
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Chapter 5 

Composite multi-scale feature extraction and diagnosis for umbilical 
artery blood 

In the age of digital medical technology, biomedical data is exploding and the era of big biomedical 

data has arrived [1]. It is a huge challenge for researchers to handle and interpret the huge amount of 

biomedical data. In recent years, Artificial Intelligence (AI) technology, with machine learning at its core, 

has impacted a wide range of fields, such as unmanned driving, face recognition, machine vision, expert 

systems, bioinformatics, intelligent search and computer-aided medical diagnosis [ 2 - 3 ].AI in the 

biomedical field will play a significant role in uncovering hidden information in biomolecular data, 

improving the accuracy of pathological diagnosis, enhancing clinical diagnosis and improving personalized 

health management [4]. 

Two important research directions in the application of artificial intelligence technology to the 

biomedical field are: clinical diagnosis and bioinformatics data mining. For the field of clinical diagnosis, 

through the extraction and pre-processing of diagnostic data to form diagnostic datasets, machine learning 

algorithms and feature selection are used to construct disease classification and prediction models to 

provide decision support for doctors' clinical aids to diagnostic tools and rational treatment plans. 

5.1 Introduction to machine learning 

Artificial intelligence is the study of the acquisition of knowledge and its use by machines, based on 

machine learning (ML) algorithms that give computers the ability to generalize and build intelligent models 

to achieve artificial intelligence [5-6]. Machine learning can perform a variety of tasks, including complex 

tasks such as classification, regression and clustering [7]. 

Although deep learning (DL), which extends machine learning with feature engineering, has a strong 

learning capability and is an end-to-end approach, it has some application limitations due to the large 

number of learning samples required, for this reason, traditional machine learning and achieving intelligent 

classification tasks by virtue of human experience is more in line with engineering needs in medical 

applications [8-9]. 

Multi-lable learning(MLL) is also part of machine learning [10-11],where a new sample input to a 

model trained on a multi-semantic sample outputs all possible related one-semantic sets, and it is widely 

used in genetic engineering and medical diagnosis [12].The relationship between artificial intelligence, 

machine learning, deep learning and multi-tagged learning is shown in Figure 5-1. 
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5.2 Datasets and classifiers

5.2.1 Definition

Definition 5-1 Data set

The dataset is a two-dimensional data table with rows as records and columns of features, represented 

by the triad , ,D I X Y , where (1) is the record identifier, used to uniquely identify a sample; 

(2) is the set of classification features, consisting of features, noted as 1 2, , , NX X X X ; and 

(3)Y is the target feature, used to identify the category of the sample.

Definition 5-2 Classifier

A classifier is defined as: for a given data set, a function whose independent variable is the categorical 

feature and whose dependent variable is the target feature , for a given 

sample 1 2, , , nx x x x , whose category can be determined by the classifier , where ,x X y Y .

5.2.2 Classifier performance

Accuracy, Specificity and Sensitivity are three common metrics used to evaluate the performance of 

classifiers, which can be calculated using a confusion matrix that represents the relationship between the 

true class attributes and the predicted class attributes. The confusion matrix for a binary classification 

problem is shown in Table 5-1 below.

Table 5-1 Confusion matrix for binary classification

Predicted classes
C1 C2

Actual class
C1 True Positive  TP False negative FN
C2   False Positive FP True Negative TN

Figure 5-1 Relationships between AI, ML, DL and MLL



Chapter 5 Composite multi-scale feature extraction and diagnosis for umbilical artery blood 

87 

In Table 5-1, given two classes of positive samples (Positives, C1) and negative samples (Negatives, 

C2), True positives (TP) refers to the number of positive samples that were correctly labeled (predicted to 

be positive and actually positive), False positives (FP) refers to the number of incorrectly labeled negative 

samples (predicted positive, actual negative), True negatives (TN) refers to the number of correctly labeled 

negative samples (predicted negative, actual negative), and False negatives (FN) refers to the number of 

incorrectly labeled positive samples (predicted negative, actual positive). 

Definition 5-3 Accuracy 

 Labeled Accuracy represents the recognition rate of the classifier for the total sample and is 

calculated as shown in Equation 5-1. 

 5-1  

Definition 5-4 Specificity 

labeled Specificity, indicates the recognition rate of the classifier for negative samples and is 

calculated as shown in Equation 5-2. 

= /Specificity TN TN FP  5-2  

Definition 5-5 Sensitivity 

labeled Sensitivity, indicates the classifier's ability to identify positive samples and is calculated as 

shown in Equation 5-3. 

Sensitivity TP TP FN  5-3  

Definition 5-6 Checking completeness rate 

The check-all rate, noted as Recall, represents the ratio of correctly classified positive samples to all 

positive samples, and the formula is shown in 5-4. 

=TPR TP FNecall /(  5-4  

Definition 5-7 Precision 

The precision represents the proportion of correctly classified positive samples out of the sum of 

incorrectly classified negative samples and correctly classified positive samples and is calculated as shown 

in Equation 5-5. 

 5-5  

Definition 5-8 True Rate 
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The true rate represents the ratio of samples of a category (positive or negative) to all samples of that 

category that are correctly classified. For positive samples (minority samples), the true rate is 

labelled  and for negative samples (majority samples), the true rate is labelled  . The 

calculations are shown in equations 5-6 and 5-7 respectively as follows. 

 5-6  

/TPRMaj TN TN FP  5-7  

 As can be seen from the definitions,  is equivalent to Recall and Sensitivity, while  is 

equivalent to Specificity. 

5.3 Multi-scale feature extraction and diagnosis for umbilical artery blood signal  

5.3.1 SVM 

In 1995, Professors Cortse and VAPNIK of Bell labs proposed the theory of Support Vector Machines 

SVM [13-14] , which is a machine learning algorithm based on structural risk minimization to solve 

small samples with high-dimensional space recognition. The aim of the SVM method is to transform 

non-separable on problems in low-dimensional space into separable problems in high-dimensional space 

[15-16], thus solving the non-linear classification problem and solving the problem of model complexity 

due to high-dimensional patterns by introducing kernel functions [17]. 

1. Optimal classification hyperplane 

The classification principle of SVM is to find an optimal classification hyperplane that satisfies the 

classification accuracy while maximizing the blank area on both sides of the plane, based on the premise 

that the classification is correct. SVM classification problems can be classified as: linearly divisible, 

linearly indivisible, and approximately linearly divisible. 

The basic idea of SVM can be illustrated by two types of linearly divisible cases as shown in Figure 

5-2 [18]. 

 

Fig.5-2 Optimal classification hyperplane 
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In Figure 5-2, solid and hollow circles are used to represent negative and positive class samples 

respectively. Assume that the two types of samples can be correctly separated by a line of analytical 

formula with as the normal vector and b as the intercept. The lines ,

respectively, are the sample points passing through the closest of the two classes of samples to the 

classification line, and their analytical formula are -1x b and ,respectively, such 

that is the bisector between H1 and H2 respectively. The classification interval that can be maximized by 

adjusting and is known as the unique optimal hyperplane [19]. The size of the classification 

interval depends on the samples of the straight lines and 2H , which are called Support Vector.

2. linear support vector machines

(1) Linear support vector classifier

For a sample set of linear data:

5-8

Where: n .

Suppose there exists a discriminant function:

5-9

The optimization problem needs to be constructed to maximize the distinction between the two types 

of samples:

21min
2 5-10

i

Solving the above equation yields:

1
=

n

i i i
i

y x
5-11

1
( )

n

i i i i j
i

b y y x x

A linear discriminant function is obtained as follows:

1
( ) sgn( ( ) )

n

i i i
i

f x y x x b 5-12

(2) Linear support vector regression machine

Support vector machine regression algorithms for data regression prediction are an important branch 

of multivariate statistical analysis. For a set of linear data sample sets:
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1 1 2 2( , ), ( , ), , ( , )n n 5-13

Construct the equation of the fitted curve of input x and output y as:

T 5-14

Where: W and are the weighting factor and bias term respectively. Since the fitted curve is 

generally not a true curve equation and there is error, it is necessary to define an insensitive loss function to 

keep the error within the tolerance range, the mathematical expression is:

( , , ) ( ) max(0, ( ) )L x y f y f x y f x 5-15

Where: is a small positive number. The insensitive loss function can also be represented graphically, 

see Figure 5-3.

When = 0, equation 5-15 is equivalent to the absolute error function; when , equation 5-15 is 

equivalent to the two rays of the absolute error function shifted left and right by the distance of 

respectively.

Ideally, all training data should be in a pipeline with a radius of , which is the insensitive loss 

region or pipeline. Maximising this region allows the maximum possible number of unknown points to 

fall into this region, and the original regression problem is then transformed into an optimisation problem: 

2 21min 1
2

W W 5-16

3. Non-linear support vector machines

The linearly indistinguishable case is the most common problem in practical applications of pattern 

recognition, as shown in Figure 5-4.

Fig. 5-3 Insensitive error function
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In Figure 5-4, the non-linear problem in the low-dimensional original input space is transformed into a 

linear problem in the high-dimensional feature space by a nonlinear mapping, and then the optimal 

classification hyperplane is constructed.

When dealing with non-linear data sets, the training sample features need to be mapped to a 

high-dimensional linear space by means of the mapping function ( )x , bringing ( )x into the optimization 

problem at:

1 1 1

1min ( ( ) ( ))
2

n n n

i j i j i j i
i j i

y y x x 5-17

1

n

i i
i 5-18

Let , the original problem is transformed into:  

1 1 1

1min ( )
2

n n n

i j i j i j i
i j i

y y K x x 5-19

1

n

i i
i 5-20

The non-linear discriminant function is:

i i i 5-21

Where: ( , )iK x x is called the kernel function. In SVM, input features are mapped to the Point product 

eigenspace and the mapping function ( )x is replaced with a kernel function that satisfies the Mercer 

condition.

Fig. 5-4 Schematic diagram of a nonlinear mapping
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4. Approximate divisibility problems  

Such problems are approximately linearly divisible if a small number of linearly indivisible sample 

points can be removed from the training sample and the remaining sample points are linearly divisible, as 

shown in Figure 5-5. 

 

Since the linearly divisible problem, relaxation variables i  are introduced to allow for 

the presence of misclassified samples. To keep the number of misclassified samples as small as possible, 

penalty factors C ( 0C ) are introduced to indicate the strength and importance of the penalty for 

misclassification cases. This gives the original optimization problem for an approximately linearly 

separable support vector machine, also known as a Soft Margin SVM. 

2

1

1min
2

. . ( ) 1 1,2,
0, 1,2,

l

i
i

i i i

i

w C

s t y w x b i l
i l

 

5-22  

Equation 5-22 also reflects the idea of the structural risk minimization principle, with the first term of 

the objective function reflecting the principle of maximizing the classification interval and the second term 

reflecting the minimization of the classification error. is the weighting factor that regulates these two 

objectives. The pairwise problem for an approximate linearly separable support vector machine is: 
 

5-23  

Fig. 5-5 Approximate linear divisibility problem 
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Where i is the Lagrange multiplier corresponding to the ith sample and there is a unique optimal 

solution to the pairwise problem . The linearly divisible and approximately linearly divisible dyadic 

problems are essentially the same, differing only in the constraints on the Lagrange multipliers. The 

expression of the optimal decision function and the computational procedure for the approximately linearly 

divisible case are the same as those for the linearly divisible case.

5.3.2 SVM classification of umbilical artery blood signal with conventional parameters 

As described in the previous 5.3.1, SVM is a typical binary classification model whose aim is to find 

hyperplanes to partition the sample data, with the objective of maximizing the separation interval and 

transforming the separation problem into a convex quadratic programming problem. For when the samples 

are linearly inseparable, a non-linear SVM is learned by soft interval maximization with the kernel trick.

First, using the umbilical artery blood S/D value, pulsatility index (PI) and resistance index (RI) as 

features parameters, the data of 120 were divided into 30 groups for each of the four states of normal, 

oligohydramnios, umbilical cord around neck and fetal malposition, with labels 1, 2, 3 and 4 respectively. 

Label them and take 20, 5, 5 data from each group as training set, test set and validation set respectively. 

The training set, test set and validation set have 80, 20, 20 sets of data respectively.

To avoid the chance of sample selection affecting the accuracy, 20 of the 30 groups of samples were 

randomly selected as training samples. After completing for a total 10 experiments, the totally average 

accuracy rate is 68.75% and some of the experimental results are shown in Figure 5-6.

As can be seen in Figure 5-6, the accuracy of the SVM classifier was not satisfactory for the quadruple 

classification of normal, oligohydramnios, umbilical cord around neck and malposition based on 

three-dimensional data samples with S/D, PI and RI as features of umbilical artery blood. 

Fig.5-6 Results of SVM classification of umbilical artery blood with conventional parameters 
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5.3.3 PSO-SVM classification of umbilical artery blood signal with conventional parameters

Considering that the selection of the kernel and normalization parameters has a large impact on the 

accuracy of the SVM, and that excellent parameter selection can enhance the generalization ability of the 

SVM, the Particle Swarm Optimization (PSO) algorithm is introduced to optimize the selection of the 

kernel and normalization parameters. 

1. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was proposed by Eberhart et al. and was inspired 

by the foraging behavior of a flock of birds [20]. In the PSO algorithm, each particle has a corresponding 

velocity and position to adjust its own state, and the position of the particle represents a potential solution 

to the problem to be optimized. The PSO algorithm is described mathematically as follows: 

In the D-dimensional space, there exists a population consisting of m particles, the position vector of 

the ith particle in D-dimensional space is   and its velocity vector is 

. The best position of the ith particle is represented by vector 

, the best position of the population is represented by vector 

, and the update of velocity and position is shown by Equation (5-24) and 

Equation (5-25) [21] .

5-24

5-25

Where, ; 1,2, ,d D ; k is the current evolutionary generation; c1 and c2 are learning factors; 

is inertia weights and is random numbers within [0,1].

2. Optimization parameters

The optimization search process of the PSO kernel parameters and regularization parameters is shown 

in Figure 5-7. The initial position of the particle swarm is determined by the initial values of the kernel 

parameters and regularization parameters, and its optimization fitness function is determined by the 

accuracy of the SVM. The objective of the optimization search is the highest accuracy rate.
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Fig. 5.7 PSO seeking flow diagram

S/D, PI and RI are still used as the feature parameters, and the sample division is the same as 5.3.2, 

and among the 30 groups of samples, 20 groups are randomly selected as the training samples, 5 groups as 

the test samples, and 5 groups as the validation samples, and the average accuracy of PSO-SVM reaches 

72.75% after the adoption of PSO-SVM. Although the accuracy of the PSO-SVM classification method is 

improved by about 4% over the PSO classification method, the results are still not satisfactory.

The reason for this is that the features approach loses the original information of the data, resulting in 

a lower accuracy of the SVM test set performance. In the next section we consider a classification study 

using nonlinear feature classification.

Fig.5-8 Results of PSO-SVM classification for umbilical artery blood with conventional parameters
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5.3.4 PSO-SVM classification of umbilical artery blood signal with nonlinear parameters

In this section, the three features of S/D, PI, and RI in 5.3.3 were replaced by the fractal box 

dimension, correlation dimension and MLE as the new non-linear parameters proposed for PSO-SVM state 

classification. 

The partial results of the normalization of the non-linear characteristics of the four states are shown in 

Table 5-2.
Table 5-2 Non-linear characteristics normalization matrix

Lable Status Box dimension Correlation dimension MLE
1 Normal state -0.170 -0.549 -0.254

2 Umbilical cord around neck -0.881 0.003 0.253

3 Oligohydramnios 0.120 -0.396 0.965

4 Fetal malposition 0.130 -0.533 0.210

The 120 clinical data were divided into 30 groups for each of the four states of normal status, 

oligohydramnios, umbilical cord around neck, and fetal malposition, corresponding to tags 1, 2, 3 and 4. 

The results showed that the PSO-SVM intelligent classification model with non-linear parameters 

performed better in diagnosing umbilical artery blood abnormalities. The classification accuracy based on 

non-linear parameter features is 9% higher with PSO-SVM compared to using S/D, PI and RI as feature 

parameters.

Fig.5-9 Results of PSO-SVM classification for umbilical artery blood with nonlinear parameters

Table 5-3 demonstrates that the SVM can classify umbilical artery blood time series, and that the 

PSO-SVM with can further improve state classification performance and increase the precision of the 

classification diagnosis. The PSO-SVM with non-linear parameters is more accurate because the feature 

parameters contain more representative characteristics of non-linear problems.
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Table 5-3 Accuracy rates of different methods 

Model   Diagnostic accuracy/% 

SVM 
(S/D PI RI) 68.75 

PSO-SVM 
(S/D PI RI) 

 
72.75 

 
NC-PSO-SVM 

  (BD CD MLE)  77.5 

5.4 Summary  
The fundamental theory of SVM and PSO is introduced in this chapter. An intelligent diagnosis model 

based on the integration of an artificial intelligence algorithm is proposed to address the issue of low 

accuracy of early umbilical blood pathology diagnosis due to human experience. 

The Support Vector Machine (SVM) classifying method is constructed based on the conventional 

parameters, S/D, PI and RI. The particle swarm optimization (PSO)-SVM classification of umbilical artery 

blood with conventional parameters was constructed. The box dimension, correlation dimension and MLE 

derived from Chapter 3 and Chapter 4 are used as feature parameters to construct nonlinear characteristic 

PSO-SVM classifying method. The results of the classification tests show that the PSO-SVM with 

nonlinear parameters classifying method has higher accuracy, which is confirmed that the proposed 

classifying method is useful and effective. 
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Chapter 6 

Conclusions and Prospects 

6.1 Conclusions 

This thesis studies the signals of umbilical artery blood and the collected data by applying nonlinear 

analysis theory and machine learning approach to identify the relationship between umbilical artery signals 

and fetal health status. Based on the fractal theory, the box dimension, correlation dimension and Hurst 

index of umbilical artery signal are investigated; the chaotic characteristics of the time series of umbilical 

artery signal are identified from both qualitative and quantitative perspectives; on the basis of determining 

the chaotic characteristics of the time series of umbilical artery blood signal, SVM method is applied to the 

classification of umbilical artery signal.  

 The following are the key findings of the research and the conclusions of this dissertation: 

1. The fractal dimension of umbilical artery blood signal was calculated by the box dimension 

method, and the umbilical artery blood signal was proved to have fractal characteristics, and it was found 

that: the greater the gestational week, the greater the box dimension, and there is a positive correlation 

between the fractal dimension and the gestational week; the health status of the pregnant woman and the 

fetus can be characterized by the box dimension of umbilical artery blood signal, and the box dimension 

can be used as a quantitative indicator of fetal health status; the box dimension of umbilical artery blood 

signal can reflect the maternal blood supply to the fetus to some extent. The CD of umbilical artery blood 

was studied, the overall CD of normal umbilical artery blood flow signals is greater than that of abnormal 

signals. CD is significantly superior to conventional detection parameters in distinguishing the normality of 

umbilical artery blood signals. The Hurst index of umbilical artery blood signal was calculated by Lo 

method, and the results showed that the time series of umbilical artery blood signal had obvious 

self- n-smoothness of umbilical artery blood 

signal were found. 

2. Chaotic phase space diagram method and Maximum Lyapunov Exponents (MLE) are used to 

determine the chaotic characteristics of umbilical artery blood signals from qualitative and quantitative 

perspectives. The attractor reconstruction of umbilical artery blood signals has been performed in 

Three-Dimension (3D) and Two-Dimension (2D) phase space. The results indicate that the chaotic phase 

diagram of the time series of abnormal umbilical artery signals 

 MLE of normal group for umbilical artery blood signals and MLE of 
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abnormal group for umbilical artery blood signals are calculated, which can quantitatively distinguish 

between normal and abnormal umbilical artery blood signals. Receiver Operating Characteristic Curve 

(ROC) of MLE shows that MLE is significantly superior to traditional detection parameters in 

distinguishing the normality of umbilical artery blood signals. 

3. An artificial intelligent classification method is proposed to categorize the four states of umbilical 

artery blood signals, which are: normal, Oligohydramnios, umbilical cord around neck and fetal 

malposition. The Support Vector Machine (SVM) classifying method is constructed based on the 

conventional parameters, S/D, PI and RI. The particle swarm optimization (PSO)-SVM classification of 

umbilical artery blood with conventional parameters was constructed. BD, CD and MLE derived from 

Chapter 3 and Chapter 4 are used as feature parameters to construct nonlinear characteristic PSO-SVM 

classifying method. The results of the classification tests show that the PSO-SVM with nonlinear 

parameters method has higher accuracy, which is confirmed that the proposed classifying method is useful 

and effective. 

6.2 Prospects 

Although some exploratory work was done in this thesis to apply nonlinear theory and machine 

learning methods to umbilical artery signals, some findings were obtained, but the research is still in its 

early stages, and the following difficulties warrant additional study and attention: 

1. The fractal characteristics of umbilical artery blood signals were only analyzed using a single-fractal 

analysis method, but the umbilical artery blood signals still have multifractal characteristics. Therefore, further 

analysis of the multifractal characteristics should be carried out. 

2. The WOA-BP intelligent diagnostic model using nonlinear parameters with good generalization 

capability is proposed in this thesis, and further research can be conducted to construct a more extrapolative 

diagnostic model for umbilical artery blood with deep learning, migration learning and reinforcement learning 

techniques. 

3. Further attempts to study the combination of umbilical blood , fetal monitoring and ultrasound based 

on nonlinear theory. Clinical studies have shown that ultrasound, S/D values and NST have their own 

strengths in fetal monitoring, and their combined application can be an important adjunctive value as an 

optimal method to assess fetal health. Therefore, a multifractal dimension study considering the combination 

of fetal heart curve and non-linear analysis of umbilical artery signal is needed to develop a new efficient fetal 

monitoring diagnostic model.
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