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Abstract

Deep learning, a sophisticated subset of machine learning, has significantly impacted
various sectors, notably within computer vision. This paradigm involves algorithms
adept at autonomously deciphering patterns from vast datasets. In computer vision,
these algorithms process visual information, extracting invaluable insights. The
healthcare domain stands as a prime beneficiary, heralding the era of Computer-

Aided Diagnosis (CAD).

Equipped with deep learning capabilities, CAD systems are increasingly assisting
medical professionals. By analyzing medical imagery—ranging from X-rays to MRIs
— these tools detect anomalies, offer diagnostic recommendations, or foresee certain
diseases. While not designed to supersede medical expertise, CAD systems amplify
it. Acting as a secondary diagnostic layer, they bolster accuracy and timeliness, fos-

tering enhanced patient care.

Yet, the efficiency of deep learning models in CAD hinges on access to comprehen-
sive labeled datasets. These entail image annotation (labeling) with relevant details,
like disease presence or tumor location. Given the precision required, medical ex-
perts play a central role in this labeling, rendering the process resource-intensive.
Consequently, the problem of a paucity of adequately labeled medical imagery oc-
curs. Ethical concerns related to patient data further complicate data availability for

research.

In light of this data challenge, the spotlight has shifted to semi-supervised learning.
Semi-supervised learning leverages both labeled and unlabeled data. As one of the
semi-supervised learning methods, pseudo-labeling emerges as a standout method in
this domain. Initially, a model is trained on available labeled data. Following this, it
predicts labels for the unlabeled data. The predicted pseudo-labels then augment the

original training data and refine the model iteratively.

However, pseudo-labeling in medical imaging presents challenges. The accuracy
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of pseudo-labels is paramount—if the predictions of the initial model skew, it risks
embedding biases or inaccuracies. Additionally, how to set appropriate confidence
levels for pseudo-labels, how to mitigate biases from dataset imbalances, and how to

prevent the model from overfitting are areas of concern.

This dissertation deeply delves into the pseudo-labeling techniques within the med-
ical imaging context. Through meticulous research, it aims to enhance pseudo-
labeling mechanisms, confront its inherent challenges, and assess its benefits in
CAD. By bridging deep learning and medical diagnosis, this study aspires to advance
healthcare technology, championing more precise and efficient diagnostic method-

ologies.
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Chapter 1

Introduction

1.1 Research background and motivation

Deep learning has provided superior solutions or assistance for many ongoing prob-
lems in the current era. One of the well-known fields where deep learning succeeded
is computer vision [1]; this is due to its ability to learn the features of any given
dataset. This strength leads to many active types of research in the deep learning
field and also creates influence on other fields. For example, medical field[2],[3] has
been influenced by the advancement of deep learning[4],[5], leading to more usage
of computer-aided diagnosis (CAD)[6]. Even though CAD performance might not
be equally matched to the real experts in the field, the second opinion that CAD pro-
vides helps lessen the burden of the experts. Nowadays, we can see more and more
CAD that is integrated into our disease diagnosis, and the quality of healthcare has
been significantly improved. However, for a deep learning model to be effective, one
of the major requirements is a sufficient amount of training data, which can be chal-
lenging to obtain in some fields, like the medical field. The main problem for data
acquisition in the medical field is the requirement for labeling data (annotation) us-
ing precious human resources. Therefore, many kinds of research that try to alleviate

this problem have been conducted[7]; a well-known one is semi-supervised learning.

Unlike supervised learning, the goal of semi-supervised learning is to develop a



model from not only the labeled samples (data) but also unlabeled samples. Semi-
supervised learning techniques are commonly applied when there is only a handful of
labeled samples but an abundant amount of unlabeled samples. This leads to various
techniques that aim to make the most use of the labeled samples[8] or try to learn or

extract the essential features from unlabeled samples for realizing objectives[9].

One of the well-known semi-supervised learning techniques is pseudo-labeling. The
aim of pseudo-labeling is to perform the labeling task on unlabeled data instead of
relying only on field experts. In detail, a model is trained with a limited number of
labeled data to create an expert model or a teacher model. Then, the expert model
gives "pseudo” labels to unlabeled data. Finally, pseudo-labeled data are added to the
original labeled dataset, and the model is trained again with the newly created dataset.
Since there is an assumption that deep learning performs better as the number of
data increases, the model trained with the combination of the pseudo-labeled and the
original labeled data should perform better than a model trained with only inadequate

labeled data.

Pseudo-labeling is a simplistic yet effective semi-supervised learning method. How-
ever, there are also many challenges regarding pseudo-labeling, such as finding the
optimal threshold for accepting annotation given for the unlabeled data and the ex-
pert model’s inability to annotate unlabeled data properly due to the lack of labeled
data. Another challenge is to address the bias that occurs from the pseudo-labeling
process, which arises when specific types of traits are in the dataset, and they cause
the training bias of the generated expert model. This problem can be caused by var-
ious factors, such as an imbalanced dataset, incorrect annotation of pseudo-labeled

data, and specific prominent traits when training an expert model.

In this dissertation, I focused on designing and enhancing the pseudo-labeling mech-
anism in the medical imaging field. I believe that applying pseudo-labeling to build-

ing a CAD model of medical image diagnosis can improve the overall performance



by making better use of the unlabeled data that are usually discarded since the la-
beling cost is too expensive. In addition, I also use Chest X-ray images as the target
datasets because X-ray images are the commonly used medical images, for example,

annual medical checkups.

1.2 Research objective

This dissertation aims to explore the profound impact of pseudo-labeling in computer
vision with deep learning, emphasizing its transformative role in medical diagnostics.
It delved into the challenges of semi-supervised learning and critically examined the
pseudo-labeling techniques, especially their application and enhancement in medical

imaging. The objective of this dissertation is as follows:
e Introducing and exploring the concept of pseudo-labeling and deep learning.

e Applying deep learning with pseudo-labeling to two medical diagnostic prob-

lems.
— Object (disease area) detection using deep learning with pseudo-labeling
— Classification using Deep Learning with Pseudo-labeling
e Enhancing the proposed pseudo-labeling framework.

— Improvement in object detection framework using the iterative process

for increasing model robustness

— Improvement in Classification framework by integrating consistency reg-

ularization.

e Summarizing the findings and future extension of the proposed methods



1.3 Semi-supervised learning

Semi-supervised learning has been a topic of interest in addressing the lack of la-
beled training samples. Semi-supervised learning aims to train a model using a
limited amount of given training samples along with the abundance of unlabeled

samples[10].

Given the broad scope of the problem, there are many approaches to the semi-
supervised learning methods[11], such as the aim of using the limited training data
as sufficient as possible while trying to yield the best possible results, e.g., bootstrap-
ping[12], self training[13], or using both labeled, unlabeled samples to make the best
use of the information contained in those samples. Furthermore, semi-supervised
learning also reflects many real-world problems in which there are many unlabeled

samples, but the labeling cost is expensive.

Pseudo-labeling

One of the common approaches to semi-supervised learning is pseudo-labeling. As
proposed by Lee et al. [14], pseudo-labeling can be categorized as a self-learning
technique that lets the model learn and improve by itself. The process of pseudo-
labeling is to generate the pseudo-labels for the unlabeled samples using the model
trained on the limited amount of labeled samples. The purpose of pseudo-labeling is
to train the model, usually named the expert model or teacher model, using the avail-
able labeled samples, then let this model perform the labeling task for the unlabeled
samples. Lastly, the model is then trained using the original limited labeled samples

along with the newly labeled samples generated by the expert model.

Overall, pseudo-labeling is a straightforward yet effective method for utilizing unla-
beled samples, which can be applied to many situations. Moreover, thanks to its sim-
plicity, pseudo-labeling can be incorporated into other machine learning techniques,

including deep learning.



However, the commonly known problem in pseudo-labeling is the teacher bias dur-
ing the labeling process[15],[16]. The teacher bias problem occurs when ineffective
unlabeled data is incorporated into the training process. Since the number of unla-
beled samples usually overwhelms the labeled ones, the model generalization will
be shifted toward the unlabeled samples instead, resulting in the model performing

worse.

Many researchers have tried to solve the teacher problem in recent studies using var-
ious approaches. One of the successful examples is incorporating the consistency
regularization [17],[18] concept during model training. The model performs signifi-
cantly better by applying augmentation or perturbation to the pseudo-labeled samples
and making the model try to learn from the perturbed and original samples. However,
the main limitation of the consistency regularization technique is that it relies on var-
1ous augmentation techniques, which may even lead to a bias toward the augmented

data.

1.4 Advancement of artificial intelligence in medical
image analysis

The concept of medical image analysis was introduced in the 1990s, with the ori-
gin of X-ray images dating back to 1895, which let us view the inside of the human
body without the need for a surgical process. Following the X-ray, both MRI (Mag-
netic Resonance Imaging) and CT (Computed Tomography) images were introduced,
each with its own strength and use. CT lets the radiologist capture the body’s cross-
sectional image and a clear view of the soft tissue. On the other hand, MRI uses
magnetic fields and radio waves to produce detailed images of the inside of the body.
Medical image analysis in this era was done mainly manually by radiologists or clini-
cians; however, with the introduction of digital image processing techniques, such as

thresholding, edge detection, or morphological operations, the efficiency of medical



image analysis has increased tremendously. This is when the Computer Aided Diag-
nosis or CAD system was developed. CAD refers to the use of computer algorithms
to assist radiologists and medical professionals in interpreting medical images. Its
development has been closely linked with advancements in medical imaging, com-

putational power, and artificial intelligence.

It was not until the 2000s that machine learning started to integrate into medical
image analysis successfully. While there are many machine learning techniques that
have become popular, the one that stands out the most is the Support Vector Machines
(SVM). SVM is a very powerful machine learning framework that can handle high-
dimensional data and have clear margins of decision boundary, making it suitable for
lesion detection or tissue classification. In addition, there were many public datasets

that were created to be used for benchmarking the machine learning performance.

Starting from the 2010s, the Al boom has become prevalent with the rise of deep
learning, mainly convolutional neural networks (CNN). A major advantage of CNN
is its ability to automatically learn hierarchical feature representations from data,
which reduces the need for hand-engineered features. Thanks to the mentioned rea-
son, CNN has outperformed traditional methods in many tasks, including image clas-
sification, segmentation, and object detection. Deep learning also benefits heavily
from other fields with the usage of data augmentation or transfer learning, which is
the technique of learning from common datasets and fine-tuning for specific medical
tasks. Nowadays, deep learning has been integrated into CAD to help the expert in
the field with widespread tasks such as cancer diagnosis. As technology advances,
it is likely that CAD systems will become even more integrated into regular clinical

workflows, offering more advanced features and better performance.

However, as mentioned above, the most important problem in deep learning for medi-
cal image diagnosis is to collect a sufficient amount of labeled data. Therefore, in this
dissertation, I focused on pseudo-labeling and its extension using ensemble learning

to further enhance the applicability of deep learning to CAD, especially in the Chest



X-ray disease diagnosis task. The benefit of X-ray images is the accessibility of
a large amount of sample numbers, thanks to the fact that X-ray check-ups occur
daily and are cost-efficient. However, the X-ray diagnosis proves to be a challenging
task due to the image’s opacity being hard to discern, even from the field expert’s
perspective. Thus, the possibility of developing a CAD system for X-ray diagnosis
might prove to be difficult due to how complicated the X-ray image is, but it will

definitely improve the ability of the disease diagnosis for certain.

1.5 Objective and structure of this dissertation

The structure and the objective of each chapter are summarized in this section. Each
section will guide readers through the theoretical background, the proposed method-

ology, experimental findings, and conclusion of findings.

In Chapter 1, I have provided an overview of the research background and introduced
the core concept that is commonly considered in this dissertation, that is, general

knowledge of pseudo-labeling and medical images.

In Chapter 2, the first proposed method, "Object detection using deep learning with
pseudo-labeling on X-ray pneumonia disease area detection," is presented. In this
chapter, the applicability of pseudo-labeling for disease area detection is evaluated.
In detail, the created model aims to locate the disease area and the disease class si-
multaneously. First, I briefly introduce the fundamentals regarding object detection,
such as the well-known architectures and evaluation criteria. Then, I introduce an
iterative pseudo-labeling mechanism to improve the stability of the detection perfor-
mance. In detail, the pseudo-labeled data are gradually generated, and the detection
model is also gradually trained with the combination of labeled and pseudo-labeled
data. If we train the detection model only once after obtaining all the pseudo-labeled
data, the incorrectly labeled pseudo-labeled data may deteriorate the model; thus, the

implementation of an iterative process (gradual training) is adopted.



In Chapter 3, "Disease classification using deep learning with pseudo-labeling," I
deal with the topic of classification instead of detection. In this chapter, I propose
a pseudo-labeling for classification framework that uses two different deep learning
architectures, namely convolutional neural network (CNN) and vision transformer
(ViT), and also incorporates another semi-supervised learning technique called con-
sistency regularization. The core concept of consistency regularization is that in order
for pseudo-labeled data to be reliable to include in the training dataset, the prediction
results obtained by both CNN and ViT must be the same. In addition, the robustness
of the pseudo-labeling mechanism is realized by applying data augmentation. A de-
tailed explanation of each architecture and the concept of consistency regularization
is also provided in this chapter, as well as the experimental results implemented on

COVID-19 chest X-ray images.

In Chapter 4, I propose an enhanced pseudo-labeling framework using ensemble
learning. While ensemble has been a common technique applied to any machine
learning techniques, in pseudo-labeling, I show the effectiveness of ensemble in the
pseudo-labeling mechanism. Ensemble learning can solve the problem of models
trained with pseudo-labeled data tending to be biased toward specific latent features
in pseudo-labeled data. In addition, I design ensemble methods for solving object
detection tasks and classification tasks, respectively, considering the characteristics

of each task.

I finished this dissertation with conclusions in Chapter 5. I conclude and summarize
the findings, the significance of the studies, and the limitations. I also suggest further
research and potential that could be achieved by the pseudo-labeling in the medical

field.



Chapter 2

Object detection for chest X-ray
image diagnosis using deep learning

with pseudo labeling

2.1 Chapter introduction

In this chapter, I would like to implement pseudo-labeling in object detection tasks
of deep-learning for chest X-ray disease area detection. As I explained the concept
of pseudo-labeling in the previous chapter, since pseudo-labeling has the possibility
to improve the performance of any deep learning framework, I would like to try the
simple yet effective implementation of object detection tasks with the additional en-
hancement of the pseudo-labeling framework. The proposed method introduces the
iterative pseudo-labeling process, which focuses on improving the pseudo-labeling
by reducing the bias that occurs during the training of the pseudo-labeling model,
where the model is trained on the combination of pseudo-labeled samples and limited
labeled samples. The goal of the proposed method is to alleviate the problem when
there are specific and common characteristics or features in pseudo-labeled samples
that could cause the deterioration in the model performance. By implementing the

iterative process, the model that performs a pseudo-labeling task is calibrated using
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the labeled dataset in every step. For evaluating the proposed method, the Chest X-
ray image for Pneumonia Disease area detection is chosen as the target problem. The

specific implementation of the proposed method will be described in later sections.

This chapter is organized as follows: I will start the chapter by briefly introducing
the concept of object detection in deep learning and the candidate frameworks that
I used for implementation, which are YoloV5, Faster RCNN, and RetinaNet. In
addition, the information on evaluation criteria, which is named mean average pre-
cision or mAP, is described, including a calculation method. In the next section, the
proposed method that implements the iterative process of pseudo-labeling and its ap-
plication to the object detection framework are explained. Next, the experimental
results obtained by the proposed method are shown, which includes the performance
comparison between several object detection models. In the last section, I summarize

the findings and describe the discussion.

2.2 Object detection of deep learning

Deep learning has revolutionized the next level of computer vision, including object
detection. Instead of annotating the main features of each individual image in the
datasets, deep learning can learn the image features by itself using the loss function
during the training process. With this unique strength, deep learning has outper-
formed most machine learning methods in the object detection field. Since object
detection has been widespread in deep learning, many architectures have advantages
and specialties, but the architectures are usually categorized into two types: two-stage

object detection framework and one-stage object detection framework.

The first well-known object detection framework started with the region-based ar-
chitecture. The region-based architecture is a two-stage object detection framework

that uses two neural networks: a region proposal network or backbone network and
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. classifier

feature maps

cony lavers /

e

Ficure 2.1: Overview of two-stage object detection framework

a box classification network or a head network. The first network proposes the re-
gions of interest, and the regions are passed to the second network that performs a
box regression and object classification. While this architecture allows the two net-
works to be trained separately for better performance, the training process is time-
consuming. The two-stage object detection framework that I implemented in this
research is Faster Region Convolution Neural Network (Faster R-CNN)[19], which
improved the detection speed by removing the bottleneck that occurs in the process
of the region proposal network. The model structure of the Faster RCNN can be seen
in Fig. 2.1. From the figure, it can be seen the input image was changed to a feature
map and then passed to two networks: one for the box regression task and the other

for the classification task.

The following successful framework is You Only Look Once (Yolo)[20], which is
one-stage object detection. Instead of using a region proposal network, Yolo uses
sliding windows that are bounding boxes with predetermined sizes and different an-
chors. The windows are slid through the whole image. Each bounding box is used
as an input to the neural network to perform the object detection task. Figure 2.2 can
be used as an example of how the sliding windows work; each grid will be used for

finding the bounding box class probability together to find the final detection result.
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Clazs probahility map

Ficure 2.2: Overview concept of the sliding windows in one-stage
object detection

Furthermore, by eliminating the region proposal network, Yolo can perform a de-
tection task in a real-time scenario and thus receive much support from the research
community. The Yolo version implemented in this research is YoloV5[21], which in-
troduces many features compared to the original Yolo. For example, the architecture
is tremendously changed by using Cross Stage Partial Network[22] as the backbone
for feature extraction instead of the original Darknet[23] and also using Feature Pyra-
mid Network (FPN)[24] for generating bounding boxes. The structure of FPN can
be seen in Fig. 2.3. FPN is the well-known backbone of the CNN for the feature
extraction task. The strength of FPN is the hierarchy learning ability of bottom-up
and top-down architecture that lets the information be recycled and used throughout

the network.

> predict|

YAz

pred ict]

redict

T e

Ficure 2.3: Structure of Feature Pyramid Network backbone architec-
ture
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In addition, the significant improvement is the usage of various augmentation and

auto-learning anchors that can adapt to many types of problems.

While the speed of one-stage detection is the main advantage, the main problem is
that the number of negative samples (areas) that come from the background of the
image during the region proposal overwhelms the number of positive samples. Reti-
naNet[25] addresses this problem by introducing a new loss function called Focal
loss, which introduces the weight parameter applied to the cross-entropy loss func-
tion. Focal loss tremendously penalizes the background loss, leading to the model
performing significantly better. RetinaNet also utilizes FPN for the region proposal

task.

2.3 Proposed method

Object detection using deep learning with pseudo labeling

In order to utilize the unlabeled samples to improve the performance of object de-
tection, I propose a pseudo-labeling method. The diagram and pseudo code of the
proposed method are shown in Fig. 2.4 and Algorithm 1, respectively. As a prepara-
tion, I split the dataset into a labeled training dataset, an unlabeled training dataset,
and a test dataset to replicate a semi-supervised learning environment. In addition,
since the pseudo-labeling technique tends to have a high bias, I split all of the unla-

beled datasets into smaller batches instead of using them all at once.

First, the base models (YoloV5, Faster R-CNN, and RetinaNet) are trained using all
the accessible labeled data. After the initial training phase is finished, the trained
model can be used as the expert model to perform the labeling task for us. Next,
the expert model performs the labeling task on the unlabeled samples. Then, if an
unlabeled sample is classified with high confidence by the expert model (T > «a),
it is considered an acceptable pseudo-labeled sample; else, the sample (T < «) is

discarded.
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Ficure 2.4: Flowchart of pseudo-labeling process.

After the pseudo-labeling task for one batch of unlabeled samples is finished, the
new model is trained with new pseudo-labeled samples combined with the original
labeled samples. Then, the newly trained model performs the annotation to the next
batch of the unlabeled samples and repeats the process until all of the unlabeled
samples are processed. When the labeling phase is completed, the final expert model

is trained using all the pseudo-labeled samples and the originally labeled samples.

The main reason I perform pseudo-labeling batch by batch is not to overwhelm the
less influenced by the pseudo-labeled samples compared with the labeled samples. If
the pseudo-labels are given to all the unlabeled samples at the same time, the weight
of the pseudo-labeled samples on the training loss becomes suddenly large, which
results in worse outcomes. Therefore, the training of the expert model should be

gradually implemented.

2.4 Experiments

2.4.1 Dataset

The open dataset of chest X-ray images provided by the Radiology Society of North

1

America’ is used for the experiments in this chapter. Originally, the dataset was

Uhttps://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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Algorithm 1: Pseudo-Labeling for Object Detection

Result: Trained pseudo-labeling model

initialization;

for all available batches of unlabeled data do

use the previously trained expert model to perform class labeling to
unlabeled batch;

for every single label in the batch, given the confidence of T do

if T > a then
| add the data to the pseudo-labeled list;

else
| skip the sample;

end

end

retrain the expert model again using the original samples and samples in a
pseudo-labeled data list ;

evaluate the retrained expert model,

end

used for the competition of the chest X-ray Pneumonia disease area detection chal-
lenge, but I used it for another problem, that is, the evaluation of the pseudo-labeling
method. While a chest X-ray image is difficult to classify due to its many traits and
characteristics, it is the most common diagnostic method due to its simplicity and in-
expensiveness, resulting in abundant unlabeled samples. Therefore, semi-supervised
learning with a pseudo-labeling approach is very effective for building a CAD for

chest X-ray images.

Pneumonia disease detection aims to detect abnormal opacity in the X-ray images.
However, there are many difficulties in pneumonia detection. While pneumonia is
commonly found in the lung area, the actual disease area can be varied by the pa-
tient’s posture during the X-ray scan, making it difficult to locate or crop the lung area
in data preprocessing. In addition, pneumonia disease also has many characteristics
that can also be associated with different body traits, and examples can be seen in
Fig. 2.5. Image a) is an example of white lung or hemithorax opacity where there is
high opacity in the lung area, which is caused by the fluid from pneumonia. Image b)
is an example of high opacity that came from masses and nodules but not pneumonia.

Image c) is an example of a normal patient with an enlarged heart, which can be seen
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as high opacity. Lastly, Image d) is an example of consolidation-type pneumonia.
These variations of lung features make abnormal area detection difficult compared to
more medical image types, such as CT images, where the patient posture is always

fixed.

The dataset includes 6,011 images, where 30,228 pneumonia locations are recorded;
that is, a single image can contain multiple pneumonia locations. I used only the
positive images and filtered out the images with a bounding box (positive area) of
fewer than 8 pixels for training. This process eventually led to the training dataset
of 4,400 images and 6,027 pneumonia locations (bounding boxes). The size of each
sample image was 1024 x 1024, with a bounding box size according to its size. The
test set contained randomly chosen positive and negative samples with its bounding
box. The bounding box is attached only when the image is a positive case. The image

size i1s 1024 x 1024, the same as the training set.

2.4.2 Evaluation criteria

In the experiments, mean average precision (mAP) is used. The mAP was proposed
as a standard for the PascalVOC challenge[26], but currently, mAP is commonly
used as an evaluation metric in object detection problems[25], [20], [19]. mAP can
be calculated by using true positive (TP), false positive (FP), and false negative (FN).
However, unlike the classification problem, these criteria for the detection problem

are calculated based on the Intersection over Union (IoU).

The IoU is calculated by comparing the bounding boxes predicted by the model and
the ground truth (GT). The figure of the IoU calculation can be seen in Fig. 2.6,
where A and B represent the bounding boxes from the ground truth and detection
result, respectively. A detection result is regarded as TP when the bounding boxes of
GT and prediction are overlapped and IoU is higher than the predetermined thresh-
old. A detection result is regarded as FP when IoU is less than the threshold or the

model generates duplicate bounding boxes at the same location as the GT bounding
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Ficure 2.5: Different traits of X-ray lung opacity. Image (a) is white
lung, image (b) is other masses and modules opacity, image (c) is
enlarged heart opacity, and image (d) is consolidation type opacity

box. Lastly, FN can occur when there is no predicted bounding box when the GT
bounding box is presented or the predicted class of the bounding box is incorrect.
The confusion matrix for the object detection task can be seen in Fig. 2.7, showing
how the box is categorized. In addition, examples of each type of detection result in

the X-ray image format can be viewed in Fig. 2.8.

After calculating TP, FP, and FN, we can calculate the precision and recall from
detection results, which will be used for plotting the Precision-Recall Curve. Finally,
the mAP is calculated from the area under the curve of the Precision-Recall Curve
as this formula Average Precision = AP = fol P(R) dR. The example of the mAP

calculation can be seen in Fig. 2.9.
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Ficure 2.6: The calculation formula for the Intersection over union.
The dotted box represents the detected bounding box, and the solid
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Ficure 2.7: Confusion Matrix in object detection

2.4.3 Comparison between object detection architectures

In this experiment, YoloV5, Faster R-CNN, and RetinaNet are compared in terms
of mAP to find the best model to carry on the pseudo-labeling process in further
experiments. All the models are trained for 100 epochs with various augmentation
techniques. The applied augmentation techniques are the following: brightness ad-

justment from 10 to -10, 50% chance of horizontal flipping, and 10 degrees rotation

Ficure 2.8: Example of different detection results. The dotted line

represents the model’s prediction, and the solid line represents the

ground truth. Image (a) is true positive, image (b) is false positive,
and image (c) is false negative
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Ficure 2.9: Example Plotting to calculate Average Precision

TaBLE 2.1: Comparison of mAP between object detection architectures

mAP for difference IoU thresholds
0.1 0.2 0.3 0.4 0.5 0.6

Faster RCNN 50.89 4998 4547 3431 7.560 1.550
YoloV5 60.27 60.13 59.09 55.38 48.39 37.26
RetinaNet 85.12 85.12 85.12 85.12 84.96 84.28

Architecture

either clockwise or counterclockwise. The experimental result is shown in Table 2.1,
where it can be seen that RetinaNet performs the best, followed by YoloV5. Thus,
I adopted RetinaNet as the main model for the pseudo-labeling task and YoloV5 as

the supporting model for the ensemble method proposed in Chapter 4.

2.4.4 Comparison between different numbers of labeled samples

We simulated a semi-supervised learning problem by splitting the whole dataset into
a labeled dataset, an unlabeled dataset, and a test dataset. I fixed the test dataset
as 10% of the whole dataset, and this experiment was conducted by changing the
ratios of labeled and unlabeled samples. Table 2.2 shows the result obtained by
RetinaNet where it can be seen that the model trained using labeled data of 10% of
the whole dataset (called 10% model) shows very low mAP and it is not suitable as
the expert model because the pseudo-labeled samples will contain many incorrect
labels. In addition, since the difference between the 40% model and 50% model is
small, I chose only 30% and 50% models as the candidate for combining them with

the pseudo-labeling method.
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Ficure 2.10: The overall datasets have been split into labeled, unla-
beled, and test portions for the experiment.

2.4.5 Evaluation of pseudo labeling approach

In this experiment, the pseudo-labeling is carried out on the datasets with 30% and
50% labeled samples used in the previous experiment. The images of how I split the
training data can be seen in Fig. 2.10. The models trained in the previous experiment
were used to label the unlabeled data. Instead of labeling the unlabeled samples at
once, the labeling process is split into some smaller subprocesses with 20% (i.e.,
880 images) for each labeling process because I aimed to make the model converge
over a part of samples in one-time training so that the bias of the unlabeled samples
is not overwhelming the original labeled samples. In the pseudo-labeling process,
samples with confidence scores more than a predetermined threshold were selected

as samples with pseudo labels, and the rest were discarded.

We applied the pseudo-labeling to the 50% model and compared several confidence
thresholds, that is, 0.7, 0.9, and 0.95. In addition, the numbers of pseudo-labeled

samples that the model generated are changed (20% and 40%) to find the best amount.

From Table 2.3, it can be seen that mAP obtained by confidence threshold 0.95 is the
best for all the IoU thresholds. Since the pseudo labels need to be the genuine labels
as close as possible, and the low confidence can lead to a model performing worse
with the pseudo-labeling [15], the threshold of 0.95 was selected. After the labeling
process, the original ground truth samples were combined with the newly labeled

samples. A new model with the same architecture and hyperparameters was trained
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TaBLE 2.2: Comparison of mAP between different numbers of labeled
samples obtained by RetinaNet

mAP for different IoU thresholds
0.1 0.2 0.3 04 0.5 0.6

10% (440 images) 33.57 24.82 18.00 10.79 8.860 8.350
30% (1320 images) 63.89 63.09 6092 57.29 49.29 41.10
40% (1760 images) 70.87 70.61 68.93 64.13 5635 44.72
50% (2200 images) 74.54 7251 71.16 68.31 62.81 57.39

No. of labeled samples

TaBLE 2.3: mAP obtained from different confidence thresholds

Ratios of samples Confidence mAP for different IoU threshold
(original labels + pseudo labels  threshold 0.1 0.2 0.3 0.4 05 06

50% (Baseline) - 72.51 7232 71.16 6831 62.81 57.39
50% + 40% 0.70 33.57 24.82 18.00 10.79 8.960 8.350

50% + 40% 0.90 62.88 62.28 59.65 51.88 40.27 25.37
50% + 40% 0.95 75.37 7537 75.15 7341 7148 68.78

as its original base model. The process repeated until all of the unlabeled samples

were labeled.

To guarantee that the pseudo-labeling process successfully increases the number of
pseudo-labeled samples, an investigation experiment is performed to find the pseudo-
labeled samples in each iteration from both proposed models. The experimental
result can be seen in Table.2.4, where the amount of each pseudo-labeled sample in-
creases as the iteration increases. In addition, the 30% models also see more increase

in the accepted samples compared to the 50% model counterpart.

The mAP obtained by 30% and 50% models when the numbers of pseudo-labeled

TaBLE 2.4: Investigation on the amount of pseudo-labeling in each
iteration

Model Name Unlabeled Samples (#) Accepted samples (#) Total Samples

30% +20%  20% (1,760 images) 432 432

30% + 40% 689 1171

30% + 60% 778 1949
50%+20% 602 602

50% + 40% 642 1242
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TaBLE 2.5: The object detection performance based on different
amounts of pseudo-labeled data

Ratio of Samples mAP for difference IoU thresholds with performance difference

(original labels + pseudo labels) 0.1 0.2 03 0.4 05 0.6

30% (Baseline) 63.89 63.09 60.92 57.29 49.29 41.10
30+20% 67.16 (+3.27) 67.16 (+4.07) 65.04 (+4.12) 61.28 (+3.99) 52.95 (+3.66) 44.03 (+2.93)
30+40% 67.93 (+4.04) 67.93 (+4.84) 65.94 (+5.02) 62.40 (+5.11) 53.90 (+4.61) 44.52 (+3.42)
30+60% 71.28 (+7.39) 71.10 (+8.01) 69.17 (+8.25) 65.09 (+7.80) 56.96 (+7.67) 46.42 (+5.32)
50% (Baseline) 72.51 72.32 71.16 68.31 62.81 57.39
50%+20% 74.54 (+2.03) 74.54 (+2.22) 74.47 (+3.31) 72.56 (+4.25) 70.01 (+7.20) 66.05 (+8.66)
50%+40% 7537 (+2.86) 75.37 (+3.05) 75.15(+3.99) 73.41 (+5.10) 71.48 (+8.67) 68.78 (+11.39)

samples are gradually increased can be seen in Table 2.5. Table 2.5 shows the im-
provement of mAP when the number of labeled samples increases with a compar-
ison of the performance between pseudo-labeling and the baseline model shown in
the parenthesis. The model trained on the 30% labeled samples combined with 60%
pseudo labeled samples (30%+60% model) sees an increase in mAP by 7.39% at 0.1
IoU and 5.32% at 0.6 IoU. Additionally, the model trained on the 50% labeled sam-
ples combined with 40% pseudo labeled samples sees an increase in mAP by 2.86%
at 0.1 IoU and 11.39% at 0.6 IoU. It proves that, without letting non-labeled samples
be wasted, I can use the trained model to perform a labeling process on behalf of the

experts to improve the model performance.

2.5 Limitation and Future work

While there are many challenges in machine learning, there are always limitations
to some extent, depending on given datasets and environments. Some limitation of
pseudo-labeling has been addressed in this dissertation, such as finding optimal con-
fidence threshold and reducing model bias. There are still some difficult problems
to be solved in the future. For example, there is a problem in the way of evaluation.
How to set evaluation method or benchmark is difficult because the performance of
any pseudo-labeling models depends on the accessible amount of labeled samples,
making it difficult to find a common experimental setup that can be used as a bench-

mark, especially in a field like medicine where the dataset is already scarce enough.
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Ficure 2.11: X-rays images with abnormal postures

Therefore, the advantages and disadvantages of each pseudo-labeling model should

be carefully considered when it is applied to the target dataset.

Even though the aim of this dissertation is to find the correct classes for chest X-ray
images since chest X-ray is the most common and realistic way to acquire a large
number of unlabeled samples, There is also a problem in the nature of X-ray images.
For example, since the diseases are located in the lung field, it is usually easy to
roughly determine the target area to be analyzed when the postures of the patients
are correctly adjusted, which is beneficial for removing the outliers. However, sup-
pose the postures of the patients during the examination change the location of the
diseases largely (Fig. 2.12). In that case, the difficulty of the prediction made by
machine learning becomes increase. In addition, some images contain black back-
ground noise (Fig. 2.11) due to many reasons, such as differences in patients’ body
sizes. Also, many datasets of X-ray images are usually very imbalanced, for exam-

ple, many normal images and few abnormal images.

During the pseudo-labeling process, there are many samples that are discarded due
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Ficure 2.12: X-ray images with black background noises

to low confidence scores that do not surpass a threshold (the threshold in the exper-
iments was set at 0.95 for all the proposed frameworks). Since the threshold should
be relatively high to maintain the reliability of the pseudo labels, many correct labels,
but having low confidence, are also discarded in the process. I believe that discard-
ing all the pseudo-labeled samples in this manner is wasteful. It would be better if
there could be a way to make use of the disease images or the regions of interest
that contain lower confidence scores, for example, between 0.6 - 0.94. Actually, this
could be done in many ways, such as implementing another model for these samples
or using those samples anyway but giving penalties or weights to make sure that the

model would not collapse.

As for ensemble learning, while the proposed method is applicable for the combina-
tion of multiple deep learning models, only two models were used for the ensemble
currently. Therefore, it would be better to combine various models that perform well
and eliminate the models that underperform compared to the rest of the models. This
method is especially suitable for ensemble learning with contrastive perturbation,

which relies heavily on the strength and uniqueness of each model.
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There are still many traditional ways to improve the overall framework, such as trans-
fer learning[27] or Test Time Augmentation[28]. In addition, it would be beneficial
to introduce shared weight parameters obtained by the pseudo-labeling process or
to design a better loss function that could prioritize the labeled samples with large

importance or give different importance to pseudo-labeled samples.

2.6 Chapter summary

In this chapter, I introduced the implementation of the pseudo-labeling framework
for the object detection task. The pseudo-labeling method successfully improved the
disease area detection task by letting the model make use of unlabeled samples. In
addition, the proposed framework with iterative pseudo-labeling methods further en-
hanced the robustness and achieved better performance. In the 30% model, 30% of
the data were labeled for training by the radiologists, and in the 50% model, 50%
of the data were labeled. The experimental results from both models showed perfor-
mance improvement when more pseudo-labeled samples were used in the training
process. Furthermore, I also carried out the experiment with the different object de-
tection frameworks when the pseudo-labeling technique was applied and investigated

the effects of the confidence threshold for the pseudo-labeling process.

This chapter has achieved the objective of illustrating that pseudo-labeling can be
used in object detection tasks of the chest X-ray image dataset, which is a sensitive
dataset but directly related to real-world application usage. In the next chapter, I
would like to further design a pseudo-labeling technique for classification, where a
new method is proposed to improve the quality of pseudo-labels under the same chest

X-ray dataset used in this chapter.



26

Chapter 3

Pseudo-labeling with contrastive
perturbation using CNN & ViT for

chest X-ray classification

3.1 Chapter introduction

In the previous chapter, the pseudo-labeling concept in the object (pneumonia) de-
tection problem of chest X-ray images was explored. This chapter will change the
object detection task into the classification task instead. Image classification has al-
ways been a staple challenge in computer vision, where the goal is to assign labels
or classes to the images. Since deep learning has the ability to learn the feature
hierarchy and the representation by itself, it outperformed other traditional feature

extraction techniques [29].

In this chapter, I propose a framework for enhancing pseudo-labeling for image clas-
sification tasks. The proposed method makes use of the other semi-supervised learn-
ing technique called Consistency Regularization, which focuses on the consistency
of the image even if the perturbation or augmentation is applied to the original im-

age. The proposed method for this chapter is called Pseudo-labeling with Contrastive
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Perturbation. By introducing perturbation to the unlabeled samples, the classifica-
tion model will have better generalization ability because the model has to discern
between the original and perturbed version of that data. To strengthen the effects of
consistency regularization, two types of deep learning architectures, convolutional
neural network (CNN) and vision transformer (ViT)[30], are used for the pseudo-
labeling process. In addition, since both architectures have their own strengths and
uniqueness, I integrated a contrast augmentation regime for each neural network ar-
chitecture to provide another layer of generalization. Lastly, to evaluate our proposed
method, The SIIM RSNA Covid-19 Chest X-ray classification task[31] is used and

the performance of the proposed framework is evaluated.

This chapter is organized as follows: first, the core difference between the traditional
convolutional neural network and the visual transformer will be introduced and dis-
cussed. In addition, I will also briefly introduce the concept of Consistency Regu-
larization in semi-supervised learning, which is the main strength of the proposed
method. The next section is a detail of the implementation of the proposed method,
called pseudo-labeling with contrastive perturbation, followed by the experimental
results. In the last section of this chapter, I will provide a summary of the chapter

and set up the discussion for the next chapter.

3.2 Related work

In this section, I would like to introduce further concepts that will be used in the pro-
posed method; these are the introduction and comparison of two main deep learning
architectures that are implemented in this chapter. In addition, since the assump-
tion of the proposed method is based on the concept of consistency regularization,
this section will briefly introduce the concept and how we apply the concept to the

proposed framework.
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3.2.1 Comparison between CNN and ViT

The world of computer vision has witnessed a series of evolutionary strides in recent
years. A significant part of this evolution involves the architectural design of neural
networks tailored for visual tasks. Historically, CNNs have been the main candi-
date in this domain. However, a newer architecture, ViTs has arisen in recent years.
Adapted from the success of the original concept of transformer in natural language

processing, ViT has been challenging the competitor to CNNs.

The foundation of CNNss lies in their unique ability to process images using convo-
lutional layers. These CNN layers apply a series of filters to input images, allowing
the network to capture and recognize local patterns. Simple patterns, such as edges
and textures, are identified in the earlier layers, while deeper layers discern more
abstract and complex features, such as shapes and objects. This hierarchical, spa-
tial processing ensures that CNNs understand images in a manner that is intuitive to

human perception without requiring any human knowledge or feature engineering.

On the other hand, ViT utilizes an entirely different paradigm. They borrow the con-
cept from the transformer architecture, originally crafted for handling sequences in
natural language tasks. Instead of relying on spatial convolutions, ViT dissects an
image into fixed-sized patches, transforms these patches into flat vectors, and then
processes them as a sequence. The unique concept of the transformer, the attention
mechanism, allows the model to weigh the importance of different parts of an image,
even if these parts are distant from each other. This long-range dependency handling
is a stark departure from the local processing seen in CNNs. The way that ViT han-
dles the classification problem is by understanding the spatial structure of an image
using positional embeddings. Unlike CNNs, which inherently recognize spatial hi-
erarchies, transformers are agnostic to the positional arrangement of the sequence.
Therefore, to account for spatial information, ViTs incorporate positional embed-
dings alongside the patch embeddings, ensuring that the model remains sensitive to

the layout of the image.
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Data has always been the deciding factor of deep learning methods; this also means
that the data requirements for these two architectures vary considerably. CNNs, af-
fected by inductive biases from their convolutional layers, often exhibit better perfor-
mance even with moderate-sized datasets. Their design ensures that it studies visual
hierarchies in a manner consistent with the whole image using the reception field
concept. ViTs, however, have a different story. Training a ViT from scratch usually
requires a tremendous number of data. However, a strategy of pretraining ViTs on
colossal datasets, like ImageNet, and fine-tuning of ViTs on more specific, smaller
datasets is proven to be one of the stable practices. Depending on the type of datasets,

it can make one of the architectures perform better compared to one another.

As of the current time of writing, there are already many implementations of the
mentioned architecture that further enhance the concept to new heights. On the CNN
part, there is a ConvNext[32] that borrows the transformer architecture concept and
applies it to CNN for better hierarchy learning. The model structure in the code
format written in PyTorch can be seen in Fig.3.1. On the ViT side, the fixed-sized
patches that are used for the attention mechanism have been addressed and improved
upon in SwinTransformer[33] by introducing the Shifted Window to combine the
patches in various aspect ratios. The difference between the common ViT and Swin
Transformer can be seen in Fig. 3.3, on the right is the normal ViT, which has a fixed
patch size of 16 by 16. However, Swin Transformer will divide patches into various
sizes and have its own policy of combining the patches together. The model structure

in the code format written in PyTorch can be seen in Fig.3.2.

3.2.2 Consistency regularization

In recent years, many kinds of research focused on addressing this vulnerable point
to improve pseudo-labeling performance, such as introducing a new loss function
that penalizes incorrect samples[16] or developing a better expert model[34]. One of

the techniques that has started to become more popular in recent years is consistency
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Layer (type:depth-idx) Output Shape Param #
ConvhextForImageClassification [1, 1ee8] -
onvNextModel: 1-1 [1, 768]

L ConvNextEmbeddings: 2-1 [1, 96, 56, 56] -
Lconvad: 3-1 [1, 96, 56, 56] 4,704
LConvNextLayerNorm: 3-2 [1, 96, 56, 56] 192

onvNextEncoder: 2-2 [1, 768, 7, 7] --
LpoduleList: 3-3 == 27,813,696
ayerNorm: 2-3 [1, 768] 1,536
Linear: 1-2 [1, 1e80] 769,000

Total params: 28,589,128
Trainable params: 28,589,128
Non-trainable params: @
Total mult-adds (M): 395.23

Input size (MB): 0.60

Forward/backward pass size (MB): 131.27
Params size (MB): 114.33

Estimated Total Size (MB): 246.21

Ficure 3.1: The structure of ConvNext from PyTorch library

Layer (type:depth-idx) Output Shape Param #
SwinForImageClassification [1, leea]
SwinModel: 1-1 [1, 768]
LswinEmbeddings: 2-1 [1, 3136, 96] e
L swinPatchEmbeddings: 3-1 [1, 3136, 96] 4,704
LLayerNorm: 3-2 [1, 3136, 96] 192
L—S Loropout: 3-3 [1, 3136, 96] -
winEncoder: 2-2 [1, 49, 768] o
| LpModulelist: 3-4 v 27,512,922
iayernorm: 2-3 [1, 49, 768] 1,536
LadaptiveAvgPoolld: 2-4 [1, 768, 1] -
Linear: 1-2 [1, 1e88] 769,000

Total params: 28,288,354
Trainable params: 28,288,354
Non-trainable params: @
Total mult-adds (M): 62.80

Input size (MB): 0.68

Forward/backward pass size (MB): 137.29
Params size (MB): 113.066

Estimated Total Size (MB): 250.95

Ficure 3.2: The structure of Swin Transformer from PyTorch library

regularization[35, 7]. Consistency regularization emerged as one of the candidates
and can be applied along with any semi-supervised learning[36, 37]. Consistency
regularization is a technique used in machine learning, especially in tasks where we
teach computers to recognize patterns or objects. The main idea is to ensure that the
predictions or decisions given by computers remain stable or consistent, even when

there are small changes to the input data.

In more technical terms, this means if we have two slightly different versions of the
same input (like the original and slightly changed cat picture), the output (or predic-
tion) of the algorithm should be close or the same for both. If the prediction results
are wildly different for similar inputs, it might mean the computer is too sensitive

and might not work well in situations where the data can be a bit messy.
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Ficure 3.3: Difference between Swin Transformer and Visual Trans-
former

In short, the goal of consistency regularization is to help make sure that the decisions
are stable and reliable. Consistency regularization can be realized by penalizing
inconsistent decisions, ensuring that similar inputs lead to similar outputs. This tech-
nique can make the deep learning models more robust and better at handling data

with various characteristics or traits.

For the pseudo-labeling cases, I would like to implement consistency regularization
to the annotation task and show that the concept of giving annotation by the con-
sensus of the two networks can make the pseudo-labeled samples be reliable and

accepted.
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Ficure 3.4: The overall flowchart of Pseudo-labeling with Contrastive
Perturbation.

3.3 Proposed method

3.3.1 Pseudo-labeling with contrastive perturbation using CNN

& ViT for chest X-ray classification

Inspired by many kinds of research aiming to improve deep learning performance by
using consistency regularization, I design pseudo-labeling with contrastive pertur-
bation, which aims to tackle the semi-supervised learning problem by incorporating
pseudo-labeling with labeling ensembling. The aim of the proposed method is to in-
crease the performance of pseudo-labeling by integrating two different deep-learning
architectures with their unique strength, along with applying different perturbations
onto the unlabeled samples, respectively, to each architecture. The flowchart of the

proposed method is shown in Fig. 3.4, and the algorithm is in Alg.2.

First, the classification models, ViT and CNN, are trained in a supervised learning
fashion using all the available labeled samples that can be accessed to. Next, weak
augmentation W(x,) and strong augmentation S (x,) are applied to every unlabeled
sample (x,) in an unlabeled dataset (X,). The type of augmentation techniques will

be further shown in the experiment section.

I let the trained CNN perform an annotation task on the unlabeled samples with

strong augmentation S (x,), and ViT performs an annotation task on those with
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Algorithm 2: Annotation Process in Pseudo-Labeling with Contrastive Pertur-
bation
Result: Apply pseudo-labeling onto unlabeled samples
initialization;
for X; := all available labeled data do
| trained the model.,, and model,;; using xj;

end

for X, := all available unlabeled data do
S (x,) := apply strong augmentation to x, ; // (1)
F(S (xy)) := class when model,,, annotates S (x,,) ;
W(x,) := apply weak augmentation to x, ; // (2)

G(W(x,)) := class when model,;; annotates W(x,) ;
if F(S(x,))==G(W(x,)) then
gives pseudo-labeled onto xy;
else
| discards the sample;
end
end

weak augmentation W(x,). This process can alleviate the generalization bias dur-
ing pseudo-labeling since the pseudo-labeled samples are produced from different

neural networks with different generalization abilities.

After the pseudo-labels are given to each unlabeled sample by CNN and ViT, if both
of the labeling results are the same class, the given class label is accepted; otherwise,
the sample is discarded since it could cause deterioration of the classification perfor-
mance. After finishing the pseudo-labeling process, a classification model (ResNet,
ViT[30], Swin Transformer[33], and ConvNext[32] in this paper) are trained using
the labeled and pseudo-labeled samples to evaluate the performance of the proposed

method.

3.3.2 Dataset

RSNA COVID-19 Challenge was held for both classification tasks and detection
tasks, but I focused on classification tasks because the pseudo-labeling with con-
trastive perturbation are designed to enhance the classification ability of deep learn-

ing. The task is to identify the abrupt changes in lung opacity that could contain
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TasLE 3.1: Characteristics of each class

Radiographic Classification

CXR Finding

Suggested Reporting Language

Typical appearance

Multifocal bilateral, peripheral
opacities Opacities with rounded
marphology Lower
lung—predominant distribution

Findings typical of COVID-19
pneumania are present. However,
these can overlap with other
infections, drug reactions, and other
causes of acute lung injury

Indeterminate appearance

Absence of typical findings AND
Unilateral, central or upper lung
predominant distribution

Findings indeterminate for
COVID-19 pneumonia and which
can occur with a vanety of infections
and noninfecticus conditions

Atypical appearance

Preumaothorax or pleural effusion

Findings atypical or uncommanly

reported for COVID-19 pneumaonia.
Consider alternative diagnoses

Pulmonary edema Lobar
consolidation Solitary lung noduie or
mass Diffuse tiny nodules

Negative for pneumonia Mo lung opacities No findings of pneumonia. However,
chest radiographic findings can be
absent early in the course of

COVID-19 pneumaonia

diseases. The dataset contains four types of COVID-19 viewing classes: Atypical,
Typical, Indeterminate, and Negative. Table 3.1 shows the detailed characteristics of
each class. The overall dataset consists of 6,334 images, and the ratio of each class
is shown in Fig. 3.5. From Fig. 3.5, we can see that the ratio of four classes is
different; that is, this dataset contains class imbalance. Originally, the images were
in DICOM format with an image size of 2,330 by 2,783 pixels. As for data prepro-
cessing, each image was converted from DICOM to PNG and resized to 224 by 224
pixels; the imbalance in height and width was handled using a center crop. Three
hundred thirty-four images with the smallest disease area were removed from the
Typical class to reduce the class imbalance to some extent and make it easier for

evaluation using cross-validation.

3.4 Experimental results

In this section, first, the experimental procedure conducted is explained. In the first
experiment, I aim to find the best image classification architecture among ResNet,
ViT, Swin Transformer, and ConvNext, which will be used for the next experiment.

In the second experiment, the preliminary experiment is conducted to find the best
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Class Distribution in the Dataset

Typical Appearance
Negative for Pneumonia
Indeterminate Appearance
Atypeical Appearance

47%
17%

8%
FiGure 3.5: Class distribution in RSNA COVID-19 Challenge.

augmentation combination to be used by for the pseudo-labeling process of the pro-
posed method. In the last experiment, the performance of the proposed method is

evaluated and compared with the model without pseudo-labeling.

3.4.1 Comparison between difference deep learning architectures

on COVID-19 classification task

To evaluate the performance of the proposed method, it is necessary to find the best
network architecture as a classifier for chest CT image classification. The four mod-
els described before were trained with all the data with 90% training and 10% testing
split. All the models were trained for 100 epochs with batch sizes of 32. The pre-
cision, recall, F1 score, and accuracy for the testing data are shown in Table 3.2.
According to the result, ConvNext shows the best performance for all the evaluation
metrics. In addition, the SwinTransformer also shows very competitive results with
only difference in average of 2% performance difference compared to ConvNext,
confirming that it is very suitable to perform conservative perturbation techniques
using these two frameworks as deep learning network candidates. ConvNext was
selected as the final classification model used in the next experiment when training

the last pseudo-labeled model. The best performance shown by ConvNext indicates
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TaBLE 3.2: Comparison of precision, recall, F1 score, and accuracy
obtained by ResNet, ViT, Swin Transformer, and ConvNext [%]

Model Architecture  Precision  Recall F1 Score  Accuracy

ResNet 334 42.6 37.4 62.7
ViT 90.9 91.5 91.2 90.6
SwinTransformer 92.1 91.2 91.5 92.4
ConvNext 934 94.0 93.6 94.1

that the CNN structure enhanced by the combination with the ViT concept would

contribute to other medical image diagnoses, e.g., CT, MRI, and so on.

3.4.2 Evaluation of various augmentation combinations and cor-

rectness of pseudo-labeling

This experiment is the preliminary experiment to find the best augmentation tech-
niques to used for the pseudo-labeling process. 1 included all of the possible com-
binations of the augmentation methods: 1) Weak augmentation unlabeled samples
for both CNN and ViT, 2) Strong augmentation unlabeled samples for both CNN
and ViT, 3) Weak augmentation on CNN and Strong augmentation on ViT, 4) Strong
augmentation on CNN and Weak augmentation on ViT. The experiment is performed
using the 30% models to find the performance of the pseudo-labeling under different
augmentation policies. Since we have access to all of the original true labels of the
pseudo-labeled datasets, I can evaluate the accuracy of the pseudo-labeled samples
under different augmentation combinations. The preliminary experiment results can
be seen in Table 3.3, where the number of the unlabeled samples and that of the
accepted pseudo-labeled samples are shown, where accepted means that the expert
models of both CNN and ViT agree on the classification. The table also shows that
the accuracy of the accepted pseudo-labeled samples given by various augmentation

combinations is shown.

From the results, it can be seen that not all of the proposed augmentation methods

have the same accuracy. The scenarios where CNN handled the strong augmentation,
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TaBLE 3.3: Comparison of pseudo-labeled sample accuracy from vari-
ous augmentation combinations

Augmentation Method Total # of Accepted # of # of correctly labeled ~ Accuracy
CNN ViT unlabeled samples  pseudo-labeled samples  pseudo-labeled samples

Strong Strong 3600 2165 1735 80.1
Strong Weak 3600 2496 2242 89.8
Weak Strong 3600 2463 2068 84.0
Weak Weak 3600 2970 2581 87.0

and ViT handled the weak augmentation performed best, and the situation where both
strong augmentations were applied was the worst. From these experimental results,
the pseudo-labeling process is handled by using CNN with a strong augmentation

method and ViT with a weak augmentation method.

3.4.3 Evaluation of pseudo-labeling with contrastive perturba-
tion

To properly simulate the real-life scenarios, the dataset was split into labeled, un-
labeled, and test sets. Here, two variations of the data split were considered: 30%
labeled dataset with 60% unlabeled dataset (called 30% model) and 50% labeled
dataset with 40% unlabeled dataset (called 50% model). The remaining 10% data is
used as a testing dataset. With this setting, we can analyze and compare both scenar-
10s where the number of labeled samples is larger and smaller than that of unlabeled
ones. For the augmentation technique, the following augmentation techniques were
used as weak augmentation: shear by 15 degrees, horizontal flip, rotation by 10 de-
grees, image scaling by 0.85 to 1.10, and Gaussian blur with a kernel size of three
to seven. Here, these augmentations were applied with the possibility of 50%. The
reason we chose these augmentations as weak augmentation is that they could possi-
bly occur or be found in the X-ray image diagnosis under various circumstances, and
also, they still retain the nature of the image. The weakly augmented data were used
for pseudo-labeling by the ViT model. The strong augmentations were GridDropout,
Contrast Limited Adaptive Histogram Equalization (CLAHE)[38], affine transforma-

tion, random sunflare, random crop, and random cutout; these augmentations change
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Weakly Augmented Strongly Augmented
Unlabeled Sample Unlabeled Sample

Ficure 3.6: The example of augmented images used for training

the image heavily; thus, the possibility of applying these techniques is 10%. These
augmentations drastically change the image to the point that it could not be possible
in a real-life scenario, but if the model can correctly predict the pseudo-labeled of
that sample, then that sample should produce less bias for the pseudo-labeled model.
The heavily augmented data were used for pseudo-labeling by the CNN model. The
example of the augmented samples can be seen in Fig. 3.6. In this research, Swin-
Transformer was used as the ViT model, and ConvNext was used as the CNN model.
Note that ConvNext, selected in the previous section, is used to build a classifier after
the pseudo-labeling is completed by the combination of CNN and ViT models. The
criteria are precision, recall, and accuracy. In addition, all the models were evaluated

using ten-fold cross-validation. The experimental results can be seen in Table.3.4.

We can see from the table that performance improvement can be realized across all
of the criteria when incorporating pseudo-labeled samples. For the 50% model, the
precision, recall, and accuracy are increased by 4.5%, 3.2%, and 1.6%, respectively.
As for the 30% model, the precision, recall, and accuracy are increased by 5.6%,
3.1%, and 3.5%, respectively. Another finding from the results is that most of the
performance increases are from the classes with a smaller number of data, that is,
Indeterminate and Atypical classes that occupy the whole data with only 17% and

8%, respectively. Especially, the precision of indeterminate and atypical classes can
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TaBLE 3.4: Evaluation of Pseudo-labeling with Contrastive Perturba-

tion [%]

Labeled Sample Unlabeled Sample Class Name Precision  Recall Accuracy
50% None Typical 71.7+21 732+23
(3,000 images) Negative 643 +24 74427
Indeterminate 264 +4.1 22.8+48
Atypical 304+73 18447

Model’s Average 48.2 +3.9 47.2+8.8 63.6+1.0
40% Typical 73.1 £ 1.7 78.1+2.8
(2400 images) Negative 659 +2.8 81.1+2.0
Indeterminate 327+5.8 20.6+4.1
Atypical 389+7.2 21.7+3.8

,,,,,,,,,,,,,,,,,,,,,,,,, Model’s Average 52.7+44 04:32 652x1.0

30% None Typical 709 +1.6 756+1.8
(1,800 images) Negative 63.8+29 742+3.6
Indeterminate 241 +43 17.6+4.0
Atypical 25272 153+4.8

Model’s Average 46.0 +4.0 457 +3.5 60.5+ 1.6
60% Typical 71.9+14 808+1.9
(3,600 images) Negative 64921 806=x27
Indeterminate 319+£5.0 162 +2.8
Atypical 375+ 68 174 +44

Model’s Average 51.6 +3.8 48.8+2.9 64.0+1.3

be improved more than typical and negative classes. From these results, it can be said
that the proposed method improves the pseudo-labeling performance by decreasing

the bias toward the majority class.

3.4.4 Limitation

In this chapter, pseudo-labeling with contrastive perturbation was proposed, but there
are some remaining problems to be solved in the future. The aim of this method is
to find the correct classes for the COVID-19 chest X-ray images. However, it is
challenging due to many factors. First, the nature of chest X-ray images can vary
due to many circumstances, such as the patient’s posture, age, or noise during the
examination. In addition, the datasets are also very imbalanced, as shown in Fig.
3.5, toward the Typical classes that contain almost 47% data compared to 8% data in
the Atypical class, which plays a massive role in the pseudo-labeling environment.

Therefore, the evaluation of different datasets should be implemented to show the
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effectiveness of the proposed method.

The RSNA COVID-19 diagnosis task for Chest X-ray images is also a challenge
because most of the disease areas are minuscule and come in many variances in size.
The size of disease areas is investigated and summarized in Fig. 3.7. The horizontal
axis of Fig. 3.7 shows the size of the disease area, and the vertical axis shows the
number of images, where we can see that there are many minuscule disease areas.
Since some disease areas are tiny when resizing of images is implemented, it could
lead to a struggle to perform a classification task for some architecture; for instance,
an original ViT architecture has a predetermined reception area determined by the
patchify process, which is very sensitive to the image size changes. In the future,
we could incorporate various model architectures or increase the number of neural

networks used for the pseudo-labeling process to enhance the performance.

While I have shown that most of the pseudo-labeling frameworks improve the detec-
tion or classification performance, the reason behind the improvement is difficult to
interpret since the structure of deep learning is well-known for being a black box[39].
However, from most of the experimental results, it can be seen that the performance
of the proposed models was drastically increased, especially the improvement of the
30% models, which is larger compared to the 50% models in most of the results.
This was also especially true for the case where ensemble learning is applied to the
pseudo-labeling. The improvement of the 30% model realized by ensemble learn-
ing can be interpreted as enhancing the pseudo-labeling stability by complementing
the reliability of the pseudo-labeled samples. In contrast, the performance of most
of the 50% models only increased slightly when incorporating ensemble learning,
which can be interpreted as the 50% model was already stable enough and was not

impacted by ensemble learning.

The last point to be addressed is the pseudo-labeling process itself. Currently, the
classification model is trained from scratch after obtaining pseudo-labeled samples.

It would be more beneficial to introduce shared weight parameters obtained by the
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Ficure 3.7: The ratio of the size of the disease areas to the whole
image.
pseudo-labeling process or to design a better loss function that could prioritize the
labeled samples with large importance or give different importance to pseudo-labeled

samples.

3.5 Chapter summary

In this chapter, I illustrated and implemented pseudo-labeling with contrastive pertur-
bation for chest X-ray COVID-19 classification. The proposed model improved the
pseudo-labeling annotation process by applying consistency regularization, which
required the annotation results for perturbed unlabeled samples given by two deep
learning architectures to be identical to be accepted as pseudo-labeled samples. In
addition, the model is further strengthened by using totally different deep learning
architectures, which are ConvNext and SwinTransformer, accompanied by the con-
trastive augmentation regime. ConvNext, which is more tolerant to augmentation,
is required to annotate samples under strong augmentation, and SwinTransformer,
which is weaker to change in images, handles the sample with weak augmentation

applied. The proposed constrastive perturbation framework successfully improved
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the robustness of the pseudo-labeling framework and produced better experimental

results compared to the traditional pseudo-labeling method.

In the next chapter, I would like to further improve the pseudo-labeling methods
proposed in this chapter and the previous chapter to be more effective by introducing

ensemble learning as the solution.
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Chapter 4

Ensemble learning of pseudo-labeling
framework for chest X-ray image

diagnosis

4.1 Chapter introduction

In the previous chapters, I have proposed two frameworks based on pseudo-labeling
for detection and classification problems with the improvement to address the bias. In
Chapter 1, I addressed the bias that occurred by the models trained with the pseudo-
labeled samples, while Chapter 2 mainly focused on the bias during the process of
pseudo-labeling. That is, the bias problem addressed in Chapter 1 has not been solved
yet. Therefore, in this chapter, I would like to propose a simple yet effective method
to improve both previously introduced pseudo-labeling frameworks. The proposed
method is based on the concept of Ensemble Learning, which is one of the most well-
known methods in machine learning that can be easily applied to many situations[40].
When applying Ensemble learning to pseudo-labeling, I aim to improve performance
stability [41] by reducing the bias caused by pseudo-labeled samples by using various

detection or classification architectures.
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In this chapter, I will illustrate how ensemble learning is implemented in the previ-
ously introduced frameworks. Since the tasks of each framework (object detection

and classification) are different, I propose two methods for one of the frameworks.

This chapter is organized as follows: The first section introduces the common and
traditional methods of ensemble learning, starting with the object detection ensem-
ble and classification ensemble. Then, the implementation of the proposed ensemble
learning in the pseudo-labeling is shown. The following section shows the experi-

ment results, and the wrap-up section for this chapter is in the last section.

4.2 Ensemble learning frameworks

The ensemble has been one of the most practical machine learning algorithms[42,
43] for integrating multiple models or predictions to result in better performance
in overall results. Since the ensemble is a very effective method, there are many
researchers that implemented this concept and further improved upon it[44, 45, 40].
There are many factors that contributed to the success of the ensemble, which can be
varied from the policy for training multiple machine learning models to the method

behind how the models are combined together.

In this section, I will briefly introduce the common method of ensemble learning
for machine learning tasks and give more context to the reason why the selected

technique is adopted for the proposed method.

4.2.1 Techniques of classification ensemble

The main goal of ensemble techniques for classification is to improve the predictive
performance of a model by combining the predictions from multiple classifiers. It
simply involves using multiple learning algorithms or regimes with different param-
eters to obtain better predictive performance than that could be obtained from any

of the individual learning algorithm alone. This approach is based on the wisdom of
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collective decision-making, where collective decision-making often leads to better
outcomes than isolated judgments. Common ensemble techniques include Bagging,

Boosting, and Voting.

Bagging, originally an abbreviation of bootstrap aggregating, is the concept of train-
ing multiple models in parallel while using a different subset of a dataset that splits
from the whole dataset. The goal is that since the models are trained using the sub-
set of the data, the final decision made by majority voting for classification tasks
should provide more reliability and result in better performance than using a single
model. Random Forest[46] is an example of the bagging method, which is based on

the voting of various decision trees for the final decision.

As for Boosting, it trains models sequentially, with each model focusing on the er-
rors made by its predecessors. This is usually done by using a weight system that
penalizes or prioritizes the wrong prediction samples. When the model is trained
again in the next step, the weight system aims to correct the mistake that was made
previously, and the final prediction is combined through the weight sum approach in
the last prediction. Examples of popular algorithms of boosting are mostly related to
a training regime, which is AdaBoost[47], Gradient Boosting[48], and XGBoost[49],

where each subsequent model refines the overall classification performance.

The last method that I would like to introduce is voting. In the voting methods, mul-
tiple models are trained, and their predictions are combined to make a final decision.
Similar to bagging, the fundamental idea is to improve predictive performance by
considering the collective opinions of various models rather than relying on a single
model. There are two main types of voting methods: hard voting and soft voting.
In hard voting, each model in the ensemble votes for a class, and the class that gets
the majority of the votes is chosen as the final prediction. This method is like a
democratic election where each model has one vote, and the candidate (class) with
the most votes wins. Soft voting, on the other hand, takes into account the proba-

bility or confidence scores assigned by each model to the potential classes. Instead
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of a simple majority voting, the predictions are weighted based on these confidence

SCOres.

4.2.2 Ensemble technique for object detection

Ensemble techniques, which have proven to enhance the performance of classifica-
tion tasks, are increasingly being used for object detection as well. Instead of the
normal classification framework, the object detection framework not only outputs
the class of the image, but the model has to successfully locate the position of the
bounding box where the target object exist. This led to many ways to ensemble the

bounding boxes and combine the predictions from multiple models.

For the bounding box ensemble techniques, the most well-known technique is Non-
Maximum Suppression[50] or NMS in short. NMS is a common method in object
detection ensemble tasks to prune multiple bounding boxes predicting the same ob-
ject down to the single most likely box. After the object detection model predicts
bounding boxes, NMS first selects the box with the highest confidence score. NMS
then compares the selected box with all the other boxes and if the Intersection over
Union (IoU) of a box with the selected box exceeds a certain threshold (usually set
between 0.3 and 0.7), that box is removed because that box is overlapped with the
selected box. The process is repeated until all the boxes are processed. While the
NMS method is very simple and effective in many scenarios, the problem arises when
there are multiple boxes that overlap each other; that is, only the single box is used as
the prediction results, and the overlapped boxes are discarded. To address this prob-
lem, a Soft Non-Maximum Suppression (Soft NMS)[51] ensemble was introduced to
handle the cases where there are multiple overlapped bounding boxes. Instead of dis-
carding the overlapping boxes like NMS Soft NMS reduces their confidence scores
depending on their IoU with the selected box. The reduction in confidence is usually
proportional to the IoU instead of outright removal. Boxes are then re-ranked based

on these updated scores. The process continues until all boxes have been processed.
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4.3 Proposed method

4.3.1 Ensemble learning for improving pseudo-labeling for ob-

ject detection

Since pseudo-labeling is commonly known for having teacher bias and weak general-
ization ability [15],[34],[52], which occurs when the model learns from the incorrect
pseudo-labeled samples or tends to trust only a few characteristics of the samples.
To solve this problem, two models are combined to provide more reliable pseudo-
labeled samples instead of using a single object detection model. After the pseudo-
labeling process of the two models is finished, the pseudo-labeled samples from each

model are assembled together before retraining the models.

For the ensemble method, I applied the object detection ensemble technique called
Weight Box Fusion (WBF)[53]. Commonly, the box ensemble algorithm tends to
choose the most suitable box among the obtained boxes. Instead, the weight box
fusion ensembles the boxes using all the detected boxes and averages their location
prioritized by their confidence score. The WBF algorithm can be summarized as

follows.

Let b; be the i bounding box and B be a set of bounding boxes, i.e., b € B, and b; =
(xi, yi» wi, hi, ¢;) where x and y are the coordinates of a center of the bounding box,
w is a width, A is a height of the bounding box from the center, and c is confidence
score. Let bj be a bounding box after applying WBF and B, be a set of bj, i.e.,

bj€ Bypy.

Since the detection performance can vary due to the characteristics of each architec-
ture, the weight factor to prioritize the models is designed. The weights of model a
and b are calculated by Eq. 4.1 and Eq. 4.2, respectively. W, is weight for model a,
W, is that for model b, and mAP, and mA P}, are mean average precision (mAP) of

model a and b, respectively. The mAP has been explained in section 2.4.2.
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AP,
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b mAP, + mAP, (4.2)
Then b is obtained by Eqs.4.3 through 4.7.
i (x,c,) i (xi,ci,)
xXj= Wal“Ta— Wbleb— 4.3)
Ziazl(cia) Zib:l (Cib)
ZTa:l (ylacia) ZTh—l (ylbclb)
e e (4.4)

Ziazl(cia) Zibzl(cib)

T T
S w 2 (wici,) . WbZih’;l(wibCib) “5)
J— e, N Ty /. N )
Ziazl(cia) Zibbzl(cib)

2 T
Zi];:l(hiacia) Zibbzl (hihcih>

= W, e )y i (4.6)
Ziaa:1(cia) Zibb:l (ciy)
Ty Ty
W, Wp
c; niﬁ+n;% (4.7)
a= b=

where i, and i}, are the bounding box number of model a and b, respectively, T, and
T, are the total numbers of bounding boxes obtained by model a and b, respectively,
cl”.’a is a confidence score of bounding box i, obtained by model a, ci is that obtained

by model b, and x; ,y; ,w;,, hi,,c;, and x;,,y;,, w;,, hi,, c;, determine the characteris-

tics of bounding box number i, and i, respectively.

The difference between the introduced NMS bounding box ensemble method and
WBF bounding box ensemble methods can be seen in Fig. 4.1. In this figure, the red

box represents class A, and the blue boxes represent class B. The red box is located



49

NMS /
soft-NMS

)

l WBF

Ficure 4.1: Comparison of the bounding box ensemble process be-
tween WBF and NMS
just to show the fixed position in the figure, that is, to show the changes in the position
of blue boxes after the ensembling process. Therefore, the blue boxes are important
to understand this figure. For NMS and soft NMS, since the blue boxes all have the
same class, this ensemble method will return only the best box of the overlapped
class. On the other hand, the WBF ensemble method will find and average all the

boxes and result in a singular box that is constructed from all of the boxes.

By introducing the ensemble process, pseudo-labeled samples can be generated by

integrating information from several aspects, leading to better performance.

4.3.2 Ensemble learning for improving pseudo-labeling for clas-

sification

To further strengthen the performance of the pseudo-labeling with a contrastive per-
turbation network proposed in chapter 3, ensemble learning is implemented to im-
prove prediction stability and make the final classification models. The Ensemble
Learning method’s objective is to use various combinations of augmentation tech-
niques for the pseudo-labeling instead of using only one pair of augmentation meth-

ods. We introduced four combinations of augmentation techniques to the framework
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that perform the annotation task onto them: these are 1) Weak augmentation unla-
beled samples for both CNN and ViT, 2) Strong augmentation unlabeled samples for
both CNN and ViT, 3) Weak augmentation on CNN and Strong augmentation on ViT,

4) Strong augmentation on CNN and Weak augmentation on ViT.

Utilizing these four variations of augmentation will result in four pseudo-labeled
datasets that have different variances and characteristics. In the next step, the models
are trained using these four pseudo-labeled samples, resulting in four different final
models trained on different pseudo-labeled datasets. All the final models perform
the classification task to the test datasets and ensemble together using the traditional
majority voting ensemble method, where the results will be accepted when three of
the resulting classes are identical. The overall framework of the proposed method
can be seen in Fig. 4.2. By combining different final predictions of various pseudo-
labeling models, we aimed to remove the bias of any prominent characteristics or
traits that may come from pseudo-labeled samples that would lead to deteriorating

the final prediction performance.

After training all four pseudo-labeling models, the final classification result will be
obtained by majority vote ensemble method using Eq. 4.8, where M is the total
number of models, and the function F (C;(x) = i) outputs 1 when the classification
result for input x obtained by model j is class i, and it outputs O when the result is

not class i.

M
j= argmaXZ wiF(Cj(x) =) (4.8)
i =

The proposed method combines different types of classification models, that is, CNN
and ViT, trained on different training environments, and also combines the outputs
by weighted majority vote; thus, the overall model can generate final classification
results flexibly depending on the characteristics of the given dataset. In addition,
the combination of the outputs removes the bias of any prominent characteristics or

traits that may come from pseudo-labeled samples that lead to deteriorating the final
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Figure 4.2: The Ensemble Learning for Pseudo-labeling with Con-
trastive Perturbation flowchart.

prediction performance.

4.4 Experimental results

4.4.1 Evaluation of ensemble learning for disease area detection

The experiment carried out in this section is a continuation of the experiments in
chapter 2. Therefore, I aim to clarify whether or not the proposed ensemble method

improves the performance obtained by the previous experiment.

Since the last experiment, the confidence threshold to accept the pseudo-labeled sam-
ples was set at 0.95 to prevent including incorrectly labeled samples. However, the
problem with this setting is that the model tends to grow biased toward certain char-
acteristics of the images and leads to poor generalization. Therefore, a weight box
fusion ensemble is implemented to reduce the bias caused by pseudo-labeling, where
the pseudo-labeled samples generated by two object detection models, RetinaNet and

YoloVS5, are combined.

The comparison between pseudo-labeling methods with and without ensemble label-
ing is shown in Table 4.1. The baseline results were obtained by RetinaNet, and the
ensemble results were obtained by the combination of RetinaNet and YoloV5. The

ratio of labeled and unlabeled samples used for the training were set at (30% and
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TaBLE 4.1: Comparison between pseudo-labeling methods
with/without ensemble method. Parenthesis in the table shows
the difference between baseline and ensemble method

. Labeled Unlabeled mAP for difference IoU thresholds
Model Architecture Samples  Samples
S i 0.1 0.2 0.3 0.4 0.5 0.6
RetinaNet (Baseline) 30% 60% 7128 71.10 69.17 65.09 56.96 46.42
Ensemble (RetinaNet + YoloV5) 30% 60% 73.47 (+2.19) 73.47 (+2.37) 73.20 (+4.03) 72.61 (+7.52) 70.17 (+13.21) 65.53 (+19.11)
RetinaNet (Baseline) 50% 40% 7537 75.37 75.15 73.41 71.48 68.78
Ensemble (RetinaNet + YoloV5) 50% 40% 79.29 (+3.92) 79.29 (+3.92) 79.29 (+4.14) 77.11 (+3.70) 74.86 (+3.38)  71.62 (+2.84)

60%) or (50% and 40%). The remaining 10% samples were used for testing. IoU
thresholds determine the strictness of the evaluation; thus, in the same way as chapter
2, they were set at from 0.1 to 0.6. From the result, we can see the performance im-
provement across all of the experimental settings when applying the ensemble to the
pseudo-labeling. The most significant improvement is obtained by the 30% model
when integrating 60% unlabeled samples. The mAP increases by 2.19% and 19.11%
for the 30% models at 0.1 and 0.6 IoU, respectively. The 50% model also sees the
performance improvement by 3.92% and 2.84% for 0.1 and 0.6 IoU, respectively.
It can also be seen that the mAP increased only slightly at the low IoU threshold,
but the performance became significantly better at higher IoU for the 30% model.
However, the 50% model does not see an increase as significant as the 30% model.
This result indicates that more performance improvement can be achieved when the
number of labeled data is smaller. On the other hand, when the number of labeled
data originally given to the model is larger, like the 50% model, the effect of en-
semble learning becomes small. However, considering the whole results, we can
conclude that introducing the ensemble can help alleviate the generalization problem
from pseudo-labeling, leading to performance improvement and model stability. An
example of the detection result obtained by the ensemble method is shown in Fig.
4.3. The top-left image is the detection result obtained by RetinaNet, the bottom-left
is by YoloV5, the center image is the result of an ensemble, and the right image is
the ground truth. The ensemble result looks very slightly different from the result of
RetinaNet, but the mAP is improved, which is important for medical image diagnosis

that requires even a little improvement.
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Ficure 4.3: Example of the ensemble result using RetinaNet and
YoloV5

4.4.2 Evaluation of ensemble learning for classification

Since the proposed method aims to improve the performance obtained in chapter 3,
the results of chapter 3 are used as the baseline for comparison. The evaluation of the
proposed pseudo-labeling model using the Majority Voting Ensemble method can be

seen in Table. 4.2.

From the results, we can see overall performance improvement on average for all
criteria. However, if we take a close look at the performance of each class, it can be
seen that in the Typical class, the majority of the samples performed slightly worse

compared to the model without using Ensemble Learning.

On the contrary, the minority of classes that suffer from the imbalance datasets prob-
lem saw a huge improvement. It contributed to the overall performance of the final

prediction results, which surpassed the method without ensemble learning.
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TaBLE 4.2: Evaluation of Ensemble Learning for Pseudo-labeling with

Contrastive Perturbation [%]

Model Name Labeled Sample Unlabeled Sample Class Name Precision Recall
Baseline Model 50% None Typical 71.7 73.2
(3,000 images) Negative 64.3 74.4
Indeterminate 26.4 22.8
Atypical 30.4 18.4
Model’s Average 48.2 47.2
Contrastive Pertuabation Pseudo-labeling 50% 40% Typical 73.1 78.1
(3,000 images) (2,400 images) Negative 65.9 81.1
Indeterminate 32.7 20.6
Atypical 38.9 21.7
Model’s Average 52.7 50.4
Ensemble Contrastive Perturbation Pseudo-labeling  50% 40% Typical 70.1 76.4
(3,000 images) (2,400 images) Negative 65.3 82.3
Indeterminate 37.4 25.5
Atypical 42.8 204
Model’s Average 53.9 51.2

“Baseline Model 7 0% None  Typical 709 756

(1,800 images) Negative 63.8 74.2
Indeterminate 24.1 17.6
Atypical 25.2 15.3
Model’s Average 46.0 45.7
Contrastive Pertuabation Pseudo-labeling 30% 60% Typical 71.9 80.8
(1,800 images) (3,600 images) Negative 64.9 80.6
Indeterminate 31.9 16.2
Atypical 37.5 17.4
Model’s Average 51.6 48.8
Ensemble Contrastive Perturbation Pseudo-labeling  30% 60% Typical 70.6 79.3
(1,800 images) (3,600 images) Negative 69.6 83.2
Indeterminate 343 20.7
Atypical 41.6 18.4
Model’s Average 54.0 50.4

From these results, we concluded that introducing Ensemble Learning for the con-

trastive perturbation framework improved the model stability and decreased bias to-

ward the majority classes, especially the problem of dealing with class imbalance.

4.5 Chapter summary

In this chapter, I explored the concept of ensemble learning and how it can be im-

plemented to improve the pseudo-labeling framework in chest-X ray diagnosis tasks.

The chapter also aims to increase the model performance and robustness of the pre-

viously introduced pseudo-labeling framework. The object detection with pseudo

labeling was enhanced by weight box fusion that introduces weight parameters that

prioritize and stress the output obtained by each model. As for the classification

framework, the voting mechanism was adopted as an ensemble, which is simple but

yielded effective results. The success of the classification contributed to the further
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development of contrastive perturbation, which originally had a kind of ensemble
learning concept. In the next chapter, I would like to conclude the research and dis-

cuss the potential for any possible future work.
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Chapter 5

Conclusions

In this dissertation, I proposed the pseudo-labeling framework and how it can be in-
tegrated into deep learning and improve the performance of disease diagnosis. At the
beginning of the dissertation, I briefly introduced the overall semi-supervised learn-
ing, the candidate methods, including pseudo-labeling, and the connection between
the current machine learning trends and medical image analysis, and established the

objective of this dissertation.

In Chapter 2, I introduced the pseudo-labeling framework for pneumonia area detec-
tion in chest X-ray images to alleviate the lack of labeled data. The proposed method
aims to utilize unlabeled samples to improve performance through the implemen-
tation of an iterative pseudo-labeling process. The iterative process strengthens the
pseudo-labeling by controlling the model stability and making the model more stable
to the bias that comes from using the whole pseudo-labeled samples for training in
one go. After various experiments, it was found that the suitable architecture, con-
fidence threshold, the amount of labeled samples for the pseudo-labeling, and the

performance improvement.

In Chapter 3, I introduced the pseudo-labeling framework for classification and ap-
plied it to the COVID-19 disease classification task. The proposed method makes
use of the two deep-learning architectures to perform the pseudo-labeling task on

the unlabeled samples with different degrees of perturbation. In the experiments, I
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designed two scenarios to replicate real-world scenarios. The first scenario, where
30% of labeled samples were used with 60% of unlabeled samples, saw an increase
in average accuracy by 1.6% . In the second scenario, where 50% labeled samples

and 40% of unlabeled samples were used, the average accuracy increased by 3.5%.

In Chapter 4, first, I reinforced the detection framework proposed in Chapter 2 by
utilizing an ensemble technique to reduce bias and increase the reliability of pseudo-
labeling. As a result, the detection performance is further improved. The proposed
method improves the mean average precision up to 5.32, compared with the method
without the pseudo-labeling. Additionally, the mean average precision further in-
creases by up to 19.11 when applying ensemble learning. Then, I also implemented
further enhancements to the classification framework proposed in chapter 3 by intro-
ducing Voting ensemble methods. From the experimental results, it can be clarified

that the proposed method improved the classification performance further.

In conclusion, I successfully implemented a pseudo-labeling framework to handle
and improve the performance of the chest X-ray diagnosis task, including both dis-
ease area detection and classification tasks. Ensemble learning was also introduced
to both architectures to further increase performance by reducing teacher bias from
the pseudo-labeling process. I believe that in a situation where there are many unla-
beled samples lying around, it is possible to increase the deep learning performance
by applying the pseudo-labeling process rather than waiting for the expert labeling,

and it is usually better to apply the ensemble to improve the performance.
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