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Abstract

As the population ages, the demand for elderly care services will continue to increase, which
includes providing specialized care, daily life support, and medical health services. As a result, informal
caregiving provided by non-professionals such as family, friends, neighbors, and volunteers is becoming
more prevalent. Injuries that occur during caregiving can affect the caregiving’s life, especially their
mental and physical health. Therefore, the correct positioning and posture during caregiving are crucial
to prevent musculoskeletal disorders among caregivers. Although training programs are useful to reduce
the risk of musculoskeletal disorders for informal caregivers, many of them express that it is still difficult
for them to grasp the correct caregiving postures. Moreover, they struggle to obtain professional advice
to correct their posture through long-term practice. Therefore, finding a targeted ergonomic posture risk
assessment and guidance method is crucial to improve caregivers' posture-related risks, enhance work
efficiency, and safeguard their physical health.

Rapid Entire Body Assessment (REBA) is a postural risk assessment method based on ergonomics
that has been attracting attention recently, and it basically evaluates the risk from the angle of each joint
of the body. However, in caregiving movements, the way of load placed on the caregiver and the time to
maintain the movements vary greatly depending on the weight and posture of the cared person, so the
current risk assessment using REBA is insufficient for caregiving movements. Additionally, posture
recognition algorithms such as OpenPose are often used to extract skeletons. With these techniques,
problems such as missing skeletons or misrecognition often occur due to image conditions or the
overlapping of multiple people, and skeleton extraction may sometimes fail.

In this research, the Spatial Temporal Graph Convolution Network (ST-GCN) is applied to develop
a technique for complementing missing skeletons based on behavioral features and a technique for
correcting skeletons that are misrecognized due to overlapping people, and to improve the accuracy of
calculating skeletal joint angles. In order to evaluate caregiving posture risk more appropriately, some
parameters such as center of gravity trajectory, load duration, asymmetric load during caregiving
movements are investigated and a new REBA method is proposed.

This paper consists of six chapters.

In Chapter 2, to solve the problems of skeleton misidentification and missing information by
OpenPose an improved skeleton reconstruction method based on ST-GCN is propose. The method
compensates for missing skeletons in terms of behavioral features and corrects incorrectly identified
skeletons based on skeleton weight features. This approach improves the accuracy and robustness of pose
recognition and allows more accurate estimation of skeletal joint angles and its REBA score.

In Chapter 3, to address the issue of REBA evaluation scores being too high for caregiving scenarios,

a postural risk assessment method (C-REBA) is proposed by considering the characteristics of caregiving



task. Customize the traditional REBA method and add parameters such as center of gravity trajectory,
load duration, and asymmetric loading to the evaluation score. the caregiving movements to assist in
transferring from a bed to a wheelchair on a group of experienced nurses and a group of inexperienced
caregivers are analyzed and the effectiveness of the C-REBA method is verified.

In Chapter 4, a method that combines the ST-GCN framework and C-REBA for postural risk
assessment is proposed. The deep neural network algorism is applied to learn motion features and
additional features such as load duration, motion frequency, center of gravity variation, and asymmetric
load. So that all evaluation parameters for C-REBA rules can be obtained automatically. With this method,
postural risk assessment processes in caregiving operations can be performed automatically.

In Chapter 5, "Behavior Analysis and Posture Assessment System" (BAPAS) is developed. BAPAS
is a system aimed at assessing the risk of musculoskeletal disorders related to working postures in medical
support work. This chapter introduces the functions and usefulness of this system and demonstrates how
this system can be extended to other medical fields easily by setting parameter is settings.

Chapter 6 provides a summary of the paper as a whole and future prospect.
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Chapter 1

Introduction

1.1 Research background

Musculoskeletal disorders (MSDs), also known as work-related musculoskeletal disorders
(WMSDs), manifest as physical conditions arising from prolonged maintenance of contorted body
postures, long-duration repetitive work, and highly repetitive occupational activities undertaken by
workers or laborers. Examples of MSDs encompass carpal tunnel syndrome, neck pain, and lower
back pain [1-2]. These disorders are characterized by the presence of pain in one or multiple regions
of the body. Statistical investigations by the United States Department of Labor reveal that
occupational injuries, illnesses, and absenteeism account for 59% of economic losses in the United
States, with MSDs contributing to 29% to 35% of these cases [3]. Furthermore, MSDs often exhibit
sudden onset during the later stages, resulting in impaired work performance. In the initial stages,
these disorders may lack significant symptomatic features, leading to their potential oversight [4].
Failure to scientifically address the prolonged exposure of workers to high-risk MSDs not only
compromises their work capabilities but also escalates the likelihood of safety accidents, leading to
substantial social and economic losses [5]. MSDs are pervasive across diverse industries and
occupations worldwide, significantly impeding workforce productivity and labor, while also
imposing considerable medical expenses and inflicting severe economic ramifications on society
and the nation as a whole.

According to pertinent surveys and studies, high-risk industries and populations for
musculoskeletal disorders (MSDs) encompass coal miners, workers in manufacturing sectors like
machinery and automotive, as well as professions such as teachers and nurses [6-7]. Among these
occupations, the nursing industry exhibits a higher prevalence of work-related MSDs compared to
others [8-9]. Nurses frequently endure prolonged periods of standing, bending, and lifting, imposing
significant strain on their bodies. Consequently, many nurses suffer from musculoskeletal disorders
including lower back pain, cervical spondylosis, and arthritis due to these demanding work
conditions. These conditions not only impact the quality of life and career trajectory of nurses but
also result in reduced work capacity, absenteeism, and heightened healthcare costs [10]. Presently,
the global population is witnessing a noticeable aging trend. As per the World Health Organization's
survey, by 2050, approximately 16% of the world's population, nearly 1.5 billion people, will be
classified as elderly [11], with most developed countries defining the age of 65 as the threshold for

"elderly" [12]. The proportion of individuals aged 60 and above is projected to nearly double from
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12% to 22% between 2015 and 2050 [13]. Consequently, the longevity of individuals with chronic
diseases is expected to increase, leading to an escalating demand for elderly care services
encompassing daily life support and specialized medical care. This places a substantial burden on
the healthcare industry, making nursing work more intricate and demanding. Nurses are increasingly
engaged in physically laborious tasks and frequent postural adjustments, thereby heightening the
risk of developing musculoskeletal disorders.

According to a report issued by the Ministry of Health, Labour and Welfare on the employment
of nursing staff, the number of individuals requiring nursing care has surged to 6.76 million, while
the current count of nursing staff in the healthcare industry stands at a mere 2.11 million,
underscoring a significant shortage of positions within the nursing sector. Despite the high demand
for nursing professionals, the turnover rate remains alarmingly high at 14.2% [14]. A comprehensive
study investigating nurse turnover causes across seven countries revealed that 63.5% of nurses opt
to leave or retire prematurely due to occupational ailments [15]. The aforementioned observations
mainly pertain to formal nursing administered by trained caregivers. Nevertheless, it is imperative
to recognize the existence of informal nursing [16]. Informal nursing denotes unpaid care provided
by family members, friends, or volunteers, playing a pivotal role in the care process of individuals
coping with chronic illnesses or disabilities [17]. Informal nursing has become increasingly
prevalent and sought after in numerous countries [18]. Notably, in countries with a sizeable aging
population, like Japan, family-based elderly care has become customary. However, providing
informal care poses challenges and can significantly impact the well-being of caregivers, both
psychologically and physically [19-20]. Proper nursing postures are indispensable in safeguarding
caregivers from musculoskeletal disorders during the care process. Although relevant organizations
offer nursing training aimed at mitigating the risk of such disorders for informal caregivers, a
majority of them express dissatisfaction with the adequacy of this training in imparting a
comprehensive understanding of correct nursing postures and obtaining professional guidance on
correcting their postures during long-term care practices. Therefore, finding a solution to mitigate
the risk of musculoskeletal disorders is paramount in improving the nursing work environment,
enhancing work efficiency, and safeguarding the physical health of both formal and informal
caregivers.

Positive interventions have demonstrated efficacy in preventing or reducing the risk of work-
related musculoskeletal disorders (WMSDs) [21-22]. Among these interventions, the
implementation of specialized assistive medical devices represents a direct approach. Notably, a
study cited in reference [23] highlighted that the introduction of ceiling-mounted lifts as a standalone

intervention significantly decreased WMSDs while simultaneously enhancing patient comfort and



satisfaction. Other professional equipment, such as floor lifts [24], rail sliders [25], electric beds
[26], and mobile assistive robots [27], have also been employed. However, the high cost and limited
availability of these specialized devices in hospitals restrict their usage to specific nursing scenarios.
Given the practical constraints in nursing work, researchers have proposed various ergonomic-based
methods for simple posture assessment. The most widely utilized techniques include OWAS, RULA,
and REBA. OWAS, developed by Ovako Oy, involves the evaluation of working postures in
multiple departments of a steel mill by experienced steelworkers and ergonomists [28]. It
categorizes back, arm, lower limb postures, and load handling into specific ratings, assessing the
impact of posture combinations on the musculoskeletal system. Harm levels are classified into four
action categories, indicating the urgency of workplace interventions. RULA aims to rapidly assess
the musculoskeletal load caused by postures, muscle function, and external loads on the neck, trunk,
and upper limbs [29]. Based on the total score obtained from its coding system, four action levels
are recommended to guide intervention strategies for reducing the risk of injury due to physical
burden. REBA, on the other hand, is an analysis tool designed to capture unpredictable work
postures found in healthcare and service industries. It employs a body part diagram similar to RULA,
including the upper arm, forearm, wrist, trunk, neck, and legs. This method accounts for external
load/force, muscle activity resulting from static, dynamic, rapidly changing, or unstable postures,
and coupling effects. Unlike OWAS and RULA, REBA offers five action levels to assess the extent
of corrective measures required [30].

The posture risk assessment methods discussed above, which are based on ergonomics, rely on
subjective observations and assessments made by professional ergonomists. This approach is time-
consuming, labor-intensive, and prone to variations in assessment results among different assessors
[31]. To overcome these limitations, some researchers have proposed the utilization of motion
capture systems to automatically calculate joint angles of the human body. This can be achieved
through optical markers or wearable inertial sensors for joint angle measurement. While these
methods offer high accuracy, they require expensive equipment and skilled technicians for sensor
calibration and data integration [32]. Consequently, they are more suitable for validation
experiments in controlled laboratory settings and not practical for ergonomic posture assessment in
real workspaces. As aresult, researchers have shifted their focus to low-cost motion capture methods
utilizing depth cameras. The Kinect series of cameras, in particular, have demonstrated human pose
recognition capabilities [33-35]. The joint position calculations obtained from Kinect-based systems
have shown good accuracy in providing the required joint angles for posture assessment methods
such as RULA and OWAS [36]. Comparative studies have demonstrated favorable agreement

between Kinect-based systems and reference optical motion capture systems, as well as expert



ratings [37], indicating a promising outlook for musculoskeletal risk assessment. However, Kinect-
based systems have some limitations, including body occlusion [36], reduced tracking quality in
non-frontal views [38], and the omission of neck rotation [37]. With the advancements in computer
vision techniques, neural network technologies have emerged to identify key skeletal joints from
RGB images [39-41]. Currently, the most effective algorithm is OpenPose [42], widely employed
for its stable skeletal tracking capabilities in non-frontal views and video actions.

The efficacy of the OpenPose algorithm, which has demonstrated remarkable performance and
accurate assessments in industries such as construction and assembly line factories, remains
uncertain in the context of nursing processes. Particularly in complex situations involving occlusion,
blurriness, lighting variations, and body overlapping, challenges arise in simultaneously recognizing
the poses of multiple individuals, giving rise to issues such as missing skeletal information and
misidentification. These factors can impact the accuracy of joint angle calculations and result in
inaccurate REBA scores. Nursing processes often involve multiple healthcare providers performing
tasks for a patient simultaneously, posing potential challenges for the application of OpenPose.
Therefore, it is crucial to explore body pose recognition methods suitable for nursing processes to
enhance the accuracy of joint angle recognition, provide reliable references for nursing posture risk
assessment, and ensure the health and safety of both healthcare providers and patients. In this regard,
we propose a novel approach based on spatiotemporal graph convolutional neural networks. This
method assigns behavioral labels to pose time series and utilizes behavioral characteristics to predict
missing skeletal information. Additionally, by considering the behavioral feature weights of the
entire task, low-weight behavioral poses can be selectively filtered out to eliminate misidentified
skeletal information. Furthermore, interpolation techniques can be employed to fill in the gaps of
missing skeletal information. Consequently, our method achieves high skeletal recognition accuracy
during nursing tasks, even in scenarios involving multiple individuals and occlusion, thereby
enhancing the precision of REBA scores.

The implementation of appropriate ergonomic posture interventions in the nursing profession
has been shown to effectively reduce the risk of musculoskeletal discomfort and injuries [43-44].
Among various methods, posture feedback has been identified as the most effective intervention
approach [45]. Previous studies have demonstrated that diversified posture feedback can
significantly mitigate ergonomic risks for nurses [46]. Notably, interventions solely based on
teaching and training have proven ineffective in reducing the risk of musculoskeletal discomfort and
injuries, while those incorporating biofeedback have shown greater efficacy [47]. In light of these
findings, we propose a novel behavior analysis and posture risk assessment system. This system

facilitates the visualization of the trajectory of the center of gravity (COG), enabling healthcare



providers to explore optimal positions by observing COG movement and comprehend the associated
risk through posture risk scoring. Our system can be seamlessly integrated into Internet of Things
(IoT) devices equipped with cameras and utilizes neural network models and image processing
techniques to infer posture information. It then provides risk assessments and visual guidance to

address discomfort and injury risks associated with nursing postures.

1.2 Research purposes

The objective of this study is to develop an assistive healthcare system that encompasses a
behavior analysis and posture risk assessment system applicable to real work environments. The
primary goal of this system is to enable accurate automated assessment of nursing personnel's
postures and deliver personalized posture guidance to mitigate the risks associated with
musculoskeletal disorders and poor posture. To achieve this, two key challenges are addressed:

(1) Tackling the issue of skeleton misidentification and missing information in nursing tasks
when utilizing OpenPose for skeletal joint angle estimation.

Given the interactive nature of nursing tasks involving interactions between healthcare
providers and patients, occlusions frequently occur, significantly impacting the accuracy of skeleton
recognition when employing OpenPose. To overcome this challenge, we propose an enhanced
skeleton reconstruction method based on a modified Spatiotemporal Graph Convolutional Network
(ST-GCN). This method aims to interpolate missing skeletons based on behavioral characteristics
and rectify misidentified skeletons by assigning weights based on behavioral features. By adopting
this approach, the accuracy of skeleton recognition, skeletal joint angle estimation, and Rapid Entire
Body Assessment (REBA) scores are improved, thereby ensuring the reliability of posture risk
assessment.

(2) Addressing the issue of overestimation in the Rapid Entire Body Assessment (REBA)
method for nursing postures and enhancing the applicability and reliability of REBA in the nursing
industry.

The REBA method exhibits limitations when it comes to assessing posture risks in nursing, as
it fails to differentiate between experienced and inexperienced healthcare providers and does not
offer meaningful posture guidance specifically tailored to inexperienced providers. To overcome
this, we propose an improved version of REBA known as Nursing-REBA (C-REBA), which
incorporates parameters such as the trajectory of the center of gravity (COG), load duration, and
asymmetric load. C-REBA effectively distinguishes between experienced and inexperienced
healthcare providers and provides accurate posture scoring references for informal caregivers,

thereby enhancing the practicality of C-REBA scores in nursing posture assessment.



1.3 Article structure

This paper is divided into six chapters, and the content arrangement of each chapter is as
follows:

Chapter 1 provides an introduction to the background and objectives of this study.

Chapter 2 proposes an improved skeleton reconstruction method based on modified ST-GCN
to address the issues of skeleton misidentification and missing in nursing tasks with OpenPose. Our
method compensates for missing skeletons from the perspective of behavioral characteristics and
corrects misidentified skeletons based on skeleton weight features, thereby improving the
measurement accuracy of skeletal joint angles and REBA scores.

Chapter 3 presents the C-REBA method for assessing posture risks in nursing tasks, aiming to
overcome the limitations of the REBA method in evaluating posture risks in nursing. This method
explores a C-REBA approach that combines COG trajectory, load duration, and asymmetric load
parameters, effectively distinguishing between experienced and inexperienced healthcare providers
and providing accurate posture scoring references for informal caregivers.

Chapter 4 proposes an advanced method that combines the ST-GCN framework with C-REBA
for posture assessment. By utilizing deep neural networks and considering behavioral and additional
features, this method achieves comprehensive and automated evaluation of C-REBA scores.
Experimental results confirm the reliability and feasibility of this method in various scenarios
involving additional scores, including load duration, action frequency, asymmetric load, and center
of gravity changes.

Chapter 5 introduces the Behavior Analysis and Posture Assessment System (BAPAS), which
is a musculoskeletal disorder risk assessment system used to evaluate work postures in the assistive
healthcare tasks. The BAPAS system has been successfully extended to other assistive healthcare
scenarios, such as rehabilitation posture guidance and CPR posture assessment. It demonstrates
excellent performance in posture recognition, assessment, and guidance. Its scalability and
applicability make it a valuable tool in various healthcare environments, providing insights into
musculoskeletal disorder risks and assisting in posture assessment and guidance.

Chapter 6 describes the conclusions and future prospects of this study.
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Chapter 2

ST-GCN for skeleton correction

2.1 Overview

The application effectiveness of the OpenPose algorithm, renowned for its exceptional
performance and precise evaluation in the architectural industry and assembly line factory contexts,
remains uncertain within the healthcare domain. Particularly, when employing OpenPose for
simultaneous pose estimation of multiple individuals, complex situations characterized by occlusion,
blurriness, lighting variations, and body overlap can give rise to challenges such as missing skeletal
information and misrecognition. These challenges have adverse implications for the accuracy of
joint angle calculations and can lead to erroneous Rapid Entire Body Assessment (REBA) scores.
Furthermore, in the healthcare process, there are instances where one or more caregivers
simultaneously perform nursing tasks for a patient, potentially impacting the applicability of
OpenPose. Consequently, there is a pressing need to explore body pose recognition methods
specifically tailored to the nursing process. Such endeavors are pivotal for enhancing the accuracy
of joint angle recognition, providing a reliable reference for assessing the risk associated with
nursing postures, and ultimately safeguarding the health and well-being of both caregivers and
patients.

Researchers have made efforts to address pose estimation challenges arising from body
occlusion in nursing interactions. One approach involves using the heat map offset adjustment
algorithm, which compensates for missing skeletal keypoints through left-right symmetry principles
[1]. However, this method is primarily suitable for frontal camera perspectives, and deviations in
camera angles may lead to corrected keypoints positioned outside the body. To overcome this
limitation, the Mask RCNN method has been employed to detect human boundaries, ensuring that
skeletal keypoints remain within the body's boundaries [2]. Nonetheless, compensating for occluded
keypoints using symmetry principles encounters difficulties with complex movements. To restore
occluded keypoints, researchers have explored the utilization of unoccluded keypoints in the
Euclidean distance matrix [3]. This skeleton compensation method effectively mitigates occlusion
issues but overlooks temporal attributes and their association with skeletal motion trends, resulting
in discrepancies between the compensated skeleton and the actual action dynamics. Additionally,
some approaches have introduced the concept of "Human Dynamics" [4], which predicts future
body poses based on multiple frames in the current video, even in the absence of subsequent frames.

This method has shown remarkable effectiveness in compensating for missing skeletal keypoints.
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However, challenges persist regarding skeletal misidentification.

In response to the identified problem, we present a novel approach that leverages
spatiotemporal graph convolutional neural networks. Our method involves assigning behavioral
labels to pose time series and employing these behavioral features in a reverse manner to predict
missing skeletons. Moreover, by considering the behavioral feature weights of the overall task, we
can selectively filter out low-weighted behavioral poses to eliminate misidentified skeletons. The
missing skeletons are subsequently interpolated using an interpolation method. As a result, our
proposed method achieves enhanced accuracy in skeleton recognition, particularly in multi-person
and occlusion scenarios encountered during caregiving tasks, thereby enabling more precise

estimation of Rapid Entire Body Assessment (REBA) scores.
2.2 Study design
2.2.1 Overview of methods

Within our investigation, we have introduced a novel approach for discriminating the kinematic
chain skeleton, enabling the assessment of pose skeleton integrity and differentiation between loss
and misidentification. By examining the heterogeneity of action features derived from the ST-GCN
network and their corresponding skeleton mappings within a predetermined temporal threshold, we
were able to identify cases of skeleton misidentification from a pose-based kinematic chain
perspective. To optimize the compensation for skeletal loss, we have proposed a temporal-based
skeleton interpolation method. This method involves leveraging temporal features, traversing
complete skeletons before and after the temporal sequence, and applying interpolation algorithms
to rectify missing skeleton data. For instances of skeleton misidentification, we have presented a
technique to enhance the heterogeneity of action features. This technique entails optimizing action
features with lower weights within the defined temporal range, compensating for gaps by utilizing
consistent action features from previous and subsequent temporal sequences, and updating the

associated skeletons mapped with the action features to rectify misidentification of the pose skeleton.

An illustrative overview of our skeleton compensation method is depicted in Figure 2.1.

Figure 2.1. Overview of our skeleton compensation method.
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Furthermore, our research process encompasses several distinct steps, which are visually
depicted in Figure 2.2. Firstly, we deliberately selected the prevalent patient transfer task within the
nursing care field to evaluate the efficacy of our method in caregiver-patient interaction scenarios.
Secondly, RGB cameras were employed to capture video recordings of the nursing tasks, while
wearable sensors were utilized to accurately measure the angular changes in various joints of the
human body. Subsequently, the recorded nursing task videos underwent processing using both the
OpenPose algorithm and our novel proposed method. This processing facilitated the calculation of
skeletal joint angles and Rapid Entire Body Assessment (REBA) scores. Lastly, we conducted a
meticulous comparative analysis, assessing the accuracy of our approach by juxtaposing the
outcomes derived from OpenPose, our proposed method, and the joint angles and REBA scores

directly measured by the sensors.

Mursing task video data
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Figure 2.2 Overview of experiment and validation.

2.2.2 Experiment design

We recruited a group of eight experienced nurses from the Rehabilitation Department of the
author's affiliated hospital. Table 2.1 provides details regarding their ages, weights, and heights. It
is important to note that these nurses had no record of musculoskeletal diseases within the past year.
To simulate the patient, a male volunteer with a height of 168cm and weight of 62kg was enlisted.
The task assigned to the eight nurses involved transferring the patient from the bed to the wheelchair
while ensuring consistent sitting posture and movements throughout the process.

We utilized an Intel RealSense Depth Camera D435 to capture videos of the caregiving tasks,
with the camera positioned at a distance of 3 meters from the caregivers. To measure the angles of
various joints in the body, we employed a motion capture system comprising multiple WitMotion
WT901C TTL 9 Axis IMU Sensors. These sensors have demonstrated strong correlation with results
obtained from optical motion capture systems, and they are widely utilized in fields such as

rehabilitation medicine and ergonomic analysis [5-7]. Furthermore, IMU sensors exhibit robust
13



resistance to occlusion, enhancing their suitability for evaluating the accuracy of visual-based angle
measurements [8-9]. For this study, a total of 10 IMU sensors were employed, primarily targeting
major joints including the neck, torso, legs, upper arms, and lower arms. The specific placement
positions of these sensors are depicted in Figure 2.3. The data transmission was facilitated by a PC
equipped with Microsoft Windows 10 operating system, Intel (R) Core (TM) i7-8750H 2.00 GHz
CPU, 8 GB RAM, and Nvidia GeForce GTX 1050Ti GPU. To mitigate drift inaccuracy in the
sensors during the caregiving tasks, each task was completed within a 20-second timeframe by each

participant, and the IMU sensors were recalibrated after the completion of each caregiving task.

Table 2.1 Demographics of the participants.

Gender Age Weight(kg) Height(cm)
Nurse 1 Male 31 61 171
Nurse 2 Female 30 51.5 163
Nurse 3 Male 30 62 168
Nurse 4 Male 27 79 175
Nurse 5 Male 25 65 171
Nurse 6 Male 28 65 168
Nurse 7 Male 36 57 163
Nurse 8 Female 26 48 161

Figure 2.3 Inertial sensor location.

We conducted an experiment and collected data from multiple participants in 2022. Each
participant recorded three sets of data, and the average value was considered as the final result.
Following the completion of the caregiving tasks, the OpenPose and ST-GCN modules
automatically generated pose and skeletal joint information for various time sequences. The
coordinates of the skeletal joints were synchronized with the PC, represented as two-dimensional
pixel coordinates. Additionally, the joint angle data obtained from the IMU sensors were also
synchronized with the PC. To streamline the process, we developed an automated ergonomic
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assessment system, where the skeleton data input system automatically evaluated joint scores and

Rapid Entire Body Assessment (REBA) scores.

2.2.3 Statistical analysis

Statistical analysis was performed using SPSS 27 software (SPSS Inc) and GraphPad Prism 9
(GraphPad Inc). Paired t-test was employed for analyzing paired continuous data. Mean values and
standard deviations were reported for all statistical tests, and a p-value less than 0.05 was considered

statistically significant.

2.3 Improved ST-GCN for skeleton reconstruction

The spatial-temporal graph convolutional network (ST-GCN), introduced by Yan et al. [10], is
an advanced deep neural network approach designed for the recognition of human skeletal actions.
In this method, a spatial-temporal graph is employed to encode the spatial positions and temporal
dynamics of human skeletal joints. Each joint is denoted as a node in the graph, while the
connections between nodes capture the interdependencies among joints, encompassing both skeletal
connectivity and motion trajectories. Furthermore, each node encodes feature information
pertaining to the joint across multiple temporal instances. By leveraging spatial-temporal graph
convolutional layers, the ST-GCN network effectively processes the spatial-temporal graph data,
enabling the propagation of information and feature extraction from the joints. These convolutional
layers consider both the interconnections among nodes and the temporal aspects, allowing for the
capture of action patterns and correlations through neighboring nodes and their temporal
relationships. Through training, the ST-GCN network acquires discriminative feature
representations, facilitating accurate recognition of human skeletal actions. Beyond action
recognition, the versatility of this network extends to real-time action generation, pose estimation,
and various related tasks. Remarkably, the ST-GCN has exhibited exceptional accuracy and
robustness on human skeletal datasets, endowing it with considerable value in the realm of human

action recognition. For visual reference, the original network structure is depicted in Figure 2.4.
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Figure 2.4. The original ST-GCN network structure

Upon scrutinizing the original structure of the ST-GCN network, it becomes evident that its
fundamental ST-GCN unit comprises an attention mechanism (ATT), graph convolutional neural
network (GCN), and temporal convolutional neural network (TCN) interconnected sequentially.
This sequential architecture for skeletal feature extraction poses a challenge in maintaining the
coherence between spatial and temporal features, resulting in notable disparities between predicted
action labels and the corresponding true actions. To tackle this predicament, we have introduced
modifications to the original ST-GCN structure, as depicted in Figure 2.5a. These modifications
encompass four key adjustments. Firstly, we have reconfigured the ST-GCN unit by decoupling the
GCN and TCN modules. In this reconfiguration, the GCN, batch normalization (BN), and rectified
linear unit (ReLU) activation function are interconnected to form the spatial feature extraction unit
(Figure 2.5b). Subsequently, the spatial feature extraction unit is linked with the TCN to construct
the spatiotemporal feature extraction unit (Figure 2.5c). This deliberate design ensures the adequate
assimilation of skeletal features at the temporal level. Secondly, we have augmented the spatial
feature extraction unit with a residual structure, while the spatiotemporal feature extraction unit is
fortified with dense connections to enhance the efficacy of spatial and temporal feature propagation,
thereby alleviating the concern of gradient explosion. Lastly, and of paramount importance, we have
revamped the ST-GCN unit by establishing parallel connections between the spatial feature
extraction layer and the spatiotemporal feature extraction layer (Figure 2.5a), with the primary

objective of fostering a strong alignment between predicted labels and actual actions.
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Figure 2.5. Spatial temporal graph convolutional neural network.

Within our refined framework, the spatial feature layer, denoted as Spatial Conv, assumes a
pivotal role in capturing the interconnected characteristics among skeletal nodes and their
neighboring counterparts, employing the spatial information derived from key nodes within the
skeletal graph. Its impact on human pose estimation is rooted in its capacity to depict local features
and amalgamate the features of neighboring nodes associated with each skeletal joint. To model
spatial relationships, we leverage a topological structure and graph convolution technique, which
effectively extracts information from neighboring nodes through a comprehensive partitioning
strategy [5]. The spatial convolutional layer integrates graph convolution, thereby amalgamating
spatial and neighborhood information originating from interconnected skeletal points. In order to
foster stability and capture the nonlinear relationships between joints, batch normalization and the
rectified linear unit (ReLU) activation function are employed. Multiple spatial convolutional layers
collectively form the extraction unit, interconnected via a residual framework, which aims to address
challenges related to gradients.

The spatiotemporal feature layer serves the purpose of extracting action trend features from
skeletal joint nodes across frames within the skeletal graph. This extraction process is instrumental
in delineating the action trends between corresponding joint nodes in successive frames, which holds
paramount importance for posture maintenance and risk assessment. By capturing the spatial
adjacency information of skeletal joint nodes and employing temporal convolutional layers, the
spatiotemporal feature layer facilitates the update of joint nodes based on temporal cues. Analyzing

these features enables a comprehensive comprehension of action trends and posture risks within the
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human skeletal structure. The convolutional layers responsible for temporal feature extraction
encompass a stack of Spatial Conv and Temporal Conv layers, collectively referred to as Spatial-
Temporal Conv. To overcome challenges such as gradient vanishing and enhance feature
propagation efficiency, a dense connection approach [11] is implemented, consolidating multiple

spatiotemporal convolutional layers into the spatiotemporal feature extraction unit.
2.3.1 Kinematic chain for skeleton discrimination

The integration of spatial and temporal features within the label mapping relationship enables
the determination of action weights for different postures, where the highest-weighted action label
represents each distinct posture. In order to tackle the challenges posed by missing skeleton data or
instances of skeleton misidentification in complex scenarios, we have introduced a Kinematic Chain
Skeleton Discrimination Network in the final layer of the Spatial Temporal Graph Convolutional
Neural Network (ST-GCN). This incorporation allows for the effective assessment of skeleton
integrity and the identification of cases involving skeletal misidentification. Notably, we have
developed a novel method for skeleton discrimination utilizing kinematic chains, which goes
beyond the scope of previous research [9]. Our kinematic chain-based approach not only evaluates
the completeness of skeleton poses in each frame but also incorporates the comparison of fused
action weight features. Abnormal action weights within a specified temporal sequence are classified
as misidentified actions and skeletons, and corrective feedback is provided in terms of both action
and skeleton information.

Each skeletal connection is defined as the linkage between adjacent keypoints within the
human skeletal structure, denoted as a feature vector that represents the direction from one skeletal
keypoint to its neighboring node. These vectors collectively form a 2 XM matrix K, where M
represents the predetermined number of skeletal keypoints in the human body structure. The matrix
W=K"K serves as a discriminating feature for skeletal integrity, where the diagonal elements of
Y depict the squared lengths of skeletal joints, while the remaining elements indicate the weighted
angles between pairs of skeletal keypoints, serving as internal indicators. Drawing inspiration from
kinematic chains, we introduce a temporal kinematic chain, defined as follows:

®=K! K, , -K'K, 2.1

Where, i represents the temporal interval between successive frames within the temporal
kinematic chain. The diagonal elements within matrix @© depict alterations in skeletal joint lengths,
while the remaining elements signify changes in angles between pairs of skeletal keypoints. Figure
2.6 provides a visual representation of the temporal kinematic chain relationship between two

adjacent skeletal keypoints, denoted as K1 and K2. Within the temporal kinematic chain, the input
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values consist of alterations in skeletal joint lengths between K1 and K2, denotedas K| and K|,
as well as dissimilarities in angles between keypoints K, and K" . These dissimilarities
represent the disparities in skeletal joint lengths between two frames separated by a time interval of
i, along with the angular variations between neighboring skeletal keypoints, exemplified by the

discrepancies between 6/, and 6);" .

K3

K1

Frame t Frame t+i

Figure 2.6. Illustration for temporal kinematic chain between two neighboring skeletal keypoints.

We establish the prediction of temporal kinematic chains by connecting the coordinates of
skeletal keypoints, which are subsequently inputted into a Temporal Convolutional Network (TCN)
to construct a posture discrimination network. This methodology not only accounts for the integrity
of posture skeletons across frames but also ensures the coherence of weight variations in action
feature changes across frames. It optimizes abnormal action weights and provides feedback for
skeleton compensation or correction. Building upon the framework of a Generative Adversarial
Network, we construct the posture discrimination network and employ this framework to generate
regularization loss Loss, for pose estimation. Furthermore, we introduce rotation matrices to
enhance robustness under diverse viewing angles, as exemplified by the following equation:

Loss, = Loss(RX) (2.2)

Where, R represents the rotation matrix Rotation(a B ) , whereas «, 3 respectively denote
the chosen angles along the x and y axes. In the experimental configuration, « is randomly

selected from the interval [-0.2m, 0.27], while £ is randomly selected from the range [, n].
2.3.2 Skeleton interpolation compensation

In cases where the skeletal discrimination network identifies a missing skeleton state, the

skeleton interpolation compensation network is activated to localize the temporal position of the
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missing skeletal keypoints. This process involves traversing the preceding and subsequent temporal
skeletons and selecting complete skeletal sequences with shorter temporal intervals as references
for skeletal interpolation. To ensure the generated skeleton aligns with realistic kinematic features,
a compensation algorithm takes into account the action characteristics of the temporal sequence. For
the interpolation compensation process, we set the range of traversal for the preceding and
subsequent temporal skeletons to ten frames, based on findings from a referenced study [12] which
determined that a range of ten frames at a sampling frequency of 50Hz provides optimal kinematic
skeletal interpolation data. Accordingly, the missing skeletal temporal stage serves as the starting
point, and the skeletal data from the preceding ten frames and subsequent ten frames are explored.
The flowchart illustrating the skeletal interpolation compensation process is presented in Figure 2.7.
When the skeleton discrimination network detects a missing skeleton state, the missing information
is transmitted to the interpolation compensation network. This network integrates the skeletal
information from the preceding and subsequent ten frames surrounding the missing skeletal
keypoints, utilizing two neighboring complete skeletons with closer temporal distances as references.
By incorporating action characteristics based on temporal features, the interpolation compensation
network effectively compensates for the missing skeletal information, resulting in accurate skeletal

compensation.

0

-

Startingt -

Figure 2.7 ST-GCN for skeleton missing interpolation compensation.

Assuming that the motion velocity of skeletal keypoints remains independent and constant
within the missing region, when there are n missing skeletal keypoints between the temporal
sequences, Ps(xs, ys),Pe(xe, ye) , P, and P respectively represent the starting and ending
points of the complete skeletal information with a temporal distance of ten frames. The missing
point is denoted as P (xl, yl),P2 (xz, yz),..., P (xn, y,,) . The equation for computing the

interpolated compensatory coordinates of the missing skeleton keypoints is as follows.

x, =(1-1)x, +1x, (2.3)
yvi=(1-1)y, +1v, (2.4)
' (i=12.. 2.5
t n+l(l 1,2, ,n) (2.5)
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2.3.3 Skeleton correction

To optimize heterogeneous action features in the case of skeletal misidentification, we have
devised a method that takes into account the differences in action characteristics and determines the
weights of the temporal sequences. Within these relevant temporal sequences, we calculate the
proportion of action weights based on a predefined time threshold, while automatically filtering
abrupt action features and compensating for missing temporal sequences with consistent action
characteristics. By mapping the updated action features to the skeletal feature set, new skeletons are
generated to replace the misidentified ones. For the temporal standard settings, we employ the same
traversal method as in cases of skeletal loss. Starting from the misidentified skeleton temporal
sequence, we traverse the pose weight information of the preceding and succeeding ten frames to
determine the pose. The final determining feature is selected based on the highest-weighted feature
within the temporal sequence, thereby replacing the anomalous action feature. Simultaneously, this
feature is mapped to the corresponding skeletal feature, effectively replacing the misidentified
skeleton. The entire process is depicted in Figure 2.8. For instance, if we consider B as the starting
point for anomalous action feature weights and traverse ten frames before and after, all frames
exhibit A features. Consequently, the B feature will be identified as an anomalous action feature by
the skeletal correction network, and A will replace B as the action feature. The corresponding
skeletal feature will also be adjusted accordingly, leading to the rectification of the misidentified

skeleton.

If A > 60%
Then B will be replaced by A

Figure 2.8. Skeleton correction for misidentified frames.

In order to mitigate estimation errors in the current frame that may lead to the neglect of
preceding and succeeding frames, we introduce the utilization of the Kalman filtering algorithm for
performing noise smoothing on the time series of coordinates for each skeletal point [6]. This
integration ensures improved consistency between the corrected skeleton and the actual movement.

21



While considering the independent calculation of each skeletal point without accounting for skeletal
constraints, we observe a natural correlation between the horizontal and vertical actions of the
skeleton. Furthermore, when action trends are disregarded, the temporal states before and after

exhibit similar characteristics. As a result, the following mathematical equations are satisfied.

i = A%, +Bu, (2.6)

B =AP_A"+0 2.7)
£ CP?C;T?TJr R @9

% =% +K,(y - C%) (2.9)
B =(I-K,C)P, (2.10)

This study utilized PyCharm 2020.3.2 to perform interpolation and smoothing operations on

human skeletal points based on time sequences.

2.4 Accuracy evaluation factors

2.4.1 Joint angle calculation

In the nursing task video, the human skeletal structure is predicted using the OpenPose and ST-
GCN algorithms, followed by the calculation of joint angles from the skeletal points using the same
methods. Each caregiver is identified with a total of 25 skeletal points, as shown in Figure 2.9. To
comply with the scoring rules of the Rapid Entire Body Assessment (REBA), a comprehensive
evaluation tool for assessing posture risks, a total of eight joint angles need to be computed. The
calculation of these joint angles and their corresponding relationships with the skeletal points can
be found in Table 2.2. By referencing the skeletal points associated with different joint angles as
indicated in Table 2.2, the corresponding joint angles can be determined using inverse trigonometric
functions based on the cosine theorem. Given that the nursing task primarily involves the use of the
arms, the wrist angle will be treated as a constant value for angle measurement and pose risk

assessment purposes in this study.

22



Table 2.2 Joint angles list.

Joint angle Involved skeletal points
Trunk flexion angle Z£1,8,8
Neck flexion angle Z0,1,1°
Left leg flexion angle 12,13, 14
Right leg flexion angle Z£9,10, 11
Left upper arm flexion angle £5°,5,6
Right upper arm flexion angle £2°,2,3
Left lower arm flexion angle £5,6,7
Right lower arm flexion angle £2,.3,4

Figure 2.9 Skeleton angle calculation method.

The REBA method has been selected as a comprehensive tool for assessing ergonomic risks in
the workplace, aiming to promptly evaluate the risk of work-related musculoskeletal disorders
(WMSDs) associated with various postures. Its primary objective is to identify work positions that
require additional attention and improvement in order to mitigate the risk of bodily discomfort and
injury during work activities. The REBA algorithm involves the assessment of angle variations in
key joints of the skeleton, including the trunk, neck, legs, upper arms, forearms, and wrists, as well
as considerations for external loads and hand coupling capability. Based on the evaluation, REBA
scores are assigned on a scale ranging from 1 to 12, with higher scores indicating a greater risk of

WMSDs, as presented in Table 2.3.
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Table 2.3. REBA risk level list.

REBA Risk Level
Action Level REBA Score Risk Level Correction Suggestion
0 1 Negligible None Necessary
1 2-3 Low Maybe Necessary
2 4-7 Medium Necessary
3 8-10 High Necessary Soon
4 11-15 Very High Necessary Now

2.4.2 Accuracy calculation

In order to evaluate the accuracy of our approach in assessing posture risk, a comprehensive
comparison was conducted between OpenPose, inertial sensors, and our method with regards to
joint angles and REBA scores. The nursing task videos were meticulously divided into individual
frames, and for each frame, the joint angles and REBA scores were calculated independently, as
outlined in Table 2.4. To assess the performance of our method, the mean absolute error (MAE) of
the joint angles and the precision of the REBA scores were employed as evaluation metrics. The
MAE quantifies the absolute discrepancy between the joint angles computed by different methods,
capturing the true magnitude of the error regardless of its direction. The mathematical equation for

calculating MAE is provided as follows:

n

Ai _Asi
MAE, ==—— (2.11)
n
Z Aoi _ASI
MAE, == (2.12)
n

Where, MAE, represents the mean average absolute error of joint angles measured by our
method and the inertial sensors. MAE, represents the mean average absolute error of joint angles
measured by OpenPose and the inertial sensors. The precision calculation for the REBA scores is
primarily based on the REBA scores computed from the measurements of the inertial sensors.
Assuming the number of frames with consistent REBA scores between the inertial sensors and our
method is denoted as Fm, and the total number of frames is denoted as F, the precision calculation

is determined by the following mathematical equation:

Acc=%x100% (2.13)
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Table 2.4 Accuracy calculation parameters.

Nursing task
Frame 1 Frame 2 Frame i Frame n
video
Joint angle Aol Ax Ao Aon
OpenPose
REBA Rol Roz Roi Ron
Inertial Joint angle Asi Ag Asi Asn
sensor REBA Rs1 Re Rai R
Joint angle Al Az Ai An
Ours
REBA Ri R2 R Ra
Joint angle error [Ao1, Asi, Ai] [Ao2, As2, Az] [Aoci, Asi, Ai [Aon, Asn, An]
Accuracy
REBA score error [Rot, Rs1, Ri] [Roz2, Rs2, R2] [Roi, Rsi, Ri] [Ron, Rsn, Ra]
2.5 Result

2.5.1 Skeletons missing and misidentifications

During the implementation of OpenPose for posture risk assessment in nursing tasks,
significant challenges arise due to the intricate interactions and overlapping body configurations

between nurses and patients. These challenges often give rise to incomplete or inaccurate skeletal

estimations, leading to deviations and fluctuations in joint angles, as illustrated in Figure 2.10a. For

instance, as depicted in Figure 2.10b, when a misidentified skeleton corresponds to the upper arm,
substantial fluctuations in the upper arm angle occur, resulting in discontinuous states. In contrast,
our method addresses the issue of misidentification (Figure 2.10c¢), ensuring a stable and continuous
state for the joint angles of the upper arm. Similarly, in scenarios where the skeleton is missing, such
as the legs, there may be deviations or even a complete absence of leg angles. However, our method

optimizes the identification of the skeleton, thereby achieving the continuity of leg angle

measurements.

QPENPOSE

Upper atm angle - OPENPOSE

Figure 2.10. The effects of skeleton compensation and correction on joint angles.

Uppesr arm angle - Ours
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In order to evaluate the performance of our approach, we conducted a comprehensive analysis
comparing the rates of overall skeleton missing and misidentification across all frames, as presented
in Table 2.5. The findings demonstrated that our approach achieved a remarkable skeletal
misidentification rate of 2.18%. Furthermore, in terms of the skeleton missing rate, except for the
right lower arm (Lower arm-R) which was affected by limb occlusion, substantial compensation
effects on skeleton missing were observed for all other cases. These outcomes underscore the
effectiveness and potential of our approach in optimizing the challenges associated with skeleton

missing and misidentification in the field of skeletal analysis.

Table 2.5. Overall skeleton missing rate and misidentification rate for all frames.

) Skeleton missing rate Skeleton misidentification rate
foints OpenPose Ours OpenPose Ours
Trunk 0.18% 0.07%

Leg-R 16.79% 5.96%
Upper arm-R 22.42% 10.36%
Lower arm-R 64.68% 51.67%
20.60% 2.18%
Neck 22.06% 7.01%
Leg-L 8.47% 1.78%
Upper arm-L 11.19% 0.29%
Lower arm-L 12.75% 0.58%

2.5.2 Joint angle error

To assess the accuracy of our approach in measuring joint angles, we conducted a comparative
analysis of angle errors among various methods. The analysis involved three distinct groups, each
focused on evaluating the errors within a specific context. £,,,,, = 4, — 4, represented the error
between the joint angles obtained from OpenPose and the ground truth values; E,, ., = 4, — 4,
represented the error between our method and the ground truth values; £,,,,; = 4, — 4, represented

the error in joint angle errors between our method and OpenPose (Table 2.6).

Table 2.6 Errors between different joint angles.

) Eanglel Paired t-test Eangle2 Paired t-test Eangles Paired t-test
Joints

(N=8) p-value P1 (N=8) p-value P2 (N=8) p-value P3
Trunk -0.166+18.526 P=0.628 -0.019+2.345 P=0.659 -0.017+18.800 P=0.961
Leg-R 3.880+18.591 P<0.001 -0.060+2.324 P=0.160 0.882+6.090 P<0.001
Upper arm-R 3.145+10.742 P<0.001 -0.186+4.475 P=0.025 0.755+10.136 P<0.001
Lower arm-R 3.969+30.840 P<0.001 -0.226+4 427 P=0.006 -0.108+18.481 P=0.752
Neck -1.956+14.891 P<0.001 -0.072+2.281 P=0.087 1.963+14.436 P<0.001
Leg-L -1.069+7.174 P<0.001 -0.125+4.512 P=0.134 -4.098+30.771 P<0.001
Upper arm-L -1.014+10.605 P<0.001 -0.059+2.292 P=0.165 0.773+9.903 P<0.001
Lower arm-L 2.473427.971 P<0.001 0.006+4.586 P=0.942 -3.001+27.793 P<0.001
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We presented a detailed analysis of joint angle errors based on comprehensive experimental
results (Table 2.6). When comparing joint angle errors between OpenPose and ground truth values
(Eangle1), all angles, except Trunk angles (P1=0.628), displayed significant statistical differences
(P1<0.001), indicating substantial joint angle deviations. Conversely, our method exhibited minimal
errors compared to ground truth values (Eangle2), With significant statistical differences observed only
in Upper arm-R (P2=0.025) and Lower arm-R (P2=0.006) joint angles. This highlighted the
reliability of our method in calculating skeletal joint angles. Additionally, significant differences
were found in joint angle errors (P3<0.001) between our method and OpenPose (Eangle3), except for
Trunk (P3=0.961) and Lower arm-R angles (P3=0.752), demonstrating the eftectiveness of our
approach in enhancing pose estimation accuracy and improving the precision of skeletal joint angle
calculation.

The stability and accuracy of joint angle measurements were assessed using the mean absolute
error (MAE) as an evaluation metric, with smaller MAE values indicating higher measurement
accuracy. Our method consistently achieved an overall MAE (MAE1) below 10°, demonstrating
superior accuracy in joint angle measurement, as illustrated in Figure 2.11. In contrast, OpenPose
exhibited an MAE exceeding 10° for all joints, except the trunk, indicating substantial fluctuations
in measurement errors. Statistical analysis revealed significant differences in both MAE1 and
MAE?2 across all joint angles (P<0.05). These discrepancies can be attributed to the challenges
encountered by OpenPose, including skeleton loss and misidentification issues during the estimation
of nursing care poses, resulting in frequent variations in angle differences and increased error
fluctuations. In contrast, our proposed method effectively addressed these challenges by optimizing
skeleton loss and misidentification, leading to reduced error fluctuations and significantly enhanced
accuracy in joint angle calculations, as evidenced by the lower MAE values and reduced error

fluctuations depicted in Figure 2.11.
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Figure 2.11. MAE of different joint angles. NS=not significant, *p<0.05, **p<0.01, ***p<0.001.
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2.5.3 REBA score difference

To verify the performance of our method in REBA scoring, we conducted a comparative

analysis of the error in REBA scores among different skeletal joints. £,,,

=R, — R, denoted the
error between OpenPose and the ground truth values, while £,,,,, = R, — R, signified the error
between our method and the ground truth values. The results, in accordance with the REBA scoring

rules, were presented in Table 2.7.

Table 2.7. Errors between joint angle score and REBA score.

EreBal Paired t-test Erepaz Paired t-test
Joints
(N=8) p-value (N=8) p-value
Trunk -0.001+0.207 P=0.788 0£0.159 P=1
Leg-R 0.255+0.568 P<0.001 0.015+0.465 P=0.066
Upper arm-R -0.176+0.644 P<0.001 -0.005+0.302 P=0.296
Lower arm-R -0.154+0.635 P<0.001 0.235+0.448 P<0.001
Neck 0.003+0.132 P=0.124 -0.003+0.395 P=0.638
Leg-L -0.027+0.282 P<0.001 0.012+0.506 P=0.186
Upper arm-L 0.01340.282 P=0.013 0.001+0.186 P=0.619
Lower arm-L 0.098+0.309 P<0.001 0.234£0.508 P=0.325
REBA 0.116£1.128 P<0.001 -0.003+0.208 P=0.373

Based on the comprehensive results presented in Table 2.7, notable differences (P<0.001) were
observed in the joints scores and REBA scores between the OpenPose and the ground truth values
(EreBa1), except for Trunk (P=0.788), Neck (P=0.124). These observations indicated that the
reliability of REBA scores derived from the OpenPose method for assessing nursing care task
postures was suboptimal, with considerable deviations. Conversely, when considering the REBA
scores obtained through our proposed method (Erega2), a significant difference was only observed
for the Lower arm-R score (P<0.001) compared to the ground truth values, while no significant
differences were detected for other joint scores. Moreover, the final REBA scores showed no
significant discrepancy compared to the ground truth values (P=0.373). These outcomes
demonstrated that the REBA scores computed using our method closely aligned with the ground
truth values, highlighting the substantial feasibility and reliability of our approach for assessing
nursing task posture.

Furthermore, in order to assess the efficacy of our proposed method in addressing the
challenges of skeleton loss and misidentification specifically in nursing care task scenarios, we
conducted a comprehensive performance comparison against several existing methods. These

methods include Tsai et al. [2], which employs a left-right skeletal symmetry skeleton compensation
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approach; Guo et al. [3], utilizing a Euclidean distance matrix skeleton compensation technique;
and Kanazawa et al. [4], which employs a Human Dynamics-based temporal skeleton compensation
method. The precision of REBA scores was chosen as the evaluation metric for this comparative
analysis. A summary of the results obtained from this comprehensive evaluation can be found in

Table 2.8.

Table 2.8. Accuracy of REBA score by different methods in nursing care tasks.

Acc
Joints
OpenPose Tsai et al. Guo et al. Kanazawa et al. Ours

Trunk 91.92% 90.34% 92.36% 95.32% 95.65%

Leg-R 81.43% 86.61% 86.42% 88.33% 87.47%
Upper arm-R 71.61% 72.41% 72.98% 75.79% 76.95%
Lower arm-R 47.76% 59.87% 60.14% 62.87% 64.31%

Neck 76.96% 82.86% 87.95% 86.97% 87.96%

Leg-L 82.94% 83.14% 89.76% 91.61% 90.81%
Upper arm-L 80.25% 8527% 92.31% 91.89% 92.13%
Lower arm-L 84.26% 87.35% 91.14% 95.57% 91.68%

REBA 58.33% 63.29% 76.63% 80.46% 87.34%

The findings in Table 2.8 indicated that OpenPose achieved accuracy exceeding 90% for
specific skeletal joints, yet its final accuracy in REBA scoring remains at 58.33%. This was
associated with the issues of skeleton loss and misidentification, which caused low accuracy of
REBA. In contrast, our approach attained an 87.34% accuracy, outperforming alternative methods
and improved the skeleton loss and misidentification in nursing care tasks. Importantly, our method

exhibited promising potential for pose assessment in action interaction-based nursing tasks.

2.6 Discussion

In this chapter, we have identified the challenges of skeleton misidentification and missing that
arise when applying the OpenPose method to assess postures in nursing tasks. These challenges lead
to deviations and fluctuations in skeletal joint angles, thereby impacting the accuracy of REBA
scoring. To address this issue, we propose an improved approach based on ST-GCN that
compensates for and rectifies missing skeletons by leveraging behavior-level information. This
approach enables precise tracking of nurses' skeletons, even in scenarios involving overlapping
bodies and dynamic interactions during nursing tasks. Consequently, it enhances the continuity and
stability of skeletal joint angle calculations, resulting in improved accuracy in REBA scoring. To
validate the reliability and feasibility of our method, we compare joint angles, joint angle scores,
and REBA scores with the ground truth values obtained from inertial sensors. Given the dynamic

nature of the nursing task process, joint angles and scores exhibit corresponding changes over time.
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Therefore, we conduct paired t-tests to compare the frame-by-frame errors in joint angles and scores.
The results reveal significant disparities between the joint angles and scores obtained from
OpenPose and the ground truth values, primarily attributed to the impact of skeleton
misidentification and missing. In contrast, our method exhibits no significant differences between
the joint angles, scores, and the ground truth values, indicating the efficacy of our approach in
compensating for missing skeletons and correcting misidentified skeletons through behavioral
features. This ensures robust skeleton tracking and enhances the precision of joint angles and scores.

It is worth noting that significant angle errors are observed in the upper arm and lower arm
joints, which can be attributed to the interactions between caregivers and patients during caregiving
activities, resulting in a loss of arm joint tracking features. This limitation is commonly encountered
in pose recognition algorithms and can only be overcome by employing marker-based or wearable
sensor measurement methods. In terms of REBA scoring accuracy, our proposed method achieves
an impressive accuracy of 87.34%, surpassing other existing methods. Compared to the OpenPose
method, our approach exhibits a remarkable 29.01% improvement in accuracy, effectively
addressing the limitations of OpenPose in nursing task scenarios and enhancing the accuracy of joint
angles and REBA scoring, thereby ensuring reliable posture risk assessment outcomes. While there
is still room for improvement in the accuracy of our method, particularly for the leg, upper arm, and
lower arm joints, the significantly higher errors observed in these joints suggest that skeleton
misidentification predominantly affects the recognition of leg and arm joints in nursing task postures.
Therefore, future research on nursing task posture recognition should focus on further refining the
accuracy of these specific joints.

Our proposed method offers distinct advantages compared to existing approaches. While
previous studies have demonstrated the reliability of OpenPose in predicting joint angles for simple
poses [13-15], its performance in complex scenarios involving multiple person interactions and
occluded bodies is suboptimal. To enhance skeleton prediction accuracy, some researchers have
employed label correction techniques to improve multi-person skeleton detection using OpenPose
[16]. Others have utilized heatmap offset adjustment algorithms, leveraging the left-right symmetry
principle of the human body skeleton, to compensate for missing skeletal keypoints [1]. However,
these methods are primarily suitable for poses captured from a frontal camera perspective, and
deviations in camera angles may lead to corrected skeletal points located outside the body. To
address this issue, Mask RCNN has been employed for body boundary detection, effectively
constraining skeletal points within the body boundary [2]. Nevertheless, misidentification
challenges persist in the case of multiple individuals. To overcome this, researchers have explored

the use of graph neural networks, effectively leveraging feature information from key and
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neighboring nodes in the human skeleton to discern skeletal point associations between different
individuals. Furthermore, graph attention networks have been proposed to learn relevant weights
between continuous feature skeleton graphs. However, these methods tend to capture limited low-
order semantic information and lack high-order semantic feature information. Drawing inspiration
from spatiotemporal graph convolutional neural networks, we introduce a novel approach that
compensates for missing or misidentified skeletons based on behavioral feature weights from
preceding and succeeding temporal frames. The results section and accuracy comparisons with other
methods demonstrate the superior performance of our approach in REBA assessment score accuracy
for caregiving tasks. This highlights the effectiveness of our method in mitigating issues related to
skeleton misidentification and missing skeletons in OpenPose while achieving excellent skeleton
recognition accuracy. Our method exhibits high accuracy and reliability in posture risk scoring for
caregiving tasks based on human ergonomics.

In the field of ergonomics, various methods exist for assessing posture risk, including OWAS,
RULA, and others. However, our study specifically selected REBA scores as the validation criterion
for several reasons. Firstly, previous studies employing visual posture risk assessment methods have
used REBA, RULA, and OWAS scores concurrently as evaluation indicators, revealing a linear
positive correlation among these three methods [8]. Therefore, the scoring trends observed from
these methods are consistent. While incorporating all three methods as validation indicators would
provide a more comprehensive evaluation, the choice of assessment method can vary depending on
the specific work scenario. For instance, in assessing posture among construction workers,
employing only the OWAS score as an evaluation indicator can yield scientifically valid results [17].
Similarly, when evaluating the risk of musculoskeletal disorders in lifting postures with a limited
sample size, RULA alone can serve as the assessment standard. Ultimately, we selected REBA due
to its inclusion of leg angle evaluations. The primary contribution of our method lies in improving
the accuracy of skeletal joint angles, and REBA is the only method that comprehensively
demonstrates the assessment results of joint angles across the entire body. Therefore, the evaluation
results obtained from REBA are better suited to demonstrate the effectiveness of our method.

Moreover, this study aims to compare our method with the OpenPose method in terms of the
accuracy of skeletal joint angle prediction within the realm of 2D pose estimation algorithms. The
REBA assessment scoring criteria encompass not only joint angle scoring but also supplementary
scoring for joint rotation and additional points. To ensure consistent scores across all methods, we
manually established parameters for rotation and extra points intervention. While there is a wealth
of research on posture risk assessment based on 3D pose estimation [18-20], which has yielded

commendable recognition accuracy, 3D pose estimation does have certain limitations. The extensive
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computational requirements of 3D pose estimation make it Iess suitable for real-time pose estimation,
often necessitating the use of depth cameras or specialized sensors to acquire depth data, thereby
increasing hardware and data acquisition complexities. In contrast, 2D pose estimation algorithms
exhibit greater robustness in complex conditions such as lighting variations and occlusions
compared to 3D pose estimation methods. Consequently, our method offers high feasibility and can
be readily implemented on commonly used smartphones or surveillance cameras in a lightweight
model format. Naturally, future research could explore the application of 3D pose estimation in
healthcare, and investigating the comparative effects of 3D and 2D approaches would be of

considerable significance.

2.7 Conclusion

In this chapter, we present an improved skeletal reconstruction method based on ST-GCN. Our
approach employs a compensation and correction strategy at the behavioral level to accurately track
the nurse's skeleton in scenarios involving body overlap and movement interaction. This enhances
the continuity and stability of skeletal joint angle calculations, resulting in improved accuracy of
REBA scores. To validate the performance of our method, we conduct a comparative analysis of
skeletal joint angles, REBA scores, and accuracy against ground truth values. The results
demonstrate that our method achieves joint angles and REBA scores that are statistically
indistinguishable from the ground truth values when compared to the OpenPose method. Moreover,
our approach effectively mitigates issues related to skeletal missing and misidentification in nursing
tasks, leading to enhanced accuracy of skeletal joint angles and REBA scores. Notably, our method
surpasses other skeletal correction methods in terms of the accuracy of REBA scores for nursing
task postures, achieving an impressive accuracy rate of 87.34%. By optimizing the tracking accuracy
of skeletons in nursing tasks, our method enhances the efficiency and precision of posture risk
assessment in the nursing domain, with potential positive implications for the health and safety of
healthcare workers. Furthermore, our method offers easy integration into loT devices equipped with
cameras, such as smartphones and surveillance cameras, enabling posture information inference
using neural network models and image processing techniques. This capability enables risk
assessment and visual guidance for discomfort and injury in nursing postures. Looking ahead, the

realization of an integrated intelligent nursing posture assessment system becomes a possibility.
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Chapter 3

Improved REBA for caregiving

3.1 Overview

This chapter presents a targeted caregiving postural risk assessment method, employing a
simulated patient transfer scenario with participants having varying levels of caregiving experience.
Initially, the Rapid Entire Body Assessment (REBA) method showed limited sensitivity in
discerning differences between experienced and inexperienced groups. However, an analysis of the
center of gravity (COG) trajectory revealed notable posture distinctions between the two groups.
Leveraging these disparities, we explored parameter adjustments to the REBA rules, resulting in the
development of the Caregiving-REBA (C-REBA) method, which incorporates COG trajectory,
load-bearing time, and asymmetric load factors. Experimental findings demonstrated that C-REBA
effectively distinguished between experienced and inexperienced caregivers, particularly in the

caregiving task stages 2-4.
3.2 Study design
3.2.1 Experiment setting

The daily work in the caregiving industry is individualized and involves many complex
working postures. Patient transfer, one of the most common postures in the caregiving, is chose for
our research. Subjects were recruited by convenience sampling, and the subjects were selected under
following criteria:

Eight professional nurses from the department of Rehabilitation Therapy at co-author’s hospital
were invited and served as the Experienced Group (Exp Group). The inclusion criteria for the Exp
Group were: (1) age between 25 and 35 years old, (2) at least 5 years of professional caregiving
experience, (3) no history of back injury or pain in the past year [1].

Ten inexperienced volunteers were recruited. The inclusion criteria for the Inexperienced
Group (Inexp Group) were: (1) age between 20 and 35 years old, (2) without any caregiving
experience, (3) no history of back injury or pain in the past year.

One nurse at co-author’s hospital was acted as the patient (age: 30 years old, height: 168 cm,
weight: 62 kg). Other eight nurses (Exp Group) and ten volunteers (Inexp Group) were requested to
transfer the patient from bed to wheelchair. The sitting posture and movements of the patient were
kept consistent. Their age, height and weight were shown in Table 3.1.
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Table 3.1 Demographics of the participants.

Demographic Exp Group (N=8) Inexp Group (N=10) P value
Age 29.125+3.48 26.9+6.11 0.348
Weight(kg) 61.06+9.5 62.97+7.73 0.644
Experience(year) 6.25+3.15 0 <0.001
Height(cm) 167.5+4.84 169.89+5.07 0.328

The Intel RealSense Depth Camera D435 was employed to capture caregiving postures, while
the kinematic analysis system based on the OpenPose algorithm provided skeleton joint data. The
OpenPose-based ergonomic assessments demonstrated resilience to non-ideal task conditions [2].
Validating a previous study, the Wii Balance Board was utilized as a reliable tool for assessing
standing balance [3]. Two Wii Balance Boards (Nintendo Co., L.td.) were utilized to measure ground
reaction forces of each foot and subsequently calculate the trajectories of the center of pressure
(COP). Each participant (Exp Group, n=8; Inexp Group, n=10) assumed suitable caregiving postures
while standing on the Wii Balance Board, with the distance between their feet measured beforehand.
To comprehensively analyze and refine the entire patient transfer process, the caregiving process
was divided into five stages (Figure 3.1):

Stage 1: The caregiver placed their hands in a hugging position around the patient's waist,
adjusted the posture, and prepared to start.

Stage 2: The caregiver began to lift the patient and the patient was about to leave the support
of the bed.

Stage 3: The caregiver lifted the patient to the proper point, and prepared to rotate the patient
to the side of wheelchair.

Stage 4: The caregiver rotated the patient to the side of wheelchair and the patient was about
to be put down.

Stage 5: The caregiver placed the patient on the wheelchair.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3.1 Representative pictures of the 5 stages of caregiving task.

3.2.2 Data collection and statistical analysis

The experiments were performed and data was collected in 2022, with each subject recording
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three sets of data. The final results were obtained by calculating the average values. Upon
completion of the caregiving task, the kinematic analysis system generated posture skeleton joint
information in pixel coordinates, which was synchronized with the PC terminal. Furthermore, the
trajectory information of the center of pressure (COP) and center of gravity (COG) was also
synchronized. To obtain the REBA assessment result, we developed a system utilizing a neural
network model to evaluate joint angles from the experimental videos.

SPSS 16.0 software (SPSS Inc) and GraphPad Prism 9 (GraphPad Inc) were used for statistical
analysis. The Shapiro-Wilk test was used to check whether the mean differences of all variables
were normally distributed since the sample size was less than 20. The student t-test method was
used for continuous data from two groups that met normal distribution, and the 1-way ANOVA
method was used for continuous data from two groups that did not meet normal distribution. For
some statistical tests, the mean value and standard deviation were reported, and P-values less than

0.05 were considered as statistically significant.

3.2.3 Ethics

This study was approved by the Ethics Committee at the Center for Clinical Research of
Yamaguchi University Hospital (H2019-182), and written informed consent was obtained. All

participants signed informed consent forms prior to the study.

3.3 Rapid Entire Body Assessment (REBA) method

3.3.1 Related work

The assessment of postural loads from an ergonomic standpoint necessitates the consideration
of multiple factors, encompassing vibration, coupling, movement frequency, load size, and duration
[4]. Within the field of ergonomics, three primary methods are commonly utilized for evaluating
risk factors related to musculoskeletal disorders: the Ovako Working Posture Analysing System
(OWAS) [5], the Rapid Upper Limb Assessment (RULA) [6], and the Rapid Entire Body
Assessment (REBA) [7]. Among these methods, REBA stands out as a comprehensive approach
that enables the assessment of postural loads across the entire body. It involves the observation and
evaluation of workers' postures, joint angles, and muscle loads, mapping these parameters to specific
grades and scores within a scoring table. By doing so, it determines the risk level associated with
working postures and provides recommendations for improvement to mitigate potential health
issues associated with poor ergonomics [8].

The reliability of the Rapid Entire Body Assessment (REBA) as an ergonomic assessment tool
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has been substantiated through comparisons with other conventional methods, affirming its efficacy
[9]. The selection of REBA is warranted due to its inclusive evaluation of all body parts,
encompassing recognized awkward postures, loads, and various types of activities, including
repetitive and static tasks. Furthermore, the versatile nature of REBA enables its application across
diverse occupations, such as forestry timber harvesting [10], mining industries [11], dentistry [12],

and hospital nursing [13-14].

3.3.2 REBA rules

The primary purpose of the Rapid Entire Body Assessment (REBA) method is to provide a
quick assessment of postural loads and identify working postures that require attention and
improvement. Its objective is to reduce the risk of work-related physical discomfort and injuries.
The assessment process involves evaluating the angle changes of major joints according to the
REBA rules. REBA divides the body into two independent assessment parts: Part A and Part B
(Figure 3.2a). Part A assesses the neck, trunk, and legs, while Part B assesses the upper arms, lower
arms, and wrists. Each part is assigned individual scores based on the evaluation of specific criteria
outlined in Table A. The scores for the trunk, legs, and neck are added together to determine the Part
A score. This score is then combined with the Extra A score, which takes into account the strain and
load associated with the work. Similarly, Part B score, Extra B score, and Score B are calculated
using the same methodology. The Extra B score considers the coupling ability of the hands. The
scores from Part A and Part B are integrated into Table C to generate the Score C. The final REBA
score is obtained by adding the Score C to the Extra C score (Figure 3.2b). The Extra C score is

determined based on the difficulty level of the activity being assessed.
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Figure 3.2 REBA scoring rules.
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The REBA score, ranging from 1 to 12, serves as an indicator of the risk level associated with
musculoskeletal disorders, discomfort, and injuries. Caregivers and practitioners can utilize the
REBA score, along with action levels, to evaluate the extent of risk posed by postural loads and
timely adjust high-risk postures. Comprehensive scoring rules and guidelines for REBA can be
found in the existing literature [7]. The systematic assessment offered by REBA empowers
caregivers and organizations to proactively address ergonomic risks and implement necessary
modifications to work environments, tasks, and postures. By incorporating the recommendations
derived from REBA assessments, the objective is to enhance the well-being of workers, mitigate the
occurrence of musculoskeletal discomfort and injuries, and improve overall productivity and

efficiency.

3.3.3 REBA’s adaptability

The accurate assessment of postural loads plays a critical role in identifying and mitigating the
risk of work-related musculoskeletal disorders (MSDs). Among the various methods available, the
Rapid Entire Body Assessment (REBA) has emerged as a widely utilized approach for evaluating
ergonomic postural loads across different industries. With its extensive application, the REBA
method effectively assesses postural loads and offers recommendations to mitigate the risk of MSDs.
It takes into account multiple factors, including joint angles, muscle loads, and overall body posture,
to determine the varying levels of risk associated with different working postures. Through the
assignment of scores and their integration within a comprehensive evaluation framework, REBA
provides a quantitative measure of ergonomic risks, aiding in informed decision-making and
intervention strategies.

Nevertheless, the broad applicability of the Rapid Entire Body Assessment (REBA) method
may present limitations when applied to diverse work environments. Each industry and occupation
possess unique characteristics, including distinct tasks, work postures, and associated risks.
Researchers in the literature [15] discovered that the REBA method tends to overestimate the risk
levels of musculoskeletal disorders when estimating the frequency distribution of risk levels in work
tasks. Consequently, they developed a more targeted approach for personal risk assessment of
musculoskeletal disorders among workers. In a rapid examination of musculoskeletal disorders in
nurseries, the quantitative results obtained from REBA indicated that 45% of cases exhibited issues
such as risk overestimation [16]. In response to the problem of overestimating the risks of
musculoskeletal disorders in workers through REBA, the literature [17] proposed an improved
method known as MOREBA for assessing postural risks. The findings demonstrate that this method

is better suited for evaluating working postures in specific situations.
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We employed the REBA method to assess the caregiving postures in both the Exp and Inexp
Groups. The results (Figure 3.3) revealed that in the Inexp Group, the average REBA scores were
in the high-risk range (above 8 points) across all stages. Similarly, the average REBA scores for the
Exp Group in stages 1 to 4 were also in the high-risk range. These findings suggest an overestimation
of risk levels in caregiving postures by the REBA method. Furthermore, there were no significant
differences between the Exp and Inexp Groups in the assessment of caregiving postures at each
individual stage (Stage 1: p=0.319; Stage 2: p=0.343; Stage 3: p=0.183; Stage 4: p=0.0596; Stage
5: p=0.113). This indicated that the REBA method could not distinguish the Exp and Inexp Groups
in caregiving postures, and lacks sensitivity and specificity in assessing postural loads. Therefore,
the REBA method is not suitable for providing guidance and reference for inexperienced caregivers,

as it does not adequately assess the ergonomic demands of caregiving postures.
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Figure 3.3 Evaluation results of caregiving posture with REBA method.

In order to enhance the versatility of the Rapid Entire Body Assessment (REBA) method and
ensure its applicability across diverse contexts, customization based on the specific characteristics
of the work environment is crucial. This tailored approach will result in a more focused and effective
ergonomic assessment of postural loads, enabling workers to make appropriate adjustments to their
caregiving postures. Therefore, to enhance the relevance and efficacy of postural load assessments,
it is imperative to adapt the REBA method to meet the unique requirements of different work
scenarios. By customizing the REBA method to suit the characteristics of a specific work
environment, a targeted and context-specific ergonomic assessment approach can be established.
This customized approach will facilitate a more accurate evaluation of postural loads and,
subsequently, provide personalized recommendations for workers to optimize their caregiving
postures. These adjustments aim to minimize the risk of musculoskeletal disorders (MSDs) and

promote the overall well-being and safety of workers.
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3.4 Center of gravity (COG)

3.4.1 Related work

The point of concentration of total body mass without affecting translational inertia properties,
known as the body center of gravity (COQG), is of utmost importance for maintaining balance and
stability during various physical activities, including walking, running, and sports [18-19].
Moreover, it plays a pivotal role in optimizing safety and efficiency in fields such as ergonomics,
industrial design, and rehabilitation [20]. During lifting tasks, the body undergoes a transition from
a lower to a higher position, necessitating deliberate lowering of the COG in order to maintain
balance [21]. Concurrently, maintaining an upright posture in the upper body minimizes muscle
activation and enhances postural stability [22]. These factors alleviate pressure on the waist and
mitigate the risk of musculoskeletal disorders. However, the impact of these findings on the
evaluation of nursing postures from an ergonomic risk perspective has been largely overlooked.
Experienced caregivers, benefiting from extensive training, possess the knowledge of optimal
postures and positions. This expertise enables them to adopt power positions that aid in preventing
musculoskeletal injuries. Power position refers to the ideal physical posture and body alignment that
ensures balance and maximizes strength output during lifting activities, thereby reducing the risk of
muscular injuries [23]. Experienced caregivers are inclined to adjust the COG height to achieve a
power position with minimal physical strain. There exists a correlation between trunk bending
height and postural instability, and bearing loads in a tilted manner can further contribute to body
instability [24]. Power position holds significant importance in caregiving tasks. Previous studies
have primarily focused on applying the REBA rules for assessing caregiving postures, disregarding

the relationship between COG changes and power position.

3.4.2 Calculation of COG

The determination of the center of gravity (COG) position involves a comprehensive
methodology that combines the weight proportion of each body part [25] with the skeleton data
extracted using the OpenPose algorithm (Figure 3.4). We adopt an approach rooted in the center of
gravity calculation methods outlined in literature [26] and literature [27], which provide valuable
guidelines for acquiring the COG position. By considering the weight proportion of individual body
parts, we assign relative weights to different segments of the skeleton, enabling the calculation of
their combined impact on the overall COG. The skeleton data obtained from OpenPose furnishes
crucial insights into joint positions and connections, forming the fundamental basis for our

calculations.
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Figure 3.4 Weight ratio of each part of the body and skeleton coordinate points of OpenPose.

Assume that w, represents the weight proportion of each part, W represents the proportion of
the total weight of the part to be considered, x, represents the coordinates of the center of gravity
of each part, m, represents the weight of the subject, m represents the center of gravity position

x,, and the center of gravity position x, when a weight is applied It can be expressed by the

following equations.

w
xg:Zanxn 3.1)
, my *w, m
X, =) qg———"—%X, r+t—————%*x 3.2
¢ Z{mO*W+m } meW+m 62)

In addition, the overall center of gravity position x, the center of gravity position x,, when

considering the waist load moment, and the center of gravity position x, when considering the

knee load moment are expressed by the following equations.

xg:9_87xO;'X1+§x1;xs +9_67x5;-x6 +9;47x6;-x7 +%x7+%x12;x13 +£x13-;x14 (33)
X :£x0+xl+ﬁxl+x8+£x5+x6+ix6+x7+£x7 (3.4)
66 2 66 2 66 2 66 2 66

N :ixo+xl+ﬁxl+x8 +ixS+x6 +£xn+x13 ix
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(3.5)

3.4.3 The difference in COG

We used camera to capture the entire process of patient transfer and implemented COG

trajectory visualization (Figure 3.5a). The Exp Group showed a trajectory of the COG first dropping,
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then rising, and dropping again during patient transfer (Figure 3.5b). They tended to lowered their
COG to keep their upper body upright for reducing the torque in the waist, and keep the trunk as
straight as possible. On the contrary, the COG trajectory of the Inexp Group showed an initial rising,
and then directly dropping (Figure 3.5¢), Inexp Group caregivers, unfamiliar with power position,

tended to bend their trunk as much as possible to lifted the patient.
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Figure 3.5 The difference in the trajectory of the pixel COG between Exp Group and Inexp Group.
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The height changes of the COG were visualized, where notable differences between Exp Group
and Inexp Group was found during patient transfer (Figure 3.6a). The Exp Group showed a
downward trend in COG changes during Stage 2 of patient transfer, but Inexp Group showed an
opposite upward trend. During Stage 2, the Exp Group used a body backward movement to lower
the COG and maintained an upright trunk to increase body stability. The Inexp Group lifted the
patient by bending over directly, which increased the burden on their waist. The difference of Stage
2 (p<0.001), 3 (p=0.002) and 4 (p=0.003) was statistically significant, suggesting that Stage 2, 3 and
4 might be meaningful intervention stages for caregiving posture (Figure 3.6b). The visualization
results provided a reference for Inexp Group, which reminded them to adjust their caregiving

posture and reduce the risk of musculoskeletal discomfort and injury.
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Figure 3.6 Difference analysis of height change of COG.

In addition, the COG heights from Stage 1 to the highest lifting position (Stage 3 or Stage 4)
were also compared between the Exp Group and Inexp Group. The Exp Group utilized power
positions to control COG heights at the Stage 1, minimizing the fluctuation and reducing the work
performed by gravity and waist burden. The Inexp Group showed an overall tendency of higher
COG heights from Stage 1 to Stage 3 and Stage 4, indicating that the Inexp Group hold the patient
at a higher height during the caregiving task. This also increased the waist burden and risk of injury.
Therefore, incorporating COG changes into the REBA score holds the potential to make it more

applicable to the caregiving process.

3.5 Caregiving-REBA

The REBA method had limitations in assessing the risk of caregiving postures as it failed to
differentiate experienced and inexperienced caregivers, and it couldn’t provide meaningful postural
guidance for inexperienced caregivers. We found that the original evaluation rules for the Extra A
and Extra C scores are limited in their applicability to caregiving work. It’s closely related the

difference in COG. Accordingly, we adapted the REBA method as followed.

3.5.1 C-Extra A

The asymmetric load in caregiving work is an important factor of musculoskeletal discomfort
and injury [22]. We redefined the scoring rules of Extra A by adding the factor of the asymmetric
load according to the changing trend of COG. With two Wii Balance Board sensors, we measured

the ground reaction forces on the left foot COP1 and right foot COP2 from all the participants during
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transfer operation. Figure 3.7a showed the results of statistical analysis of the load difference
between the left and right foot. It was evident that the inter-foot load difference quartile in the Inexp
Group was larger than the Exp Group. Experienced caregivers had less fluctuations in the load
difference. While inexperienced caregivers had large fluctuations. We attempted to use the quartile
value of the Exp Group as an evaluation criterion to assess the difference in asymmetric loading of
the Inexp Groups. The inter-foot load quartile value of the Exp Group showed that values of the first
quartile and the third quartile were 9.99kg and 24.54kg (Figure 3.7a). We added new scores in the
C-Extra A rule by defining the load difference range as provided in Figure 3.7b.
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Figure 3.7 Left and right foot load difference range and the C-Extra A score.

We defined the Wii Balance Board plane as the horizontal plane, and the image COG trajectory
plane as the vertical plane. To realize the automatic evaluation of C-REBA at the pixel level, we
firstly converted the difference in load between the left and right feet (Figure 3.7b) into the
corresponding COP trajectory score range A-B-C-D (horizontal plane) in the Wii Balance Board
(Figure 3.8a). COG could be approximated by Wii Balance Board COP measurements in the
statically equivalent situation [26]. In the setting of score range, we assumed a static equivalence
situation. Then mapped the COP trajectory score range (horizontal plane) into COG trajectory score
range (vertical plane) approximately according to the ratio conversion between the COG x axis and
the COP x axis (Figure 3.8b, Figure 3.5a). The distance between the foot ankles was defined as L,
and it was divided into five ranges according to the difference in load in Figure 3.8b (0-A and D-
1:>24.54kg; A-B and C-D:9.99-24.54kg; B-C: <0.99kg). The range of each part in the pixel level

were calculated in percentage to L.
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Figure 3.8 The load difference range between the left and right feet matched to the distance range.

3.5.2 C-Extra C

We collected data on the loading time in caregiving work and found significant difference
(p<0.001) of load bearing time between the two groups. The median load bearing time of the Inexp
Group was even 1.65 times higher than the Exp Group (Figure 3.9a). Therefore, for Extra C score
in C-REBA, we set the evaluation standard for loading time at 3.87 seconds, which was 1.5 times
the median loading time of the Exp Group. Similarly, based on the fact that the less the COG height
changes, the less work the waist does and the easier to maintain the power position, we determined
the difference in the COG changes from the initial stage to the highest point of COG trajectory. We
found that the median COG height change of the Inexp Group was significantly larger than that of
the Exp Group (Figure 3.9b, p<0.001). Further, we set the evaluation standard for Extra C score in
C-REBA at 7.54 cm, which was 2 times of the 75% quantile COG height of the Exp Group.
Therefore, the adapted C-Extra C score is redefined (Table 3.2).

Table 3.2 The C-Extra C scoring rule of C-REBA.

Score Rule
+1 Large body tipping due to COG instability
+1 Load-bearing time over 3.87s
+1 The COG height difference between the stagel and the highest point exceeds 7.54 cm
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Figure 3.9 The loading bearing time and COG height difference.

3.6 Comparison of REBA and C-REBA

3.6.1 The difference of REBA and C-REBA scoring results

When Exp Group and Inexp Group caregivers were evaluated by our C-REBA method, there

were significant differences between the Exp and Inexp Groups at each individual stage (Stage 1:

p<0.01; Stage 2: p<0.001; Stage 3: p<0.001; Stage 4: p<0.001; Stage 5: p<0.05). This indicates that

the C-REBA method could be well-differentiated in each stage of caregiving task (Figure 3.10), also

it’s suitable for providing guidance and reference for inexperienced caregivers. More specifically,

the mean C-REBA scores for the Exp Group in stages 1-5 were all below eight points, at a medium

risk level. For the Inexp Group, on the contrary, the mean C-REBA scores were above eight points

except stages 1 and 5. It indicated that the caregiving posture in stages 2, 3, and 4 needed to be

corrected to reduce musculoskeletal discomfort and injury risks. It also suggests that stages 2, 3, and

4 might be the most meaningful caregiving posture intervention stages.
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Figure 3.10 The difference of REBA and C-REBA scoring results.
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3.6.2 Ablation experiment result

To verify the improvement of C-Extra A and C-Extra C in C-REBA, we set up ablation
experiments to verify the REBA scoring rules, REBA with C-Extra A scoring rules, and C-REBA
(REBA with C-Extra A and C-Extra C) scoring rules. The scoring results of REBA and REBA with
C-Extra A were significantly different (Table 3.3, all groups and all stages p1<0.05). The evaluation
rules for C-Extra C focused on the caregiving power position and the load-bearing time. For the Exp
Group, they were familiar with the caregiving power position, and the load-bearing time was
relatively short. Therefore, C-Extra C rules had little effect on the Exp Group. However, for the
Inexp Group, there were significant differences in stages 2 (p<0.001), 3 (p<0.001), and 4 (p=0.035)
in the scoring results of REBA with C-Extra A and C-REBA, indicating that the Inexp Group had a
greater change in the COG and a longer load-bearing time in these stages. Thus, urgent intervention
was needed in these stages. In addition, we calculated the proportion of high-risk (scores above eight

points) frames in the caregiving process to assess the risk adaptability of these methods.

Table 3.3 The influence of C-Extra A and C-Extra C on the REBA results.

Stage REBA REBA with C-Extra A C-REBA pl p2 p3
Stagel 8.88+0.35 6.38+0.92 6.38+0.92 P<0.001 P<0.001 1.0
Exp Stage2 9.00+0 7.25+0.89 7.25+0.89 P<0.001 P<0.001 1.0
Group  Stage3 8.38+0.92 6.13+0.83 5.88+0.99 P<0.001 P<0.001  0.592
(N=8)  Staged 8.00+0.76 6.63+1.06 6.38+1.19 0.01 0.005 0.663
Stage5 7.88+0.83 6.63+1.30 6.63+1.30 0.037 0.037 1.0
Stagel 9.10+0.57 7.40%0.52 7.700.67 P<0.001 P<0.001 0277
Inexp  Stage2 9.20£0.63 8.000.82 10.00+1.15 0.002 0.096  P<0.001
Group  Stage3 8.90+0.57 8.20+0.42 9.60+0.84 0.006 0.061  P<0.001
(N=10)  Stage4 8.70+0.67 8.10+0.57 8.80+0.79 0.044 0.779 0.035
Stages 9.30+0.67 7.30+0.95 8.00+1.33 P<0.001 0.022 0.192

Note: pl represents the p value of REBA and REBA with C-Extra A, p2 represents the p value of REBA and C-REBA, and p3

represents the p value of REBA with C-Extra A and C-REBA.

3.6.3 The proportion of high-risk frames in caregiving work

There was a significant difference (Table 3.4, all groups and all stages p1<0.05) in the results
of the proportion of frames with high-risk (scores above 8) between the REBA and C-REBA
methods. For the Inexp Group, the proportion of frames with high-risk in stages 2, 3, and 4 was high,
indicating that the caregiving postures needed to be corrected in these stages. These results
suggested that C-REBA avoided the problem of overassessment of caregiver posture. Also, the C-
REBA method evaluated the COG changes in the caregiving power position and load bearing time,

48



and provided reliable posture risk feedback for the caregivers.

Table 3.4 The proportion of high-risk frames in caregiving work.

Stage REBA C-REBA P

Stagel 92%+8% 20%£7% P<0.001
Exp Group Stage2 91%+6% 18%+4% P<0.001
(N=8) Stage3 91%+5% 6%+4% P<0.001
Stage4 93%+7% 6%+3% P<0.001
Stage5 92%+5% 13%+4% P<0.001
Stagel 93%+8% 50%+18% P<0.001

Inexp Stage2 94%+6% 82%+6% 0.001

Group Stage3 94%+6% 81%<£13% 0.019
(N=10) Stage4 97%+2% 74%+13% P<0.001
Stage5 92%+8% 46%+14% P<0.001

3.7 Discussion

Although the REBA method is widely used in the nursing industry, its risk assessment criteria
need to be adjusted according to different scenarios. Raman et al. considered REBA to be an easy-
to-apply and fairly reliable tool for alerting clinical dental nurses to ergonomic risks [28]. Law et al.
used the existing REBA assessment system to assess the risk of musculoskeletal disorders in
transferring patients [29]. However, our study found that the REBA method overestimated the
artificial caregiving scenarios and could not distinguish the experienced and inexperienced
caregivers. As Yazdanirad et al. found in the risk-adaptation test, the REBA method overestimated
the risk level of musculoskeletal disorders [17], which was consistent with our findings. Hence, we
explored the key factors involved in caregiving tasks and made adjustments to the additional scoring
rules of the REBA method. Our C-REBA method offers caregivers a more accurate and targeted
evaluation of the risk levels associated with caregiving postures.

The original Extra A scoring rule is related to the load on the body, ignoring the injury to the
body caused by the asymmetrical load. Asymmetric loads tend to cause muscle injury on one side
of the body, making great impact. We found notable differences in caregiving power position and
COG change trajectory between experienced and inexperienced caregivers, and then reconstructed
the scoring rules of Extra A from the perspective of COG trajectory. The asymmetric load could be
directly reflected in the position change of the COG between the feet. Keeping the COG position in
the middle of the feet largely avoided the impact of the asymmetric load. It was also closely related
to the caregiving power position. We converted asymmetrical loads into the COG position trajectory
between the feet to monitor the trend of asymmetrical loads and incorporated it into the evaluation

rule of C-Extra A. It ensured that C-REBA realized comprehensive evaluation of caregiving tasks
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from the level of asymmetrical load.

The original Extra C rule focused on maintaining fixed positions and repeating small ranges
action. There were differences in load-bearing time and range of caregiving movements between
Inexp Group and Exp Group. The load-bearing time was directly proportional to the risk of
musculoskeletal discomfort and injury. The greater the change in COG height, the more work the
waist did, which was related to the maintenance of power position [30-31]. The effects of load
bearing time and COG height changes were ignored by the original REBA method. We took the Exp
group as the standard of load bearing time and COG height variation, and integrated it into the
evaluation rules of the Extra C rules. The evaluation results of C-REBA indicated that the role of C-
Extra C was to distinguish the Exp Group from the Inexp Group. Our research also pointed out that
stages 2, 3, 4 to be the most meaningful postural intervention phases for the inexperienced caregivers.
Therefore, we integrated the load-bearing time and COG height changes factors into the C-Extra C

rules.

3.8 Conclusion

In this chapter, we identified the incomplete applicability of the REBA rules in caregiving
scenarios. By investigating the differences between the Exp and Inexp Groups, we preliminarily
explored parameter adjustments for the REBA rules and proposed the C-REBA method. The C-
REBA method incorporated crucial factors, including asymmetrical load assessment, changes in
COG height, and duration of load-bearing. As a result, the proposed C-REBA effectively
differentiated the experienced and inexperienced caregivers, offering posture assessment references
and guidance for inexperienced caregivers. As the development of this method, its application could

be extended to other caregiving movements by adjusting the parameters with the collected data.
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Chapter 4

Improved ST-GCN for C-REBA assessment

4.1 Overview

This chapter presents an innovative posture assessment approach that combines the optimized
Spatial Temporal Graph Convolutional Network (ST-GCN) framework with the C-REBA method.
The ST-GCN framework is utilized to extract temporal features from postures, allowing for the
inference of posture load duration and action frequency features based on behavioral characteristics
and time series analysis. Moreover, this method introduces a dual-layer collaborative neural network,
where the Faster R-CNN model is employed to extract asymmetric load features in the task, while
the Long Short-Term Memory (LSTM) network captures variations in the center of gravity of the
posture. By leveraging confidence maps, the two neural networks synergistically fuse these features
to predict scores for center of gravity variation and asymmetric load. The C-REBA scores
encompass joint angle scores as well as additional scores, distinguishing it from existing posture
detection methods that solely compute joint angle scores. The proposed method employs a deep
neural network framework that considers both behavioral features and additional features during
training, enabling automatic prediction of these additional scores and facilitating a comprehensive
and automated assessment of C-REBA scores. To validate the effectiveness of the method,
verification experiments were conducted in diverse scenarios involving additional scores such as
load duration, action frequency, asymmetric load, and center of gravity variation. The experimental
results demonstrate the reliability and feasibility of our approach in accurately assessing postures in
these scenarios.

In summary, this chapter introduces an innovative and sophisticated approach that merges the
ST-GCN framework with C-REBA for posture assessment. By harnessing the power of deep neural
networks and incorporating behavioral features along with additional factors, this method enables a
comprehensive and automated evaluation of C-REBA scores. Experimental findings provide
compelling evidence of the method's robustness and viability in diverse scenarios encompassing
various additional scores, including load duration, action frequency, asymmetric load, and center of

gravity variation.
4.2 Related work

Musculoskeletal disorders pose a significant threat to the healthcare industry, primarily

attributed to the cumulative joint and skeletal loads resulting from repetitive and improper postures
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[1-3]. In response, ergonomics experts have proposed various work posture assessment methods,
among which the Rapid Entire Body Assessment (REBA) method has gained prominence [4-6].
Initially, these methods relied on on-site observations by ergonomics experts, who assigned scores
based on their subjective assessments. However, such observational approaches not only demand
substantial time for manual analysis but also introduce significant variability due to subjective inputs
from assessors [7-8]. In fact, a study by researchers [9] revealed a correlation coefficient of less than
0.5 among the results obtained from four trained RULA assessors. To address this issue, researchers
[10] have advocated minimizing the involvement of multiple assessors in posture assessments to
enhance the reliability of the evaluation outcomes.

To tackle these challenges, researchers have proposed semi-automatic posture risk assessment
methods that utilize motion capture inputs, including optical markers and wearable inertial sensors
[11-13]. These methods involve sensor-based labeling of joint positions and calculating joint angles
using spatial vectors, enabling semi-automatic scoring of posture risks based on the Rapid Entire
Body Assessment (REBA) method. While these approaches demonstrate high accuracy in capturing
human motion, they are accompanied by high equipment costs and require technical expertise for
data collection and processing. Consequently, researchers have explored low-cost motion capture
techniques employing depth cameras like Kinect v1 [14-15]. This method automatically detects 25
major joint keypoints from depth images and aligns them with the scoring rules of REBA by
computing the angles between the keypoints, thereby obtaining posture assessment results. This
approach eliminates the need for laborious labeling and calibration. However, it is important to note
that this method exhibits lower accuracy and significant deviations in joint angle calculations.

In recent years, remarkable advancements have been made in computer vision research,
particularly in the field of human pose estimation. Researchers have proposed a supervised machine
learning-based method for both 2D and 3D human pose estimation using a single camera [16-17].
The 2D pose estimation enables the recognition of major keypoints of the human body from one or
multiple RGB images, while the 3D human pose estimation involves multi-view reconstruction and
external camera calibration. Subsequently, the angle information is computed using spatial vectors
to facilitate semi-automatic assessment based on the Rapid Entire Body Assessment (REBA)
method. Among the existing methodologies, the OpenPose open-source library has emerged as the
most effective approach [18-19]. In comparison to the human pose recognition results provided by
Kinect v2, OpenPose offers a larger number of facial and foot joints and exhibits enhanced tracking
capabilities under occlusion or non-frontal tracking conditions. However, while the scoring rules of
REBA encompass additional scoring options beyond joint angle scoring, current methods solely

obtain human pose features for joint angle scoring. Consequently, manual observation and parameter
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input are still required for evaluating these additional scoring factors. To achieve a fully automatic
assessment of REBA by incorporating the additional scoring as automatic evaluation parameters,
we propose a deep neural network framework based on the Spatial Temporal Graph Convolutional
Network (ST-GCN). This framework can effectively train the external features of the additional
scoring factors, and by integrating the predicted values of the model, a fully automated assessment

of REBA can be achieved.

4.3 ST-GCN for C-REBA assessment

The OpenPose framework performs recognition of skeleton features, which consists of 25
nodes representing specific joints of the human body. These joint positions can be concatenated to
form a skeletal diagram, as depicted in Figure 3.4. The resulting output from OpenPose is stored in
Json files, containing the pixel coordinates of the 25 joints. For the evaluation of human body
posture using the C-REBA method, ten joint angles are required, including those of the neck, trunk,
legs, upper arms, lower arms, and wrists on both sides. To automatically compute these angle
features, vectors parallel or perpendicular to the coronal, sagittal, and transverse body planes are
derived based on the midpoint of the shoulder joint and the left/right hip joint. Subsequently, these
vectors are utilized to project other body segment vectors and calculate the desired joint angles.
Detailed explanations of the angle calculation for OpenPose can be found in references [20-22], and
for our research, we have adopted these referenced methods for the calculation of OpenPose joint

angles.

4.3.1 Load bearing time and action frequency

We present a novel approach for predicting postural risks in human posture, termed C-REBA,
based on the Spatial Temporal Graph Convolutional Network (ST-GCN). Our network is
constructed on a sequence of skeletal maps, enabling the extraction of dynamic skeletal features
encompassing spatial, temporal, and external activity factors, which are integrated into the REBA
algorithm for postural risk prediction. Leveraging spatial features, we generate a skeleton graph
consisting of 25 nodes and calculate the joint angle scores using the OpenPose joint angle calculation
method. Additional factors in the C-REBA rules, such as carrying time, center of gravity change,
asymmetric loading, and frequency of action, form supplementary points. The temporal
convolutional layer of ST-GCN is employed to capture motion patterns between skeleton maps,
facilitating the evaluation of load duration by exploiting temporal convolutional features specific to

behavioral characteristics. Action frequency features are derived through vector calculations
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between behavioral and temporal features. To address other additional features, we propose a two-
layer collaborative neural network model for their training. As depicted in Figure 4.1, the spatial
feature layer of ST-GCN predicts 25 skeleton points, generating a complete skeleton. The
spatiotemporal feature layer arranges all skeletons in chronological order, learning the motion
patterns between them, and assigns the highest-weighted action feature to each complete skeleton.
Figure 4.2 illustrates a comprehensive nursing action, with skeletons at different stages

corresponding to independent action features. Action frequency is obtained by calculating the

correlation between action features and time features.
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Figure 4.1. ST-GCN for load bearing time and action frequency prediction.

Stand Bending Hugging Front raises  Rotation Hugging rant raises

Frame

Figure 4.2. Correspondence between skeleton and action features during caregiving task.

4.3.2 Asymmetric load and change of COG

The presence of asymmetric load, where one foot bears a greater burden than the other, can
disrupt the equilibrium of muscle forces in the body, leading to uneven stress and pressure on the

joints. This imbalance has the potential to contribute to joint conditions such as arthritis and
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synovitis. Moreover, asymmetric load can lead to postural deviations, unstable gait, and abnormal
walking patterns, which impose additional strain and load on the muscles and bones [23]. In order
to capture the features associated with asymmetric load, we propose a novel approach that utilizes
image analysis to compute the discrepancy in load distribution. Specifically, we convert the range
of load differences into a range of distances between the left and right foot, as depicted in Figure

4.3.
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Figure 4.3. A method of converting the load difference range into the distance range.

As shown in Figure 3.8a, COP1 and COP2 were measured by the two Wii Balance Boards, and
the fused COP was calculated by COP1 and COP2. Assumed that the ground reaction forces were
F1 and F; corresponding to COP1 and COP2, F was corresponding to fused COP, the load difference
force between the left and right feet was AF, and the distance between the feet was L. Then the

location in x-axis of F. could be calculated as follows.

F =F+F, 4.1)

4.2)

° = + (4.3)

Calculating X, along the range of AF by Eq.(4.2) and taking its average, then the load
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difference score range could be converted into the distance score range of COP on the x-axis which

AF <9.99 kg corresponding to 0.38

was given by , 9.99<AF <24.54 kg

green; 9.99-24.54kg, blue; >24.54kg, red) on each point corresponding to COP.

Considering the quasi-static state, COG trajectory calculated by the OpenPose algorithm is
approximated to the COP trajectory obtained by Wii Balance Board [24], the center coordinate of
COG in x-axis (Figure 4.4c) could be assumed same as X of COP (Figure 4.4a). By doing so,
instead of using Wii Board, X_ could be calculated from the camera image. Therefore, the scores

in Figure 4.4¢ could be automatically determined by calculating COG trajectory in x-coordinate.
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Figure 4.4 The load difference range between the left and right feet matched to the distance range.

Once the features of asymmetric load have been acquired, they are linked to the corresponding
Json files within the frames, which constitute the features to be trained by the neural network.
Likewise, the feature denoting the variation in the center of gravity is computed utilizing the
methodologies elucidated in the preceding section and stored within the respective Json files as
trainable features. In order to generate additional predictive scores for the asymmetric load and
center of gravity variation features, we establish a two-layer collaborative neural network model, as

illustrated in Figure 4.5.
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1. For the extraction of center of gravity variation features, we utilize Long Short-Term
Memory (LSTM) networks as the foundational network. To classify the center of gravity variation
in the given task, clustering methods are employed, enabling the mapping of variations to different
levels of posture stability. The features corresponding to different stability levels are stored in
respective clusters, where each cluster serves as a storage unit. Through the transformation of the
feature sequence, a predictive confidence map is generated, facilitating the analysis and prediction
of center of gravity variations.

2. Feature extraction pertaining to asymmetric load is conducted using Faster RCNN as the
underlying network. In accordance with the scoring rules of C-REBA, the features associated with
asymmetric load are categorized into three levels, and each sample is assigned the appropriate level
label. To ensure the coherence between the asymmetric load features and the computed values and
balance board test values, we treat the computed values and test values as distinct input variables
for feature fusion. Subsequently, hierarchical feature extraction is employed, taking into account the
level of asymmetric load, thereby generating distinct confidence maps for subsequent feature fusion
processes.

3. The process of feature fusion and prediction scoring involves the concatenation of
confidence maps generated by the final two layers of the two-layer collaborative neural network,
while adhering to unified constraints. These combined features are subsequently fed into the feature
fusion layer and feature separation layer in a sequential manner, enabling the recombination of the
extracted features. Ultimately, a fully connected layer is employed to ascertain the fusion prediction
scoring for the features associated with asymmetric load and center of gravity variation.

By leveraging the two-layer collaborative neural network model, we are able to adeptly extract
and amalgamate features pertaining to asymmetric load and center of gravity variation, thereby
facilitating the prediction of corresponding supplementary scores. This approach enables the
automated acquisition of C-REBA's additional feature scores across diverse scenarios, effectively

circumventing the potential subjective inconsistencies associated with human judgment. Notably,
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the two-layer collaborative neural network layer is seamlessly integrated into the comprehensive

framework of ST-GCN in a modular fashion, as visually depicted in Figure 4.6.
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Figure 4.6 Improved ST-GCN incorporating additional feature extraction networks.

4.3.3 Dataset and model training

Given the nursing-oriented focus of our method, relying solely on publicly available datasets
for training would yield results that are overly generalized. To address this limitation, we conducted
patient transfer experiments with the participation of twenty volunteers, during which we recorded
experimental videos using RGB cameras (Figure 4.7). To mitigate data redundancy, we extracted
image frames at a rate of one frame every 10 frames from each experimental video. We also added
some data records of daily life postures to expand the diversity of posture features. The performance
of the neural network model heavily relies on the size of the dataset used for training. Consequently,
to compensate for the small sample size of the original data, we employed data augmentation
techniques such as flipping, rotation, scaling, cropping, and translating to expand the batch size of
the dataset. Additionally, in order to tackle problems arising from overfitting and object occlusion
during model training, we implemented a random key point hiding method to enhance the
algorithm's robustness. Leveraging the sensitivity of the convolutional layer to negative values, we
assigned negative coordinates to the missing joint points, capitalizing on the property of the ReLU
function to filter out negative values. This approach effectively distinguishes the occluded parts
from the rest of the skeleton. By employing this data augmentation method, we ensured the
preservation of invariance within the original dataset while simultaneously augmenting the data
volume of the bone joint points. Ultimately, we obtained a total of 3794 video clips for training,
with each clip undergoing pose estimation to generate a 25-node skeleton. Corresponding Json files
were generated for each data sample to facilitate model training. The training parameters and

equipment settings employed in the model are presented in Table 4.1 and Table 4.2, respectively.
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Figure 4.7 Dataset collection experiment.

Table 4.1 Training parameter setting.

Parameters Values

Epoch 10000

Regularization 0.001
Dropout rate 0.5
Initial learning rate 0.05
Batch size 64

Weight attenuation coefficient 0.005
Momentum 0.9

Table 4.2 Software and hardware setting.

Framework PyTorch
Programming language version Python 3.7
Platform PyCharm Community Edition 2020.3.2

Intel Xeon CPU E5-1560 v4 @ 3.60 GHz
and two Titan V workstations. AMD Ryzen
Terminal device
7 3800X 8-Core Processor x 16 @3.90GHz,

128 GB RAM, GPU GeForce GTX1660Ti

4.4 Extra score application scenarios

In order to comprehensively evaluate the efficacy of the C-REBA automated assessment
method utilizing ST-GCN, we conducted a validation study incorporating additional scoring features,
namely load duration, action frequency, asymmetric load, and center of gravity variation. These
features contribute to a more comprehensive suite of evaluation metrics, enabling a thorough
analysis of the automated assessment method across various aspects. By comparing the ST-GCN-

based C-REBA method with the semi-automated assessment method based on OpenPose, we can
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gain insights into the impact of the additional scoring features in different application scenarios. The
OpenPose method heavily relies on pose detection environments and is subject to certain limitations
in terms of accuracy and robustness. The comparison with the OpenPose-based method allows us
to assess the advantages and performance of the ST-GCN-based C-REBA method in different

features and application scenarios.
4.4.1 Load bearing time and action frequency

In order to comprehensively assess the automated scoring of C-REBA, we incorporated the
duration of load-bearing and action frequency as crucial features. The duration of load-bearing
provides insights into the length of time an individual endures specific actions, which is particularly
relevant for evaluating healthcare professionals involved in prolonged, repetitive movements.
Prolonged load-bearing durations can contribute to increased muscle fatigue and discomfort.
Similarly, action frequency plays a vital role in assessing fatigue and workload by quantifying the
number of repetitions or frequency of actions. To evaluate the practical application of load-bearing
duration and action frequency in automated C-REBA scoring, we conducted a simulation involving
a volunteer performing patient transfers, a common task in healthcare settings. The volunteer had
no physical limitations that could impede their ability to independently carry out the task, and video
clips of their postures were recorded using an Intel RealSense Depth Camera D435. The collected
data underwent preprocessing and was input into the ST-GCN model to derive behavioral weighting
features throughout the task. By mapping the behavioral features with the corresponding time
features, we determined the duration and frequency of different behaviors. The top 5 behavioral
weights were selected for visualization, as depicted in Figure 4.8. Through these experiments and
analyses, we gained insights into the practical effectiveness of load-bearing duration and action
frequency in the automated scoring of C-REBA, as well as a deeper understanding of their impact

across diverse application scenarios.
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Figure 4.8 The top five behavioral characteristics ranked by weight.

In accordance with the scoring criteria of C-REBA, when a posture endures a load-bearing
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time exceeding 3.87 seconds, an additional point is awarded. Similarly, if the action frequency
surpasses 4 times within one minute, an additional point is granted. Notably, in the additional scoring
logic of ST-GCN, only the top five behavioral weights that fulfill both aforementioned additional
scoring rules are eligible for extra points. To illustrate, for load-bearing time scoring, all five of the
highest-ranked behaviors must exhibit a duration exceeding 3.87 seconds to receive the additional
scoring point. The same principle applies to the scoring rule for action frequency. The
comprehensive impact of these two scoring rules, along with the additional points, on the overall C-
REBA score is depicted in Figure 4.9. "A" denotes the semi-automated C-REBA scoring results
solely based on OpenPose calculations, while "B" represents the C-REBA scoring outcomes derived
from ST-GCN calculations. Notably, in the second task cycle, scenario B satisfies the criteria for
additional points in load-bearing time, while in the fifth cycle, it meets the criteria for additional
points in action frequency. Notably, scenario B exhibits a significant increase in score compared to

scenario A.

Without load bearing time & action frequency
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Figure 4.9 Visualization of total scores and bonus points after two scoring rules.
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4.4.2 Asymmetric load

Accurately assessing asymmetric load, which refers to the imbalanced distribution of load-
bearing between the left and right feet or hands, is crucial due to its potential to induce muscle
imbalances and joint problems. This assessment holds particular significance for healthcare
professionals who frequently exert force on one side of their body or for caregivers with limited
experience. C-REBA employs the monitoring of asymmetric load through pixel centroid position,
enabling the quantification of its magnitude based on load levels. These quantified asymmetric load
features are subsequently fed into the dual-layer collaborative neural network of ST-GCN to predict
corresponding additional scores. To evaluate the performance of asymmetric load in the pose scoring
of the ST-GCN model, we enlisted a volunteer to simulate patient transfers—a common task in
healthcare settings. The volunteer possessed no musculoskeletal or physiological impairments that
could impede their ability to carry out the task independently. Video clips of the task's postures were
captured using an Intel RealSense Depth Camera D435, while the actual values of asymmetric load
were measured using the WII Balance Board. The experimental data obtained from this test are

presented in Figure 4.10.
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Figure 4.10 Difference in asymmetric load values measured by WII balance board and ST-GCN.

To ensure comparability, the test values obtained from the WII Balance Board for the
asymmetric load feature were measured in kilograms (kg), representing the load, while the predicted
values derived from ST-GCN were in pixel positions (unit: pixels). Both datasets underwent
normalization based on the additional scoring criteria, with the y-axis representing the additional

scoring values for asymmetric load and the x-axis representing the time series. Remarkably, the
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Pearson correlation coefficient between the two datasets yielded a value of 0.93, indicating a
substantial correlation between the ST-GCN-based prediction of asymmetric load and the measured
values from the WII Balance Board. This high correlation underscores the reliability of the predicted
asymmetric load scores. Figure 4.11 showcases the overall score and the impact of additional points
after incorporating the consideration of asymmetric load. A comparison between scenarios C and D
reveals that the presence of asymmetric load is primarily concentrated in the first and second halves

of the caregiver task.

Without asymmetric load score
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Figure 4.11 Visualization of total and bonus points after accounting for asymmetrical loading.

4.4.3 Change of COG

The body's center of gravity represents the point where the body's mass is concentrated, while
preserving its translational inertia and playing a critical role in maintaining overall body stability. In
the context of caregiving tasks, a larger range of center of mass trajectory variation is more likely
to lead to unstable postures, thereby increasing the risk of falls and musculoskeletal injuries. As
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highlighted in the preceding section on center of gravity differences, inexperienced caregivers tend
to exhibit larger ranges of center of mass variation during patient transfers, whereas experienced
caregivers demonstrate relatively smaller ranges. To assess the additional scoring evaluation of
center of gravity variation in ST-GCN, we enlisted two volunteers to simulate patient transfers,
assuming the roles of healthcare professionals. Volunteer 1 deliberately generated a larger range of
center of gravity variation during the caregiving task, while Volunteer 2 aimed to maintain a smaller
range of variation. Importantly, both volunteers were free from any musculoskeletal or physiological
limitations that could impede their ability to independently perform the task. The Intel RealSense
Depth Camera D435 was employed to capture video clips of the postures involved in the task,
enabling the visualization of center of gravity variation trajectories at the pixel level, as depicted in

Figure 4.12.

Change of COG - Volunteert

Change of COG - Volunteer2

Figure 4.12 Visualization of the center of gravity of Volunteer 1 and Volunteer 2 in the caregiving task.

The center of gravity trajectory feature serves as an input to the dual-layer collaborative neural
network of ST-GCN, where the long-short term memory network extracts stability grading features
based on the variation trajectory of the center of gravity. In accordance with the additional scoring
rules of C-REBA, an additional score is granted when the range of center of gravity variation
exceeds 7.54 cm. Within the supplementary scoring logic of ST-GCN, a large variation range is
determined if the distance between the lowest and highest points of the center of gravity trajectory
surpasses 7.54 cm, thereby warranting the addition of extra points. Notably, to address the
heterogeneity arising from height discrepancies, the center of gravity variation values employed

herein are normalized based on the height of each individual. The comprehensive impact of the
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additional points and the resulting overall scores, after incorporating considerations of center of
gravity variation, are demonstrated in Figure 4.13. Volunteer 2 showcased a task performance
characterized by a smaller range of center of gravity variation, leading to lower C-REBA scores for
the majority of the duration when compared to Volunteer 1. However, following the identification
of excessive center of gravity variation features, Volunteer 1 consistently attained higher overall C-

REBA scores in the later stages as compared to Volunteer 2.
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Figure 4.13 Visualization of extra scoring for Volunteer 1 and Volunteer 2 in COG changes.

4.4.4 Computing costs

In order to assess the computational efficiency and speed of our automatic evaluation model
for additional scores, we meticulously configured the experimental conditions and employed
identical hardware equipment. The test set, comprising a total of 2803 frames, was utilized to
ascertain the performance of our method in terms of time consumption, memory usage, and frames
per second. Furthermore, we conducted a comprehensive performance analysis by comparing our
approach to several existing methods, including Tsai et al. [25], which utilizes a left-right skeletal
symmetry skeleton compensation method; Guo et al. [26], which employs a Euclidean distance
matrix skeleton compensation method; and Kanazawa et al. [27], which relies on a Human

Dynamics-based temporal skeleton compensation method. The summarized results of this
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comparative evaluation can be found in Table 4.3, providing insights into the performance of our

method relative to the aforementioned approaches.

Table 4.3 Computational cost and speed comparison of different methods.

Method Time consuming (s) Memory usage (MB) Frame per second (fps)
OpenPose 434 1126.4 6.45
Tsai et al. 302 1003.6 9.28
Guo et al. 303 906.3 9.25
Kanazawa et al. 298 786.1 9.41
Ours 256 716.8 10.95

The findings in Table 4.3 indicated that OpenPose achieved huge computational cost
1126.4MB, which reduced the calculation speed, its final computational speed remains at 6.45 fps.
This was associated with the issues of large-scale skeleton points calculation. In contrast, our
approach attained the computational speed at 10.95 fps, outperforming alternative methods and
improved the skeleton points computational cost. Importantly, our method exhibited promising

potential for computational cost and speed in action interaction-based nursing tasks.

4.5 Discussion

The primary objective of this study was to integrate the ST-GCN framework with C-REBA
rules, aiming to achieve automated assessment of task posture risks and thereby enhance the
comprehensiveness and applicability of posture assessment methods. Through the integration of the
optimized ST-GCN framework with C-REBA, a variety of features encompassing time, behavior,
asymmetric load, and center of gravity variation were collectively trained, with each feature
corresponding to a specific network layer for effective feature learning and prediction. To validate
the efficacy of this integrated approach, we conducted rigorous experimental verification across
multiple additional scoring assessment scenarios, including load duration, action frequency,
asymmetric load, and center of gravity variation. These comprehensive assessments served to
validate the effectiveness and reliability of our proposed methodology.

The experimental findings from the validation of load duration and action frequency revealed
that the load duration feature exerted a more significant impact, resulting in an approximate increase
of 1 point on the total C-REBA score. In terms of action frequency, adhering to the additional scoring
rules of C-REBA, a frequency exceeding 4 actions within one minute was required to meet the
scoring criteria. Within the scoring logic of ST-GCN, the action frequency needed to surpass 4 times

for the top 5 ranked actions to qualify for additional points. Notably, in practical caregiving scenarios,
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this scoring criterion was less frequent and typically observed in action scenarios associated with
rehabilitation treatment planning. During the validation experiment on asymmetric load, the
predicted scores obtained through ST-GCN for asymmetric load exhibited a correlation of over 93%
with the measured values, demonstrating the reliability of this method. The overall C-REBA scores
based on asymmetric load revealed that the occurrence of asymmetric load was concentrated in the
early and late stages of patient transfer. It was observed that different individuals exhibited
inconsistent habits of applying force to bilateral muscles, as evidenced by the scoring results
indicating the participants' preferences regarding the side of muscle force. This underscores the
importance of encouraging participants to maintain bilateral consistency to mitigate the risk of
unilateral musculoskeletal disorders. In the C-REBA rules, the scoring for asymmetric load was
categorized as Extra A, and the impact of the asymmetric load feature on the overall score ranged
from 0 to 2 points, depending on changes in joint angles. During the validation experiment on center
of gravity variation, the center of gravity variation values were normalized based on the height of
each individual to account for heterogeneity arising from height differences. Comparing the data
from two groups—one with larger center of gravity variation and the other with smaller center of
gravity variation—it was observed that this feature had a discernible impact on the overall C-REBA
score during time periods when the model detected center of gravity variation surpassing the
specified threshold. In the caregiving process, the additional scoring based on this feature was
concentrated in the later stages, indicating that the C-REBA scores of Volunteer 1, who exhibited
larger center of gravity variation, were higher in the later stages. The center of gravity variation
feature influenced the overall score by approximately 1 point.

Currently, several research methods exist for automated C-REBA assessment, including
wearable sensors, Kinect depth cameras, and OpenPose. However, these methods solely evaluate
joint angles, and the assessment of additional scores still relies on manual judgment, leading to
subjectivity and result instability. In contrast to previous approaches, we propose an enhanced ST-
GCN methodology. The primary framework of ST-GCN is utilized to forecast the temporal features
of skeletal behavior, with behavior labels being weighted to simultaneously incorporate time and
action frequency features. Conversely, posture features such as asymmetric load and center of
gravity variation necessitate separate neural networks for feature extraction. To ensure the
comprehensive integration of additional scoring feature extraction in C-REBA, we combine long-
short term memory units and Faster RCNN networks, embedding them within the overarching ST-
GCN framework. Our method exhibits significant advantages in handling additional scoring features,
encompassing load bearing time, action frequency, center of gravity variation, and asymmetric load.

By incorporating the learnable features of C-REBA's additional scoring factors into the ST-GCN
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framework, it becomes possible to automatically predict the scores of additional scorings while
training the behavioral features, thereby enhancing the objectivity and stability of assessment
outcomes.

The proposed method presented in this chapter showcases innovation and advantages in
automating C-REBA posture assessment. Nonetheless, several limitations warrant consideration.
Firstly, the size and diversity of the dataset utilized may restrict the generalizability of the method.
The current dataset may only encompass posture samples from specific domains or particular types
of actions, thus necessitating further validation to assess the effectiveness of the assessment in
diverse environments or tasks. Future research endeavors should focus on collecting larger and more
diverse datasets, encompassing a broader range of posture scenarios, to enhance the applicability
and generalization performance of the method. Secondly, the computational complexity of the
algorithm could pose limitations in its practical application. Deep neural networks typically demand
substantial computational resources and time during both training and inference. To enhance the
feasibility of this method in real-world applications, techniques such as model compression,
hardware acceleration, or distributed computing can be employed to mitigate the computational
complexity. Furthermore, the method holds significant potential in the assistive healthcare domain
and can be fine-tuned based on different scenario datasets to extend automated posture assessment
to a wider range of medical contexts. For instance, precise assessment of patients' posture and load
during rehabilitation treatment can aid doctors in devising more effective rehabilitation plans and
monitoring patient progress. It can also find applications in areas such as elderly care and sports

training, assisting individuals in maintaining good posture and overall health.

4.6 Conclusion

The proposed integrated posture assessment method, which combines the improved ST-GCN
model and C-REBA, has yielded outstanding outcomes across multiple scoring scenarios. Through
the integration of the ST-GCN framework and a dual-layer collaborative neural network, we have
successfully extracted the additional scoring factors of C-REBA rules and adeptly fused these
features using confidence maps. In comparison to conventional methodologies, our approach
facilitates the automatic prediction of the additional scores, thereby enhancing the
comprehensiveness and automation of C-REBA scoring. Experimental validation results
unequivocally establish the reliability and feasibility of our method in scenarios involving load
duration, action frequency, asymmetric load, center of gravity variation, and other additional scoring
factors. By accurately assessing these supplementary scores, we acquire a more holistic

understanding of the load imposed on postures, consequently improving the assessment of task
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safety and human health risks. This deep neural network-based method, which encompasses
multiple posture features and additional scores, achieves automated scoring and comprehensive
evaluation. Furthermore, its potential extension to various assistive healthcare scenarios holds great
promise, contributing to heightened work efficiency and diminished musculoskeletal risks for
healthcare professionals. As a result, it plays a pivotal role in safeguarding the physical well-being

of both healthcare personnel and patients alike.
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Chapter 5

Behavior analysis and posture assessment system

5.1 Overview

This chapter unveils the development of the Behavior Analysis and Posture Assessment System
(BAPAS), a comprehensive tool merging previously discussed algorithms and devices. BAPAS aims
to assess job postures in assistive medical tasks and provide valuable insights into the risk of
musculoskeletal disorders. The system comprises a cloud-based server acting as the central
processing unit, accessible through diverse user platforms such as PCs, tablets, and mobile devices.
BAPAS leverages user-captured or uploaded work task videos, which undergo processing and
analysis by the cloud-based server. The server conducts posture analysis, behavior recognition, and
posture risk assessment on the uploaded videos. Upon completion of data analysis, results are
presented to users via graphical representations. Users can access posture data, joint angle
measurements, behavior recognition outcomes, and C-REBA risk scores tailored to their specific
requirements. The BAPAS system integrates algorithms for human posture recognition, behavior
recognition, and C-REBA posture assessment. By simply uploading work videos, the system
automatically decomposes them into frames and performs analysis on each frame.

In comparison to existing assessment systems, wearable devices have the potential to deliver
enhanced precision in posture recognition. However, studies highlighted in the X-SENSE literature
reveal that these devices are often perceived as cumbersome and disruptive by the individuals being
tested. The act of wearing such devices can significantly interfere with normal work tasks,
compromising the validity of the assessment. Moreover, certain studies aiming to achieve precise
joint angle measurements resort to using accelerometers attached to multiple joints, leading to
logistical challenges and high experimental costs, as stated in the accelerometer literature. In
contrast, our proposed system presents a non-contact approach to behavior analysis and posture
assessment. By eliminating the need for wearable devices or elaborate sensor setups, our system
offers a user-friendly and practical solution. It effectively addresses the limitations associated with
wearables and accelerometers, ensuring a smoother assessment experience for the individuals being
tested. Additionally, our system exhibits the potential for seamless expansion to other assistive
medical scenarios, contingent upon the availability of a larger dataset. Presently, the system has
successfully been extended to applications in rehabilitation posture guidance and CPR posture
assessment, displaying exceptional performance in posture recognition, evaluation, and guidance.
This scalability enhances the system's applicability and significance across diverse healthcare
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contexts.

5.2 System design

5.2.1 System functional framework

The functional framework of the BAPAS system is illustrated in Figure 5.1, while the user
login process (Figure 5.2) commences with user identity verification. Subsequently, the system
proceeds to the homepage, where it verifies network connectivity, model API interfaces, camera
connections, and storage memory availability (Figure 5.2). Following this, the system encompasses
four functional partition modules, namely single data processing, batch data processing, real-time
data processing, and extended applications. The single data processing function area is primarily
composed of three modules: data upload and processing, result output, and data reset. Within the
data upload and processing module, users can upload task videos for processing, which are then
transmitted to the cloud server for human pose recognition, behavior identification, and C-REBA
posture risk assessment. Upon completion of the processing, the results are returned to the user's

end.
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Figure 5.1 The functional framework of the BAPAS system.
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Figure 5.2 User login page and device check page.

The batch data processing function area operates similarly to the single data processing
function, but with the capability to automatically process multiple datasets. The processing speed of
this function area relies on the server's graphics memory. Meanwhile, the real-time data processing
function area resembles the single data processing function, except for its automatic retrieval of
video tasks from the camera for real-time processing. Due to the real-time video retrieval and
background processing from the camera, the processing speed of this function area is relatively
slower. The final function area pertains to the extension applications, which aims to broaden the
system's capabilities. Currently, there are two primary directions for expansion. One direction
focuses on the assessment of cardiopulmonary resuscitation (CPR) postures, as the accuracy of CPR
postures is crucial for successful rescue operations, patient safety, and recovery. Our system
provides correct posture guidance and evaluation for rescuers during CPR operations, ensuring
effective chest compressions, airway clearance, and minimizing further injuries, thereby enhancing
the success rate of CPR. The other direction involves rehabilitation posture correction, which plays
a vital role in restoring functionality, alleviating pain, facilitating recovery, and preventing further
damage. By improving posture and body alignment, rehabilitation posture correction aids patients
in regaining normal physical function, improving their quality of life, and reducing the risk of future
injuries. Our system monitors patients' daily rehabilitation postures, offering warnings and
visualized skeletal alignment guidance for incorrect postures. The extended application functional
area is continuously expanding to encompass more application scenarios, leveraging sufficient data

to fine-tune the model and develop targeted posture assessment functions.

5.2.2 System visual feedback

The BAPAS system introduces a visually-oriented approach to ergonomic posture assessment
and feedback, aiming to offer guidance to workers. By implementing appropriate ergonomic

interventions, the system contributes to the reduction of musculoskeletal discomfort and injuries in
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caregiving contexts [1-3]. Among intervention methods, posture feedback has been identified as
particularly effective [4]. Studies have shown that diversified posture feedback significantly lowers
ergonomic risks for nurses [5]. Notably, relying solely on teaching and training for posture
interventions has proven inadequate in effectively mitigating the risk of musculoskeletal discomfort
and injuries. In contrast, interventions incorporating biofeedback, such as the visual feedback
provided by the BAPAS system, have demonstrated greater effectiveness [6]. The visual
biofeedback from the system encompasses joint angles, center of pressure trajectory, predicted
lumbar moments, C-REBA posture assessment outcomes, and video feedback. Its purpose is to
furnish risk assessment and guidance for work postures through visual biofeedback, thereby
enhancing ergonomic practices.

The joint angle data encompasses major limb joints, including the neck, trunk, upper arm, lower
arm, and legs, and is presented in chart format (Figure 5.3). Center of gravity trajectory data is
generated at the image level using the previously described center of gravity calculation method,
capturing the overall center of gravity trajectory, upper body center of gravity trajectory, and lower
body center of gravity trajectory (Figure 5.3). The calculation of predicted waist torque is based on
reference [7] and is presented in chart form, offering frame-by-frame feedback on waist torque.
Higher waist torque indicates increased burden on the waist and a higher risk of injury. By analyzing
the predicted values, workers can comprehend the level of waist load associated with different
postures and reduce the frequency of high waist load postures (Figure 5.4). The feedback on C-
REBA posture assessment data represents the risk level of musculoskeletal disorders associated with
each posture, with higher scores indicating higher risks. This alerts workers to promptly modify
high-risk postures. The data includes C-REBA scores for each joint and can be selectively viewed
for specific joints. It is presented in both chart and video formats. Moreover, all the visualized data
mentioned above incorporates statistically significant measures such as mean, standard deviation,
maximum and minimum values, and quartiles. The video feedback is divided into four parts (Figure
5.5): the original video in the top left corner, posture recognition feedback video in the top right
corner, real-time center of gravity trajectory video in the bottom left corner, and real-time C-REBA
score video in the bottom right corner. In summary, the visual feedback provided by the system
empowers workers to explore optimal force positions, maintain balance during lifting activities, and

maximize strength output to prevent muscle injuries [8].
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Figure 5.5 Multivariate data fusion outputs visual results.

5.2.3 System Configuration

The configuration of the BAPAS system encompasses software and hardware modules. The
software modules comprise human pose recognition algorithms, behavior identification algorithms,
and C-REBA posture assessment algorithms. For human pose recognition, we have employed the
OpenPose open-source library, which has been shown by researchers in literature [1] to achieve
superior joint detection accuracy compared to KinectV2 and exhibit enhanced robustness under non-
ideal conditions. Utilizing OpenPose, we construct a human skeletal framework with 25 key joints
covering major anatomical landmarks. This framework facilitates joint pose reconstruction and
enables accurate pose scoring for the behavior identification and C-REBA posture assessment
algorithms. Moving to the hardware configuration, the algorithm models are implemented in the
PyTorch framework. Model training is conducted on a workstation equipped with an Intel Xeon
CPU ES5-1560 v4 @ 3.60 GHz and two Titan V devices. The workstation specifications include an
AMD Ryzen 7 3800X 8-Core Processor x 16 @ 3.90GHz, 128 GB RAM, and a GeForce
GTX1660Ti GPU. The entire software development process is carried out using the PyCharm

2020.3.2 platform, with Python 3.7 as the programming language.

5.3 System application extension

The field of healthcare encompasses a wide range of application scenarios that necessitate
posture assessment and guidance. While the BAPAS system initially found its utility in caregiving

scenarios like patient transfers, its applications extend to various medical assistance contexts.
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Through the accumulation of posture data specific to medical assistance scenarios, the algorithm
model can undergo fine-tuning to develop a dedicated posture assessment system tailored to specific
medical assistance settings. Notably, the system has already demonstrated remarkable success in
expanding its application to rehabilitation posture assessment and CPR posture assessment scenarios,
achieving outstanding outcomes. These achievements underscore the immense potential of the
BAPAS system in the realm of visualized posture assessment for medical assistance, paving the way

for further advancements in this area.

5.3.1 Rehabilitation scenarios

In the realm of rehabilitation therapy, the correction of posture assumes a pivotal role in
restoring muscle function, mitigating pain, fostering recovery, and preventing further injury.
Maintaining proper posture is paramount for upholding normal body alignment and positioning.
Inadequate or erroneous body posture can engender aberrant stress distribution on muscles and
bones, resulting in pain, stiffness, and impairments in functionality. Through the implementation of
rehabilitation posture correction, it becomes feasible to address postural issues, ameliorate body
alignment, alleviate discomfort, and enhance overall functionality. Improper posture can induce
muscle tension, heightened joint pressure, and nerve compression, consequently leading to pain and
discomfort. The primary objective of rehabilitation posture correction is to alleviate these
discomforts and pains, enabling patients to experience enhanced comfort and ease in their daily
activities. Correct posture and body alignment can bolster muscle strength and coordination, amplify
joint stability and flexibility, thereby facilitating the patient's functional recovery. By rectifying
erroneous posture, specific regions of the body are relieved from undue pressure and stress,
ultimately decreasing the risk of further injury. Rehabilitation posture correction aids in diminishing
this excessive pressure and stress, thereby assisting patients in averting further harm and propelling
the rehabilitation process forward.

To enhance engagement in rehabilitation training and optimize the efficacy of posture
correction, the field of rehabilitation posture correction has witnessed notable advancements and
research methodologies. Noteworthy studies [9-11] have introduced a sensor-based posture
monitoring technique that employs inertial measurement units (IMUs) and pressure sensors for real-
time monitoring and recording of patients' posture data. By capturing joint angles, body positions,
and motion data, this approach generates comprehensive assessment reports on patient posture,
providing real-time feedback and reference for rehabilitation therapists. However, the reliance on
sensors in this method creates a substantial burden for patients and poses challenges in integrating

the collected information. Wearable devices, including smart wristbands and smart garments, have
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emerged as promising tools in rehabilitation therapy, enabling posture and movement monitoring
through embedded sensors [12-14]. These devices offer real-time feedback and suggestions.
Nonetheless, the high cost associated with wearable integrated devices limits their widespread use
among the general population. Virtual reality (VR) and augmented reality (AR) technologies have
demonstrated immense potential in guiding rehabilitation posture by creating simulated
environments. Through interaction with avatars or objects within virtual scenes, these technologies
provide visual feedback and guidance, facilitating posture adjustment and improving rehabilitation
outcomes [15-17]. Moreover, VR and AR technologies can offer personalized rehabilitation
programs and gamified training, fostering patient engagement and motivation. Despite their
promising effects, the high device costs and the need for specific models tailored to rehabilitation
programs present substantial challenges to their applicability in rehabilitation posture correction. To
address these challenges, we propose an innovative rehabilitation posture correction system, named
BAPAS, which leverages deep learning frameworks and artificial intelligence technologies.

The BAPAS system represents a novel approach that integrates training algorithm models and
a vast repository of posture data to automatically identify and evaluate patients' postures, thereby
delivering personalized corrective suggestions. These technological advancements enable
continuous optimization and adaptation of rehabilitation plans based on individual patient
circumstances and progress, leading to improved efficacy in posture correction and rehabilitation
outcomes. With a primary focus on patients' daily life postures during the rehabilitation process, the
BAPAS system harnesses the power of computer vision technology. By leveraging camera
surveillance connected to the Internet of Things, the BAPAS system can actively monitor patients'
daily postures. In the event of incorrect postures, it promptly alerts patients and provides visual
feedback through virtual skeletons displayed on a terminal. This feedback empowers patients to
promptly rectify their postures, reducing the risk of injuries and facilitating the rehabilitation process.

To assess the efficacy of the BAPAS system in rehabilitating posture correction, a volunteer
was recruited to emulate daily life postures, with particular emphasis on commonly adopted
positions such as cleaning and lifting boxes, as depicted in Figure 5.6. Throughout the experiment,
cloud-based servers were employed for data processing by the BAPAS system. Data collection from
the user and feedback provision were facilitated using a laptop computer equipped with the
following specifications: Microsoft Windows 10 operating system, Intel (R) Core (TM) i7-8750H
2.00 GHz CPU, 8 GB RAM, and Nvidia GeForce GTX 1050Ti GPU. To capture video clips of the

volunteer executing tasks in various postures, an Intel RealSense depth camera D435 was utilized.
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Figure 5.6 Visualization of inappropriate posture correction in Cleaning and Lifting tasks.

The obtained test results, illustrated in Figure 5.6, showcase the functionality of the BAPAS
system in activating posture correction warnings and prompting patients to adjust their postures
when the assessed posture risk surpasses the predetermined REBA score. The system visually
presents virtual corrective skeleton positions on the display terminal. In the instances of Clean-B
and Lifting box-B, where the REBA score exceeds the defined threshold, the system predicts
skeleton positions based on low-risk postures and highlights them in red, compelling patients to
swiftly align their postures with the indicated red virtual skeleton positions. Conversely, in Clean-A
and Lifting box-A scenarios, where the posture risk remains below the specified REBA score, no
posture correction warnings are triggered, and the skeleton color is displayed as green. Additionally,
ethical considerations preclude the presentation of rehabilitation posture correction outcomes of the
BAPAS system in this article, as patients were involved in the testing process. The comprehensive
test outcomes collectively affirm the successful implementation of the BAPAS system in
rehabilitation posture correction, with relatively affordable implementation costs. Moreover, as
further rehabilitation posture data is accumulated, the accuracy and precision of the employed

models can be enhanced, facilitating broader integration in diverse rehabilitation applications.

5.3.2 CPR scenarios

Cardiopulmonary Resuscitation (CPR) is a crucial emergency intervention aimed at restoring
cardiac function and ensuring oxygenation. Among the key steps of CPR, chest compressions play
a pivotal role and necessitate mastery by all emergency responders. By compressing the chest, these
compressions facilitate effective circulation, ensuring proper blood flow to vital organs.
Consequently, adopting the correct posture for chest compressions is of utmost importance in
successfully executing CPR and enhancing patient survival rates. The appropriate posture enables
rescuers to exert accurate and adequate force during compressions, ensuring optimal compression

of the patient's sternum and sufficient blood flow to the heart. Furthermore, adhering to the correct
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posture minimizes the risk of harm to the patient. As society progresses, chest compression
techniques are no longer confined to medical professionals and emergency responders alone, but are
also being promoted at community and school levels. Traditional instruction by healthcare
professionals remains a common approach for disseminating CPR chest compression techniques.
However, post-training questionnaires reveal that individuals often struggle to comprehend and
replicate these techniques, necessitating extensive training to attain proficiency in posture. Moreover,
some individuals face difficulties in adjusting and rectifying their postures, and once incorrect chest
compression habits are established, correcting them becomes challenging. Erroneous postures may
become deeply ingrained in learners' muscle memory, posing challenges for healthcare professionals
to consistently assess and rectify postures during prolonged and frequent intervals. These challenges
pose significant obstacles to the promotion and instruction of this technique.

Ongoing research endeavors are dedicated to enhancing the quality and efficacy of chest
compressions in cardiopulmonary resuscitation (CPR) through posture correction. Researchers are
exploring real-time feedback mechanisms employing pressure sensors, accelerometers, and
photodetectors to monitor and provide immediate feedback on the accuracy and quality of chest
compression postures. These devices aid rescuers in optimizing hand placement, depth, and
frequency to attain more favorable compression outcomes [18-19]. However, reliance on sensors
and their incorporation in the process may potentially impact the effectiveness of chest compressions.
In response, some researchers have employed virtual reality technology and simulation training
devices to enable learners to practice chest compressions and rectify their postures through visual
and tactile feedback. This training modality enhances learners' understanding and mastery of the
correct compression postures while improving skill retention and application abilities [20-21].
Nonetheless, this approach entails high equipment costs and may not be suitable for widespread
implementation in CPR training at societal and educational levels. Addressing these challenges, the
BAPAS system presents a posture assessment approach based on neural network models, providing
visual posture feedback to remind rescuers of posture intensity and correctness. With the support of
this system, rescuers can undergo iterative training until they have achieved full mastery of the
technique.

In order to refine the posture assessment capability of the BAPAS system specifically for chest
compression, substantial adjustments were made to the evaluation criteria. Previously, the posture
assessment scores represented the degree of musculoskeletal risk. However, for the assessment of
chest compression postures, the scores now indicate the level of force that the compressor can exert
on the patient. Professional input from emergency responders guided the division of chest

compression force into four levels, as depicted in Figure 5.7. These levels include Level A (4-5),
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Level B (3), Level C (2), and Level D (1), with higher scores denoting superior force application
capacity. Only postures reaching Level A are deemed optimal for CPR chest compressions, while
postures at other levels are considered inadequate. Additionally, the system retained the function of
assessing posture risk and integrated it into the posture correction process. When an incorrect chest
compression posture is detected, a virtual skeleton prompt is displayed on the visual terminal to
guide the compressor. To assess the effectiveness of the BAPAS system in evaluating and correcting
CPR chest compression postures, three volunteers were recruited and received chest compression
technique training under the guidance of a professional emergency care provider. Throughout the
experiment, cloud-based servers were utilized for data processing by the BAPAS system. User data
collection and feedback were facilitated using a laptop computer equipped with the following
specifications: Microsoft Windows 10 operating system, Intel(R) Core (TM) i7-8750H 2.00 GHz
CPU, 8 GB RAM, and Nvidia GeForce GTX 1050Ti GPU. Video clips of the task postures were
captured using an Intel RealSense depth camera D435. All CPR data were downloaded from

YouTube due to ethical consideration.

Figure 5.7 CPR chest compression position available force level.

The test findings, illustrated in Figure 5.8, reveal that the BAPAS system offers posture
assessment scores corresponding to different chest compression postures, reflecting the level of
force that can be exerted during compressions. Postures depicted in Figure 5.8b, Figure 5.8c, and
Figure 5.8d exhibit incorrect chest compression postures, as evidenced by their low force application
scores. Only postures achieving Level A are considered satisfactory. Moreover, for incorrect
postures, the BAPAS system provides visual feedback for posture correction. Postures meeting
Level A force application criteria receive no warnings and are annotated with green skeletal markers.
However, postures falling short of Level A force application prompt posture correction alerts. The
system predicts skeletal positions based on postures with high force application and marks them
with red skeletal annotations, reminding compressors to promptly rectify their posture to align with
the red virtual skeletal positions. Additionally, professional emergency responders were invited to
participate in the testing process to evaluate the efficacy of the results. The outcomes demonstrate

that the BAPAS system performs admirably in assessing and guiding CPR chest compression
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postures, while maintaining low implementation costs. It exhibits significant potential for

application in other emergency posture guidance scenarios.

Action Score: &80

Figure 5.8 Visualization of available force levels scoring and postural correction for different chest compression

techniques posture.

5.4 Discussion

The BAPAS system endeavors to assess work postures in assistive medical tasks, providing
valuable insights into ergonomic risks and potential musculoskeletal disorders. Through the
integration of posture recognition, behavior analysis, and risk assessment functionalities, the system
offers visual feedback and guidance on biomechanical posture risks. Users can access posture data,
joint angles, behavior recognition results, center of gravity trajectory, and C-REBA risk scores as
per their requirements, enabling a comprehensive understanding of posture risk levels during task
performance and facilitating adjustments to mitigate the occurrence of musculoskeletal disorders.
The accuracy and performance of posture assessment within the system are contingent upon the size
of the dataset, as it relies on deep neural network models. Currently undergoing testing, the system
will incorporate additional posture training data in future iterations to enhance accuracy and
generalizability.

Moreover, the BAPAS system exhibits considerable application prospects and potential.
Through the integration of behavior analysis and posture assessment functionalities, the system
holds the promise of significantly enhancing workflow efficiency and minimizing human errors in
caregiver scenarios. Consequently, this advancement can elevate the quality of patient care and
ameliorate the overall well-being of healthcare professionals. Notably, the system's successful

expansion into rehabilitation posture assessment and guidance, as well as CPR chest compression
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posture assessment and guidance, underscores its versatility and adaptability in diverse healthcare
environments. The versatility of the BAPAS system extends beyond its current applications,
encompassing a wide range of medical procedures and tasks, such as surgical interventions, patient
lifting in intensive care units, and ergonomic evaluations in clinical settings. By amassing additional
data from various medical assistance contexts, the system can be further refined and tailored to
address the specific posture assessment requirements of distinct medical scenarios. The ongoing
development and refinement of the BAPAS system, coupled with the integration of domain-specific
data, will augment its effectiveness and applicability across diverse medical assistance scenarios.
Consequently, the potential impact of the BAPAS system in the realm of visualized posture
assessment for medical assistance is substantial, providing invaluable support to healthcare
professionals and fostering improved patient outcomes.

User feedback and acceptance hold paramount importance in the assessment of the system. The
endorsement and positive feedback received from healthcare professionals and users underline the
system's usability and effectiveness. To ensure seamless integration of the system into clinical
practice, additional user training and support may be required. Furthermore, continuous user
engagement and collaboration are essential to refine and optimize the system based on real-world
user requirements and preferences. The issue of data security and privacy protection also
necessitates attention. Strict adherence to robust data security protocols is vital to safeguard sensitive
medical information. Measures such as secure data storage, encrypted transmission, and stringent
access control must be implemented to preserve patient privacy and comply with relevant
regulations and standards. Looking ahead, the future development of the BAPAS system should
explore the integration of artificial intelligence technologies to enhance real-time posture guidance,
thus further enhancing its usability and effectiveness. Additionally, integrating the system with other
medical devices and systems can offer a more comprehensive and holistic approach to healthcare.
Further research and development efforts should concentrate on these areas to augment the system's

capabilities and broaden its potential applications.

5.5 Conclusion

The BAPAS system presents a comprehensive solution for the evaluation of job postures and
the assessment of musculoskeletal disorder risks in assistive medical tasks. By harnessing advanced
algorithms and a cloud-based server, this system enables the processing and analysis of work videos,
generating valuable insights into posture data and risk assessment outcomes. Our non-contact
behavior analysis and posture assessment approach, as exemplified in this system, effectively

overcomes the limitations associated with wearable devices and accelerometer-based methods. With
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a strong emphasis on user-friendliness and practicality, our system provides an efficient and
effective solution for assessing job postures in assistive medical tasks. Moreover, the system holds
substantial potential for expansion into other assistive medical scenarios. By aggregating additional
posture data from diverse assistive medical contexts and refining the underlying model, a targeted
posture assessment system can be developed to cater to specific scenarios. Notably, the system has
already demonstrated exceptional performance in posture recognition, evaluation, and guidance, as
evidenced by its successful application in rehabilitation posture guidance and CPR posture
assessment. In summary, our system has the capacity to enhance workplace safety and improve the

overall well-being of healthcare professionals.
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Chapter 6

Conclusion and prospect

6.1 Conclusion

As the global aging problem worsens, the demand for nursing care is on the rise, placing
substantial mental and physical strain on both formal and informal caregivers. Particularly, informal
caregivers, lacking professional nursing training, face an elevated risk of musculoskeletal disorders.
In light of this, our study aims to address the risk of musculoskeletal disorders among caregivers
and offer posture guidance to informal caregivers through the proposal of a visual posture
assessment and feedback algorithm based on ergonomic posture risk assessment methods.
Furthermore, we have developed a system for assistive healthcare behavior analysis and posture risk
assessment that can be seamlessly integrated into mobile devices. The key components of our work
encompass the following three main aspects:

(1) Enhancing skeleton recognition accuracy in complex nursing tasks.

Pose recognition methods play a pivotal role in visual-based posture risk assessment research.
Among these methods, OpenPose stands out as one of the leading algorithms for pose recognition.
However, it encounters challenges in complex scenarios that involve multiple interactions and
occlusions, resulting in the misidentification and missing of skeletons. To address this issue, we
propose a skeleton reconstruction method based on ST-GCN. Our method leverages behavioral
features as crucial indicators and utilizes temporal inference to reconstruct missing skeletons. For
misidentified skeletons, we employ the weights of behavioral features to identify abnormal
behaviors and reconstruct the skeletons based on similar behavioral features as references. We
validate our approach from three dimensions: joint angles, REBA scores, and accuracy. Through
comprehensive experiments on joint angles, REBA scores, and accuracy, our results demonstrate
that our method achieves joint angles and REBA scores that are not significantly different from
ground truth values, surpassing the challenges of skeleton missing and misidentification in nursing
tasks and thereby enhancing the accuracy of joint angles and REBA scores. Notably, our method
outperforms other skeleton correction methods in terms of REBA score accuracy for nursing task
postures, achieving an impressive accuracy of 8§7.34%. By optimizing skeleton tracking accuracy in
nursing tasks, our method enhances the efficiency and accuracy of posture risk assessment,
ultimately contributing to the health and safety of healthcare workers.

(2) A C-REBA scoring method for nursing scenarios was proposed.

REBA, an ergonomics-based method for assessing posture risk, plays a crucial role in
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mitigating the risk of musculoskeletal disorders in nursing tasks. Despite demonstrating favorable
evaluation performance across various industries, further investigation is required to compare its
evaluation results with actual risks in different scenarios. Our application of the REBA method to
nursing tasks revealed an overestimation of the risk level associated with nursing postures and
provided identical evaluation results for both experienced and inexperienced caregivers, failing to
offer posture risk guidance and references for the latter. To address this limitation, we have
developed the C-REBA method, which incorporates nursing task-specific parameters such as center
of gravity (COG) trajectory, load duration, and asymmetric load. Experimental findings demonstrate
that C-REBA effectively discriminates between experienced and inexperienced caregivers,
particularly in nursing task stages 2-4, where it provides posture risk guidance for inexperienced
caregivers. As this method evolves, by adjusting the parameters based on data collected from diverse
medical scenarios, it can be extended to posture risk assessment in other healthcare settings, thereby
enhancing the generalizability of the REBA method.

(3) An assistive healthcare behavior analysis and posture risk assessment system was
developed.

The behavior analysis and posture risk assessment system presented in this study offers a
comprehensive solution for evaluating work postures and assessing the risk of musculoskeletal
disorders in assistive healthcare tasks. Leveraging deep neural network algorithms and cloud-based
servers, the system efficiently processes and analyzes work videos, yielding valuable insights into
pose data and risk assessment outcomes. By employing non-contact-based behavior analysis and
posture assessment methods, our system overcomes the limitations associated with wearable devices
and accelerometer-based approaches. Prioritizing user-friendliness and practicality, our solution
provides an effective and efficient means of evaluating work postures in assistive healthcare tasks.
Moreover, the system holds significant potential for expansion to other assistive healthcare scenarios.
By gathering additional posture data from diverse assistive healthcare environments and refining
the underlying models, targeted posture assessment systems can be tailored for specific contexts.
Currently, the system has successfully extended to applications such as rehabilitation posture
guidance and cardiopulmonary resuscitation posture assessment, showcasing exceptional
performance in pose recognition, assessment, and guidance. With its potential to enhance workplace
safety and improve the overall well-being of healthcare professionals, our system represents a

promising advancement in the field of assistive healthcare technology.
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6.2 Prospect

While this paper has made notable research advances, there are still limitations and
opportunities for further improvement. Thus, we outline the following prospects and future research
directions.

Firstly, the current adoption of a 2D-based pose recognition algorithm restricts the calculation
of 3D spatial characteristics of pose skeletons, which presents challenges in scoring rotational
movements and capturing rotational behavioral features. Our next research focus involves exploring
3D pose recognition methods to enhance skeleton recognition accuracy and enable automated REBA
posture risk assessment. Secondly, occlusion during nursing work remains a primary factor
contributing to inaccurate EPRA. However, most fixed surveillance cameras utilized for evaluation
in elderly care facilities lack the flexibility to adjust angles and mitigate occlusion. To address this
issue, we propose leveraging frame interpolation techniques using traditional statistical methods
(e.g., linear, cubic spline, Lagrange, Newton polynomial interpolation, and low-rank matrix
completion) to compensate for data loss resulting from short-term occlusion. For time intervals
exceeding 1 second, machine learning approaches are required to comprehend object motion
patterns. In computer vision, various algorithms and methods have been proposed for estimating
poses under occlusion, such as masking specific modules during training through data augmentation
or employing deep generative motion fillers. These approaches have demonstrated effectiveness in
scenarios involving severe and prolonged occlusions, finding applications in rehabilitation and
entertainment. However, their adoption in human pose risk assessment remains limited. Future
research should explore modifications or adaptations of these algorithms to improve the evaluation
of caregiver posture risk.

The pose recognition algorithm exhibits limitations in detecting human skeletons and assessing
posture risk under low light or low-resolution conditions. The fusion of caregiver hair color with
clothing color further hinders human detection. Previous studies have reported decreased accuracy
in low-resolution images. While heatmap filtering adjustments can identify more potential low-
confidence targets, unintended targets may be included. Super-resolution algorithms have shown
potential in enhancing video quality and image resolution, which can improve the success rate of
human detection, but their practical effectiveness requires validation. Furthermore, current research
predominantly focuses on posture assessment and guidance for caregivers, neglecting the impact of
patient posture and movements on assistive healthcare effectiveness. Future investigations should
incorporate patient posture considerations and develop methods for patient posture assessment and
guidance to provide a more comprehensive care solution. Lastly, despite the system's favorable

performance in laboratory settings, its deployment and application face challenges. Further research
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is needed to address system usability, user-friendliness, and privacy protection concerns. Future
studies should encompass real healthcare environments for long-term field testing and evaluation.
In conclusion, the research presented in this paper offers significant contributions in the
advancement of an assistive healthcare posture assessment and behavior analysis system. This work
serves as a valuable exploration and showcases innovative approaches in the field. Moving forward,
future research endeavors will focus on refining and expanding this area of study to augment the
effectiveness of assistive healthcare practices. By doing so, we can strive to provide enhanced health
management and care services for both caregivers and patients, fostering improved outcomes in the

field of assistive healthcare.
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