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In recent years, not only mRNA (messenger RNA) but also other
small non-coding RNA have focused on molecular diagnosis and therapy
in oncology fields. Especially in human medicine, many studies elucidate
the ability and function of many microRNAs, which are small non-coding
RNAs. However, there are still not many studies in the veterinary field.
In my PhD study, I focused on the non-coding small RNA in canine
oncology fields.

In the first chapter, I studied the dysregulated micro RNA in canine
oral melanoma. At first, I performed the microarray-based miRNA
profiling of canine malignant melanoma (CMM) tissue obtained from the
oral cavity. Then, I also confirmed the differentially expressed microRNA
by quantitative reverse transcription-PCR (qRT-PCR). An analysis of the
microarray data revealed 17 dysregulated miRNAs; 5 were up-regulated,
and 12 were down-regulated. qRT-PCR analysis was performed for 2
up-regulated (miR-204 and miR-383), 3 down-regulated (miR-122,
miR-143, and miR-205) and 6 additional oncogenic miRNAs (oncomiRs;
miR-16, miR-21, miR-29b, miR-92a, miR-125b and miR-222). The
expression levels of seven of the miRNAs, miR-16, miR-21, miR-29b,
miR-122, miR-125b, miR-204, and miR-383 were significantly
up-regulated, while the expression of miR-205 was down-regulated in
CMM tissues compared with normal oral tissues. The microarray and
gRT-PCR analyses validated the up-regulation of two potential oncomiRs,
miR-204 and miR-383. I also constructed a protein interaction network
and a miRNA-target regulatory interaction network using STRING and
Cytoscape. In the proposed network, CDKZ2 was a target for miR-383,
SIRTI and TP53 were targets for miR-204, and ATR was a target for both.
The miR-383 and miR-204 were potential oncomiRs that may be involved
in regulating melanoma development by evading DNA repair and

apoptosis.
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In my second chapter, I focused on non-coding RNA other than microRNA,
and I compared canine hepatocellular carcinomas (HCC) and hepatocellular
adenomas (HCA). I elucidated the differential expression of Y RNA-derived
fragments because Y RNA-derived fragments have yet to be investigated in
canine HCC and HCA. I used qRT-PCR to determine Y RNA expression in
clinical tissues, plasma, and plasma extracellular vesicles, and two HCC cell
lines (95-1044 and AZACH). Y RNA was significantly decreased in tissue,
plasma, and plasma extracellular vesicles for canine HCC versus canine HCA
and healthy controls. Y RNA was decreased in 95-1044 and AZACH cells
versus normal liver tissue and in AZACH versus 95-1044 cells. In plasma
samples, Y RNA levels were decreased in HCC versus HCA and Healthy
controls and increased in HCA versus Healthy controls. Receiver operating
characteristic analysis showed that Y RNA could be a promising biomarker
for distinguishing HCC from HCA and healthy controls. Overall, the
dysregulated expression of Y RNA can distinguish canine HCC from HCA.
However, further research is necessary to elucidate the underlying Y
RNA-related molecular mechanisms in hepatocellular neoplastic diseases. To
the best of my knowledge, this is the first report on the relative expression of
Y RNA in canine HCC and HCA.

In conclusion, I have demonstrated the up-regulation of potential
oncomiRs, miR-16, miR-21, miR-29b, miR-122, miR-125b, miR-204 and
miR-383 in CMM tissues. In particular, the strong up-regulation of miR-383
in CMM tissues compared with normal oral tissues identified by microarray
screening was confirmed by qRT-PCR. I conclude that miR-383 and miR-204
may promote melanoma development by regulating the DNA
repair/checkpoint and apoptosis. Then, I also demonstrated the Y RNA
dysregulation in the cHCC. Especially to my knowledge, this is the first
report on Y RNA in canine tumors. Interestingly, this ncRNA has distinctive
characteristics and differentiates malignant tumors (HCC) from benign
tumors (HCA). The expression pattern of Y RNA is consistent across clinical
samples and cell lines. Thus, Y RNA has promising potential for
differentiating HCC from HCA. Further research is required to fully
elucidate the role of Y RNA in the development and progression of canine
HCC and HCA.
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