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Abstract

Purpose: We investigated optimal peritumoral size and constructed predictive
models for epidermal growth factor receptor (EGFR) mutation.

Methods: A total of 164 patients with lung adenocarcinoma were retrospectively
analyzed. Radiomic signatures for the intratumoral region and combinations of
intratumoral and peritumoral regions (3, 5, and 7 mm) from computed tomog-
raphy images were extracted using analysis of variance and least absolute
shrinkage. The optimal peritumoral region was determined by radiomics score
(rad-score). Intratumoral radiomic signatures with clinical features (IRS) were
used to construct predictive models for EGFR mutation. Combinations of intra-
tumoral and 3, 5, or 7 mm-peritumoral signatures with clinical features (IPRS3,
IPRSS5, and IPRS7, respectively) were also used to construct predictive models.
Support vector machine (SVM), logistic regression (LR), and LightGBM models
with five-fold cross-validation were constructed, and the receiver operating char-
acteristics were evaluated. Area under the curve (AUC) of the training and test
cohorts values were calculated. Brier scores (BS) and decision curve analysis
(DCA) were used to evaluate the predictive models.

Results: The AUC values of the SVM, LR, and LightGBM models derived
from IRS were 0.783 (95% confidence interval: 0.602-0.956), 0.789 (0.654—
0.927), and 0.735 (0.613—0.958) for training, and 0.791 (0.641-0.920), 0.781
(0.538-0.930), and 0.734 (0.538-0.930) for test cohort, respectively. Rad-score
confirmed that the 3 mm-peritumoral size was optimal (IPRS3), and AUCs
values of SVM, LR, and lightGBM models derived from IPRS3 were 0.831
(0.666—0.984), 0.804 (0.622—-0.908), and 0.769 (0.628-0.921) for training and
0.765 (0.644-0.921), 0.783 (0.583-0.921), and 0.796 (0.583-0.949) for test
cohort, respectively. The BS and DCA of the LR and LightGBM models derived
from IPRS3 were better than those from IRS.

Conclusion: Accordingly, the combination of intratumoral and 3 mm-
peritumoral radiomic signatures may be helpful for predicting EGFR mutations.
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1 | INTRODUCTION

Mutational testing is the standard protocol for determin-
ing whether patients with non-small cell lung cancer
(NSCLC) are likely to respond to targeted molecular
therapy.! Lung adenocarcinoma is classified as an
NSCLC? Patients with lung adenocarcinoma with epi-
dermal growth factor receptor (EGFR) mutations are
treated with EGFR tyrosine kinase inhibitors (EGFR-
TKis).2* Treatment with EGFR-TKIs has given patients
better survival rate and longer progression-free survival
times than conventional chemotherapy® However, the
regulation of EGFR mutations by EGFR-TKIs increases
radiosensitivity® Therefore, identifying the EGFR muta-
tion status is crucial for decision-making regarding
treatment regimens.

Biopsies or surgical specimens are typically obtained
for detecting EGFR mutations.” However, these pro-
cesses are time consuming, expensive, and invasive.
Some researchers have proposed predictive models for
EGFR mutations using radiomic features derived from
computed tomography images.'® 1 Radiomics can
analyze tumor phenotypes by automatically extracting
numerous quantitative features from medical images,
such as CT and/or magnetic resonance images.!" How-
ever, most studies have not considered the radiomic
features derived from the peritumoral region and
assessed the intratumoral region alone.”°

Some studies have reported the usefulness of
radiomic features derived from intratumoral and per-
itumoral regions for predicting tumor spread in air
space (STAS).'">"# STAS is also associated with EGFR
mutations.'* Moreover, the predictive model by Wang
et al. established that both the intratumoral and per-
itumoral regions are important for predicting EGFR
mutation.'®

Very few studies have used intratumoral and peri-
tumoral radiomic features to predict EGFR mutation.
Yamazaki et al. and Choe et al. reported the usefulness
of peritumoral radiomic features in predicting EGFR
mutation status.”'® Their methods used a single set-
ting with peritumoral sizes of 3 and 5 mm from the
tumor border. Because the studies used different peritu-
moral size, optimal peritumoral size for predicting EGFR
mutation status must be investigated. Therefore, this
study explored the radiomic features of the optimal
peritumoral size to determine EGFR mutation status
and construct machine learning (ML) based predictive
models for EGFR mutation status.

2 | MATERIALS AND METHODS
2.1 | Patient data

The Institutional Review Board of our institution
approved this study. The inclusion criteria were as

follows: (a) pathologically confirmed lung adenocar-
cinoma, (b) confirmed EGFR mutation (EGFR+) or
wild-type (EGFR-), (c) non-contrast enhanced chest
CT images acquired before surgery or targeted molec-
ular therapy or radiation therapy, and (d) only primary
tumors. The exclusion criteria were as follows: (a)
patients with tumors other than lung adenocarcinoma
and, (b) patients who had previously undergone surgery
or targeted molecular therapy. A total of 164 patients
with NSCLC who had undergone biopsy or surgical
specimens between 2016 and 2020 by our institution
were randomly selected. These cases were divided into
EGFR+ or EGFR- groups in both the training and test
cohorts. The data were randomly divided into training
and test cohorts with a ratio of 7:3. The clinical features
included age, sex, location of the lung tumor, smoking
status, and staging. The tumors were divided into five
location categories: right upper, right middle, right lower,
left upper, and left lower? "6 The detailed characteristics
of the patients in our study are shown in Table 1. The
study workflow is shown in Figure 1.

2.2 | CTimaging

CT examinations were performed using five CT
scanners: Aquilion Precision (Canon Medical Sys-
tems, Otawara, Japan), Optima CT 660 (GE Health-
care, Waukesha, WI, USA), SOMATOM Sensation 64,
SOMATOM Force, and SOMATOM Drive (Siemens
Healthcare, Forchheim, Germany). The scanning param-
eters were as follows: tube voltage, 70—120 kV; tube cur-
rent, automatic exposure control; matrix size, 512 x 512;
slice thickness, 1.00 or 1.25 mm; and field of view,
270—400 mm; rotation time of gantry, 0.5 s/rot. All CT
images were acquired from patients in the supine posi-
tion and deep inspiration breath-hold with both hands
raised.

2.3 | Extraction of radiomic features and
feature selection

The acquired images were converted to an isotropic vol-
ume (1.00 x 1.00 x 1.00 mm?) using linear interpolation.
The intratumoral region of the lung tumor was seg-
mented semi-automatically using the GrowCut module
in the open-source software 3D Slicer (version 4.10.2,
Brigham and Women’s Hospital).!”-'® The pathological
usefulness of GrowCut segmentation for NSCLC has
been reported.”® Two medical physicists observed CT
images on the axial, coronal, and sagittal views using
the mediastinum (width, 350 HU; level, 40 HU) and lung
window (width, 1500 HU; level, =500 HU) settings and
performed segmentation. These segmentations were
confirmed by a radiation oncologist with over 16 years of
experience in radiation therapy. The peritumoral region
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TABLE 1 Patient characteristics in this study.
Train cohort (n = 120) Test cohort (n = 44)
Characteristic EGFR- EGFR+ p-value EGFR- EGFR+ p-value
Age (¥, mean + SD) 70.30 +£9.90 74.15 +£7.04 0.40 69.30 +8.73 67.19 + 12.07 0.41
Sex, n <0.001 <0.001
Male 45 20 16 8
Female 15 40 7 13
Tumor location, n 0.25 0.21
Right upper 26 16 11 8
Middle 0 6 1 1
Right lower 16 12 4 4
Left upper 13 17 4 3
Left lower 5 9 3 5
Smoking, n <0.001 <0.001
Yes 48 24 21 9
No 12 36 2 12
Staging, n 0.37 0.37
I 25 33 14 19
Il 5 1 1
I 11 4 0
v 17 12 4 1
N/A 3 1 0 0

Abbreviation: N/A, not available.
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was determined using quantitative morphologic oper-
ations as a radially extending region with 3, 5, and
7 mm radius from the intratumoral region of the tumor
boundary.'® These peritumoral regions included air in
the lungs, pulmonary vessels, and bronchi and did not
include the thoracic wall and mediastinum.

Radiomic features were extracted from intratumoral
and peritumoral regions using the open-source soft-
ware Pyradiomics (version 3.7.1) in Python?® There
were 1046 radiomic features extracted from each
region, including first-order (14), shape (18), gray-
level co-occurrence matrix (GLCM) (22), gray-level run
length matrix (GLRLM) (16), gray-level size zone matrix
(GLSZM) (16), gray-level dependence matrix (GLDM)
(14), Laplacian of Gaussian filters (LoG) (2), gradient
filter (1), and wavelet filters (8). The filtered features
were acquired by multiplying the above filters by the
first-order, GLCM, GLRLM, GLSZM, and GLDM fea-
tures. Finally, 1046 radiomic features including first-order,
shape, GLCM, GLRLM, GLSZM, and GLDM features
(100) from original image and wavelet (688), LoG (172),
and gradient (86) features from filtered image were
extracted. The wavelet transform applies a wavelet fil-
ter to each CT image, which is then decomposed into
low and high frequencies into eight different images.’
The major settings for radiomic features extraction were
as follows: bin width of feature extraction parameters,
307?; sigma size for the LoG filter, 1.0 or 3.0 mm; bin
width of the wavelet filter, 10. ResamplePixelSpacing
was set to none.'? In total, 1046 radiomic features were
extracted from intratumoral and peritumoral regions
using the above conditions. The combination of intratu-
moral and peritumoral regions included 2092 radiomic
features.

All radiomic features were standardized using the
StandardScaler method in the scikit-learn package?®
For the 1046 radiomic features derived from the intratu-
moral region or 2092 radiomic features derived from the
combination of intratumoral and peritumoral regions, the
selectKbest method in the scikit-learn package based
on analysis of variance and the least absolute shrinkage
and selection operator were applied to training cohorts
to reduce redundant features®?* The k value was
set to 500 in the selectKbest method. Five-fold cross-
validation was applied to the training cohort to determine
the tuning parameter that regularized the magnitude
of the penalization, and features with non-zero coeffi-
cients were selected. The radiomics score (rad-score)
was calculated using a linear combination of selected
features multiplied by their coefficients®'” The rad-
scores calculated from radiomic features derived from
intratumoral region and a combination of intratumoral
and 3, 5, or 7 mm-peritumoral regions were evalu-
ated using the Wilcoxon rank-sum test to determine
optimal peritumoral size for distinguishing EGFR+ and
EGFR-.

2.4 | Construction of machine learning
based predictive models and performance
evaluation

After comparing the rad-scores, the peritumoral size
exhibiting the largest difference between the EGFR+
and EGFR- groups was determined as the optimal
peritumoral radiomic signature. Then, combinations of
intratumoral and 3, 5, or 7 mm-peritumoral radiomic
signatures were combined with clinical features that
showed significant differences, called intratumoral and
peritumoral radiomic signatures with clinical features
(IPRS3, IPRS5, and IPRS7, respectively). Similarly, we
combined intratumoral radiomic signatures and clin-
ical features which showed a significant difference,
called intratumoral radiomic signatures with clinical fea-
tures (IRS). Three ML predictive models (support vector
machine [SVM], logistic regression [LR], and LightGBM)
were constructed for EGFR mutation status using IRS
and PRS. In the SVM model, a radial basis function
was applied, and the grid search method with a five-fold
CV was applied to optimize the hyperparameters. In the
LightGBM model, to avoid overfitting, it was necessary to
add a maximum depth limit; therefore, hyperparameters
were optimized using random search in five-fold CV in
the training cohorts.

The predictive performance of each ML model was
evaluated using the area under the curve (AUC) of the
receiver operating characteristic curve in five-fold CV.
The training models were then evaluated using indepen-
dent test cohorts. Furthermore, the calibration curve and
the Brier score (BS) were used to evaluate the accu-
racy of ML models, and decision curve analysis (DCA)
was used to evaluate the clinical applicability of the ML
classifier models.?® The BS is calculated by summing
the squared difference between the probability of pre-
diction and the real probability?° If the BS is 0, the model
is considered to have perfect predictive accuracy; if the
BS greater than 0.25, the model is considered to have
no value?>?’ DCA was performed by calculating the
net benefit. The net benefit = true positive rate—(false
positive rate x weighting factor), where the weighting
factor = the threshold/(1 — threshold). Differences were
considered statistically significant at p < 0.05. All the
procedures were performed using in-house programs
(Python ver. 3.7.1,R ver. 4.1.1).

3 | RESULTS

Among 2092 features derived from combinations of
the intratumoral region and 3, 5, and 7 mm-peritumoral
regions, 22, 14, and 13 features were selected, respec-
tively. Among the 1046 features derived from intra-
tumoral features alone, 13 features were selected.
Figure 2a shows the rad-score of the intratumoral
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FIGURE 2 The rad-score of only intratumoral radiomic signatures and combinations of intratumoral and 3, 5, and 7 mm-peritumoral
radiomic signatures between EGFR+ and EGFR- groups of the (a) training, and (b) test cohorts.

radiomic signatures alone and the combinations of
intratumoral and 3, 5, and 7 mm-peritumoral radiomic
signatures between the EGFR+ and EGFR- groups for
the training, respectively. Figure 2b shows the rad-scores
for the test cohort. The rad-score showed a significant
difference between the EGFR+ and EGFR- groups in
the intratumoral and peritumoral regions in both cohorts.
In particular, the rad-score derived from the combi-
nation of intratumoral and 3 mm-peritumoral radiomic
signatures showed the largest difference between the
EGFR+ and EGFR- groups (training: p = 0.0000, test:
p = 0.0025). Therefore, the optimal peritumoral size was
determined to be 3 mm. Figure 3a shows the radiomic
signatures for calculating the rad-score for the intratu-
moral region, the combinations of intratumoral region
and (b) 3 mm-peritumoral, (c) 5 mm-peritumoral, and (d)
7 mm-peritumoral regions.

Differences in clinical features are shown in Table 1,
with sex and smoking status being significantly different.
Therefore, PRS were constructed using combinations of
intratumoral and 3, 5, and 7 mm-peritumoral radiomic
signatures with sex and smoking, namely IPRS3, IPRS5,
and IPRS7, respectively, then ML models were con-
structed using these signatures. Similarly, IRS was
constructed using intratumoral radiomic signatures, sex,
and smoking status.

Table 2 shows the AUC values for the train-
ing and test cohorts for different ML models based
on IRS, IPRS3, IPRS5, and IPRS7. For the train-
ing cohort, the AUC values in the SVM, LR, and
LightGBM models derived from IRS were 0.783

(95% CI:0.602—0.956),0.789 (0.654—0.927), and 0.735
(0.613-0.958), respectively, and 0.831 (0.666—0.984),
0.804 (0.622—0.908), and 0.769 (0.628—0.921) derived
from IPRS3, respectively. For the test cohort, these were
0.791 (95% CI: 0.641-0.920), 0.781 (0.538—0.930),
and 0.734 (0.538-0.930) derived from IRS and
0.765 (0.644—0.921), 0.783 (0.583—-0.949), and 0.796
(0.583—0.949) derived from IPRS3, respectively.

The calibration curves of the predictive models
derived from IPRS3 are shown in Figure 4. The cal-
ibration curve evaluates the goodness of fit between
the predicted probabilities and models with the actual
outcomes of EGFR mutation, namely, predictive model
accuracy, with the better model being closer to the
actual outcome, as shown by the dashed line? In
the training cohort, the goodness of fit between the
predicted probability and models with the actual out-
comes of EGFR mutations appeared to be good in
all models. In the test cohort, the goodness of fit LR
and LightGBM models around 0.4 in predicted prob-
ability were not well. The BS of the SVM, LR, and
LightGBM models in the training cohort were 0.189,
0.189, and 0.210, respectively, derived from IRS, and
0.165, 0.185, and 0.212, respectively, derived from
IPRS3. In the test cohort, these were 0.196, 0.207, and
0.218 for IRS and 0.213, 0.205, and 0.202 for IPRS3,
respectively.

Figure 5 shows the decision curves of the three
ML models for the (a) training and (b) test cohorts.
All ML models derived from IPRS3 in the test cohort
had more net benefit than “treat all” and the “treat
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7 mm-peritumoral regions.

none” with a threshold range over 0.3. Furthermore, in
the LR model, compared with IRS, IPRS3 had more
benefits in the threshold range from 0.45 to 0.60 and
over 0.65 in the test cohort. In the LightGBM model,
compared to IRS, IPRS3 in the test cohort had more
benefits with the range from 0.05 to 0.55 in the test
cohort.

4 | DISCUSSION

The peritumoral size for determining the EGFR muta-
tion status was optimized. Our results demonstrate that
radiomic signatures from the combination of intratu-
moral and 3 mm-peritumoral regions could distinguish
EGFR+ and EGFR- groups better than 5 or 7 mm-
peritumoral regions. We then constructed predictive
models for EGFR mutation status using IPRS3. Our
study showed that IPRS3 could better predict EGFR
mutation status than IRS.

In terms of clinical features, sex, and smoking sta-
tus were significantly different (Table 1). Because EGFR
mutations are frequently observed in non-smokers and
Asian females, this tendency was reasonable.’

As shown in Figure 3, both intratumoral and peritu-
moral features were selected for all combinations of
intratumoral and peritumoral regions. Therefore, it is
important to consider the peritumoral region to distin-

guish the EGFR mutation status, regardless of the size
of the peritumoral region. In this study, the optimal peri-
tumoral region was determined to be 3 mm based on the
rad-score results. Our results showed that the ML mod-
els derived from IPRS3 performed well. Yamazaki et al.
reported the usefulness of 3 mm-peritumoral radiomic
features for predicting EGFR mutation status.’® Fur-
thermore, Morales et al. reported that peritumoral lung
parenchyma within 3 mm excluding the thoracic wall
or mediastinum was correlated with overall survival in
lung cancer?® Therefore, the use of IPRS3 is reason-
able and meaningful for predicting the EGFR mutation
status. However, the optimal peritumoral region can vary
depending on the accuracy of intratumoral segmenta-
tion. We used GrowCut for tumor segmentation, which
segments automatically from a given initial small set of
label points in the algorithm.'® Therefore, it is expected
that the difference in segmentation accuracy due to dif-
ferent operators being used may be reduced. However,
because we did not evaluate the reproducibility for seg-
mentation of interclass correlation coefficient, this will
be validated.

Previous studies reported developed predictive mod-
els for the EGFR mutation status derived from intra-
tumoral radiomic features alone. Zhao et al. reported
an AUC value of 0.757 while Mei et al. reported
an AUC value of 0.664.'739 Moreover, Choe et al.
developed a predictive model using both intratumoral
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TABLE 2 AUC for training and test cohorts in different ML models based on intratumoral radiomic features with sex and smoking, and the
combination of intratumoral and peritumoral radiomic features with sex and smoking.
Training cohort Test cohort
Brier Brier
Classifier Signature AUC [95% CI] score AUC [95% Cl] score
EGFR mutation SVM IRS 0.783 + 0.086 [0.602—-0.956] 0.189 0.791 [0.641—0.920] 0.196
vs. wild-type IPRS3 0.831+0.059  [0.666—0.984]  0.165 0.765 [0.644-0.921]  0.213
IPRS5 0.822 +0.102 [0.661—-0.965] 0.171 0.776 [0.636—0.917] 0.219
IPRS7 0.715 + 0.109 [0.215-0.914] 0.219 0.687 [0.529—0.846] 0.233
LR IRS 0.789 + 0.110 [0.650—-0.927] 0.189 0.781 [0.538—0.930] 0.207
IPRS3 0.804 + 0.068 [0.622—0.908] 0.185 0.783 [0.583—0.949] 0.205
IPRS5 0.785 + 0.098 [0.605—0.955] 0.200 0.747 [0.600—0.895] 0.226
IPRS7 0.779 + 0.090 [0.597-0.955] 0.215 0.737 [0.588-0.887] 0.233
LightGBM IRS 0.735 + 0.091 [0.613—-0.958] 0.210 0.734 [0.538-0.930] 0.218
IPRS3 0.769 + 0.085 [0.628—-0.921] 0.212 0.796 [0.583—0.949] 0.202
IPRS5 0.736 + 0.073 [0.537—-0.934] 0.219 0.717 [0.537-0.934] 0.216
IPRS7 0.802 + 0.071 [0.626—0.973] 0.213 0.755 [0.626—0.973] 0.223

Abbreviations: AUC, area under the receiver operating characteristic curve; Cl, confidence interval; EGFR, epidermal growth factor receptor; IPRS3, combination of
intratumoral and 3 mm-peritumoral radiomic signature with clinical features; IPRS5, combination of intratumoral and 5 mm-peritumoral radiomic signature with clinical
features; IPRS7, combination of intratumoral and 7 mm-peritumoral radiomic signature with clinical features; IRS, intratumoral radiomic signature with clinical features;

LR, logistic regression; SVM, support vector machine.

and peritumoral radiomic features for EGFR muta-
tions in lung adenocarcinoma, and the AUC value of
their model was 0.64." In contrast, the AUC value
of our best model, LightGBM, demonstrated high
performance in the test cohort (0.796). Although valida-
tion for a large number of cases is needed, our models
derived from IPRS3 may be helpful for predicting EGFR
mutation status.

For the calibration curve, all models derived from
IPRS3 showed a better goodness of fit in the train-
ing cohort. However, in the LR and LightGBM models,
the goodness of fit around 0.4 in predicted probabil-
ity were poor in the test cohort (Figure 4). In the LR
and LightGBM models, the BS derived from IPRS3
was slightly better than that derived from IRS. Because
a lower BS indicates better model accuracy, these
results indicate that the model accuracies of the LR
and LightGBM models from IPRS3 are slightly better
than that of IRS. Previously, no study has evaluated
the model accuracy with BS for EGFR mutation sta-
tus using 3 mm-peritumoral radiomic features; therefore,
our results are considered to be valuable. However,
the validity of these results must be evaluated. More-
over, it has been reported that the predictive model
derived from intratumoral radiomic features had a
low BS (0.162 in the SVM model)?°; therefore, the
accuracy of our predictive model can be potentially
improved.

For the DCA, the LR model derived from IPRS3 had
more benefits with the threshold range from 0.45 to 0.60
and over 0.65 than that of IRS in the test cohort. The

LightGBM model derived from IPRS3 had more benefits
with the threshold range from 0.05 to 0.55 than that of
IRS in the test cohort (Figure 5). The threshold is where
the expected benefit of treatment and the expected
benefit of avoiding treatment are equal3! Moreover, all
models derived from IPRS3 showed at least more net
benefit than “all treat” or “treat none” with a range over
0.3 in the test cohort. Therefore, clinicians can refer
to our results to determine whether the EGFR muta-
tion status based on our models will be useful or not.3?
According to the results of Liu et al. and Zhang et al., net
benefits vary depending on the predictive models.?°2%
Therefore, validation of several predictive models is
important for evaluating the net benefit. Although we val-
idated three ML models, other predictive models need to
be investigated.

The size zone non-uniformity normalized (SZNUN)
feature extracted using GLSZM indicates the variation
in volume, and a lower SZNUN indicates greater homo-
geneity. As shown in Figure 3b, the glszm_SZNUN
coefficient was high in both intratumoral (origi-
nal_glszm_SZNUN: —-0.087) and 3 mme-peritumoral
(peri_log-sigma-1-0-mm-3D_glszm_ SZNUN: 0.131)
features. Examples of the feature maps of these
features in the test cohort are shown in Figure 6.
The EGFR- and EGFR+ groups demonstrated
different tendencies in the feature maps of the
original_glszm_SZNUN and peri_log-sigma-1-0-mm-
3D_glszm_ SZNUN. Biopsy result showing EGFR-
can include false negatives because of intratumor
heterogeneity.!> Therefore, though further evaluation
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should be performed, the feature map might be helpful
for interpreting the heterogeneous areas of the tumor.
An invasive biopsy is required to confirm EGFR
mutations patients. Our image-based method for EGFR
mutation identification can eliminate this inconvenient
procedure for patients and facilitate early decision-
making regarding treatment strategies. Most studies for
predicting EGFR mutation status focused on intratu-
moral features alone 21316 while a few studies focused
on peritumoral features. Previous studies used a single
peritumoral region to construct a single ML model,’-"°

Test data
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Decision curves of machine learning based predictive models in (a) training and (b) test cohorts.

therefore, the robustness of radiomic signatures in dif-
ferent models is unknown. We compared the radiomic
features of multiple peritumoral regions and constructed
three ML models. LR and LightGBM models derived
from IPRS3 showed similar AUCs and were better than
those of IRS, indicating that IPRS3 has high robustness.

Our study has some limitations. First, the number of
patients included in this study was limited. Therefore, a
larger number of cases should be examined to further
validate our results. In addition, we did not validate our
predictive models with an external dataset; therefore, it
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FIGURE 6

Feature maps generated by glszm_SizeZoneNonUniformityNormalized (center) and peri_log-sigma-1-0-mm-3D_glszm_

SizeZoneNonUniformityNormalized (right) in the test cohort with color bar. Feature maps in the EGFR mutation group tended to show high
value, whereas those in the wild-type group showed low value both in intratumoral and peritumoral regions.

is necessary to compare them with other models. Sec-
ond, the variety of peritumoral regions was considered
insufficient and multiple peritumoral regions to be eval-
uated in future works. Third, five different CT scanners
were used in this study. The variability in the values of
radiomics features from different CT scanners can be
comparable to the variability in these features in CT
images of NSCLC tumors.® Moreover, it is reported that
imaging parameters affect the robustness of radiomic
features>* Because a lot of facilities have multiple CT
scanners, improving robustness of features by imaging
parameters correction is necessary. The accuracy of our
predictive model may be improved by imaging parame-
ters correction. Furthermore, Zwanenburg et al. reported
that image perturbation may be useful for assessing
feature robustness® As future works, we will evaluation
feature robustness for extracted radiomic features.

5 | CONCLUSIONS

We determined the optimal peritumoral size and
investigated radiomic features to construct predictive
models for EGFR mutation status. The combination
of intratumoral and 3 mm-peritumoral radiomic sig-
natures could identify EGFR mutation status more
accurately compared to combinations of 5 or 7 mm-
peritumoral radiomic signatures. Furthermore, LR and
LightGBM models derived from IPRS3 demonstrated
better accuracy in predicting EGFR mutation status
than those derived from IRS. Therefore, the combination
of intratumoral and 3 mm-peritumoral radiomic signa-

tures can help accurately prediction EGFR mutation
status.
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