Doctoral Dissertation

Stability Assessment Methodology for
Open Source Projects Considering Uncertainty

(FHEEEREEB LA -V =270 d 27 M INT 3
e R RE)

September, 2023
Hironobu Sone
Graduate School of Sciences and Technology for Innovation,

Yamaguchi University

Abstract

Open source software (OSS) are adopted as embedded systems, server usage, and so on because
of quick delivery, cost reduction, and standardization of systems. Therefore, OSS is often used
not only for the personal use but also for the commercial use. Many OSS have been developed
under the peculiar development style known as the bazaar method. According to this method,
many faults are detected and fixed by developers around the world, and the fixed result will be
reflected in the next release. Also, many OSS are developed and managed by using the fault big
data recorded on the bug tracking systems. Then, many OSS are developed and maintained by
several developers with many OSS users.

According to the results of the 2022 Open Source Security and Risk Analysis (OSSRA), OSS
is an essential part of proprietary software, e.g., the source code containing OSS is 97%, all
source code using OSS is 78%.

On the other hand, OSS has issues from various perspectives. Therefore, OSS users need
to decide on whether they should use OSS with consideration of each issue. In addition, the
managers of open source projects need to manage their projects appropriately because OSS has
a large impact on software around the world.

This thesis focuses on the following three issues among many ones. We examine a method

for OSS users and open source project managers to evaluate the stability of open source projects.

1. Selection evaluation and licensing: Methods for OSS users to make selections from the

many OSS available situation,
2. Vulnerability support: Predicted fault fix priority for the reported OSS,

3. Maintenance and quality assurance: Prediction of appropriate OSS version upgrade timing,

considering the development effort required after OSS upgrade by OSS users.

In “1. Selection evaluation and licensing,” we attempt to derive the OSS-oriented EVM by

applying the earned value management (EVM) to several open source projects. The EVM is one

of the project management methodologies for measuring the project performance and progress.
In order to derive the OSS-oriented EVM, we apply the stochastic models based on software
reliability growth model (SRGM) considering the uncertainty for the development environment
in open source projects. We also improve the method of deriving effort in open source projects. In
case of applying the existing method of deriving effort in open source projects, it is not possible
to derive some indices in the OSS-oriented EVM. Thus, we resolve this issue. The derived OSS-
oriented EVM helps OSS users and open source project managers to evaluate the stability of their
current projects. It is an important to use the decision-making tool regarding their decisions and
projects of OSS. From a different perspective, we also evaluate the stability of the project in terms
of the speed of fault fixing by predicting the time transition of fixing the OSS faults reported in

the future.

2. In “Vulnerability support”, in terms of open source project managers, we create metrics to
detect faults with a high fix priority and predicted a long time for fixing. In addition, we try to
improve the detection accuracy of the proposed metrics by learning not only the specific version
but also the bug report data of the past version by using the random forest considering the char-
acteristic similarities of bugs fix among different versions. This allows the project managers to
identify the faults that should be prioritized for fixing when a large number of faults are reported,

and facilitates project operations.

In “3. Maintenance and quality assurance”, as an optimum maintenance problem, we pre-
dict the appropriate OSS version-up timing considering the maintenance effort required by OSS
users after upgrading the OSS. It is dangerous in terms of the vulnerability to continue using the
specified version of OSS ignoring the End of Life. Therefore, we should upgrade the version
periodically. However, the maintenance cost increase with the version upgrade frequently. Then,
we find the optimum maintenance time by minimizing the total expected software maintenance
effort in terms of OSS users. In particular, we attempt to reflect the progress of open source

projects by using the OSS-oriented EVM in deriving the optimal maintenance time.

In conclusion, we found that there is the applicability as the stability evaluation of open source

projects from three perspectives. Particularly, the OSS-oriented EVM discussed in “1. Selection

i1

evaluation and licensing” can contribute to the visualization of maintenance effort in open source
projects. The proposed method will potentially contribute to the development of OSS in the

future.

11

Acknowledgments

The author would like to express his gratitude to Professor Yoshinobu Tamura, the supervisor of
the author’s study and the chairman of this dissertation reviewing committee, for his introduction
to research on software reliability, valuable advice, continuous support, and warm guidance.

The author is indebted to Professor Yuji Wakasa, Professor Toshihiko Tanaka, Professor Kei
Kawamura, and Associate Professor Masashi Hotta, the members of the dissertation reviewing
committee, for reading the manuscript and making helpful comments.

The author wishes to particularly thank Emeritus Professor Shigeru Yamada of Tottori Uni-
versity for invariable encouragement and support.

The author has also received priceless cooperation and suggestions from many people for the
achievement of this work.

The author would also like to acknowledge the kind hospitality and encouragement of the

past and present members of Professor Tamura’s laboratory.

Contents

Abstract

Acknowledgments L. L e e e

Table of Contents o o o e e e e e

Listof Tables e

Listof Figures e

Chapter

1 Introduction e e e e e e

1.1
1.2
1.3

Background
Purpose e

Structure e e e

2 Background of Proprietary Software and Open Source Software

2.1
2.2
2.3
24
2.5

Examples of development style in proprietary software
Cost estimation methodology for proprietary software development.
Example of cost management method for proprietary software development . . .
Concept of open source software development

Examples of development style in open source software

3 Maintenance Effort Derivation Method

3.1
3.2
33

Effortderivation
Numerical examples

Conclusionin thischapter,

4 OSS-orientd EVM e e

4.1
4.2
4.3

Effort estimation model based on stochastic differential equation
Assessment measures for OSS-oriented EVM o000 0L

How to derive OSS-oriented EVM value

vii

Page

11l
vii
ix

X1

4.4 Numerical examples 42

4.5 Conclusioninthischapter 49
5 Fault Fixing Time Transition Prediction 53
5.1 Confirmation of the amount of trainingdata 54
5.2 Method for predicting the fixing time transition 55
5.3 Application of proposed method to actualdata 56
5.4 Conclusioninthischapter, 57
6 Fault Severity Prediction 61
6.1 Relatedresearch 61
6.2 Fault identification method considering high fix priority 62
6.3 Numerical examples 65
6.4 Conclusioninthischapter 68
7 Optimum Maintenance Problem 73
7.1 Relatedresearch 74
7.2 Optimum maintenance time based on wiener process models 74
7.3 Consideration of optimum maintenance time for software quality 75
7.4 Application of proposed method to actualdata 77
7.5 Conclusioninthischapter, 82
8 Conclusion 87
References e 89
Publication List of the Author L 99
Appendix L e e e e 107

viii

List of Tables

1.1

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

Examples of issues inusing OSS.,
Several examples of the indicesused in EVM.
Data items used to calculate the effort.

Several examples of the indicatorsused in EVM.
Explanation for OSS-oriented EVM.
Parameter estimation of maintenance effort in termsof PV.
Parameter estimation of maintenance effort in termsof AC.
Parameter estimation of number of potential faults in case of LibreOffice.

Parameter estimation of number of resolved faults in case of LibreOffice.
Parameter estimation resultsin RHEL. 8.0.

The scored fault severity.
Input data as explanatory variable. 0oL L.
Accuracy of the prediction model for the Eclipse and OpenStack.
Variable importance in threshold pt.
Variable importance in threshold u+o.o 0oL

Variable importance in threshold p+2c. 0oL

Parameter estimation of maintenance effort in terms of PV.
Parameter estimation of maintenance effortin terms of AC.
Parameter estimation of number of potential faults in case of OpenStack.
Parameter estimation of number of resolved faults in case of OpenStack.

Fault detection rate and probability in OpenStack project.

X

29

57

63
66
68

69

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
33
3.4

4.1

4.2

4.3

4.4

4.5
4.6

Summary of thisresearch. 4
Example of exponentialmodel., 13
Example of delayed S-shaped model. 13
Example of infection S-shaped model. 13
Anexample of EVM. 16
An example of Bullseyechart. 17
Differences between Cathedral method and Bazzar method. 18
Example of OSS developmentstyle. 19
research approaches in this thesis. 22
The method of prorating reporter’s effort in open source projects. 28
The method of prorating assignee’s effort in open source projects. 28
Comparison of effort calculation results in RHEL project. 31
Comparison of effort calculation results in LibreOffice project. 31

The cumulative maintenance effort expenditures as PV in LibreOffice Ver. 7.2
project by using Egs. (4.9)and (4.12). 43
The cumulative maintenance effort expenditures as AC in LibreOffice Ver. 7.2
project by using Egs. (4.9)and (4.12).o . 45
The cumulative estimated number of potential faults in LibreOffice Ver. 7.2
project by using Egs. (4.8) and (4.11)., 46

The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2

project by using Egs. (4.10)and (4.13). 47
EVM estimation results in LibreOffice project. 48
The bullseye chart in LibreOffice project. 49

xi

5.1
5.2
5.3

54

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6

1.7

8.1
8.2

8.3

8.4

8.5

Average time required to become CLOSE. 55
Open source software (OSS) development using the bug-tracking system. 56

Prediction result of fault fixing time transition in the exponential model by using

Eq. (5.1). . . o 58
Comparison of the measured and expected fault fixing time transition in the ex-

ponential model. 59
Scheme of random forest. Lo 64
Learning data with past version. 65
Overview of the optimum maintenance problem. 73
EVM estimation results in OpenStack project. 80
The result of CPI in OpenStack Ver. 16 project. 80
The result of ETC in OpenStack Ver. 16 project. 81
The estimated total software effort in OpenStack Ver. 16 project. 81

The transition probability distribution of the number of faults revised in case of

Eq. (7.16) o o 83
The estimated total software effort and the transition probability of cumulative

revised faults. o L 84
Example of development style in Bugzilla. 107

The cumulative maintenance effort expenditures as PV in LibreOffice Ver. 7.2
project by using Egs. (4.8) and (4.11). oL 110
The cumulative maintenance effort expenditures as PV in LibreOffice Ver. 7.2
project by using Egs. (4.10)and (4.13). 110
The cumulative maintenance effort expenditures as AC in LibreOffice Ver. 7.2
project by using Eqgs. (4.8) and (4.11). 111
The cumulative maintenance effort expenditures as AC in LibreOffice Ver. 7.2

project by using Eqgs. (4.10)and (4.13). oL 111

xii

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

The cumulative estimated number of potential faults in LibreOffice Ver. 7.2
project by usingEqs. (4.9) and (4.12). oL 112
The cumulative estimated number of potential faults in LibreOffice Ver. 7.2
project by using Egs. (4.10)and (4.13). oo 112
The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2
project by using Egs. (4.8) and (4.11). 113
The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2
project by using Egs. (4.9)and (4.12).o 113
Prediction result of fault fixing time transition in the delayed S-shaped model by
using Eq. (5.2). e 114
Prediction result of fault fixing time transition in the infection S-shaped model
byusing Eq. (5.3). 115

Comparison of measured and expected fault fixing time transition in the three

The cumulative maintenance effort expeditures as PV in OpenStack Ver. 16
project by using Egs. (4.9)and (4.12). 116
The cumulative maintenance effort expeditures as AC in OpenStack Ver. 16
project by using Egs. (4.9)and (4.12). oL 117
The cumulative estimated number of potential faults in OpenStack Ver. 16 project
by using Eqs. (4.10)and (4.13). 117
The cumulative estimated number of resolved faults in OpenStack Ver. 16 project

by using Egs. (4.9)and (4.12). 118

Xiil

Chapter 1

Introduction

1.1 Background

The source code of open source software (OSS) is freely available for use, reuse, fixing, and re-
distribution by the users. OSS are adopted as the embedded systems, the server usage, and so on
because of the quick delivery, the cost reduction and the standardization of systems. Therefore,
OSS is often used not only for the personal use but also for the commercial use. Many OSS are
developed under the peculiar development style known as the bazaar method [1]. According to
this method, many faults are detected and fixed by the developers around the world, and the fixed
result will be reflected in the next release. Also, many OSS are developed and managed by using
the fault big data recorded on the bug tracking systems. Then, many OSS are developed and
maintained by several developers with many OSS users.

Although OSS is useful as the reusable software, it also has several issues. The examples of

issues are as follows [2].

1. Selection evaluation and licensing
2. Vulnerability support

3. Maintenance and quality assurance
4. Supply chain management

5. Personal capacity and education

6. Organizational structure

7. Community activities

Examples of the issues described above are listed in Table 1.1. Table 1.1 shows the issues
from various perspectives in terms of OSS. Therefore, many companies and individuals need to
prepare well before using OSS.

Various researches have been conducted on each of the issues related to OSS. In this thesis, we
consider the three issues listed in Table 1.1. The issues are 1. Selection evaluation and licensing,

2. Vulnerability support, and 3. Maintenance and quality assurance.

1.2 Purpose

In this thesis, we focus on the three issues listed in Chapter 1.1.

In “1. Selection evaluation and licensing,”we attempt to derive OSS-oriented EVM by ap-
plying the earned value management (EVM) to several open source projects. The EVM is one
of the project management methodologies for measuring the project performance and progress.
In order to derive the OSS-oriented EVM, we apply the stochastic models based on software
reliability growth model (SRGM) considering the uncertainty for the development environment
in open source projects. Then, we can apply it to bullseye charts by deriving the OSS-oriented
EVM. The bullseye chart provides a means of visualizing the simultaneous progress toward each
goal. In this thesis, we also discuss the application of the OSS-oriented EVM to the bullseye
chart. We also improve the method of deriving effort in open source projects. In case of applying
the existing method of deriving effort in open source projects, it is not possible to derive some
indices in OSS-oriented EVM, thus we resolve this issue. The derived OSS-oriented EVM helps
OSS users and open source project managers to evaluate the stability of their current projects. It
is an important decision-making tool for them regarding their OSS usage decisions and projects.
From a different perspective, we also evaluate the stability of the project in terms of the speed of
fault fixing by predicting the time transition of fixing reported OSS faults in the future.

In “2. Vulnerability support,’in terms of open source project managers, we create the metrics
to detect faults. The reported faults with a high priority is speedy fix, and a long time to fix, and
predict. In addition, we try to improve the detection accuracy of the proposed metrics by learning

not only the specific version but also the bug report data of the past version by using random

ing OSS.

: Examples of issues in using

Table 1.1

8D10A Pasea.dul ‘UONBALDY

saAnoe jo Buipueisiapun pue uonjuboss jeusaul

JUBLLSSSSY AJUNLLIWOD

SaIjANDe AJUnWILo)

Bujuunu pue dn s1HISd aABY JoU op Siainoejnuell AUR

salljiqesauinA 01 asuodsal ajqeisun

uopez|nn sso poddns 03 WasAs [BUISIU] JO HoeT

ainpnas [euoneziuebio

Ajunwiwod uo aouspuadap ‘siayjo uo souspuadag asuodsal pue juswbpnl 1o) BLSILID JUS|2IYNSUT
uoleanpa
abpa|mou JuaIynsul ‘Adeiajl| JuadLnsut SaANNIaxXa AQ JuawabeueLl %S JUBIDIYNSU] pue Aloeded |euosiad
UONEDIIE[D [BNIDRU0D JO AYISSB0BN sajuedwod Buole sssusAISUOdSaS Ul UOBLEA
uoNIASU0D AJIGRISUINA BINSU3 suondwinsse 550 uo paseq Jou saonoeld Buipes |
Juawabeuel
suleyo Aiddns jje uiymjuswabeurw S50 Alpaisuayaldiuod ajeuipload 0] JN2Wia uieyd Ajddns
asn Jo uoneuiwE) pue |esodsiq) woddns wua) buol Jo Ayssadan
Apge)) jo sawiepasip Jo Bumas aoueUaIUIEW pue suonelado Buuueld ul Aynouig
aoueInsse

21njig) 0o a5ed Ul ucnedyiuliapuy

$50 payuoddnsun jojuawiuopueqy

Ajljenb pue soueuaiulg|y

(1500 pue JoYe) ssauaAIDaYa-1S00)
Sa0IABP 10] ‘slalsAs pue sadiaep Aceban

poddns pue ‘spoyjaw uoiedljdde ‘uoneayiou Ajijiqesauna ayenbapeur

sanijigesauina pue (1232 ‘sso ‘sjusuodiucd)
uonesnbyuod onposd Buipueisiapun ul A N2WIA

juawwabeuew a1emyos Ul AJljigelieA pue AjLie|nuess

voddng Ajjigessuna

Agerjal pue ‘Ajajes ‘Ajljeuoiouny usamiag aouejeq
F5UBIN| SSO 21EN|BAS 0] 3|QBUN

S50 4O UDIEDYIPOLL A B5USDY| JO UOHERIOIA

Jojoenuoagns e
0} §S0 JO U0IB|3s BU) ISNIIU 0) JaUIBUM BpIDap 03 8jqeun

uo1oaiRs S50 ajes Ul Ajnoia

‘Buisuaoy
pue uonRen|eAa UoPBeS

Purpose Issue of 0SS Means of this research

B 1. Selection evaluation and I Consideration and application of
licensing | 0SS-oriented EVM

o | Fault fixing time transition
Stability assessment of prediction
open source projects
: 2. Vulnerability support Fault severity prediction
5 . 2 Application and evaluation of
R - Mamte;:r;ignargd quality E— validity to optimal maintenance
e problem

Fig. 1.1: Summary of this research.

forest considering the characteristic similarities of bugs fix among different versions. This allows
the project managers to identify faults that should be prioritized for fixing when a large number
of faults are reported, and facilitates project operations.

In “3. Maintenance and quality assurance,’as an optimum maintenance problem, we predict
the appropriate OSS version-up timing considering the maintenance effort required by OSS users
after upgrading the OSS. It is dangerous in terms of the vulnerability to continue using the spec-
ified version of OSS ignoring the End of Life (EOL). Therefore, we should upgrade the version
periodically. However, the maintenance cost increase with the version upgrade frequently. Then,
we find the optimum maintenance time by minimizing the total expected software maintenance
effort in terms of OSS users. In particular, we attempt to reflect the progress of open source
projects by using OSS-oriented EVM in deriving the optimal maintenance time.

The scope of this research is summarized in Fig. 1.1.

1.3 Structure

This thesis is structured as follows:
Chapter 1 describes the background and purpose of this research as Introduction.
Chapter 2 compares the proprietary software and the OSS. Then, we summarize the issues

and conventional approaches to OSS and OSS development.

Chapter 3 discusses the method used in this research to derive the maintenance effort for open
source projects. There are several issues in the conventional method of deriving maintenance
effort for open source projects. In particular, it is difficult to derive the OSS-oriented EVM, as
described in Chapter 4, using the conventional method of deriving maintenance effort. Therefore,
it is necessary to improve the derivation method in terms of the maintenance effort.

Chapter 4 discusses how to derive OSS-oriented EVM applying EVM to open source projects
in terms of “1. Selection evaluation and licensing” of OSS issues. In addition, we derive and
discuss bullseye chart by applying OSS-oriented EVM.

Chapter 5 also discusses the issues in OSS in terms of “1. Selection evaluation and licensing.”
We evaluate the stability of the project in terms of the speed of fault fixing by predicting the time
transition of fixing OSS faults reported in the future.

Chapter 6 discusses the issue in terms of “2. Vulnerability support” in OSS. We create several
metrics to detect faults that reported faults have a high priority to fix and a long time to fix, and
predict.

Chapter 7 discusses the application of OSS-oriented EVM to the optimal maintenance prob-
lem in terms of “3. Maintenance and quality assurance” of OSS issues. In other words, we predict
the appropriate OSS version-up timing considering the maintenance effort required by OSS users
after upgrading the OSS by using OSS-oriented EVM. We also verify whether the appropriate
OSS version-up timing is appropriate in terms of the number of remaining faults.

Finally, Chapter 8 describes summary of this research, future issues, and future prospects.

In particular, this thesis focuses on several data sets. Actually, many stochastic models for
software reliability assessment have been proposed and development by many researchers in the
past. There are many kinds of OSS, e.g., application, server, embedded system, cloud software,
etc. Then, the developers have to select the appropriate method for the specified OSS. Therefore,
we use the appropriate data set for the proposed method. Then, the embedded OSS, the applica-
tion OSS, and the cloud OSS are used as the data sets of this thesis. Thereby, we will be able to
assess appropriately from various standpoints.

Appendix discusses the status transition diagram of details in Bugzilla. Also, we describe the
maximum likelihood estimation method we use in this thesis to estimate the parameters of the

SRGMs. In addition, Appendix contains the results of analyses by various proposed models not

described in individual chapters.

Chapter 2

Background of Proprietary Software and

Open Source Software

There are two main types of software: proprietary software and OSS.

Proprietary software is software licensed under the exclusive legal rights of the copyright
holder, and the users of proprietary software are permitted to use it under certain conditions.
In general, proprietary software users must enter into an end-user license agreement (EULA)
between the user and the software author in order to install the application on their hardware.
By accepting the EULA, the user agrees not to modify the software, derive source code, or
redistribute the software.

OSS is software that is usually provided free of charge under a license, most commonly a
“copyleft” license such as the GNU General Public License (GPL), giving legal permission to
copy, distribute, and modify the software. Therefore, OSS are used under the various situations,
because OSS are useful for many users to make cost reduction, standardization, and quick deliv-
ery. Many OSS programs are known as high performance and reliability, even though many OSS
are free of charge. Furthermore, many IT companies often develop OSS for the commercial use.

In this chapter, we explain the differences between proprietary software and OSS develop-
ment. Then, by explaining the development styles and project management methods of each
software, we will summarize the differences between proprietary software and OSS develop-

ment, as well as the issues involved in OSS development.

2.1 Examples of development style in proprietary software

Proprietary software are developed in a variety of ways. The Waterfall model, the V-Shaped

model, the Agile model, the Extreme Programming, the Spiral model, and the Prototype model

are described as examples of major development methods.

The Waterfall model [3] consists of the following phases:

* Requirements specification (Requirements analysis)

* Software design

* Implementation and Integration

* Testing (or Validation)

* Deployment (or Installation)

¢ Maintenance

Traditionally with the Waterfall model, the developers can only start on the next phase when
the previous phase is finished. Therefore, it is called the Waterfall method. This method is a
linear method in which there is a big emphasis on collecting requirements and designing the
software architecture before doing development and testing. The advantage of this method is
that projects are well planned, mid-project costs for changing requirements are minimized, and
these projects tend to be well documented. This usually results in a major version release with
a significant number of new features every few years. The disadvantage is that it is very hard to
adjust the feature set in the middle of development. It often happens as problems are uncovered
in development or changing business environments change what is needed in the software. For
this reason, many companies have “feature freezes” in which they delay changes to features that
should be included in a given version of software once development of the software begins. As a
result, the needed features are pushed to later major versions, and software users end up waiting
years for those features.

The V-Shaped model is similar to the Waterfall model. This model is executed sequen-
tially [4]. Each phase must be completed before the next phase can begin. In this model, the
testing is more important than in the Waterfall model. The testing procedures are developed early
in the lifecycle, before coding takes place, in each phase prior to implementation. The require-

ments begin the lifecycle model as in the Waterfall model. Before the development begins, the

system test plan is developed. The test plan focuses on meeting the functionality specified in the

requirements gathering.

Agile model are meant to adapt to changing requirements, minimize development costs, and
still give reasonable quality software [5, 6]. The agile project is characterized by many incre-
mental releases each generated in a very short period of time. Also, the agile model focuses
on the collaboration between customers and developers and encourages development teams to
be self-organizing [7]. Typically, all members of the team are involved in all aspects of plan-
ning, implementation, and testing. The agile project is done in small teams of no more than nine
people, who meet daily. The team may include customer representatives. The emphasis is on
testing the software as it is written. The downside of agile methods is that they do not work well
for projects with hundreds of developers, projects that last for decades, or where requirements

emphasize strict documentation, well-documented design and testing.

Extreme Programming (XP) is a frequent release development methodology in which devel-
opers work in pairs for continuous code review [8]. This gives very robust, high quality software,
at the expense of twice the development cost. There is a strong emphasis on test driven develop-

ment.

The Spiral model, similar to the waterfall model, is one of the life cycle models of software
development [9]. The spiral shape is a way to visualize the way development should occur under
this methodology; it should loop until the end of the project when all of the client’s requirements
are addressed. Spiral projects start small, first investigating the highest risk issues then slowly ex-
pand the project once those key components are functioning. Two or more phases of prototyping
are done before the final implementation. The spiral model is considered to be better than the wa-
terfall for large, expensive, complicated projects. The spiral development is generally considered

the inappropriate for small projects.

2.2 Cost estimation methodology for proprietary software de-

velopment

22.1 COCOMO/COCOMO II model

COCOMO [10] is known as an effort estimation and development period estimation model.
Specifically, its models the relationship between software size (e.g., lines of code), cost (e.g.,
development effort), effort, and development time. There is also a method of refining the model
using project performance data. All methods for creating model equations are disclosed, and
the models themselves can be calibrated or expanded according to the needs of the organization.
The model equations include effort variation due to system and project characteristics as a scale
factor and cost driver. Therefore, COCOMO can be used not only for estimation, but also for
investments that require effort for software, trade-offs in cost, development time, functionality,
performance, and quality factors, decisions in risk management for cost and development time,
decisions on development, purchase, reuse, etc., and organizational improvement, and has a wide
range of applications. The basic relationship between software scale and effort in the COCOMO

model is expressed by the following equation.

Effort =a x Scale’, (2.1)

where, E f fort is the development effort, Scale is a measure of software scale, and a and b are
constants. It is also assumed that the relationship between E f fort and Scale is different from
a simple linear proportional relationship. Depending on the value of b, the exponent of Scale,
the relationship between E f fort and Scale changes. If b < 1, the productivity increases as Scale
increases. If b = 1, productivity does not change as Scale changes. If b > 1, the productivity
decreases as Scale increases. In the COCOMO model, Scale was defined as the number of lines
in the source program. However, since this makes it difficult to estimate the analysis and design
process, the object points and function points were added as elements of Scale in the COCOMO

II model [11].

10

2.2.2 Function point method

The function point method is a technique to estimate the scale of software in terms of the number
and complexity of functions to be implemented [12]. This method estimates the number and dif-
ficulty of functions from the user’s point of view, such as program input screens, output screens,
output forms, and files, by calculating the number of functions and applying a correction factor.
Based on the interaction of the system components internally and with external users, appli-

cations, etc. They are categorized into five types:

¢ Transaction functions

— External Inputs: Data input function to update internal logical files
— External Outputs: Data output function to external parties

— Inquiries: Data processing function that combines inputs and outputs
 Data Functions

— Internal Logic File: File managed by the software being developed

— External Logic File: File referenced by the software being developed

2.2.3 Lines of Code method

The Lines of Code (LOC) method is a method for estimating system development costs based on
the number of program steps. If the program does not exist, the number of steps is estimated by
referring to past development cases, etc. In the LOC method, the estimate may be affected by the
way the program is written and the skill of the programmer. The LOC method can be used as a
guide for estimating effort. However, its estimation accuracy is lower than that of the function

point method and COCOMO model.

2.2.4 Bottom-up estimating method

Bottom-up estimating is a method of estimating and accumulating the amount of resources for

each component by breaking down deliverables and tasks. There are two methods: one is to

11

structure the software and estimate it in units of functions, and the other is to break down the
work to be performed into a WBS (Work Breakdown Structure) and estimate the effort for each

WBS.

2.2.5 Software reliability growth model

In the testing process of software development, the number of potential faults in the software
decreases with the progress of testing time, because a lot of resources are spent on fault detection
and fix. Therefore, the probability of software fault occurrence decreases with the testing time.
Then, the software reliability and the interval of software fault occurrence time increase. Such

software reliability model describes the software fault phenomenon. This is called SRGM.
There are two types of SRGM proposed in the past: (1) exponential and (2) S-shaped models.

(1) makes the assumption that a finite source code has a finite number of defects. The number
of defects possibly increases as new defects are introduced by fixes or by the implementation of
new functionality. Some models explicitly account for the introduction of new defects during
testing, while others assume that they can be ignored or are handled by a statistical fit to the

SRGM data.

(2) assumes that the fault detection rate is proportional to the number of faults in the code.
Since the total number of faults in the code decreases each time a fault is repaired, the fault

detection rate is assumed to decrease as the number of faults detected (and fixed) increases.

SRGM has been applied not only to the number of potential faults in software, but also to the
prediction of development effort [13]. Therefore, in this thesis, we use SRGMs in development
effort estimating. In addition, this thesis uses the exponential model [14], the delayed S-shaped
model [15], and the infection S-shaped model [16], one of the major SRGM. The exponential
model does not consider the time it takes to find a fault or recognize a failure. The delayed S-
shaped model considers that there is a delay between the detection of a fault and the recognition of
it as a defect. The infection S-shaped mode is a model in which the fault detection rate increases

with proficiency as the test is conducted. The distribution is shown in Figs. 2.1-2.3.

12

NUMBER OF FAULT

TIME

Fig. 2.1: Example of exponential model.

NUMBER OF FAULT

TIME

Fig. 2.2: Example of delayed S-shaped model.

NUMBER OF FAULT

TIME

Fig. 2.3: Example of infection S-shaped model.

2.3 Example of cost management method for proprietary soft-

ware development

2.3.1 Earned Value Management

EVM [17] is a typical cost management method. EVM is a method to grasp and manage the
progress of a project, the performance of tasks, and future forecasts by using earned value, and
is used in many industries regardless of I'T companies. EVM was first applied to the U.S. missile
development program in the 1960s. The basic concept of EVM was conceived with an emphasis
on efficient cost management, and the Cost/Schedule Control System Criteria (C/SCSC), the
original source of EVM, was established in 1967. In 1998, the American National Standards
Institute (ANSI) announced the Earned Value Management System (EVMS) for use in the private
industry. This is the current standard for EVM [18]. EVM is able to manage not only the progress
of activities, but also the costs, on the same graph. EVM has four basic elements and several

indicators:

* Planned Value (PV): PV represents the budget for tasks or work to be completed by a
specific point in time. PV is a baseline indicator for EVM, as it allows for the determination

and identification of cost overruns.

* Earned Value (EV): Earned Value (EV): EV is the amount of work completed to a specific

point in time.

* Actual Cost (AC): Actual Cost (AC): AC is the total actual cost up to a certain point in

time. We can determine that a project is on schedule when AC is the same as PV.

* Budget at Completion (BAC): BAC, like PV, is set at the project planning stage. In EVM,
when the total actual cost is within the BAC, the project is considered on-budget; otherwise,

the project is considered over-budget.

EVM is represented by a graph with time on the horizontal axis and cost on the vertical axis.
The three indicators displayed are EV, PV, and AC, and an example is shown in Fig. 2.4.

Various values can also be calculated using each indicator, and these are shown in Table 4.1.

14

Table 2.1: Several examples of the indices used in EVM.

EVM Elements Explanation
Planned Value total budget estimated at the planning phase
(PV) up to a certain point

Earned Value

total budgeted cost resources of processes

(EV) completed at a certain point
Actual Cost
total actual cost resources invested
(AC)
Budget at Completion total budget to completion defined at
(BAC) the time of planning

Cost Variance

(CV)

shows whether a project is under or over budget

CV=EV-AC

Cost Performance Index

(CPI)

evaluates how efficiently the project is using

its resources. CPI=EV/AC

Schedure Variance

(SV)

determines whether a project is ahead of or

behind schedule. SV=EV-PV

Schedule Performance Index

(SPD)

evaluates how efficiently the project team is

using its time. SPI=EV/PV

Estimate at Completion

(EAC)

final cost of the project in case of continuing

current performance trend. EAC=BAC/CPI

Estimate to Complete

(ETC)

shows what the remaining work will cost.

ETC=(BAC-EV)/CPI

15

Progress Actual Cost
\ (AC)

Planned Value
(PV)

i

Cost Vériance

(cv) Schedule Variance

(SV)

-~
kT — \
-

g Earned Value
(EV)

» Time

Fig. 2.4: An example of EVM.

2.3.2 Bullseye chart

The bullseye chart is a chart that integrates SPI and CPIL. By plotting the SPI results on the
horizontal axis and the CPI results on the vertical axis, we can evaluate the project status from

two perspectives: schedule and cost. Fig. 2.5 shows how the bullseye chart is presented.
* A: Both progress and cost progressing within the planned progress and cost
* B: Progress is slow, but cost overruns are not occurring

* C: Slow progress, excessive costs

* D: Progress is on schedule, but cost overruns are occurring

16

Cost Performance Index
(CPI)

o} 1
Schedule Performance Index
{SPI)

Fig. 2.5: An example of Bullseye chart.

2.4 Concept of open source software development

The Bazaar method is known as the method of OSS development. The Bazaar method is a method
in which multiple participants develop without any special restrictions, and the designer brings
them together to create a single product. The Bazaar method was originally introduced in Eric
Steven Raymond’s article on OSS [1]. In the paper, it is used as a contrast to the Cathedral
method.

The Cathedral method is a method in which one person or a small group of people lead the
development of software, like a “cathedral,” which is a building such as a temple or a hall of
fame. In contrast, the Bazaar method is a method in which participants develop software freely
in an environment where their originality is respected, and the results are brought together like a
“bazaar” to create a single piece of software while retaining the best. The Bazaar method is not
strict about releases, leaving to others what can be entrusted to them, and releasing the results
early and often. In fact, the Bazaar method has been adopted as a development method, especially
for Linux [19], a UNIX-compatible OS.

One of the fundamental differences between the two methods is their approach to bugs. In
the Cathedral method, the bugs should not exist. In other words, a small number of developers
search for bugs (and fix them) for a long period of time before release in order to ensure a bug-
free release. On the other hand, the Bazaar method, bugs are fixed when the bug found. After

release, bugs are searched for by users all over the world. When a bug is found, it is fixed by the

17

Cathedral method _ | Bazzar method

Releases : Releases :
Careful development Frequent releases

Developers :
Fewer developers

Developers :
Numerous developers

Faults: Faults:
Should not exist Fix as soon as found

Fig. 2.6: Differences between Cathedral method and Bazzar method.

developers around the world and reflected in the next release. In the bazaar method, both users
and developers may be the majority of the world’s population, as shown in Fig. 2.6, which allows

for quicker bug finding and fixing, contributing to shorter release cycles.

2.5 Examples of development style in open source software

Many OSS development projects focus on development tools and platforms, and developers
themselves often participate in the development, simultaneously participating in the roles of cus-
tomer and developer. The Open Source Initiative [20] keeps track of and grants licenses for
software that complies with the OSS definitions. Several researchers [21, 22] suggest that the
OSS project represents in fact a virtual organization. In many respects, OSS follows the same
approach as other agile methodologies. For example, the OSS development process starts with
early and frequent releases and lacks many of the traditional mechanisms used to coordinate soft-
ware development, such as planning, system-level design, scheduling, and defined processes. In

general, OSS projects consist of the following tangible phases [23]:
* Identification of the problem

18

Developer I:> Released

(Assignee) Upload 0SS
0SS
Confinm fault Download
contents S
. OSS User
Bug Tracking <,I:| (Reporter)
System Bug Report

Fig. 2.7: Example of OSS development style.

¢ Identification of volunteers

* Proposing a solution

Code development and testing
* Code change review
* Code commitment and documentation

OSS are promoted by an unspecified number of users and developers. The bug tracking
system is also one of the systems used to develop OSS. The bug tracking system registers a lot of
defect information, such as the status of fixes, the details of fixes, and the priority of fixes. The
information is used to manage the open source project. The development style of OSS using the
bug tracking system is shown in 2.7. Then, a person is assigned to respond to the reported fault
or improvement request, and the correction is made. The fixed contents are reflected in the new
version of the OSS. In addition, details of the development style in Bugzilla [24], is known as
one of the bug tracking systems, are described in the Appendix.

In proprietary software development, development begins after the resources (personnel and
equipment) required for software development have been acquired. On the other hand, OSS de-
velopment depends heavily on the voluntary participation of new development collaborators after

the start of development. If developers do not have the knowledge necessary to solve technical

19

problems that arise during development, existing developers are forced to acquire new knowl-
edge. Thus, this can easily lead to stagnation and failure of development projects. The ma-
jority of projects in large OSS development communities (e.g., more than 80% of all projects
in SourceForge.net [34]) have only three or fewer developers, a serious obstacle to active OSS

development [35].

2.5.1 Examples of cost estimation and management methods in open source

software development

Considering the development style of OSS, estimating effort for open source projects as a whole
is difficult because various factors need to be considered. Therefore, several methods have been
proposed to estimate effort to correct each reported fault and to estimate effort within a specific
period of time [26-29]. In addition, a small number of time-series effort estimation methods have
also been proposed [32]. In open source projects, it is difficult to estimate effort for the entire
project because a fixer is assigned to each reported fault or improvement request. Therefore, there
are few studies on time-series effort estimation methods.

As a research on cost management methods in open source projects, there are researches to
predict the duplication of faults reported to the bug tracking system [30, 31]. There are also
optimal maintenance problem that predict when OSS users will upgrade their OSS based on
the number of effort expenditure on the open source project [32,33]. There are several types
of cost management methods in open source projects, but it is difficult to apply the same cost
management methods to open source projects as to proprietary software development, especially
EVM. Although there is research in open source projects that attempts to apply EVM, it has been

incomplete because it has not been possible to derive PV and BAC, important indices for EVM.

2.5.2 Applicability of existing cost estimation and management methods to

open source projects

Typical cost estimation and management methods for proprietary software development are de-
scribed above. However, it is difficult to apply these methods to OSS development because the

development style is very different. Open source projects have the characteristic that anyone can

20

participate in the project. Also, not all fault reporters and fixers have sufficient skill sets, and there
is often turnover in project members. In addition, the project participants’ work time and devel-
opment environment may not satisfy the project manager’s expectations. Therefore, there is a
large degree of uncertainty and variability in cost estimates. This is characteristic of open source
projects, and uncertainty must be considered when properly estimating and managing costs.

In addition, in an open source project with a large uncertainty, the stability of the project
is often a requirement for using OSS as an OSS user. Therefore, “’project stability” in an open
source project is defined as the state in which the creation provided by the open source project
can be provided in a stable state.

In subsequent chapters of this thesis, we define the uncertainty as the cause of variation in
cost estimates that is unique to open source projects. Then, we will examine how to approach the
issues in open source projects described in chapter 1. Also, the evaluation of project activities in
terms of effort is regarded as an evaluation of project stability.

In this thesis, we also define a large project as a project that has enough developers and focus
on those projects, referring to chapter . Therefore, open source projects that satisfy the following

criteria will be considered in this thesis.
* Well-known OSS: Many users, i.e., testers

* Enough developers (more than 5 fault fixers): Problems due to lack of developers are less

likely to occur
* More than 1,000 reported faults: Active open source community

In this thesis, we examine approaches to OSS issues from five perspectives, as shown in Fig.
2.8. In particular, we consider uncertainty in three of the approaches.

To summarize, the uncertainty and stability are defined as follows in this thesis.

* The effort has the fluctuation in the large-scale OSS. Then, the fluctuation of effort can be

represented as the uncertainty.
* The uncertainty as effort can illustrate as the noise of Wiener process.

* Then, the size of noise by Wiener process can define as the stability.

21

apeibdn

wiajgoad

S3A S3A SSO Joye Hoya adueusjulewl BulspIsuod
A Buin apeibdn ayeudoidde Jo uondipald soueuRUIBLL WiNWRdY
. awin
ON ON Buixly pue AjlisAss Jo suus) Ul Apfainb paxiy uoipipald Ajuasas jned
2q pinoys syney pajiodal Jayzaym spipald
aumny . uolpipaid
3y3 ul uoisue.y swi Buixy Jney m:_au_umu.n_ uoiysues) awng buxy 3neq
S3A S3A
spaloid adinos uado ul AT JO UoReIapISUOD) WA P21UsL0-550
. s)oalodd so4nos usdo oy poyiaw UOIEALIDP
ON S3A UORBALISP 10Y8 80UBUSIUIBL JO UORBALISQ HOY2 2ouBUSUIE
suopelapisucd JuswIssasse ssoding uonejuawa|dui sisayy siul ul
Ajurenaoun Angeas 40 sjiej=g 2dods pue §SO Ul sanss]

Fig. 2.8: research approaches in this thesis.

22

The above mentioned points, we assess the uncertainty by using the size of noise by Wiener
process in this thesis. Then, the stability is the assessment measurement of uncertainty, e.g., the

stability can show by using the white noise parameter.

23

Chapter 3

Maintenance Effort Derivation Method

Software faults continuously occur in the software development process. The undetected faults
potentially lead to significant problems to the individuals and companies. The purpose of soft-
ware maintenance is not only to improve performance, but also to fix faults and enhance software
functionality, leading to higher reliable software.

In recent years, the usage of OSS has become increasingly popular. The OSS is code-designed
to be accessible to everyone. Because OSS is developed by open source communities rather than
by specific companies, it is often more inexpensive, more flexible, and longer-lasting than the
proprietary software. However, because anyone can join an open source community, there is a
high degree of uncertainty in project progress due to differences in the project members’ skills,
the development environments, and the length of activity. Therefore, it is difficult to predict the
progress of open source projects, and it is important for many users and companies to understand
the development and operational status of open source projects in order to make decisions about
upgrading or installing the OSS.

In large open source projects, the project teams typically use a bug tracking system to record
reported software fault reports in order to coordinate and avoid duplication of tasks. Many fault
reports recorded by OSS users and developers are stored in the bug tracking system. Then, the
faults are assigned in order to fix by the member of OSS developers. Developers on the project
team rely on the reports to manage and fix reported faults, and fault reports are an important
source of information for developers to resolve faults, especially during the maintenance process
of large software.

EVM is one of the famous project management methods. EVM is a project management tech-
nique to quantitatively evaluate project execution in terms of budget and schedule, and to grasp
cost efficiency and progress rate at once. Applying project effort data to EVM, we need a time

series of effort data. However, the open source projects manage the information on individual

25

fault data, but do not manage effort for the project as a whole.

COCOMO II model [11] is a typical method for estimating the effort in software development.
The COCOMO II model can calculate the estimated values of development effort, the number of
developers, and the productivity from the estimated value of software scale, e.g., the number of
lines of source code. However, it is difficult to apply the COCOMO II model in order to predict
the effort in time series, because the open source projects are very different from proprietary

software development methods.

There are several methods for estimating the effort for open source projects in previous re-
searches [25-28]. Robles et al. [25] presented a novel approach to estimate the effort of large
scale OSS by considering the data from source code management repositories. In addition, for
estimating the effort, they use the survey data answered by over 100 developers. Kula et al. [26]
estimated the maintenance effort from the complexity and duration of micro processes per an
issue. Rakha et al. [27] survey the effort needed for manually identifying duplicate reports in
four open source projects, i.e., Firefox, SeaMonkey, Bugzilla, and Eclipse-Platform. Mishra et
al. [27] have proposed a metric for computing the effort and contribution of a patch reviewer
based on modified file size, patch size and program complexity variables. Qi et al. [29] have
proposed a metric for estimating the effort required to develop a project by dividing it into two
categories: full-time and part-time developers. These researches estimate the total effort required
by the project and do not estimate time-series effort. On the other hand, there are only a few
researches that perform time-series effort estimation [32]. Tamura et al. [32] created a time series
of effort data using the period from the date of report to the last update of fault data obtained
from a bug tracking system and the total number of people involved in the fault report. By creat-
ing effort data and applying an effort estimation model such as in this previous research, we can
estimate the EVM values in the future. However, Tamura et al.’s research is a simplified method
of deriving effort, accounting for all effort required to fix a fault at the time the fault is reported.
In practice, the application of project management methods such as EVM is less effective unless

the effort data is prorated within the fault fixing period.

Since an unspecified number of people are involved in the development of an open source
project, it is difficult to see the entire project and the people involved, and it is not easy to evaluate

the progress and stability of the project. Therefore, it is significant for future development that

26

there are more options for project evaluation methods in OSS development.
In this thesis, we improve the time-series effort data creation model of the previous research

and examine its applicability to the SRGMs.

3.1 Effort derivation

In order to derive the time-series effort data for the project management methods such as EVM, it
is necessary to derive the time contributed by project participants to open source projects. Tamura
et al. [32] assumes that there are two types of contributors to open source projects: fault reporters
and fault assignees. In the previous research, the effort data has been calculated using the time
required for fault reporting and correction by fault reporters and fault assignees, respectively. In

this thesis, a similar approach is used to calculate effort.

3.1.1 Effort calculation method

Participants in open source project have very different levels of the contribution to the project
due to differences in their skills and level of participation in the project. Therefore, considering
their contribution to the project, the effort of fault reporters and fault assignees for the i-th fault

response are as follows:

ef forty; = T;iN,Cyi, 3.1)

effortai = T4iN.Cui, (3.2)

where T,; is the fault reporting interval time, N, is the number of reporters, C,; is the contribution
rate of the fault reporter, 7;; is the fault fixing time, N, is the number of assignees and C,; is the
assignee’s contribution rate. In particular, C,; and C,; are the number of times of the particular
reporter or assignee appears in the project divided by the total number of reporters and assignees
participating in the project. Thus, the total effort required to fix faults up to the k-th fault in the

open source project is as follows:
k

ef forty = Z(effortri-i-effortai). (3.3)

n=1

27

Reportar's offort |
= nurmber of seporter e this project « = Faulk reparting insseesl | |

3 reporter’s contribution rate

] repoier's contrisution rate Feantll repenting iniezval }
| nrnber of reported T=ull ol Lhis axsignes |
! ~ rurnber of reported faoltin ThE project Fault repert |
rapartar n;.r.ormr'.f. Fault Fault reporting time rapartar’s
Fault contribution rake | reporting effort
¥ Interval wl Wi wi Wil (] wh Wi (i’ wsess)
[waeks]
1 A 0.33 0.25 033
|

2 B 017 0.25 | 047

3 C 0.33 1.0 | 1.32

4 8] 017 15 Loz

5 |c 0.33 15 | 1.08

51 A 33 1.753 2.d1

weekly reparter’s effort

“"number of reporter in this project” is calculated as &

033 017 1 L32

Fig. 3.1: The method of prorating reporter’s effort in open source projects.

Ansignme’s sffort 1
- il of ssstanes n B pretscts: « foult fetime |)
« assanes's contrbuticn mate 1y

Foaull Tix lins: |

ssignee’s contributon rate
_nunber of resolve faut of this assgnes
UM o Pl Al in This project

assignes adsignea's fauit fix time Development time assignes’s !

fault contribution rate | (weeks) affart

i wl Wi wi wd WS wh w7 [manwaeks)
1 A 0,33 2.5 | 33

2 |B 0.1y 1.25 | | .55

3 |c 0.33 4.5 l 5.94

4 u] 0.7 25 1.7

5 C 0.33 35 4.62

& A 0.33 2.0 2.64

#"number of assignes in this project” is calculated as 4

Fig. 3.2: The method of prorating assignee’s effort in open source projects.

3.1.2 Data preprocessing

In previous research, reporter and assignee effort expenditure was defined as occurring at the
timing of the fault report. However, in terms of the reporter’s effort, some effort expenditure is
required, before the reporter reports a fault, so it is necessary to account for some effort before
the timing of the report. Therefore, in this thesis, the time required for reporting is prorated on a
weekly basis in case of creating weekly data, as shown in Fig. 3.1. In addition, as shown in Fig.

3.2, the efforts of the assignee are also prorated on a weekly basis for the fault fixing time.

The data used to calculate the effort is obtained from the bug tracking systems. In this thesis,

we use the fault data registered in Bugzilla. In order to calculate the effort, we use the data

28

Table 3.1: Data items used to calculate the effort.

Data item Item details

Opened | The date the fault was reported.

The last update date of the fault.
Changed | The time difference between Changed and

Opened is used for the effort calculation.

The reporter of the fault.
Reporter | The reporter is used to calculate the number of

reporters and the reporter’s contribution rate.

The assignee in charge of handling the fault.

Assignee | The assignee is used to calculate the number of

assignees and the assignee’s contribution rate.

registered in the fault data as shown in Table 3.1.

3.2 Numerical examples

3.2.1 Used data set

In this thesis, we use the data set of open source project for applying proposed method. For
applying the proposed method to actual project effort data set, we use the data of Red Hat Enter-
prise Linux (RHEL) [36] and LibreOffice [37] obtained from Bugzilla. RHEL is a commercial
Linux distribution developed and marketed by Red Hat. It is mainly developed for use in data
centers and high-end server applications where stability and security are required. LibreOffice is
an office suite OSS provided by The Document Foundation. It consists of word processing soft-
ware, spreadsheet one, presentation one, drawing one, database management system, and formula

editing one.

29

3.2.2 Effort calculation result

Figs. 3.3 and 3.4 show the results of the effort calculation using our proposed model and Tamura
model [32]. Figs. 3.3 and 3.4 show that the proposed model is more similar to the S-shape, the
shape that can occur in proprietary software development. The reason our proposed model is
similar to the S-shape is that effort variation in open source projects tends to be based on the S-
shape. Therefore, the effort change of open source projects tends to be similar to the proprietary
software development, thus SRGM is applicable to open source projects.

Tamura model [32] is a simplified effort derivation method that accounts for all the efforts
required to correct a fault when a fault is reported. Therefore, effect increases significantly at the
timing of fault reporting and the start of fault fixing. Figs. 3.3 and 3.4 also show similar results,
and the development effort derivation method proposed in this research is more suitable when
applied to effect evaluation indices such as EVM.

Previous research has confirmed that the SRGMs can be applied to effort in proprietary
software development [13]. The application of SRGMs to maintenance effort in OSS devel-
opment has been confirmed to be possible when using the simple maintenance effort derivation
results [32], but not when deriving maintenance effort in detail. The proposed method for deriv-
ing maintenance efforts in this thesis shows S-shaped trends, indicating that the SRGMs can be

used to predict the maintenance effort.

3.3 Conclusion in this chapter

In this thesis, we have examined the time-series effort data creation model for open source
projects. We have also examined the applicability of the proposed effort calculation model based
on SRGMs using actual project data. As a result, the effort data of open source projects show
similar trends to proprietary software development and shows its applicability to SRGMs. There-
fore, by using our proposed method to calculate the effort of projects, it is possible to apply the
proposed method to project management methods such as EVM. It is not easy to evaluate the
progress and stability of open source projects because of the large scale and lack of visibility
of the entire group of people involved in the development of OSS. Therefore, we believe that

project evaluation methods used in conventional software development will increase the number

30

DATA Effort (Proposed) —— Effort (Conventional)

6e+06 =

2
4e+06 -
é ¢
z
<
=3
£
o
B 2et06-
53]
0e+00 -
(I] I(I](] 2(‘](]
TIME (WEEKS)
Fig. 3.3: Comparison of effort calculation results in RHEL project.
DATA Effort (Proposed) —— Effort (Conventional)
3e+06 =
2
2
<Z: 26+06 -
=3
1~
S}
=
=
o jer06-
0e+00 -
0 20 40 60 80
TIME (WEEKS)

Fig. 3.4: Comparison of effort calculation results in LibreOffice project.

of evaluation methods for OSS development and contribute greatly to the development of OSS.
On the other hand, we have used only two project data in this research. Therefore, it is necessary

to apply the proposed method to more project data to investigate patterns applicable to SRGMs

31

for open source projects.

Related Paper in this Chapter

1. H. Sone, Y. Tamura, and S. Yamada, “Study of effort calculation and estimation in open
source projects,” International Journal of Reliability, Quality and Safety Engineering, Vol.

30, No. 3, World Scientific, pp. 2350011-1-2350011-13, 2023.

32

Chapter 4

OSS-orientd EVM

Recently, EVM [17] is applied to the actual software projects under various IT companies. The
EVM is one of the project management techniques for measuring the project performance and
progress. The EVM basically measures the project performance and progress using three indices:
Planned Value (PV), Earned Value (EV), and Actual Cost (AC), respectively. Also, we can quan-
titatively grasp the current status of the project by comparing three indices as shown in Fig. 2.4
described in chapter2. In addition, we can derive the schedule forecast, cost one, productivity,
etc. as shown Table 4.1, by using the three indicators, PV, EV and AC, respectively.

From the characteristics of OSS development, many OSS are developed and maintained by
several developers with many OSS users. The methods of OSS reliability assessment have been
proposed [25,28,39,40]. However, it is difficult to apply EVM directly in terms of the character-
istic of the open source project. There is the research papers on deriving EVM measurements by
using the development efforts of open source projects [39,40]. However, the references [39,40]
has the problems that PV and BAC could not be derived due to the characteristics of the data
used.

In this thesis, we examine the method of deriving EVM indices and propose a method that
can derive all EVM values as an OSS-oriented EVM, considering the deriving method for open

source project maintenance effort in chapter 3.

4.1 Effort estimation model based on stochastic differential

equation

Generally, the EVM is applied to commonly software development projects. However, it is dif-

ficult to directly apply the EVM to the actual open source projects, because the development

33

Table 4.1: Several examples of the indicators used in EVM.

EVM Elements

Explanation

Planned Value

(PV)

PV is a supposed work value at any given point

in the project schedule

Earned Value

EV is a value of work progress at a given point

(EV) in time
Actual Cost AC is an amount of resources that have been expended
(AC) to date
Budget at Completion)
BAC represents the total PV for the project
(BAC)

Cost Variance

(CV)

CV shows whether a project is under or over budget.

CV=EV-AC

Cost Performance Index

(CPI)

CPI evaluates how efficiently the project is using

its resources. CPI=EV/AC

Schedure Variance

(SV)

SV determines whether a project is ahead of or

behind schedule. SV=EV-PV

Schedule Performance Index

(SPD)

SPI evaluates how efficiently the project team is

using its time. SPI=EV/PV

Estimate at Completion

(EAC)

EAC shows the final cost of the project in case of

continuing current performance trend. EAC=BAC/CPI

Estimate to Complete

(ETC)

ETC shows what the remaining work will cost.

ETC=(BAC-EV)/CPI

34

cycle of open source project is different from the traditional software development paradigm. As
the characteristics of OSS, the OSS development project is managed by using the bug tracking
systems. In order to apply EVM in open source projects, we consider deriving AC, EV, PV and
BAC, respectively. The open source projects involve an indefinite number of people from all over
the world. Then, the progress of the project becomes the irregular status. Therefore, we consider
the irregularities for the effort in open source projects. In this thesis, we discuss the irregularities
of the effort in open source projects by using the stochastic model of Wiener process.

Considering the characteristic of the operation phase in OSS projects, the time-dependent
expenditure phenomenon of maintenance effort keeps an irregular state in the operation phase,
because there is variability among the levels of developers’ skill. Then, the time-dependent effort
expenditure phenomenon of maintenance phase becomes unstable.

The operation phases of many OSS projects are influenced from the external factors by the
triggers such as the difference of skill, time lag of development and maintenance activities. Con-
sidering the above points, we apply the stochastic differential equation modeling to managing
the open source project. Then, let Q(z) be the cumulative maintenance effort, such as finding
software faults and improving functionality up to operational time 7 (¢ > 0) in the open source
project. Suppose that Q(z) takes on continuous real values. Since the estimated maintenance
effort are observed during the operational phase of the open source project, Q (¢) gradually in-
creases as the operational procedures go on. Based on SRGM approach [41-44], the following

linear differential equation in terms of the maintenance effort can be formulated:

aQ(t)
dr

B (1) {a—-Q(0)}, 4.1

where f (¢) is the increase rate of maintenance effort at operational time ¢ and a non-negative
function, and o means the estimated maintenance effort expenditures required until the end of
operation.

Therefore, we extend Eq. (4.1) to the following stochastic differential equation with Brownian
motion [45]:

dQ (1)
dt

={B()+ov(){a—-Q()}, (4.2)

where o is a positive constant representing a magnitude of the irregular fluctuation, and v () a

standardized Gaussian white noise. By using It6’s formula [46], we can obtain the solution of

35

Eq. (4.2) under the initial condition Q (0) = 0 as follows:

Q) =« {1 —exp{—/otﬁ(s)ds—ca)(t)}], 4.3)

where @ (¢) is one-dimensional Wiener process which is formally defined as an integration of the
white noise v (t) with respect to time . Moreover, we define the increase rate of maintenance
effort in case of 3 (¢) defined as [47]:

dF. (1)

/0 B(s)ds = a_d—ﬁi(l) (4.4)

In this thesis, we assume the following equations based on software reliability models F; () as

the cumulative maintenance effort expenditures function of the proposed model:

F() = a(1—e—ﬁf), 4.5)
F(1) = a{1—(1+/3t)e—ﬁf}, 4.6)
E(I) = a{l_exp(_ﬁt)} (47)

I+c-exp(—=Br)

where Q, () means the cumulative maintenance effort expenditures for the exponential SRGM
with F, (7). Similarly, Q; (¢) is the cumulative maintenance effort expenditures for the delayed S-
shaped SRGM with F; (¢). Also, Q; () means the cumulative maintenance effort expenditures for
the inflection S-shaped SRGM with F; (¢), respectively. The reason why this thesis use the three
models is that the exponential model, the delayed S-shaped model and the infection S-shaped

models are one of the famous software reliability growth models [48].

Therefore, the cumulative maintenance effort, Q. up to time ¢ are obtained as follows:

Qe(t> - a[l—exp{—ﬁt—oa)(t)}], (4-8)
Q(t) = all—(1+pt)exp{-Pr—ocw(r)}], (4.9)
%) = a 1—1+c‘le:pc(_ﬁt)exp{—ﬁt—ca)(t)} . (.10)

In these models, we assume that the parameter ¢ depends on several noises by external factors

from several triggers in open source projects. Then, the expected cumulative maintenance effort

36

expenditures spent up to time ¢ are respectively obtained as follows:

r 2

E[Q. ()] = ol —exp —ﬁz+%z , @4.11)
el ?]]

E[Q(1)] = « 1—(1—1—/3t)exp{—ﬁt+7tH, 4.12)
- c 2

E[Q(1)] = « 1—1+C.Ie:p(_ﬁt)exp{—ﬁt+%t}]. (4.13)

Similarly, we consider the sample path of maintenance effort expenditures required for OSS
maintenance, e.g., the needed remaining maintenance effort expenditures from time ¢ to the end

of the project, Q.. are obtained as follows:

Q. (t) = aexp{-Pr—ocw(t)}, (4.14)
Q(t) = a(l+pt)exp{—-Pt—ocw(t)}, (4.15)
Q,i(t) = a1+c.1e:pc(_ﬁt) exp{—PBr—ow(r)}. (4.16)

Then, the expected maintenance effort expenditures required for OSS maintenance until the end

of operation time ¢ are respectively obtained as follows:

E[Q.(t)] = aexp{—ﬁt-l—%zt}, 4.17)
E[Q: ()] = Ot(l-l—ﬁt)exp{—ﬁt-i—%zt}, (4.18)
c 2
E[Q;(t)] = al—|—c-1e:p(—[3t)eXp{_Bt+%t}' (4.19)

4.2 Assessment measures for OSS-oriented EVM

In OSS-oriented EVM, the period of data used for Planned Value (PV) and Actual Cost (AC)
have the different values. Both PV and AC use the data obtained from the bug tracking systems
and required by the fault reporters and the fault fixers. For the prediction of PV, we use Eqgs.
(4.8)-(4.13) and maintenance effort data up to OSS’s release. In particular, the parameter ¢ in
Eqgs. (4.8)-(4.13) can be regarded as the estimated maintenance effort at the time OSS is released.
Therefore, the parameter o can be rephrased as Budget at Completion (BAC) in OSS-oriented

EVM. AC uses the maintenance effort data obtained from the bug tracking systems, including

37

after the OSS release required by the fault reporter and the fault fixer. Therefore, the start time of
the data used to derive PV and AC is the same.

Earned Value (EV) is the cumulative maintenance effort viewed on the same scale as the
project budget (BAC). Therefore, if the OSS development effort increase but the fault is not
fixed, the value of EV becomes small and it is regarded as an inefficient open source project. In
the derivation of EV value, the number of potential faults predicted from the fault data reported
up to the time of OSS release is used. We use Eqgs. (4.8)-(4.13) to predict the number of potential
faults. We derive the “fault resolving cost”, the value obtained by dividing the number of potential

faults from the BAC, as follows:

_ BAC
-

Then, ¥ means fault resolving cost, and p means potential faults at OSS release. We can derive

(4.20)

the EV in case of F,(r), Fs(¢) and F;(¢) by using the fault resolving cost ¥ and the cumulative

number of fixed faults up to the operating time ¢.

EV,(t) = ylos[l—exp{—B—oro(r)}]], 4.21)
EVi(t) = v]ap[1—(1+pBst)exp{—Bsr—oro(t)}]], (4.22)
EV,(I) = ’}/[Otf 1_1—|—cf-1e—:(;]€—ﬁft) exp{—Bft—wa(t)}”. (4.23)

Then, oy, B r, Cr, and O are parameters used to predict the cumulative number of fixed faults at
time z. Therefore, the expected EV required for OSS maintenance until the end of operation time

t are respectively obtained as follows:

i 2
E[EV.(t)] = v|af 1—exp{—ﬁft+%t}] : (4.24)

, (4.25)

2
E[EVs(t)] = vy oy 1—(1+ﬁft)exp{—ﬁft+%t}]

_ 1—|—Cf B G_]%
1 1+Cf'exp(—ﬁft)eXp{ Prt+ 2t}”' (4.26)

Then, the fixed cumulative number of faults is counted when the fault status is “Closed” in the

E[EVi()] = 7|«

bug tracking systems.

38

4.3 How to derive OSS-oriented EVM value

Generally, the EVM is applied to commonly software development projects. However, it is diffi-
cult to directly apply the EVM to the actual open source project, because the development cycle
of open source project is different from the traditional software development paradigm. As the
characteristics of OSS, the OSS development project is managed by using the bug tracking sys-
tems. This chapter shows the method of earned value analysis for OSS projects by using the data
sets obtained from bug tracking systems.

Considering the deriving AC, PV and EV proposed in this chapter, we assume the following
terms shown Table 4.2 as the OSS-oriented EVM for OSS development:

Then, the expected Cost Variance (CV) for OSS maintenance up to operational time ¢ in case

of Q. (¢) and Q () can be formulated as:

E[CV.(1)] = E[EV. (1)) —EIQS, (1), (4.27)
EICV,(1)] = E[EV, (1) — E[Q% (1)) (4.28)
BICV:(1)] = EIEVi(1)] —E[Q% (1), (4.29)

where E[EV, (t)], E[EV, (¢)] and E[EV; (¢)] are the expected maintenance effort expenditures con-
sidering EV until the end of operation. Also, E[Q7, (r)], E[QZ (7)] and E[Q (¢)] mean the main-
tenance effort expenditures considering AC until the end of operation. Especially, a in case of
E[Q%, (1)], E[Q% ()] and E[Q ()] comes from ‘actual’. Similarly, the sample path of CV for

open source project maintenance up to operational time ¢ in case of Q, (1), Q,(¢) and €; (¢) are

given by
CVe(t) = EVe(t)— Q% (), (4.30)
CVS(I) - EVS(I)_Q?s(t)a (431)
CVi(t) = EVi(r)—Q%(t). (4.32)

The zero point of E[CV, ()], E[CV;(¢)] and E[CV;(¢)] mean the starting point of surplus effort.
Therefore, the open source project managers will be able to judge the necessity of maintenance

effort and stability of OSS from the starting point of surplus effort. Moreover, we can obtain the

39

Table 4.2: Explanation for OSS-oriented EVM.

OSS-oriented EVM elements

Explanatory

Planned Value

(PV)

Cumulative maintenance effort as planned value up to
operational time ¢ considering the fault reporter and

fault fixer

Earned Value

(EV)

Cumulative maintenance effort up to operational time ¢

viewed on the same scale as BAC

Actual Cost

Cumulative maintenance effort up to operational time ¢

(AC) considering the fault reporter and fault fixer
Budget at Completion Total budget in the end point as the specified goal of
(BAC) open source project

Cost Variance

(CV)

E[CV, (t)] and E[CVj (¢)] obtained from EV-AC

Cost Performance Index

E[CPI, (t)] and E[CPI, (t)] obtained from EV/AC

(CPI)
Schedure Variance
SV obtained from EV-PV
(SV)
Schedule Performance Index
SPI obtained from EV/PV

(SPD)

Estimate at Completion

(EAC)

E[EAC, (t)] and E[EAC; (t)] obtained from BAC/CPI

Estimate to Complete

(ETC)

E[ETC, ()] and E[ETC; (t)] obtained from
(BAC-EV)/CPI

40

Cost Performance Index (CPI) by using the following equations:

BICPL ()] = Figu) (4.33)
EICPLO] = L @34)
E[CPL ()] — % 4.35)

The value of CPI is derived by %. Similarly, the sample path of CPI in case of €., €, and Q;

are given by

CPL (1) = : (4.36)

CPL(t) = —-2 (4.37)

CPI (1) = . (4.38)

Furthermore, we can obtain the Estimate at Completion (EAC) by using the following equations:

(BAC — E[EV, (1))

BIEAC.()] = BIOR ()] +“pp (4.39)
BIEAC,(1)] = EIQ% (1)) + (BAg[gf}itV;]“)”, (4.40)
BlEAG (0] = Blog 0]+ P @.41)

The value of EAC is derived by AC4+ETC. Similarly, the sample path of EAC in case of €., €
and Q; are given by
(BAC—EV, (1))

EAC, (1) = Q%4(1)+ L (4.42)
EAC, (1) = Qfs(z)+(BAg;If(‘;)‘(t)), 4.43)
EAC;(t) = Q%(1)+ (BAZ;I%" ®) (4.44)
Finally, we can obtain the Estimate to Complete (ETC) by using the following equations:
E[ETC, (1)] (BAE[_C El[i‘t/;](t)]), (4.45)
E[ETC,(1)] = (BA(I;[_CIIEIF?;‘)‘]O)D, (4.46)
E[ETC;(1)] = (BAE[_C }E)I[iz/)"](t)]). (4.47)

41

The value of ETC is derived by BAg;IEV. Similarly, the sample path of ETC in case of Q,, Q; and

Q; are given by

(BAC — EV, (1))

ETC,(t) = CPLG) (4.48)
BAC — EV,

ETC,(1) = | CPL ®) (4.49)
BAC—EV;

ETCi(t) = (LG (1), (4.50)

In particular, Eqgs. (4.33) - (4.50) are based on the EVM derivation method [17]. Also, the CPI is

very important for open source project managers to assess the stability of open source project.

4.4 Numerical examples

In this thesis, we use the data set of open source project for deriving EVM indices. For applying
the proposed model to actual project data set, we use the data of LibreOffice [37] obtained from
Bugzilla. LibreOffice is an office suite OSS provided by The Document Foundation. In particular,
the effort and fault data have been obtained from Bugzilla are version 7.2 for estimating PV
and AC. In this thesis, the cumulative number of reported faults are 298 and 878, respectively.
In particular, we use the project data for about 39 weeks, before LibreOffice was released for
estimating PV. For estimating AC, we also use project data for about 112 weeks. Also, each unit

data is weekly.

4.4.1 Estimation of EVM Indices

In this chapter, we estimate the model parameters of the three SRGM models for estimating the
maintenance effort and the number of faults in case of LibreOffice version 7.2 project.

Table 4.3 shows the results of parameter estimation of maintenance effort, and AIC (Akaike’s
Information Criterion) [38] for comparison of model equations. Also, the parameter « in the PV
data can be rephrased as BAC. In terms of AIC, the delayed S-shaped model is the best one for
PV estimation. Fig. 8 shows the results of applying the delayed S-shaped model to the open

source project data.

42

Table 4.3: Parameter estimation of maintenance effort in terms of PV.

Planned Value
exponential model | delayed S-shaped model | infection S-shaped model
2.867 x 10° 9.283 x 10° 1.859 x 109
3.327 x 102 2.293 x 1072 3.352 x 102
parameter
- - 1.984 x 10!
2.361 x 1072 7.504 x 10~ 7.577 x 10~*
AIC 798.191 647.075 709.147
DATA Actual Cost — Sample Path —— Estimate
1000000 -
750000 -
g
g
g/ 500000 -
g
e
=

250000 -

' ' ' ' '
0 50 100 150 200

TIME (WEEKS)

Fig. 4.1: The cumulative maintenance effort expenditures as PV in LibreOffice Ver.
7.2 project by using Eqs. (4.9) and (4.12).

43

Table 4.4: Parameter estimation of maintenance effort in terms of AC.

Actual Cost
exponential model | delayed S-shaped model | infection S-shaped model
o 1.325 x 10° 1.317 x 10° 2.728 x 109
B| 9.286x1073 2.387 x 1072 1.253 x 1072
parameter
c - - 3.283 x 10!
oc| 4.840x1073 2.762 x 1073 1.011 x 1073
AIC 1229.007 1163.817 1205.231

Next, Table 4.4 shows the results of parameter estimation of AC and AIC. Also, the parameter
o can be rephrased as the project’s estimated AC. In terms of AIC, the delayed S-shaped model
is the best one for AC estimation. Fig. 8.14 shows the results of applying the delayed S-shaped
model to the open source project data.

Also, Table 4.5 shows the results of parameter estimation of the estimated number of potential
faults at OSS release, and AIC. We use the parameter « for deriving fault resolving cost. There
is no significant difference in AIC values among all the model equations used in this thesis.
Therefore, it is difficult for us to identify a suitable model for the data used in this thesis. For
convenience, we assume that the exponential model with the smallest AIC is the appropriate
model. Fig. 8.15 shows the results of applying the exponential model to the open source project
data.

Finally, Table 4.6 shows the results of parameter estimation of the estimated number of re-
solved faults at present, and AIC. In terms of AIC, the infection S-shaped model is the best
method for the number of resolved faults estimation. Fig. 8.16 shows the results of applying the
delayed S-shaped model to the open source project data.

A comparison of the AIC values during parameter estimation in the three model equations
showed that the delayed S-shaped model and the infection S-shaped model are appropriate. In
the LibreOffice version 7.2 project data, the increase rate of maintenance effort and number of
faults at the start of the maintenance phase is small. We find that the delayed S-shaped model and

infection S-shaped model are appropriate for such project data.

44

DATA

le+06 =

EFFORT (MAN*DAYS)

Se+05 -

0e+00 =

' ' '
0 50 100

TIME (WEEKS)

Actual Cost — Sample Path —— Estimate

' '
150 200

Fig. 4.2: The cumulative maintenance effort expenditures as AC in LibreOffice Ver.

7.2 project by using Egs. (4.9) and (4.12).

Table 4.5: Parameter estimation of number of potential faults in case of LibreOffice.

Estimated number of potential faults at OSS release
exponential model | delayed S-shaped model | infection S-shaped model
1.401 x 10° 5.291 x 102 4.792 x 10?
B| 6274x1073 4.818 x 1072 4.718 x 1072
parameter
¢ - - 2.083 x 10!
o| 3.165x1073 1.113x 1072 1.535x 1072
AIC 238.479 238.613 238.961

45

1500 -

NUMBER OF FAULT

1000 -

500-

DATA

'
50

Actual — Sample Path —— Estimate

'
100

TIME (WEEKS)

' '
150 200

Fig. 4.3: The cumulative estimated number of potential faults in LibreOffice Ver. 7.2

project by using Egs. (4.8) and (4.11).

Table 4.6: Parameter estimation of number of resolved faults in case of LibreOffice.

Estimated number of resolved faults at present

exponential model

delayed S-shaped model

infection S-shaped model

1.019 x 10* 7.887 x 10* 6.054 x 103
1.501 x 1073 2.767 x 1073 7.143 x 102
parameter
- - 4.350 x 102
1.697 x 1073 1.395 x 10~4 1.595x 1073
AIC 534.055 488.803 460.932

46

DATA —— Actual — Sample Path —— Estimate

6000 -

4000 =

NUMBER OF FAULT

2000 -

0 50 100 150 2(I)0

TIME (WEEKS)

Fig. 4.4: The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2
project by using Egs. (4.10) and (4.13).

47

Estimate(PV) —— Estimate(EV) Estimate(AC)
DATA
Sample Path(PV) —— Sample Path(EV) Sample Path(AC)

4e+06 -

3e+06 -

2e+06 -

EFFORT (MAN*DAYS)

let+06 =

ol ;M

0 50 100 150 200

TIME (WEEKS)

Fig. 4.5: EVM estimation results in LibreOffice project.

In the open source projects, the number of fault reports increases as the number of OSS
users increases after the release of a particular version. As a result, the effort required for fault
maintenance increases. Therefore, the appropriate model equation for many open source project

data would be the same as in this thesis.

In this thesis, we derive EVM indices by using the best-fit model equation for each data set.
The fault resolving cost ¥ = 662.419(man - days), one of the EVM indices, is necessary for the
derivation of EV. Fig. 4.5 shows the results of EV, AC, and PV estimations.

Fig. 4.5 shows that both EV and AC are larger than PV. In particular, the EV value is very
large. This is because the number of resolved faults is estimated to be higher than the number
of potential faults. On the other hand, the EV value is lower than the EV and AC values around
50 weeks, the time of the version 7.2 release, showing the project is in a delayed state. In other
words, after version 7.2 was released, we found that the project became more active as the number

of users of that version increased.

48

4.4.2 Output result of bullseye chart

We used the EVM indices derived in Fig. 4.5 to draw the Fig. 4.6 bullseye chart.

4
3
.....
....
e °°
2 °
@) Y 4
o'..
..
°® o’
[]
| /--"'.
0
0 1 2 3 4

SPI

Fig. 4.6: The bullseye chart in LibreOffice project.

The bullseye chart was initially delayed in terms of schedule and cost because both the SPI
and CPI were less than 1. However, as the value of EV gradually increased, both values also
increased, and they will be above 1 in the future. Therefore, the bullseye chart shows that the

LibreOffice project will be stable in terms of schedule and cost in the future.

4.5 Conclusion in this chapter

In this thesis, we have examined the method for evaluating project stability based on SRGM’s
in open source projects. In terms of AIC, we have identified the appropriateness models in the
LibreOffice project. Then, we have found that the delayed S-shaped model and the infection
S-shaped model are the best fitted models because of the increase in the number of users of the

version over time. We have considered that the results are the same as other open source project,

49

because of the characteristic of the number of OSS users’ transitions. Also, we have derived the
OSS-oriented EVM and bullseye chart by using the appropriate SRGM models. As the result, we
have found that the trigger for activating open source projects is after the release of a particular
version.

Researches on stability evaluation methods for open source projects have often focused on
the resolving of individual faults. Therefore, the practical application of EVM for evaluating the
stability of open source projects as a whole will contribute to the future development of OSS.
On the other hand, since the proposed method evaluates the stability based on the cost of the
entire open source projects, it is difficult to evaluate the causes of project stability in fault units.
Therefore, we consider that the use of not only the proposed method but also individual fault-
based project evaluation methods will provide a better project stability evaluation tool.

As only one open source project data set has been used in this thesis, it is necessary to verify
the characteristics of the trends in maintenance effort and number of faults by using multiple
project data sets in the future.

Figures not shown in this chapter are shown in Appendix.

Related Paper in this Chapter

1. H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with OSS-oriented
EVM for OSS project,” Reliability and Maintenance Modeling with Optimization, CRC
Press Taylor & Francis Group, pp. 197-213, 2023.

2. H. Sone, Y. Tamura, and S. Yamada, “A study of quantitative progress evaluation models
for open source projects,” Journal of Software Engineering and Applications, Vol. 15, No.

5, pp. 183-196, May 2022.

3. H. Sone, Y. Tamura, and S. Yamada, ‘“Statistical maintenance time estimation based on
stochastic differential equation models in OSS development project,” Computer Reviews

Journal, PURKH, Vol. 5, pp. 126-140, December 2019.

4. H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with earned value

requirement for OSS project,” Proceedings of the Fourteenth International Conference on

50

Industrial Management, Hangzhou, China, September 12-14, 2018, pp. 253-258.

. H. Sone, Y. Tamura, and S. Yamada, “Stochastic differential equation modeling for devel-
opment effort estimation and its application in open source project,” Proceedings of 32th
National Conference of the Society of Project Management, Doshisha University, August

30-31, 2018, pp. 439-443 (in Japanese).

51

Chapter 5

Fault Fixing Time Transition Prediction

Although OSS programs have been actively developed and used in recent years, there are prob-
lems with promoting open source projects. Massive open source projects have many fault reports:
there are over 100 faults reported per day in massive open source projects [30]. Due to this, it
becomes difficult to fix the faults quickly [49, 50].

From the perspective of the fault fixing speed of OSS, OSS users usually use the OSS under
the conditions of stable development. There are many studies in terms of the stability degree
assessment of open source projects [25,27,51-56]. There are many researches that predict the
development effort in open source projects [25, 27,51, 52] and studies that predict the fix time
of each reported fault [53-55]. Furthermore, the previous research showed that the large open
source projects tend to have a shorter fixing time as the project progresses [56].

Generally, as the development of an OSS progresses, the number of unfixed faults and faults
with a long fixing time decreases. Then, the OSS becomes stable. Several previous studies
predicted the fault fixing time. However, these research works could not predict the software’s
stability, because the previous research did not consider the fixing time for all faults in software
development.

Therefore, in this thesis, we evaluate the state of open source projects by predicting the fix

time transition of many faults that occur during the development of OSS. The steps are as follows.
1. Examine the amount of data that can be learned.
2. Consider the model equations using the SRGMs.

3. Apply the model equation to the measured data and check the prediction results of the

fixing time transition.

The main contributions of the proposed method are as follows:

53

* By using the proposed method, the OSS manager can assess the stability of the open source

project considering the external factors of open source projects.

* Considering the Wiener process, the OSS manager can treat many noisy cases during the

fault fixing time.

* The proposed method will lead to the assessment of the stability of OSS systems consid-
ering the convergence of the fault fixing time in various open source projects, because the
proposed method can rapidly assess the stability and reliability of future projects by using

fault fixing time data.

5.1 Confirmation of the amount of training data

In predicting the fault fixing time transition from open source project data, we examine how much
fault data can be learned. In particular, the data used in this thesis is Red Hat Enterprise Linux
(RHEL) [36] version 8.0. RHEL is a commercial open-source Linux distribution developed by
Red Hat, and the data used in this thesis is obtained from Bugzilla [24]. The number of faults

used in this thesis is 5068.

Considering the number of data that can be trained, since some of the most recently reported
fault data have not yet been closed or have been repeatedly closed and reopened, it is ideal to treat
completely closed fault data as training data. The average time when a fault becomes CLOSE is
shown in Fig. 5.1. Fig. 5.1 shows that there are many faults with a long fixing time, although the
variation is large, up to about 100 weeks, and it is highly probable that the status repeats between
CLOSE and REOPEN. In other words, many faults are considered to require numerous effort
to fix as a result. On the other hand, since the fixing time gradually decreases after 200 weeks,
there may be several faults that will become REOPEN faults in the future, even if their status is
CLOSE. Therefore, in this thesis, we consider the possibility that the most recent fault will be
REOPEN, and use the training data up to the time when the fix is complete and there is little
possibility of REOPEN (190 weeks).

54

LOSE {DAYS)

\werage time required to become C

Fig. 5.1: Average time required to become CLOSE.
5.2 Method for predicting the fixing time transition

In this thesis, we predict that the time required for fault fixing in OSS development decreases and
converges with the transition of the fix time. By predicting the transition of the fixing time, we
can obtain one indicator to know when the project becomes stable. Specifically, we focus on the
OSS development using a bug tracking system in the operational phase, as shown in Fig. 5.2.
In this thesis, we aim to predict the transition of the fix time using the exponential model, the
delayed S-shaped model and the infection S-shaped model [15] derived from the SRGMs [41—
44]. In particular, we predict the transition of the fixing time considering the characteristics
of open source projects. Then, we assume that the number of developers and users changes
irregularly. We can easily discover the irregularity from various factors in open source projects
and apply mathematical models with multiple parameters. However, it is difficult to use these
models actually in terms of parameter estimation. In this thesis, we apply a stochastic differential
equation model with noise based on the Wiener process considering the specific circumstances
of open source projects. The proposed model will be able to evaluate the project quantitatively

considering external factors indirectly in open source projects.

In particular, the equations used in this thesis are based on Eqs. (4.8)~(4.13) of Chapter 4.1.

55

B Released 0SS

Downlead OS5

OSS User
{Reporter)

Upload 0SS Bug Report

Bug Tracking System

Confirm and Fix Fault
Contents

| | Fix Faults _ Proposed Model
(Assignee)

Fig. 5.2: Open source software (OSS) development using the bug-tracking system.

Also, the meaning of some parameters changes in this chapter. B (¢) is the increase rate of the
fault fixing time at operational time ¢ and a non-negative function and & means the estimated
fault fixing time required until the end of the operation.

In this thesis, the cumulative fixing time €, () is differentiated in order to understand the

fixing time transition.

dQ, (1)

S~ afp) +oviten{-pr—co(n), (5.1)
2
dgi;t(t) = a(1+/3t){1ﬁ;,t+Gv(t)}exp{—ﬁt—oa)(t)}, (5.2)
dQi(r) _ (Lt c)[{-pt—ow (@)} {l+cexp(Br)}+Becexp(—pr)]
di {1 +cexp(—Br)Y
- exp{-fBt—oco(t)}. (5.3)

5.3 Application of proposed method to actual data

Table 5.1 shows the parameters of the RHEL fault data used in this thesis when applied to the
(5.1)~(5.3). Using the maximum likelihood estimation method for parameter estimation, we find

that there is no significant difference among any of the models in terms of AIC [38]. Therefore,

56

Table 5.1: Parameter estimation results in RHEL 8.0.

exponential model | delayed S-shaped model | infection S-shaped model
1.102 x 10° 1.044 x 10° 1.037 x 10°
1.184 x 102 2.494 x 102 2.351 x 1072
parameter
- - 3.283
4.826 x 1073 6.394 x 1073 6.420 x 1073
AIC 2515.564 2514.653 2512.884

Fig. 5.3 shows the results of the prediction of the fixing time transition by the exponential model.
The noise in the exponential model appears larger than the actual. Therefore, we can see that the
magnitude of the noise decreases with time elapse, similar to the change of the noise over time in
the actual fixing time transition.

Fig. 5.4 shows only the expected and actual values of Fig. 5.3. The predictions in the
exponential model predicted a longer time than the actual revision time trend. Therefore, there is
a possibility that the most recently fixed fault will be REOPEN and the fixing time will be longer.
In other words, it is necessary to consider the training data period when predicting the trends of

fault fixing time.

5.4 Conclusion in this chapter

In general, the prediction of development effort and fixing time for individual faults can be as-
sessed by using the conventional OSS reliability evaluation methods. However, there is no re-
search in terms of the transition of the fault fixing time for a long time, i.e., there is no research
for predicting the fault fixing time. It is difficult to use the conventional SRGMs for the fault
fixing time, because the conventional SRGMs mainly evaluate the number of faults in software
development. We can easily control open source projects if we can rapidly assess the stability and
reliability of future projects by using fault fixing time data. Thereby, the proposed method will
lead to assessing the stability of OSS systems developed in terms of the convergence of the fault

fixing time under various open source projects. Furthermore, the appropriate control of manage-

57

DATA Sample Path(exp) —— Estimate(exp) Actual Fix—Time

5000~

2500-

‘‘‘‘‘

FIX-TIME (DAYS)

2500~

0 100 200 300

TIME (WEEKS)

Fig. 5.3: Prediction result of fault fixing time transition in the exponential model by
using Eq. (5.1).

ment effort for OSS will indirectly link to the quality, safety, reliability, and cost reduction of

OSS if the manager knows the future of the project’s progress.

In this thesis, we discussed the transition analysis method of fault fixing time based on a
stochastic differential equation model in an open source project. In particular, considering the
characteristics of changes in the fault fixing time in large-scale open source projects and the com-
plexity in OSS development, we predicted the transition of fault fixing time based on the Wiener
process. Furthermore, we considered the possibility that the fault status could be REOPEN and
examined the number of training data. As a result, there is a possibility that the last fault fix-
ing time can be considered as the final fault fixing time by excluding the most recent fault data.
The proposed method can help for the project managers and OSS users as an evaluation method
of open source project progress in the operation phase. In the future, we need to consider the

appropriate models for each project by applying them to the other open source project.

Figures not shown in this chapter are shown in Appendix.

58

DATA Estimate(exp) —— Actual Fix-Time

2000-

1500 -

1000 -

FIX-TIME (DAYS)

500-

0 100 200 300

TIME (WEEKS)

Fig. 5.4: Comparison of the measured and expected fault fixing time transition in the
exponential model.

Related Paper in this Chapter

1. H. Sone, Y. Tamura, and S. Yamada, “Prediction of fault fixing time transition and prac-
tical feasibility study for open source projects,” Kyoto University Reserach Institute for
Mathematical Sciences Kokytiroku “Mathematical Decision Making Under Uncertainty

and Related Topics,” No. 2242, pp. 140-145, January 2023 (in Japanese).

2. H. Sone, Y. Tamura, and S. Yamada, “Prediction of fault fix time transition in large-scale
open source project data,” Data, Multidisciplinary Digital Publishing Institute, Switzer-
land, Vol. 4, No. 3, Multidisciplinary Digital Publishing Institute, Switzerland, DOI:
10.3390/data4030109, pp. 1-12, July, 2019.

59

Chapter 6

Fault Severity Prediction

In open source projects, many fault information such as fix status, their details, and fix priorities
are registered through the bug tracking systems. Although OSS has been actively developed
and used in recent years, there are problems in promoting open source projects. There are over
100 faults reported per a day in massive open source projects [57] Massive open source projects
have many fault reports. Then, it is difficult to quickly fix the faults [49, 50]. From the above
problems, several researchers have been published papers to predict the fault fixing time for open
source projects. For example, there are several papers in terms of the prediction whether the fault
fixing time will end within a specific time [55, 58, 59]. However, there are no research papers
in terms of the fault identification method considering the change of fault fixing environment
in the open source project, e.g., the fault fixing priority, the number of fault occurrences, and
the number of faults fixing assignees. In this thesis, we discuss the prediction methods of faults
that should be fixed preferentially in newly reported faults in open source projects by using the
random forest and available data obtained from the bug tracking system. In addition, we discuss
the improvement of prediction accuracy and use logistic regression analysis for the comparison.
This thesis also shows several numerical examples by using the real fault big data obtained from

the bug tracking system.

6.1 Related research

In massive open source projects, there is a problem that the fault fixing time is prolonging. It is
necessary to prevent the fault fixing time from prolonging [60, 61], because the OSS is socially
important software. There are several previous researches focused on the fault fixing and report-
ing times by using the bug tracking system. In the software development using a bug tracking

system, it is necessary to consider the priority and severity of fault in order to report the fault.

61

However, there is research reports that the high priority faults do not have a significant effect on
fault fixing time, while several high severity faults tend to contribute to shortening fault fixing
time [50, 56]. In this thesis, we focus on a new index called fix priority by considering the fea-
tures in terms of the priority and importance of the fault. We also evaluate newly reported faults

associated with the previously fixed faults with fix priority.

6.2 Fault identification method considering high fix priority

The purpose of this thesis is to identify the serious fault. This serious fault is more serious than
newly reported fault with fix priority. Therefore, the fault data for identification is used as the test
data. Then, the learning data is the fault data used for comparison. The process of identification

of fix priority is follows:

1. We make an evaluation index by using the fault fixing time and the fault severity obtained

from the bug tracking system.

2. We make label “High” or “Low” to the evaluation index in terms of the value of evaluation

index.

3. We use the random forest to predict High and Low in test data. The using data for prediction

is obtained from the bug tracking systems.

6.2.1 Evaluation index

We propose the measure as fix priority using the fault fixing time and the severity of learning and

test data as follows:
I; = Istandard; ¥ severity, (6.1)

where i is the fault number, and severity is the fault severity. Also, the i-th fault data in Eq. (6.1)
is the test data, and the others are learning data. In the other words, the fix priority of one data
is predicted using i-1 data. In particular, severity is registered when a fault is registered in the

bug tracking system, and the range of possible values is 1 to 5. Table 6.1 shows the values of the

62

Table 6.1: The scored fault severity.

Severity Score
Blocker 5
Critical 4
Major 3
Normal 2.5
Minor, Enhancement 2
Trivial 1

severity changed from qualitative index for deriving 7; in this thesis. Also, ¢ is a normalized value

of the fault fixing time for i-th fault data. Then, the standardized value of 7 is given as follows:

ti —min (t)
max (t) —min (t)’

(6.2)

Istandard; =

where ¢; is the fixing time for i-th bug. 7; is calculated by using the learning data. Then, the

maximum and minimum values at fy4,44r4; are the values used in the learning data.

6.2.2 Labelling with evaluation index

We can label the learning and test data in terms of High or Low based on the value of the evalu-
ation index 7; created with i fault data. In this thesis, we assume the following three patterns in

terms of the labeled learning and test data:
1. if u > T; then High else Low
2. if u+ o > T; then High else Low
3. if u+20 > T, then High else Low

where U is the mean value of i-th fault data, and ¢ the standard deviation. In particular, High
means that the fixing time of fault is long, and its severity is high in the i-th fault data. Also, we
can judge that the faults recognized as High under condition 3. are serious condition in all of the

fixing time and severity, because the criteria for High is the most severe of the three condition.

63

All learning data

— s . A e

random | random random
sampling data sampling data sampling data
® @ i 5 G ®
.... ® @ ‘ ® o
® ®© o ¢ o @ o o © o o

majority decision or
average

l

classification or regression

Fig. 6.1: Scheme of random forest.

Then, we should fix the fault identified as High as soon as possible. Then, we predict these labels

by using the random forest and the logistic regression.

6.2.3 Prediction method with random forest

In this thesis, we use the random forest to predict High and Low in the test data. The random
forest is a method of group learning by using the regression trees [62]. We show the scheme of
random forest in Fig. 6.1. The repeated random sampling (reconstruction extraction) is performed
on the data set for the model construction. Then, the multiple regression trees are created from
the obtained sample group. The final prediction result is obtained by the majority of the output in
each regression tree. In the conventional group learning, all explanatory variables are used in the
model construction. Then, the selected randomly explanatory variables are used in the method of
random forest.

In this thesis, we use two types of learning data and compare their accuracy. One is the
case that only the version containing the test data (the current version) is used as learning data.

The other case is that both the past and current versions are used as learning data, because the

64

learn data A test A

learn data B test B
learn data C test C
0 [rbug number of
learn data A current version
learn data B ——_ Only learn bugs identified
e data l as High in past versions.
0 [rbug number of

previous version

Fig. 6.2: Learning data with past version.

distribution of the value of index 7; is similar to the other versions.
In learning case of the past versions, we only include the faults that have been identified to be
High in the learning data. As shown in Fig. 6.2, the number of data to be learned equals to the

number of learning data in the current version.

6.2.4 Input data as the explanatory variable

As shown in Table 6.2, we have used the data obtained from the bug tracking system as explana-
tory variables. In particular, the variables of Component, OS, Reporter, Hardware, and Assignee
are converted to the appearance rates in order to use as the learning data. Also, the range of

possible values for Priority is 1 to 5.

6.3 Numerical examples

In order to evaluate the performance of the proposed method, we focus on version 17 of Open-
Stack [63] and versions 4.7 of Eclips [64] in this thesis. Each data set is obtained from a bug
tracking system, Bugzilla [24] operated by the Apache Software Foundation. Also, we use 2284
fault report data for each version in OpenStack, and 1800 fault report data for each version in

Eclipse. In this thesis, 200 learning data are used for preparing one test data. In order to predict

65

Table 6.2: Input data as explanatory variable.

Explanatory Variable Scale Description
Component ratio scale Component name where the bug occurred
Words Count of Summary | ratio scale Number of words of detailed information
in the reported bug
oS ratio scale Operating Sytem where the bug occurred
Weekday nominal scale Bug report day (weekday, weekend)
Reporter ratio scale Developer name who reported the bug
Type nominal scale | Content of the bug report(Bug,Enhancement)
Opened Interval interval scale Elapsed days since last bug report
Opened Month interval scale Month the bug was reported
Hardware ratio scale Hardware on which the bug occurred
Opened(day) interval scale | Elapsed days since the first bug was reported
Assignee ratio scale Developer name who fixed the bug

66

the value of 7; after the first 200 fault data, we move the learning data and the test data one by

one as shown in Fig. 6.2.

6.3.1 Model evaluation criteria

In this thesis, we use Recall, Precision, and Fymeasure [65] as the evaluation criteria. Recall
means the proportion of correctly predicted faults among the faults identified as High. Also,
Precision is the proportion of correctly predicted faults among the High predicted faults. In this
thesis, we use the Fymeasure, the harmonic mean of Recall and Precision as the evaluation crite-
rion. In particular, we can use Fymeasure to consider the balance between Recall and Precision.

The Fimeasure is defined as

2 x Precision x Recall
Fimeasure = re.'c‘zszon ecd . (6.3)
Precision + Recall

All three evaluation criteria take the range [0,1]. The prediction accuracy is high if this value

becomes large, and the prediction accuracy is low if this value becomes small.

6.3.2 Prediction results

Table 6.3 shows the accuracy of the prediction model using the random forest and the logistic
regression for the Eclipse and OpenStack projects. There are two types of learning data in case
of using the random forest, i.e., the first case is using the current version and the other case is
using the current and past versions. Moreover, these results show the mean value in 10 times
calculations.

Table 6.3 shows that the value of Recall is almost improved by learning both the current
version and the past version in both OpenStack and Eclipse. On the other hand, in both cases,
the value of Precision is almost becoming worse, but the value of Fymeasure is improved. In
conclusion, we have found that it is better to use the past version as well as the current version
for learning data.

Also, we list the variable importance of the prediction model using random forest with the
highest Fimeasure and the threshold u, 4 + o, and u + 20 in Tables 6.4, 6.5, and 6.6, respec-

tively. Moreover, we list in Tables 6.4, 6.5, and 6.6 as the variable importance, respectively.

67

n model for the Eclipse and OpenStack.

Table 6.3: Accuracy of the predictio

OpenStack Eclipse
threshold
Recall Precision Fl measure Recall Precision F1 measure
u 0.583 0.467 0.519 0.386 0.320 0.350
A) Random forest
’ . u+a 0.165 0.235 0.194 0.160 0.203 0.179
using only current version
u+2g 0.048 0.065 0.055 0.037 0.062 0.046
i 0.558 0.430 0.486 0.325 0.288 0.305
B) Legistic regression u+o 0.182 0.149 0.164 0.162 0.167 0.164
u+lo 0.193 0.035 0.060 0.070 0.035 0.047
. [’ 0.724 D.438 0.546 0.593 0.283 0.383
C) Random forest
. ; ut+o 0.456 0.176 0.254 0.294 0.163 0.210
using current and past version 3
u+2o 0.198 0.036 0.060 0.064 0.047 0.054
u 5.17% | 53.80° 9.60%
mprovement rate from Al to C} H+a 4
p+2o 2.87
"_.' - g2 \-I;-\
Improvement rate from B) to C) L+a 4 47 8
u+2a 2 47 T8% 32 15.49%

Then, we have learned 200 each fault from the first fault, the 501st fault, the 1001st fault, and
the 1501st fault. In particular, the bold indicate that variable importance is the top five highest in
prediction model.

Tables 6.4, 6.5, and 6.6 show that “Opened Interval” and “Opened (day)” have high variable
importance in both Open Stack and Eclipse. In other words, we can understand that “time” is
greatly influenced in terms of the prediction of 7;. Also, variable “Opened Month” has consis-
tently high variable importance in OpenStack. On the other hand, Eclipse depends on the learning

data.

6.4 Conclusion in this chapter

In many open source projects, bug tracking system is an important system for developing the
OSS. OSS has been actively developed and used by a lot of people in recent years, so many
faults in OSS have been reported. As a result, the developers sometimes take a long time to fix
a fault, and sometimes miss a fix for faults. In this thesis, we aim to identify the fix priority
of newly registered faults in the bug tracking system, and we have proposed the fix priority
index considering the faults fixing time and severity. Also, we have compared with the most

recently fixed faults to predict if the new reported fault’s fix priority is high or not. In addition,

68

Table 6.4: Variable importance in threshold .

explanstory variable scale OnenStack Edlipds
1- 5Oi- 1001~ 1501- 1- 501- 1001- 1501-
Component ratio scale 9413 11329 12,637 9389 | 8.212 10.299 14.504 09.993
Words Count of Summary ratioscale | 10123 11.795 10474 14.735(4600 9037 9858 11.180
05 ratio scale | 17.637 4.463 7476 6.498 | 7210 8562 10.203 6304
Weekday nominal scale | 0.1585 0964 1029 0598 | 0261 0717 0976 1101
Reporter ratio scale 8.672 13.379 8709 11.196| 8930 9.719 9783 11.872
Tyvpe nominal scale | 0.566 0.026 0133 3595 | 1.188 Q0605 0635 0.568
Opened Interval interval scale | 15,942 18.848 17.232 11.773| 13.371 14.670 14.149 10.210
Cpened Month interval scale | 15.659 16.356 16.808 11.473| 5788 5615 3541 15776
Hardwars ratioscale |[15.072 10.083 7504 8.180 | 8.071 12,108 13.239 8838
Cpened {day) interval scale | 30.698 32.835 38.634 29.332 | 47.035 25.780 35.889 33.477
Priority nominal scale | 5777 8373 55877 T.809 | 0.066 1475 A48T 0400
Assignee ratio scale 9413 9967 11.500 11.292| 5761 9187 8.863 12229
Table 6.5: Variable importance in threshold i + o.
. OpenStack Eclipse
explanetory variable scale
1- 501- 1001~ 1501- 1- 501- 1001- 1501-
Component ratio scale 4570 7794 6.791 5539 | 4.981 £747 8.239 9.897
Words Count of Summary ratio scale 4172 7.942 7.836 8320 | 1.141 B.75B HBTR3 T7.206
05 ratioscale |10.235 4199 3831 6.455 | 5.000 6.258 9225 4116
Weekday nominal scale | 0.424 0616 0829 1508 | 0312 0417 473 1457
Reporter ratio scale 4698 8.098 6082 6359 | 2375 6025 5689 10477
Type nominal scale | 0.772 0.011 0029 1.703 | 0392 0246 0.797 0220
Opened Interval interval scale | 9.638 11.945 11.787 8.913 | 7.348 11.066 10.978 8.490
Opened Month interval scale | 8.983 14950 15.361 12.550| 3544 L6056 2447 7227
Hardware ratioscale | 10.246 7928 4247 7907 | 5.091 8.844 12736 4£.449
Cpened {day) interval scale | 21.965 28.540 29.372 24.311 | 38.016 18.756 28.154 20.589
Priority nominal scale | 2.725 3713 374 5195 | 0098 1788 0798 0325
Lssignee ratio scale 4335 5HO12 5B737r 6057 | 2556 6.834 6083 6552

69

Table 6.6: Variable importance in threshold u +20.

. CpenStack Eclipse
siplanetory variable scale —

1- 501- 1001- 1501- 1- 501- 1001- 1501-
Component ratio scale 1615 2131 10906 1295 | 3.736 2467 5.089 5.035
Words Count of Summary ratio scale 1317 2152 3503 1674 | 0015 3016 3803 5.239
05 ratic scals 2583 0830 1333 4168 | 3.149 5.061 5986 2351
Weekday nominal scale | 0.086 0.2562 0.045 0.289 | 0.104 (0194 0244 0.64AT
Reporter ratio scale 1652 2076 2782 1512 | 1455 3604 3659 3.804
Type nominal scale | 2.812 0000 0.001 0152 | 0260 0.08% 0.023 0.046
Openecd Interval interval scale | 4.290 4.118 3.369 3.361 | 4.755 6.743 5.370 5.333
Opened Month interval scale | 4.137 5.632 8.171 9.340 | 2.439 5.015 1.289% 5.048
Hardware ratio scale 3.517 3994 1.004 4021 | 1675 B.486 10.075 3.380
Opened {day) interval scale | 7.562 10.821 12.875 12.263 | 27.241 13.347 13.859 15.654
Priority nominal scale | 1616 097% 1186 0972 | 0103 1015 0098 0.089
Assignee ratio scale 1399 1277 1767 1.802 | 1821 43b0 3238 2481

we have found that the transition of the value of fix priority 7; shows the same tendency as
different versions for the same OSS. In addition, we have found that it is possible to improve the
prediction accuracy by learning not only the version of the fault for prediction but also the past
version. From the above, we have considered that the proposed method using past version data is

a practical method in order to identify the high fix priority of large open source projects.

Related Paper in this Chapter

1. H. Sone, Y. Tamura, and S. Yamada, “A method of fault identification considering high
fix priority in open source project,” Proceedings of the IEEE International Conference on
Industrial Engineering and Engineering Management, Macau, China, December 15-18,

2019, CD-ROM (Project Management 1).

2. H. Sone, Y. Tamura, and S. Yamada, “A method of fault fix priority identification for open
source project,” International Journal of Recent Technology and Engineering, Blue Eyes
Intelligence Engineering & Sciences Publication, Vol. 8, No. 4, pp. 2396-2400, November
2019.

3. H. Sone, Y. Tamura, and S. Yamada, “Fault identification method considering high priority

in open source project,” Proceedings of Forum on Information Technology 2019, Okayama

70

University, September 3-5, 2019, pp.141-142 (in Japanese).

. H. Sone, Y. Tamura, and S. Yamada, “Instant fault identification analysis based on fixing
priority for open source project,” Proceedings of 34th National Conference of the Society
of Project Management, Hokkaido Citizens Actives Center, August 29-30, 2019, pp. 102-
108 (in Japanese).

. H. Sone, Y. Tamura, and S. Yamada, “A method of fault identification considering fault
severity in OSS development,” Proceedings of the 12th Japan-Korea Software Management

Symposium, Pusan, Korea, November 29-30, 2018, pp. 1-4.

71

Chapter 7

Optimum Maintenance Problem

OSS has a support period for each version, is called EOL. It is dangerous in terms of vulnerability
to continue using the specified old version of OSS considering the EOL. Then we should upgrade
the version. However, the maintenance cost increase with the version upgrade frequently. There-
fore, it is necessary to update the OSS at a timing of the cost reduction. The timing of the optimal
maintenance problem is shown Fig.7.1. Then, in this thesis, we find the optimum maintenance
time by minimizing the total expected software maintenance effort. In addition, we have verified
the appropriateness of the optimum maintenance time in terms of the cumulative number of re-
ported faults, because the proper management of maintenance effort affects the software quality.
Furthermore, several numerical examples of the earned value analysis and the effort optimiza-

tion based on the proposed method are shown by using the effort data under actual open source

project.

Number of remaining faults

Maintenance and operation
costs in version A

. EOL
Version A i
Version B
__ S
————
e ——
e
- —
F 1. Maintenance and operation effort 1. Maintenance and operaticn effort
up to time t : Small up to time ¢ : Large
| 2. Effort required for user to update 2, Effort required for user to update
| in version A: Large in version A: Small

Upgrade timing in terms of cost:
optimal maintenance time

I

L.
|

|

|

Operation time t

Fig. 7.1: Overview of the optimum maintenance problem.

73

7.1 Related research

In this thesis, we focus on the development effort of OSS. In particular, we focus on the opti-
mal maintenance problem based on Tamura et al.’s research using the SRGM [66] with Wiener
process for predicting the development effort. The SRGM is mainly used for software reliability
assessment. Zhou et al. [67] collected bug tracking data from a few popular open source projects
and investigated the time related bug reporting patterns from them. This research shows that the
trends of reliability growth are the same cases between the open source project and the other
projects. Therefore, the research shows that the SGRM is appropriate to use for the open source
projects. In addition, several previous researches have shown in terms of the reliability evaluation
of OSS and proprietary software, the model formula using SRGM with Wiener process is better
than SRGM based on non-homogeneous Poisson process (NHPP) [68].

The optimal maintenance problem is an application of the optimal software release problem
[69,70] proposed by Yamada et al. The optimum software release problem means the deriving a
time when to stop the software testing by minimizing the expected total software cost [69,70]. On
the other hands, the optimum maintenance problem means the deriving the optimum maintenance
time by minimizing the total expected software maintenance effort in OSS development.

In the past, Tamura et al. have proposed several solutions to the optimal maintenance problem
in OSS development [39, 71]. In these research papers, various prediction models have been
applied to the development effort. Also, Tamura et al. have proposed an OSS-oriented EVM.
However, they did not apply it to the optimal maintenance problem. Therefore, we focus on the
optimal maintenance problem considering OSS-oriented EVM in OSS development. In addition,

we verify the appropriateness of the optimum maintenance time in terms of OSS quality.

7.2 Optimum maintenance time based on wiener process mod-

els

This chapter discusses the optimal maintenance time problem by minimizing the maintenance
effort expenditures for the operation of OSS. Then, using the derivation method of the optimal

release problem [69, 70], one of the software reliability evaluation methods, we define the fol-

74

lowing effort rate parameters:
e : the maintenance effort per effort needed to operate OSS,
e; : the operation effort per unit time during the operation,
e3 : the maintenance effort per effort after the upgrade task such as major version upgrade.
Then, the expected maintenance effort expenditures in the operation of OSS can be formulated

as:
E| (t) = e E[QS(1)] + ent. (7.1)

Also, the expected software maintenance effort expenditures after the maintenance of OSS is

represented as follows:
E, (t) = e3E[ETC, (1)]. (7.2)

In particular, we consider ETC obtained from OSS-oriented EVM as the software maintenance
effort after the maintenance of OSS.
Consequently, from Eqgs. (7.1) and (7.2), the total expected software maintenance effort ex-

penditures during the specified period such as the specified version is given by
E(t)=E(t)+Ex(t). (7.3)

The optimum maintenance time #* is obtained by minimizing E (¢) in Eq. (7.3).

7.3 Consideration of optimum maintenance time for software
quality

Although the optimal maintenance time can be derived using Eq. (7.3), there is no research on
verifying that the maintenance time is appropriate. In this thesis, we judge whether the optimal
maintenance time is an appropriate one in terms of the transition probability distribution of the
number of reported faults. Specifically, we predict the cumulative number of faults reported using
the equation in chapter 4. Then, the transition probability distribution [47] of the cumulative
number of reported faults is derived. Finally, we discuss the comparison of goodness-of-fit for

the optimum maintenance time.

75

In the following Eq. (7.4), (7.5), and (7.6), () is the cumulative number of fault reported
up to operational time 7 (r > 0) in the open source project. Also, 3 (¢) is the increase rate of the
number of reported faults at operational time ¢ and a non-negative function, and « is the estimated
number of reported faults required until the end of operation, and o is a positive constant rep-
resenting a magnitude of the irregular fluctuation, c is a positive constant by using the infection
S-shaped model.

Since the Wiener process @ (¢) is a Gaussian process, log{a — Q(¢)} is also a Gaussian

process. The mean values of log{o — Q (¢)} are derived as follows:

Ellog{aa — Q. (t)}] = logo — Bt, (7.4)
Ellog{a —Q;(¢)}] = loga—Bt+log(1+Pt), (7.5)
Ellog{a —Q;(t)}] = loga — Bt —|—10g1 e -1eipc(—[3t) : (7.6)

Also, the variances of log{o — Q ()} are derived as follows:

Var[log{a — Q. (t)}] = o, (7.7)
Var[log{o. — Q, (1)}] = o7, (7.8)
Var[log{ot —Q; (1)}] = o°t. (7.9)

Thus, the following equations are derived:

Prllog{a — Q. (1)} <x] = @ (%) , (7.10)

Prllog{a—Q, (1)} <x] = @ (x_logaJrﬁt\;;Og(l +ﬁt)> , (7.11)
. 1+c-exp(—fBt)

Prllog{a—O; ()} <x] = @ (x loga+F t;\;’g [EX: > , (7.12)

where x is the cumulative number of reported faults at time 7. Also, & means standard normal
distribution and is defined as follows:

2
y

exp(—=)dy. (7.13)

d(x) = 5

1 X
V2o /—oo
Considering the above points, the transition probability distributions of Q. (¢), Q;, and (z) are

76

obtained as:

Pr[Q (1) < n|Q (0) = 0] = @(bgf—"\/t_&>, (7.14)

log 2% — Br+log (1+ Br)
J o Vi)

log —% — Bt — Jogiteexp(=Br)
PHQ (1) < n[Qi(0) =0] = cp(og“—" proloe T | (7.16)

Pr[Q (1) < n|Q (0) = 0] (7.15)

oVt

7.4 Application of proposed method to actual data

7.4.1 Used data set

In this thesis, we use the data of open source project to derive the OSS-oriented EVM and the
optimum maintenance time. For applying the proposed model to actual project data, we use the
data of OpenStack [63] obtained from Bugzilla. The OpenStack is OSS for cloud computing.
This project uses the Bugzilla [24] as open source bug tracking system. The data about the
reported faults is freely available from the bug tracking system. In particular, the effort and fault
data were obtained from Bugzilla are version 16(Pike). For estimating PV and AC, in this thesis,
the cumulative number of reported faults is 655 and 2249. In particular, we use the project data
for about 8 months before OpenStack was released to predict PV. For prediction AC, we also use
the project data for about 16 months after OpenStack released. Also, each data is weekly unit

data.

7.4.2 Numerical examples for optimum maintenance time

Tables 7.1 and 7.2 show the results of parameter estimation of maintenance effort, and AIC [38].
In terms of AIC, the delayed S-shaped model fits better than the exponential model. Also, the
parameter ¢ in the PV data can be rephrased as BAC.

In addition, we used Egs. (4.8)-(4.13) to derive the parameters for the cumulative number
of faults. Tables 7.3 and 7.4 show the results of parameter estimation of number of fault, and
AIC. In terms of AIC, the infection S-shaped model and the delayed S-shaped model fit better.

Also, the parameter o in the PV data can be rephrased as potential faults at OSS release. In other

77

Table 7.1: Parameter estimation of maintenance effort in terms of PV.

Planned Value

exponential | delayed S-shaped | infection S-shaped
2.315 x 106 2.004 x 10° 9.847 x 10°
parameter 2.879x 1073 | 1.640x 1072 1.257 x 1072
- - 9.422 x 107!
2315x 1073 | 1.617x 1073 5.982x 1073
AIC 724.297 687.640 728.550

Table 7.2: Parameter estimation of maintenance effort in terms of AC.

Actual Cost
exponential | delayed S-shaped | infection S-shaped
1.436 x 107 4.070 x 10° 4.044 x 10°
parameter 1.012x 1073 | 1.179x 1072 1.833 x 1072
- - 9.675
4.864 <1074 | 1.343x 1073 1.712x 1073
AIC 2112.663 2035.109 2089.214

Table 7.3: Parameter estimation of number of potential faults in case of OpenStack.

Estimated number of potential faults at OSS release
exponential | delayed S-shaped | infection S-shaped
1.961 x 103 4.083 x 103 2.728 x 10°
parameter 1.160x 1072 | 1.963 x 1072 8.577 x 1072
- - 6.781 x 10!
1.110x 1072 | 4.121x 1073 5.670 x 1073
AIC 319.766 306.047 300.255

Table 7.4: Parameter estimation of number of resolved faults in case of OpenStack.

Estimated number of resolved faults at present
exponential | delayed S-shaped | infection S-shaped
1.923 x 10* 5.796 x 103 1.126 x 10*
parameter 9.978 x 1074 | 1.159x 1072 2,633 x 1073
- - 5.359 x 107!
2.202x 1073 | 8.082x 1073 3.786 x 1073
AIC 1064.888 1062.983 1066.369

words, from Eq. (4.20), we can calculate the fault resolving cost Y = 361 (man - days).

Fig. 7.2 shows the result of deriving PV, AC, and EV. In particular, the most appropriate

model equation in terms of AIC is used to derive each indicator of EVM.

Figs. 7.3 and 7.4 show the result of deriving CPI and ETC. From the results of Fig. 7.4, we
found that the value of ETC is negative. This is because the number of faults actually corrected

exceeds the number of potential faults initially assumed.

Fig. 7.5 shows the estimated total software effort by using Eq. (7.3). We found that the

optimum maintenance time is derived as t* = 6.886 years 359.3 (weeks).

79

EFFORT (MAN*DAYS)

CPI

=3
'
=
—=_
==
—_—

=]

]

=

JE—

3et06 -

2e+06 -

let+06 -

0.9-

0.8-

—— Sample Path (Actual Cost) —— Sample Path (Planned Value) —— Sample Path (Earned Value)

DATA

— Estimate (Actual Cost) —— Estimate (Planned Value) —— Estimate (Earned Value)

TIME (WEEKS)

Fig. 7.2: EVM estimation results in OpenStack project.

DATA — Sample Path — Estimate

200

E—
E—
—
==
e

0 100 200

TIME (WEEKS)

Fig. 7.3: The result of CPI in OpenStack Ver. 16 project.

80

DATA — Sample Path — Estimate

2e+06 -

le+06-
3
S
5 0cr00-
© leros-
m

—2e+06 -

0 100 200 300 400
TIME (WEEKS)
Fig. 7.4: The result of ETC in OpenStack Ver. 16 project.
DATA — Sample Path — Estimate
4e+06- ,|J,‘ l
v|‘ ““ k
f "l I l l

z IRl

et+06 - il
2 2¢+06 i ..'l‘ji‘_ (| | i ‘“ .| I‘
55| HI‘H“H,] A A LERER 0 LA ‘\"L “‘“'.!“‘I ”

i e
0e+00 -
0 200 400 600
TIME (WEEKS)

Fig. 7.5: The estimated total software effort in OpenStack Ver. 16 project.

81

Table 7.5: Fault detection rate and probability in OpenStack project.

Fault detection rate | 70% | 85% | 90% 95%
Probability 1 0992|0254 |2.0x107°

7.4.3 Numerical examples considering the software quality of optimum

maintenance time

In order to evaluate the performance of the result of the optimum maintenance time, we use the
result of estimating the cumulative number of revised faults shown in Table 4.6. In terms of AIC,
the delayed S-shaped model fits better than the other models for a suitable model.

For predicting the time when reported faults reach 50%, 70%, 90%, and 99%, transition
probability distributions are shown in Figs. 7.6 by using Eq. (7.16).

For performance assessment of the optimum maintenance time, we use the estimated total
software effort and transition probability. Fig. 7.7 shows the result of the estimated cumulative
maintenance effort expenditures. Simultaneously, from Fig. 7.7, the optimum maintenance time
is roughly appropriate prediction, because the optimum maintenance time is near the time when
the transition probability of cumulative revised faults reaches 90%. In other words, the OSS
maintains high quality at the optimum maintenance time. Also, Table 7.5 shows the total fault
detection rate at the optimal maintenance time. From this result, we can see that 85% of potential
faults in this OSS are reported with a probability of 99.2%, and maintaining the high quality in
terms of the fault fixing.

From the above results, it is possible to evaluate the optimum maintenance time considering

the risk of system failure due to unrevised faults by predicting the revised status of faults.

7.5 Conclusion in this chapter

It is important for OSS users to decide the optimal length of version upgrade duration and main-
tenance time considering the operation status of open source project management. The optimal

maintenance time problem based on maintenance effort for OSS have been proposed in this the-

82

DATA Fixed Fault(50%) — Fixed Fault(70%) — Fixed Fault(90%) Fixed Fault(95%)

0.5-

0.4-

0.3-

0.2-

PROBABILITY

0.1-

0.0- NN

TIME (WEEKS)

Fig. 7.6: The transition probability distribution of the number of faults revised in case
of Eq. (7.16)

sis. In particular, we have defined the optimal maintenance time problems considering the CPI
as the stability. In the past, it is difficult to control the OSS quality and manage the project under
the traditional method based on fault data for software reliability assessment. By focusing on the
reporter and assignee on the fault big data recorded on the bug tracking system of open source
project, we have proposed a new approach based on the earned value and optimal maintenance
time problem considering the project stability by using OSS effort data. In particular, this thesis
has proposed the method for deriving optimum maintenance time of open source projects consid-
ering the irregular fluctuation from the characteristics of OSS development and management by
using OSS-oriented EVM. In addition, we have judged whether the optimal maintenance time is
an appropriate time in terms of the transition probability distribution of the cumulative number of
reported faults, because the proper maintenance management affects the software quality. As the
result, we have derived the optimum maintenance time from the proposed models. The proposed
method will be helpful as the assessment method of the progress of the open source projects in

operation phase. Also, we have found that our method can assess the stability and effort control

83

DATA Eslimate
50% 70% 90% 95%

4 -

1

JeHl6 -

EFFORT

1
!
|
i
I
|
|
|
I
|
|
|
]
1
|
|
|
i
1
|
26 - :
L
|
|
|
i
'
|
|
|

1
i
]
1
1
I
I
1
I
1
I
i
1
1
1
1
i
1
|
|
1
1
1
1
I
i
1
|
]
1

) 200 400 600

TIME {(WEEKS)

Fig. 7.7: The estimated total software effort and the transition probability of cumula-
tive revised faults.

considering the operational environment of OSS. Furthermore, the data set of actual OSS effort
has been analyzed to show several numerical examples of the progress analysis and optimum
maintenance time considering the stability for an open source project.

In the future, we will propose the generalized method for deriving the validity of the optimum
maintenance time.

Figures not shown in this chapter are shown in Appendix.

Related Paper in this Chapter

1. H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with OSS-oriented
EVM for OSS project,” Reliability and Maintenance Modeling with Optimization, CRC
Press Taylor & Francis Group, pp. 197-213, 2023.

2. H. Sone, Y. Tamura, and S. Yamada, “Statistical maintenance time estimation based on

stochastic differential equation models in OSS development project,” Computer Reviews

84

Journal, PURKH, Vol. 5, pp. 126-140, December 2019.

. H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with earned value
requirement for OSS project,” Proceedings of the Fourteenth International Conference on

Industrial Management, Hangzhou, China, September 12-14, 2018, pp. 253-258.

. H. Sone, Y. Tamura, and S. Yamada, “Stochastic differential equation modeling for devel-
opment effort estimation and its application in open source project,” Proceedings of 32th
National Conference of the Society of Project Management, Doshisha University, August

30-31, 2018, pp. 439-443 (in Japanese).

85

Chapter 8

Conclusion

This thesis has focused on the following three issues among many ones. We have examined the
method for OSS users and open source project managers to evaluate the stability of open source

projects.

1. Selection evaluation and licensing: Methods for OSS users to make selections from the

many OSS available situation,
2. Vulnerability support: Predicted fault fix priority for the reported OSS,

3. Maintenance and quality assurance: Prediction of appropriate OSS version upgrade timing,

considering the development effort required after OSS upgrade by OSS users.

In “1. Selection evaluation and licensing,” we have attempted to derive the OSS-oriented
EVM by applying the EVM to several open source projects. In order to derive the OSS-oriented
EVM, we have applied the stochastic models based on SRGM considering the uncertainty for
the development environment in open source projects. We have also improved the method of
deriving effort in open source projects. As a result, in terms of the method for deriving effort, the
effort data of open source project has shown similar trends to proprietary software development
and has shown its applicability to SRGM. Therefore, by using our proposed method to calculate
the effort of projects, it is possible to apply the proposed method to actual project management
methods such as OSS-oriented EVM. In case of applying the existing method of deriving effort
in open source projects, it is not possible to derive some indices in the OSS-oriented EVM. Thus,
we have resolved this issue. The derived OSS-oriented EVM helps OSS users and open source
project managers to evaluate the stability of their current projects. It is an important to use the
decision-making tool regarding their decisions and projects of OSS. From a different perspective,

we have also evaluated the stability of the project in terms of the speed of fault fixing by predicting

87

the time transition of fixing the OSS faults reported in the future. It is not easy to evaluate the
progress and stability of open source projects because of the large scale and the lack of visibility
in the entire group of people involved in the open source software development. Therefore,
we believe that our project evaluation methods used in conventional software development will
increase the number of evaluation methods for OSS development and contribute greatly to the

development of OSS.

From the different perspective, we have also evaluated the stability of the project in terms
of the speed of fault fixing by predicting the time transition of fixing the OSS faults reported in
the future. In particular, considering the characteristics of changes in the fault fixing time under
the large-scale open source projects and the complexity in OSS development, we predicted the
transition of fault fixing time based on the Wiener process. Furthermore, we have considered the
possibility that the fault status could be REOPEN and examined the number of training data. As
the results, there is a possibility that the last fault fixing time can be considered as the final fault
fixing time by excluding the most recent fault data. The proposed method can be helpful for the
project managers and OSS users as the evaluation method of open source project progress in the

operation phase.

In “2. Vulnerability support,” in terms of the open source project managers, we have created
several metrics to detect faults. The reported faults with a high priority is speedy fix, and a long
time to fix, and predict. In addition, we have tried to improve the detection accuracy of the
proposed metrics by learning not only the specific version but also the bug report data of the past
version by using the random forest considering the characteristic similarities of bugs fix among
different versions. This allows the project managers to identify the faults that should be prioritized
for fixing when the large number of faults are reported, and facilitates project operations. In “2.
Vulnerability support,” we have aimed to identify the fix priority of newly registered faults in the
bug tracking system, and we have proposed the fix priority index considering the faults fixing
time and severity. Also, we have compared with the most recently fixed faults to predict if the
new reported fault’s fix priority is high or not. In addition, we have found that the transition of
the value of fix priority 7; shows the same tendency as different versions for the same OSS. In
addition, we have found that it is possible to improve the prediction accuracy by learning not only

the version of the fault for prediction but also the past version. From the above results, we have

88

considered that the proposed method using the past version data is a practical method in order
to identify the high fix priority of large open source project. This allows the project managers
to identify the faults that should be prioritized for fixing when the large number of faults are
reported, and facilitates the project operations.

In “3. Maintenance and quality assurance,” as the optimum maintenance problem, we have
predicted the appropriate OSS version-up timing considering the maintenance effort required by
OSS users after upgrading the OSS. It is dangerous in terms of the vulnerability to continue us-
ing the specified version of OSS ignoring the EOL. Therefore, we should upgrade the version
periodically. However, the maintenance cost increase with the version upgrade frequently. Then,
we have found the optimum maintenance time by minimizing the total expected software mainte-
nance effort in terms of OSS users. In particular, this thesis has proposed the method for deriving
optimum maintenance time of open source projects considering the irregular fluctuation from the
characteristics of OSS development and management by using the OSS-oriented EVM. In addi-
tion, we have judged whether the optimal maintenance time is an appropriate time in terms of
the transition probability distribution of the cumulative number of reported faults, because the
proper maintenance management affects the software quality. As the result, we have derived the
optimum maintenance time from the proposed models. The proposed method will be helpful as
the assessment method of the progress for the open source project in operation phase.

In conclusion, we have found that there is the applicability as the stability evaluation of open
source projects from three perspectives. In particular, the OSS-oriented EVM discussed in “I.
Selection evaluation and licensing” can contribute to the visualization of maintenance effort in
open source projects. The proposed method will potentially contribute to the development of

OSS in the future.

89

References

[1]

[9]

[10]

S.E. Raymond, “The cathedral and the bazzar: Musings on Linux and open source by an

accidental revolutionary,” O’Reilly and Associates, Sebastopol, California, 1999.

Cybersecurity Division, Commerce and Information Policy Bureau, “Collection of use
case examples compiled regarding management methods for utilizing open source soft-
ware and ensuring its security,” Ministry of Economy, Trade and Industry, 2021 (in

Japanese).

W.W. Royce, “Managing the development of large software systems: Concepts and tech-

niques,” Proceedings of IEEE WESCON, August 1970, pp.1-9.

N.M.A. Munassar and A. Govardhan, “A Comparison between Five Models of Software
Engineering,” International Journal of Computer Science Issues (IJCSI), Vol. 7, No. 5,

pp- 94-101, 2010.
agilemanifesto.org, “Principles Behind the Agile Manifesto,” https://agilemanifesto.org/

D.D6énmez, G. Grote, and S. Brusoni, ‘“Routine interdependencies as a source of stability
and flexibility. A study of agile software development teams,” Information and Organiza-

tion, Vol. 7, Issue 3, 2016, pp. 63-83.

N. Ozkan, M.S. G0k, and B.6.Kose, “Towards a better understanding of agile mindset by
using principles of agile methods,” Proceedings of the 2020 15th Conference on Com-

puter Science and Information Systems (FedCSIS), Sofia, Bulgaria, 2020, pp. 721-730.

K. Beck, “Embracing change with extreme programming,” Computer, Vol. 32, no. 10,

pp. 70-77, 1999.

B.W. Boehm, “A spiral model of software development and enhancement,” Computer,

Vol. 21, pp. 61-72, 1986.

B.W. Boehm, “Software engineering economics,” Prentice Hall, New Jersey, 1981.

91

[11] B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. Steecem and B.K. Clark, “Software
cost estimation with COCOMO I1,” Prentice Hall, New Jersey, 2000.

[12] C. Jones, “Software reliability: measurement, prediction, application,” McGraw-Hill,

New York, NY, USA, 2008.

[13] P.N. Misra, “Software reliability analysis,” IBM Systems Journal, Vol. 22, No. 3, pp.
262-270, 1983.

[14] A.L. Goel and K. Okumoto, “A time dependent error detection model for software relia-
bility and other performance measures,” IEEE Trans. Reliability, Vol. R-28, pp. 206-211,
1979.

[15] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth modeling for software
error detection,” IEEE Trans. Reliability, Vol. R-32, pp. 475-484, 1983.

[16] M. Ohba, “Inflection S-shaped software reliability growth model,” Stochastic Models in
Reliability Theory, vol. 235, Springer, Berlin, Heidelberg, pp. 144-162, 1984.

[17] Q.E. Fleming, J.M. Koppelman, “Earned value project management (4th Ed.),” PMI,
Newton Square, U.S.A., 2010.

[18] W.E. Abba, “The evolution of earned nalue management,” The Measurable News, Issue

2 pp- 9-12, 2017.
[19] Linux.org, “Linux.org,” https://www.linux.org/
[20] The Open Source Initiative, “To simplify software development,” https://opensource.org/

[21] M. Gallivan, “Striking a balance between trust and control in a virtual organization: a

content analysis of open source software case studies,” Information Systems Journal,

Vol. 11, Issue 4, pp. 277-304, 2001.

[22] K. Crowston and B. Scizzi, “Open source software projects as virtual organizations:
Competency rallying for software development,” IEE Proceedings Software, Vol. 149,

Issue 1, No. 1, pp. 3-17, 2001.

92

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

S. Sharma, V. Sugumaran, and B. Rajagopalan, “A framework for creating hybrid-open
source software communities,” Information Systems Journal, Vol. 12, Issue 1, pp. 7-25,

2002.

Bugzilla, “The software solution designed to drive software development,”

https://www.bugzilla.org/

G. Robles, M.J. Gonzilez-Barahona, C. Cervigon, A. Capiluppi, and D. Izquierdo-
Cortézar, “Estimating development effort in Free/OSS projects by mining software repos-
itories: a case study of OpenStack,” Proceedings of the 11th Working Conference on

Mining Software Repositories, Hyderabad. India. 31 May-1 June, 2014, pp. 222-231.

R.G. Kula, K. Fushida, N. Yoshida, and H. lida, “Micro process analysis of maintenance
effort: an open source software case study using metrics based on program slicing,” Jour-

nal of Software: Evolution and Process, Vol. 25, Issue 9, pp. 935-955, 2013.

S.M. Rakha, W. Shang, and E.A. Hassan, “Studying the needed effort for identifying
duplicate issues,” Empirical Software Engineering, Vol. 21, Issue 5, pp. 1960-1989, 2016.

R. Mishra and A. Sureka, “Mining peer code review system for computing effort and
contribution metrics for patch reviewers,” Proceedings of the 2014 IEEE 4th Workshop

on Mining Unstructured Data, Victoria, Canada, 30 September, 2014, pp. 11-15.

M.D. Koulla, A. Alain, and Kolyang, “Duration estimation models for open source soft-
ware projects,” International Journal of Information Technology and Computer Science,

Vol. 13 Issue 1, pp. 1-17, 2021.

C. Sun, D. Lo, X. Wang, J. Jiang, and S.A. Khoo, “Discriminative model approach for ac-
curate duplicate bug report retrieval,” Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE’10), Cape Town, South Africa, 2-8 May,
2010, pp.45-54.

S. M. Rakha, W. Shang, and E. A. Hassan, “Studying the needed effort for identifying
duplicate issues,” Empirical Software Engineering, Springer Science+Business Media:

Berlin, Germany, 2015.

93

[32] Y. Tamura and S. Yamada, “Maintenance effort management based on double jump dif-
fusion model for OSS project,” Annals of Operations Research, Vol. 312 Issue 1, pp.
411-426, 2022.

[33] K. Sugisaki, Y. Tamura, and S. Yamada, “OSS Effort expense optimization based on
Wiener process model and GA,” Journal of Software Engineering and Applications, Vol.

14, No. 1, pp. 11-25, 2021.

[34] sourceforge.net, “The Complete Open-Source and Business Software Platform,”

https://sourceforge.net/

[35] M. Ohira, N. Ohsugi, T. Ohoka, and K. Matsumoto, “Accelerating cross-project knowl-
edge collaboration using collaborative filtering and social networks,” Proceedings of 2nd
International Workshop on Mining Software Repositories (MSR2005), St. Louis, Mis-
souri, 17 May, 2005, pp. 111-115.

[36] Red Hat, “Red Hat Enterprise Linux,” https://www.redhat.com/en/technologies/linux-

platforms/enterprise-linux

[37] The Document Foundation, “LibreOffce,” https://libreoffce.org/

[38] H. Akaike, “A new look at the statistical model identification,”IEEE Transactions on

Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

[39] H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with earned value
requirement for OSS project,” Proceedings of the Fourteenth International Conference on

Industrial Management, Hangzhou, China, 12-14 September, 2018, pp. 253-258.

[40] H. Sone, Y. Tamura, and S. Yamada, “Statistical maintenance time estimation based on
stochastic differential equation models in OSS development project,” Computer Reviews

Journal, PURKH, Vol. 5, pp. 126-140, 2019.

[41] S. Yamada, “Software reliability modeling: Fundamentals and applications,” Springer-

Verlag, Tokyo/Heidelberg, 2014.

94

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M.R. Lyu, Ed., “Handbook of software reliability engineering,” IEEE Computer Society
Press, Los Alamitos, CA, U.S.A., 1996.

J.D. Musa, A. lannino, K. Okumoto, “Software reliability: measurement, prediction,”

Application. McGraw-Hill, New York, 1987.

P.K. Kapur, H. Pham, A. Gupta, and P.C. Jha, “Software reliability assessment with OR
applications,” Springer-Verlag, London, 2011.

E. Wong, “Stochastic processes in information and systems,” McGraw-Hill, New York,

1971.

L. Arnold, “Stochastic differential equations-theory and applications,” John Wiley &
Sons, New York, 1971.

S. Yamada, M. Kimura, H. Tanaka, and S. Osaki, “Software reliability measurement and
assessment with stochastic differential equations,” IEICE Transactions on Fundamentals,

Vol. E77-A, No. 1, 109-116, 1994.

K. Ranjan, K. Subhash, and K.T. Sanjay, “A study of software reliability on big data open
source software,” International Journal of System Assurance Engineering and Manage-

ment, Vol. 10, No. 2, pp. 242-250, 2019.

P. Hooimeijer and W. Weimer, ‘“Modeling bug report quality,” Proceedings of the Twenty-
Second IEEE/ACM International Conference on Automated Software Engineering(ASE
’07), Georgia, USA, 5-9 November, 2010, pp. 34-43.

M. Nurolahzade, S.M. Nasehi, S.H. Khandkar, and S. Rawal, “The role of patch review in
software evolution: an analysis of the mozilla firefox,” Proceedings of the Joint Interna-
tional and Annual ERCIM Workshops on Principles of Software Evolution and Software

Evolution Workshops, Amsterdam, The Netherlands, 24-25 August, 2009, pp. 9-18.

Y. Tamura, H. Sone, and S. Yamada, “OSS project stability assessment support tool con-
sidering EVM based on wiener process models,” Applied System Innovation, Vol. 2, No.

1, pp. 1-12, 2019.

95

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. Mishra and A. Sureka, “Mining peer code review system for computing effort and
contribution metrics for patch reviewers,” Proceedings of the 2014 IEEE 4th Workshop
on Mining Unstructured Data, Victoria, BC, Canada, 30 September, 2014, pp. 11-15.

E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engineering,

Cape Town, South Africa, 4 May, 2010, pp.52-56.

G. Bougie, C. Treude, M. D. German, and A.M. Storey, “A comparative exploration of
freeBSD bug lifetimes,” Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), Cape Town, South Africa, 2-3 May, 2010, pp.106-
109.

S. Akbarinasaji, B. Caglayan, and A. Bener, “Predicting bug-fixing time: A replication
study using an OSS project,” Journal of Systems and Software, Vol. 136, pp. 173-186,
2018.

L. Marks, Y. Zou, and E.A. Hassan, “Studying the fix-time for bugs in large open source
projects,” Proceedings of the 7th International Conference on Predictive Models in Soft-

ware Engineering (Promise’11), Alberta, Canada, 20-21 September, 2011, pp.11:1-11:8.

C. Sun, D. Lo, X. Wang, J. Jiang, and S.C. Khoo, “A discriminative model approach
for accurate duplicate,” Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, Cape Town, South Africa, 1-8 May, 2010, pp. 45-54.

P. Bhattacharya and 1. Neamtiu, “Bug-fix time prediction models: can we do better?,”
Proceedings of the 8th Working Conference on Mining Software Repositories, Hawaii,

USA, 21-22 May, 2011, pp. 207-210.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a re-
ported bug,” Proceedings of the International Conference on Software Engineering, Cape

Town, South Africa, 1-8 May, 2010, pp. 1-10.

96

[60] N. Bettenburg, S. Just, A. Schréter, C. Weiss, R. Premraj, and T. Zimmermann, “What
makes a good bug report?,” Proceedings of the 16th International Symposium on Foun-

dations of Software Engineering, Atlanta, Georgia, 9-14 November, 2008, pp. 308-318.

[61] S. Just, R. Premraj, and T. Zimmermann, ‘“Towards the next generation of bug track-
ing systems,” Proceedings of the Symposium on Visual Languages and Human-Centric

Computing, Bayern, Germany, 15-19 September, 2008, pp. 82-85.

[62] L. Breiman, “Random forests,” Machine Learning, Springer, vol.45, pp. 5-32, 2001.

[63] The OpenStack Foundation, “The OpenStack project,” http://www.openstack.org/

[64] The Eclipse Foundation, “The Eclipse Project,” http://www.eclipse.org/

[65] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl, “Evaluating collaborative
filtering recommender systems,” Transactions on Information Systems, vol.22, No. 1, pp.

5-53, 2004.

[66] S. Yamada, Software Reliability Models: Fundamentals and Applications (in Japanese),
JUSE Press, Tokyo, 1994.

[67] Y. Zhou and J. Davis, “OSS reliability model: an empirical approach,” Proceedings of
the Fifth Workshop on OSS Engineering, Missouri, USA, 17 May, 2005, pp. 67-72.

[68] Y. Shigeru, N. Akio, and K. Mitsuhiro, “A stochastic Differential equation model for
software reliability assessment and its goodness-of-fit,” International Journal of Reliabil-

ity and Application, vol. 4, no. 1, pp. 1-11, 2003.

[69] S. Yamada and S. Osaki, “Cost-reliability optimal software release policies for software

systems, IEEE Transactions on Reliability,” vol. R-34, no. 5, pp. 422-424, 1985.

[70] S. Yamada and S. Osaki, “Optimal software release policies with simultaneous cost and
reliability requirements,” European Journal of Operational Research, vol. 31, no. 1, pp.

46-51, 1987.

97

[71] Y. Tamura and S. Yamada, “Optimal Maintenance Problem Based on Maintenance Effort
for OSS System Development Project,” Proceedings of the 31st Workshop on Circuits

and Systems, Fukuoka, Japan, 17-18 May, 2018, pp. 31-35 (in Japanese).

98

Publication List of the Author
Books

1. H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with OSS-oriented
EVM for OSS project,” Reliability and Maintenance Modeling with Optimization, CRC
Press Taylor & Francis Group, pp. 197-213, 2023.

2. Y. Tamura, H. Sone, and S. Yamada, “Reliability assessment model based on Wiener pro-
cess considering network environment for edge computing,” Reliability and Maintenance

Modeling with Optimization, CRC Press Taylor & Francis Group, pp. 215-225, 2023.

3. H. Sone, S. Miyamoto, Y. Kashihara, Y. Tamura, and S. Yamada, “Deep learning approach
based on fault correction time for reliability assessment of cloud and edge open source

software,” Predictive Analytics in System Reliability, Springer, pp. 1-18, 2022.

4. Y. Tamura, H. Sone, and S. Yamada, “Stochastic effort estimation for open source project,”
Recent Advancements in Software Reliability Assurance, CRC Focus Series, Advances in

Mathematics and Engineering, CRC Press Taylor & Francis Group, pp. 15-28, 2019.
Journal Papers (Peer-Reviewed)

1. H. Sone, Y. Tamura, and S. Yamada, “Study of effort calculation and estimation in open
source projects,” International Journal of Reliability, Quality and Safety Engineering, Vol.

30, No. 3, World Scientific, pp. 2350011-1-2350011-13, 2023.

2. H. Sone, Y. Tamura, and S. Yamada, “A study of quantitative progress evaluation models
for open source projects,” Journal of Software Engineering and Applications, Vol. 15, No.

5, pp. 183-196, May 2022.

3. Y. Tamura, H. Sone, and S. Yamada, “Flexible jump diffusion process models for open
source project with application to the optimal maintenance problem,” International Jour-
nal of Reliability, Quality and Safety Engineering, Vol. 27, No. 6, World Scientific, pp.
2050020-1-2050020-18, 2020.

99

4. H. Sone, Y. Tamura, and S. Yamada, “Stability assessment method considering fault fix-
ing time in open source project, International Journal of Mathematical,” Engineering and

Management Sciences, Vol. 5, No. 4, pp. 591-601, 2020.

5. H. Sone, Y. Tamura, and S. Yamada, ‘“Statistical maintenance time estimation based on
stochastic differential equation models in OSS development project,” Computer Reviews

Journal, PURKH, Vol. 5, pp. 126-140, 2019.

6. H. Sone, Y. Tamura, and S. Yamada, “A method of fault fix priority identification for open
source project, International Journal of Recent Technology and Engineering,” Blue Eyes

Intelligence Engineering & Sciences Publication, Vol. 8, No. 4, pp. 2396-2400, 2019.

7. H. Sone, Y. Tamura, and S. Yamada, “Prediction of fault fix time transition in large-scale
open source project data,” Data, Multidisciplinary Digital Publishing Institute, Switzer-
land, Vol. 4, No. 3, Multidisciplinary Digital Publishing Institute, Switzerland, DOI:
10.3390/data4030109, pp. 1-12, 2019.

8. Y. Tamura, H. Sone, and S. Yamada, “Productivity assessment based on jump diffusion
model considering the effort management for OSS project,” International Journal of Reli-
ability, Quality and Safety Engineering, Vol. 26, No. 5, World Scientific, pp. 1950022-1—
1950022-22, 2019.

9. Y. Tamura, H. Sone, and S. Yamada, “OSS project stability assessment support tool con-
sidering EVM based on Wiener process models,” Applied System Innovation, Vol. 2, No.
1, Multidisciplinary Digital Publishing Institute, Switzerland, DOI: 10.3390/asi2010001,
pp- 1-12,2019.

International Conference Papers (Peer-Reviewed)

1. H. Sone, Y. Tamura, and S. Yamada, “Open source project evaluation methodology consid-
ering OSS-oriented EVM and number of potential faults,” Proceedings of the 28th ISSAT
International Conference on Reliability and Quality in Design, August 3-5, 2023, pp. 270-
272 (Virtual mode).

100

. Y. Tamura, H. Sone, and S. Yamada, “A maintenance effort dependent two dimensional
Wiener process model considering OSS network for edge computing,” Proceedings of the
27th ISSAT International Conference on Reliability and Quality in Design, August 4-6,
2022, pp. 91-95 (Virtual mode).

. H. Sone, Y. Tamura, and S. Yamada, “Quantitative progress evaluation for open source
project with application to bullseye chart,” Proceedings of the 24th International Confer-

ence on Human-Computer Interaction, 26 June-1 July, 2022, pp. 398-409, (Virtual mode).

. Y. Tamura, H. Sone, A. Anand, and S. Yamada, “A method of vulnerability assessment
based on deep learning and OSS fault big data,” Proceedings of the IEEE International
Conference on Industrial Engineering and Engineering Management, Singapore, December

13-16, 2021, CD-ROM (Reliability and Maintenance Engineering 2, Virtual mode).

. H. Sone, Y. Tamura, and S. Yamada, “Comparison of stabilities for open source project,”
Proceedings of the IEEE International Conference on Industrial Engineering and Engineer-
ing Management, Macau, China, December 13-16, 2021, CD-ROM (Project Management

2, Virtual mode).

. Y. Tamura, H. Sone, and S. Yamada, “A method of reliability assessment based on Wiener
process model for edge computing,” Proceedings of the Reliability and Maintenance Engi-

neering Summit 2021, Nantong, China, September 11-13, 2021, pp. 17-23, (Virtual mode).

. H. Sone, Y. Tamura, and S. Yamada, “Examination of OSS-oriented EVM considering the
progress of fault resolving,” Proceedings of the Reliability and Maintenance Engineering

Summit 2021, Nantong, China, September 11-13, 2021, pp. 1-8, (Virtual mode).

. Y. Tamura, H. Sone, R. Ueki, and S. Yamada, “Optimal effort allocation problem based
on the jump diffusion process model for edge computing,” Proceedings of the 26th ISSAT
International Conference on Reliability and Quality in Design, August 5-7, 2021, pp. 87-91

(Virtual mode).

. Y. Tamura, H. Sone, K. Sugisaki, and S. Yamada, “A method of parameter estimation in

flexible jump diffusion process models for open source maintenance effort management,”

101

10.

1.

12.

13.

14.

15.

16.

Proceedings of the IEEE International Conference on Industrial Engineering and Engi-
neering Management, Macau, China, December 15-18, 2019, CD-ROM (Reliability and

Maintenance Engineering 2).

H. Sone, Y. Tamura, and S. Yamada, “A method of fault identification considering high
fix priority in open source project,” Proceedings of the IEEE International Conference on
Industrial Engineering and Engineering Management, Macau, China, December 15-18,

2019, CD-ROM (Project Management 1).

Y. Tamura, H. Sone, K. Sugisaki, and S. Yamada, “Optimum maintenance problem based
on stochastic differential equations considering 3V model,” Proceedings of the 12th Japan-

Korea Software Management Symposium, Pusan, Korea, November 29-30, 2018, pp. 1-5.

H. Sone, Y. Tamura, and S. Yamada, “A method of fault identification considering fault
severity in OSS development,” Proceedings of the 12th Japan-Korea Software Management

Symposium, Pusan, Korea, November 29-30, 2018, pp. 1-4.

H. Sone, Y. Tamura, and S. Yamada, “A method of OSS effort assessment based on deep
learning considering GUI design,” Proceedings of the 11th Japan-Korea Software Manage-

ment Symposium, Kansai University, Japan, December 1, 2018, pp. 12-16.

Y. Tamura, H. Sone, and S. Yamada, “Earned value analysis tool based on Wiener pro-
cess model for OSS project,” Proceedings of the 11th Japan-Korea Software Management

Symposium, Kansai University, Japan, December 1, 2018, pp. 1-5.

H. Sone, Y. Tamura, and S. Yamada, “Optimal maintenance problem with earned value
requirement for OSS project,” Proceedings of the Fourteenth International Conference on

Industrial Management, Hangzhou, China, September 12-14, 2018, pp. 253-258.

Y. Tamura, H. Sone, K. Sugisaki, and S. Yamada, “Effort analysis of OSS project based
on deep learning considering UI/UX design,” Proceedings of the IEEE International Con-
ference on Reliability, Infocom Technology and Optimization, Amity University, Uttar

Pradesh, Noida, India, pp. 36-41, August 29-31, 2018.

102

17. Y. Tamura, H. Sone, and S. Yamada, “Earned value analysis and effort optimization based
on Wiener process model for OSS project,” Proceedings of 2018 Asia-Pacific International
Symposium on Advanced Reliability and Maintenance Modeling (APARM 2018) and 2018
International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineer-

ing (QR2MSE 2018), Qingdao, Shandong, China, August 21-24, 2018, pp. 373-378.
Research Reports

1. H. Sone, Y. Tamura, and S. Yamada, “Prediction of fault fixing time transition and prac-
tical feasibility study for open source projects,” Kyoto University Reserach Institute for
Mathematical Sciences Kokytiroku “Mathematical Decision Making Under Uncertainty

and Related Topics,” No. 2242, pp. 140-145, January 2023 (in Japanese).

2. Y. Tamura, H. Sone, R. Ueki, and S. Yamada, ” Jump diffusion process model considering
the cyclic change of communication environ- ment for edge computing,” Kyoto University
Reserach Institute for Mathematical Sciences Kokytroku “New Developments on Math-
ematical Decision Making Under Uncertainty,” No. 2220, pp. 184-190, May 2022 (in

Japanese).

3. Y. Tamura, H. Sone, K. Sugisaki, and S. Yamada, ” A method of parameter estimation
based on deep learning for jump diffusion process model,” Kyoto University Research In-
stitute for Mathematical Sciences Kokytiroku “Theory and Its Application of Mathematical
Decision Making under Uncertainty and Ambiguity,” No. 2158, pp. 47-53, June 2020 (in

Japanese).

4. Y. Tamura, H. Sone, and S. Yamada, ” Optimization approach of maintenance effort based
on jump diffusion process model for OSS,” Kyoto University Research Institute for Math-
ematical Sciences Kokytiroku “Mathematics of Decision Making under Uncertainty and

Related Topics,” No. 2126, pp. 174-180, August 2019 (in Japanese).
Research Presentations

1. H. Sone, “Consideration of balancing work and graduate school activities,” Proceedings of
40th National Conference of the Society of Project Management, Hotel Kyocera, March
9-10, 2023, pp. 859-861 (in Japanese).

103

. H. Sone, Y. Tamura, and S. Yamada, “Derivation and verification of optimal maintenance
time using OSS-oriented EVM,” Proceedings of 34th National Conference of the Society

of Project Management, March 11-12, 2023, pp. 107-114, (Virtual mode, in Japanese).

. H. Sone, Y. Tamura, and S. Yamada, “A study on fault fix time prediction in open source
software development,” Proceedings of the 2019 Student Paper Presentation Conference of
the Kanto Branch of Japan Industrial Management Association, Chuo University, February

28,2020, C-1-4, pp. 75-76 (in Japanese).

. H. Sone, and Y. Tamura, “A study on the recognition propagation in new products using
highly sensitive consumer characteristics,” Marketing Analysis Contest 2019, Nomura Re-

search Institute, Ltd., 2019 (in Japanese).

. H. Sone, and Y. Tamura, “A study on propagation of recognition level for new products,”
Proceedings of 2019 National Conference of the Japan Society for Management Informa-

tion, Shizuoka University, October 19-20, 2019, 1P1-10, pp.112-115 (in Japanese).

. K. Ohno, and H. Sone, “Study on customer visit prediction at a hairdresser considering
the beauty awareness,” Proceedings of 2019 National Conference of the Japan Society for
Management Information, Shizuoka University, October 19-20, 2019, 1P1-14, pp.128-131

(in Japanese).

. H. Sone, Y. Tamura, and S. Yamada, “Fault identification method considering high priority
in open source project,” Proceedings of Forum on Information Technology 2019, Okayama

University, September 3-5, 2019, pp.141-142 (in Japanese).

. H. Sone, Y. Tamura, and S. Yamada, “Instant fault identification analysis based on fixing
priority for open source project,” Proceedings of 34th National Conference of the Society
of Project Management, Hokkaido Citizens Actives Center, August 29-30, 2019, pp. 102-
108 (in Japanese).

. Y. Tamura, H. Sone, K. Sugisaki, and S. Yamada, “Analysis of jump characteristic in flex-

ible jump diffusion process model for OSS project effort estimation,” Proceedings of 34th

104

10.

11.

12.

13.

14.

National Conference of the Society of Project Management, Hokkaido Citizens Actives

Center, August 29-30, 2019, pp. 432-435 (in Japanese).

H. Sone, Y. Tamura, and S. Yamada, “Stochastic differential equation modeling for fault fix
time prediction in open source projects and its application,” Tokai University-Tokyo City

University Joint Symposium, Tokyo City University, August 23, 2019 (in Japanese).

H. Sone, Y. Tamura, and S. Yamada, “An estimation method of imperfect effort expendi-
ture rate based on stochastic differential equation model for open source project,” Proceed-
ings of 33th National Conference of the Society of Project Management, Toyo University,

March 14-15, 2019, pp. 325-328 (in Japanese).

H. Sone, K. Ohno, K. Sugisaki, and Y. Tamura, “A study on time-shift viewing prediction
considering TV viewing attitudes,” 2008 Joint Council of Management Science Research
Divisions Data Analysis Competition, The University of Tokyo, February 10, 2019 (in

Japanese).

H. Sone, Y. Tamura, and S. Yamada, “Development of a tool for predicting development
effort for open source projects,” Proceedings of 2018 Autumn National Conference of the
Japan Industrial Management Association, Tokai University, October 27-28, 2018, pp. 22-
23 (in Japanese).

H. Sone, Y. Tamura, and S. Yamada, “Stochastic differential equation modeling for devel-
opment effort estimation and its application in open source project,” Proceedings of 32th
National Conference of the Society of Project Management, Doshisha University, August

30-31, 2018, pp. 439-443 (in Japanese).

Software Tools

1.

H. Sone, Y. Tamura, and S. Yamada, EVA Based on SDE Model for OSS Project (Earned
Value Analysis Tool Based on Stochastic Differential Equation Model for Open Source

Software Project), http://www.tam.eee.yamaguchi-u.ac.jp/

105

Awards

1. FIT Encouragement Award
Hironobu Sone, “Fault identification method considering high priority in open source project,”
Proceedings of Forum on Information Technology 2019, Okayama University, September

3-5, 2019, pp.141-142 (in Japanese).

2. Student Presentation Award Encouragement Award
Hironobu Sone, “Instant fault identification analysis based on fixing priority for open
source project,” Proceedings of 34th National Conference of the Society of Project Man-

agement, Hokkaido Citizens Actives Center, August 29-30, 2019, pp. 102-108 (in Japanese).

3. Student Presentation Award Outstanding Performance Award
Hironobu Sone, “An estimation method of imperfect effort expenditure rate based on stochas-
tic differential equation model for open source project,” Proceedings of 33th National Con-
ference of the Society of Project Management, Toyo University, March 14-15, 2019, pp.
325-328 (in Japanese).

4. Student Presentation Award Outstanding Performance Award
Hironobu Sone, “Stochastic differential equation modeling for development effort estima-
tion and its application in open source project,” Proceedings of 32th National Conference
of the Society of Project Management, Doshisha University, August 30-31, 2018, pp. 439-
443 (in Japanese).

106

Appendix

Example of development style in Bugzilla

In Chapter 2.5.2, we have discussed bug tracking system. The status transition diagram of details

in Bugzilla is shown in Fig. 8.1.

New bug from a user with can Bug is reopened,
confirm or a product without UNCONFIRMED --,{vas never confirmed
UNCOMNFIRMED state Bug confirmed or "\\

receivesenough votes | N

Possible resolutions: Dexlsosi':; it::es

FIXED /|

DUPLICATE _ NEW

WONTFIX -

VWORKSFORME g‘ﬁ::fghe’g

INVARIED |

ﬁ:ég 2 I " bevelopment Is
ASSIGNED il | finished with bug

Developer takes

possession-” | i
Issue is resolved — |
[- _— RESOLVED -
3 QA not satisfie - A verifies solution
with solution - T _ worked) “
3 \ Bug is recpened 3
¥ REOPEN VERIFIED
= Bugis recpened Bug is closed

Bug is closed -

CLOSED Li=—=2

Fig. 8.1: Example of development style in Bugzilla.

107

Application of the proposed method

For using SRGM, we need to estimate parameters, & , 3, ¢ and . In this thesis, we have
estimated the parameters by the method of maximum likelihood.
The estimation method of unknown parameters o, 3, ¢ and & in Egs. (4.11) - (4.13) is pre-

sented. The joint probability distribution function of the process Q(¢) as

P(t1, y15 t, y25 -+ 3 tk, YK)

EPI‘[Q(II) <yi, -, Qtx) < yk|Q(to) :0]. (8.1)

The probability density of Eq. (8.1) is denoted as

IKP(t1, y1; ta,y2; -+ 5 1k, YK
p(ti, yis t, yo5 -5 tg, YK) = (1, ¥ Y Y)- (8.2)
dy19yz---dyk

Since E(t) takes on continuous values, the likelihood function, /, for the observed data (., yx) (k =

1,2,---,K) is constructed as follows:

I=p(t, y15 t2, y25 ==+ 5 tk, YK)- (8.3)

For convenience in mathematical manipulations, the following logarithmic likelihood function is

used:
L =logl. (8.4)

The maximum-likelihood estimates a*, *, ¢*, and * are the values making L in Eq. (8.4)
maximize. These can be obtained as the solutions of the following simultaneous likelihood equa-

tions [43]:

oL JdL JL JL

108

Results of Analyses of Various Proposed Models not Described
in Individual Chapters

This Appendix contains the figures not included in the main chapters.

OSS-oriented EVM in Chapter 4

In Chapter 4, the parameters maintenance effort, the number of potential faults and number of
resolved faults were estimated. In particular, we have not shown all of the model equations in

Chapter 4, so the remaining figures are shown below.

109

DATA Planned Value —— Sample Path (PV) —— Estimate (PV)

3e+05 -
E 2405
05
<
a
z
<
z
s
e
= let05 -
m
0e+00 -
0 50 100 150 200
TIME (WEEKS)

Fig. 8.2: The cumulative maintenance effort expenditures as PV in LibreOffice Ver.
7.2 project by using Egs. (4.8) and (4.11).

DATA Actual — Sample Path —— Estimate

2000000 =

1500000 =
—_
=
<
a
Z

< 1000000-
S
=
-4
o
e
=)
m

500000 =

0-

' ' ' ' '
0 50 100 150 200
TIME (DAYS)

Fig. 8.3: The cumulative maintenance effort expenditures as PV in LibreOffice Ver.
7.2 project by using Egs. (4.10) and (4.13).

110

DATA —— Actual Cost — Sample Path (AC) —— Estimate (AC)

—~ le+06 -
5
<
a
z
<
z
Z
= Se+05-
5
m

0e+00-

0 50 100 150 200
TIME (WEEKS)

Fig. 8.4: The cumulative maintenance effort expenditures as AC in LibreOffice Ver.
7.2 project by using Egs. (4.8) and (4.11).

DATA —— Actual Cost — Sample Path (AC) —— Estimate (AC)

2000000 -
1500000 -

1000000 -

EFFORT (MAN*DAYS)

500000 =

' '
0 50 100 150 200

TIME (WEEKS)

Fig. 8.5: The cumulative maintenance effort expenditures as AC in LibreOffice Ver.
7.2 project by using Egs. (4.10) and (4.13).

111

DATA — Actual — Sample Path — Estimate

600 -

400 -

200-

NUMBER OF FAULT

' ' ' ' '
0 50 100 150 200

TIME (WEEKS)

Fig. 8.6: The cumulative estimated number of potential faults in LibreOffice Ver. 7.2
project by usingEqgs. (4.9) and (4.12).

DATA — Actual — Sample Path — Estimate

500 -

400 -

300-

NUMBER OF FAULT

100 -

' ' '
0 50 100 150 200

TIME (WEEKS)

Fig. 8.7: The cumulative estimated number of potential faults in LibreOffice Ver. 7.2
project by using Egs. (4.10) and (4.13).

112

DATA — Actual — Sample Path — Estimate

3000 -

2000-

NUMBER OF FAULT

1000 -

' ' ' ' '
0 50 100 150 200

TIME (WEEKS)

Fig. 8.8: The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2
project by using Eqgs. (4.8) and (4.11).

DATA —— Actual — Sample Path — Estimate

10000 -

7500 -

5000 -

NUMBER OF FAULT

2500

TIME (WEEKS)

Fig. 8.9: The cumulative estimated number of resolved faults in LibreOffice Ver. 7.2
project by using Eqgs. (4.9) and (4.12).

113

Fault fixing time transition prediction in Chapter 5

In Chapter 5, the parameters maintenance effort, number of potential faults and number of re-
solved faults were estimated. In particular, we have not shown all of the model equations in
Chapter 35, so the remaining figures are shown below.

In Chapter 5, we estimated parameters using three SRGMs to predict the fault fixing time
transition. In particular, we have not shown the prediction results for all model equations in

Chapter 5. Therefore, the remaining figures are presented below.

DATA Sample Path(delay—s) —— Estimate(delay—s) Actual Fix—Time

9000 -

6000 -

3000 -

FIX-TIME (DAYS)

0 100 200 300

TIME (WEEKS)

Fig. 8.10: Prediction result of fault fixing time transition in the delayed S-shaped
model by using Eq. (5.2).

114

DATA —— Actual Fix-Time —— Sample Path(inf) —— Estimate(inf)

9000 -

6000 -

3000 -

FIX-TIME (DAYS)

fooocpbooobocobocobocoobooosd

ool

0 1(‘)0 2(I)0 3(I)0

TIME (WEEKS)

Fig. 8.11: Prediction result of fault fixing time transition in the infection S-shaped
model by using Eq. (5.3).

DATA —— Estimate(exp) —— Estimate(delay—s) —— Estimate(inf) —— Actual Fix—Time

2000~

1500 -

1000 -

FIX-TIME (DAYS)

500-

TIME (WEEKS)

Fig. 8.12: Comparison of measured and expected fault fixing time transition in the
three SRGMs.

115

DATA Planned Value — Sample Path (Planned Value) Estimate (Planned Value)

2000000 -

—
s e
2 1500000- e
Q ,/"‘V
* g
=
< 1000000- S
= v
&
o V4
& e
m v
500000 - gy
L
A/./"
y
.
. .
0 50 100 150 200
TIME (WEEKS)

Fig. 8.13: The cumulative maintenance effort expeditures as PV in OpenStack Ver. 16
project by using Egs. (4.9) and (4.12).

Optimum maintenance problem in Chapter 7

In Chapter 7, we have derived the OSS-oriented EVM for the OpenStack version 16 project.
However, we have not shown the prediction results when the appropriate SRGMs are applied for
maintenance effort and the number of faults prediction, respectively. In this chapter, we show the

prediction results using the SRGMs that were not shown in Chapter 7.

116

DATA Actual Cost — Sample Path (Actual Cost) — Estimate (Actual Cost)

2e+06-

le+06-

EFFORT (MAN*DAYS)

0et+00-
' ' '
0 50 100 150 200

TIME (WEEKS)

Fig. 8.14: The cumulative maintenance effort expeditures as AC in OpenStack Ver. 16
project by using Egs. (4.9) and (4.12).

DATA Actual — Sample Path —— Estimate
3000 -
2000 -
2
=
=
o
-7
j5a}
s
5 1000-
Z
0-
' ' ' ' '
0 50 100 150 200
TIME (WEEKS)

Fig. 8.15: The cumulative estimated number of potential faults in OpenStack Ver. 16
project by using Egs. (4.10) and (4.13).

117

DATA — Actual Resolved Fault — Sample Path (Resolved Fault) — Estimate (Resolved Fault)

4000 -

3000 -

2000-

NUMBER OF FAULT

1000~

TIME (WEEKS)

Fig. 8.16: The cumulative estimated number of resolved faults in OpenStack Ver. 16
project by using Egs. (4.9) and (4.12).

118

