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Hyperspectral (HS) imaging can capture the detailed spectral signature of each
spatial location of a scene and leads to better understanding of different material
characteristics than traditional imaging systems. However, existing HS sensors can
only provide low spatial resolution images at a video rate in practice. Thus recon-
structing high-resolution HS (HR-HS) image via fusing a low-resolution HS (LR-HS)
image and a high-resolution RGB (HR-RGB) image with image processing and ma-
chine learning technique, called as hyperspectral image super resolution (HSI SR),
has attracted a lot of attention. Existing methods for HSI SR are mainly categorized
into two research directions: mathematical model based method and deep learning
based method. Mathematical model based methods generally formulate the degra-
dation procedure of the observed LR-HS and HR-RGB images with a mathematical
model and employ an optimization strategy for solving. Due to the ill-posed essence
of the fusion problem, most works leverage the hand-crafted prior to model the un-
derlying structure of the latent HR-HS image, and pursue a more robust solution of
the HR-HS image. Recently, deep learning-based approaches have evolved for HS
image reconstruction, and current efforts mainly concentrated on designing more
complicated and deeper network architectures to pursue better performance. Al-
though impressive reconstruction results can be achieved compared with the math-
ematical model based methods, the existing deep learning methods have the fol-
lowing three limitations. 1) They are usually implemented in a fully supervised
manner, and require a large-scale external dataset including the degraded observa-
tions: the LR-HS/HR-RGB images and their corresponding HR-HS ground-truth
image, which are difficult to be collected especially in the HSI SR task. 2) They aim
to learn a common model from training triplets, and are undoubtedly insufficient to
model abundant image priors for various HR-HS images with rich contents, where
the spatial structures and spectral characteristics have considerable difference. 3)
They generally assume that the spatial and spectral degradation procedures for cap-
turing the LR-HS and HR-RGB images are fixed and known, and then synthesize
the training triplets to learn the reconstruction model, which would produce very
poor recovering performance for the observations with different degradation pro-
cedures. To overcome the above limitations, our research focuses on proposing the
unsupervised learning-based framework for HSI SR to learn the specific prior of
an under-studying scene without any external dataset. To deal with the observed
images captured under different degradation procedures, we further automatically
learn the spatial blurring kernel and the camera spectral response function (CSF)
related to the specific observations, and incorporate them with the above unsuper-
vised framework to build a high-generalized blind unsupervised HSI SR paradigm.
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Moreover, Motivated by the fact that the cross-scale pattern recurrence in the nat-
ural images may frequently exist, we synthesize the pseudo training triplets from the
degraded versions of the LR-HS and HR-RGB observations and themself, and con-
duct supervised and unsupervised internal learning to obtain a specific model for
the HSI SR, dubbed as generalized internal learning. Overall, the main contribu-
tions of this dissertation are three-fold and summarized as follows:

1. A deep unsupervised fusion-learning framework for HSI SR is proposed. In-
spired by the insights that the convolution neural networks themself possess large
amounts of image low-level statistics (priors) and can more easy to generate the im-
age with regular spatial structure and spectral pattern than noisy data, this study
proposes an unsupervised framework to automatically generating the target HS im-
age with the LR-HS and HR-RGB observations only without any external training
database. Specifically, we explore two paradigms for the HS image generation: 1)
learn the HR-HS target using a randomly sampled noise as the input of the gen-
erative network from data generation view; 2) reconstructing the target using the
fused context of the LR-HS and HR-RGB observations as the input of the generative
network from a self-supervised learning view. Both paradigms can automatically
model the specific priors of the under-studying scene by optimizing the parameters
of the generative network instead of the raw HR-HS target. Concretely, we employ
an encoder-decoder architecture to configure our generative network, and generate
the target HR-HS image from the noise or the fused context input. We assume that
the spatial and spectral degradation procedures for the under-studying LR-HS and
HR-RGB observation are known, and then can produce the approximated version
of the observations by degrading the generated HR-HS image, which can intuitively
used to obtain the reconstruction errors of the observation as the loss function for
network training. Our unsupervised learning framework can not only model the
specific prior of the under-studying scene to reconstruct a plausible HR-HS estima-
tion without any external dataset but also be easy to be adapted to the observations
captured under various imaging conditions, which can be naively realized by chang-
ing the degradation operations in our framework.

2. A novel blind learning method for unsupervised HSI SR is proposed. As
described in the above deep unsupervised framework for HSI SR that the spatial
and spectral degradation procedures are required to be known. However, differ-
ent optical designs of the HS imaging devices and the RGB camera would cause
various degradation processes such as the spatial blurring kernels for capturing LR-
HS images and the camera spectral response functions (CSF) in the RGB sensors,
and it is difficult to get the detailed knowledge for general users. Moreover, the
concrete computation in the degradation procedures would be further distorted un-
der various imaging conditions. Then, in real applications, it is hard to have the
known degradation knowledge for each under-studying scene. To handle the above
issue, this study exploits a novel parallel blind unsupervised approach by automat-
ically and jointly learning the degradation parameters and the generative network.
Specifically, according to the unknown components, we propose three ways to solve
different problems: 1) a spatial-blind method to automatically learn the spatial blur-
ring kernel in the capture of the LR-HS observation with the known CSF of the RGB
sensor; 2) a spectral-blind method to automatically learn the CSF transformation
matrix in the capture of the HR-RGB observation with known burring kernel in
the HS imaging device; 3) a complete-blind method to simultaneously learn both
spatial blurring kernel and CSF matrix. Based on our previously proposed unsu-
pervised framework, we particularly design the special convolution layers for par-
allelly realizing the spatial and spectral degradation procedures, where the layer



parameters are treated as the weights of the blurring kernel and the CSF matrix for
being automatically learned. The spatial degradation procedure is implemented by
a depthwise convolution layer, where the kernels for different spectral channel are
imposed as the same and the stride parameter is set as the expanding scale factor,
while the spectral degradation procedure is achieved with a pointwise convolution
layer with the output channel 3 to produce the approximated HR-RGB image. With
the learnable implementation of the degradation procedure, we construct an end-to-
end framework to jointly learn the specific prior of the target HR-HS images and the
degradation knowledge, and build a high-generalized HSI SR system. Moreover,
the proposed framework can be unified for realizing different versions of blind HSI
SR by fixing the parameters of the implemented convolution as the known blurring
kernel or the CSEF, and is highly adapted to arbitrary observation for HSI SR.

3. A generalized internal learning method for HSI SR is proposed. Motivated
by the fact that natural images have strong internal data repetition and the cross-
scale internal recurrence, we further synthesize labeled training triplets using the
LR-HS and HR-RGB observation only, and incorporate them with the un-labeled
observation as the training data to conduct both supervised and unsupervised learn-
ing for constructing a more robust image-specific CNN model of the under-studying
HR-HS data. Specifically, we downsample the observed LR-HS and HR-RGB image
to their son versions, and produce the training triplets with the LR-HS/HR-RGB
sons and the LR-HS observation, where the relation among them would be same
as among the LR-HS/HR-RGB observations and the HR-HS target despite of the
difference in resolutions. With the synthesized training samples, it is possible to
train a image-specific CNN model to achieve the HR-HS target with the observation
as input, dubbed as internal learning. However, the synthesized labeled training
samples usually have small amounts especially for a large spatial expanding fac-
tor, and the further down-sampling on the LR-HS observation would bring severe
spectral mixing of the surrounding pixels causing the deviation of the spectral mix-
ing levels at the training phase and test phase. Therefore, these limitations possibly
degrade the super-resolved performance with the naive internal learning. To miti-
gate the above limitations, we incorporate the naive internal learning with our self-
supervised learning method for unsupervised HSI SR, and present a generalized
internal learning method to achieve more robust HR-HS image reconstruction.
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Chapter 1

Introduction

Inrecent decades, hyperspectral imaging technologies have made significant progress
in providing hyperspectral images for applications ranging from agriculture and as-
tronomy to surveillance and medicine. However, the images acquired by existing
hyperspectral imaging systems are difficult to provide all possible required detail
distributions in all domains, such as spatial, temporal or spectral, at the same time.
Current research efforts have focused on improving the spatial resolution of hyper-
spectral images. Hyperspectral image super-resolution is an effective means to in-
crease the spatial resolution of hyperspectral images. In this dissertation, we fo-
cus on how to achieve hyperspectral image super-resolution. Thus, we give a brief
overview of hyperspectral imaging technologies, hyperspectral images and their ap-
plications. Then we briefly introduce different super-resolution methods and sum-
marize their basic principles.

1.1 Hyperspectral Imaging Technology

Hyperspectral imaging technology captures detailed information about the compo-
sition and physical properties by measuring the reflected or emitted radiation in
many narrow, contiguous wavelength bands. It is a cutting-edge scientific tool that
has revolutionized the way we gather and analyze data about the natural world.
This technology works by capturing detailed information about an object or scene
across a broad range of wavelengths, creating a highly accurate and detailed image
that can reveal key information about its composition and properties. At its core,
hyperspectral imaging uses specialized cameras and spectrometers to capture light
across the electromagnetic spectrum, from visible light to infrared and beyond. This
data is then processed and analyzed to create an image that displays the unique
spectral signatures of different materials in the scene. This allows scientists and re-
searchers to identify specific materials, minerals, and chemicals, and to study the
interactions between different substances in the environment.

Specifically, hyperspectral imaging sensors can capture the detailed distribution
of the spectral direction in each spatial location of a scene and provide more abun-
dant spectral information of the object than a generic color image. As a result, hy-
perspectral (HS) images have been widely used in various fields, such as remote
sensing [1,2], mineral exploration [3], computer vision [4] and medical diagnosis [5],
and show promising performances. However, in real imaging systems, the acquired
images generally have critical tradeoffs between spatial and spectral resolutions due
to the limited amount of incident energy and the interference of imaging environ-
ments. Then, the existing HS imaging systems usually provide data only with a
large number of spectral bands but the low resolution in the spatial domain. On the
other hand, the multispectral imaging systems or general color image sensors can
obtain high spatial resolution but with a small number of spectral bands (e.g., the
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Multispectral imaging Hyperpectral imaging

s

Wavelenth (um)

Response
Response

Wavelenth (um)

Multispectral image:

3 ~ 10 spectrum bands Hyperspectral image:
(e.g. RGB images: 3 bands) 10 ~ thousands spectrum bands

FIGURE 1.1: Illustrated examples of hyperpsectral images and RGB
images.

standard RGB image). In Fig. 1.1, we can see examples of hyperpsectral images and
RGB images. In conclusion, hyperspectral imaging technology is a highly innova-
tive and valuable tool that has revolutionized the way we gather and analyze data
about the natural world. Whether it is used to monitor crops, track wildlife, or detect
enemy targets, hyperspectral imaging provides us with a wealth of information that
can help us make more informed decisions and improve our understanding of the
world around us. Despite its challenges, hyperspectral imaging technology is poised
to play an increasingly important role in a wide range of fields, and its impact will
continue to be felt for years to come.

1.2 Applications of Hyperspectral Images

Hyperspectral images are a type of remote sensing data that provide detailed infor-
mation about the composition and properties of objects and materials. These images
are captured by sensors that collect data across a wide range of the electromagnetic
spectrum, typically from visible light to shortwave infrared. The result is a large
number of narrow, contiguous bands of data that provide highly specific informa-
tion about the materials and substances present in the scene being imaged.

One of the most important applications of hyperspectral imaging technology is
in the field of remote sensing (see as Fig. 1.2 (a)). By using satellite and airborne
platforms, scientists are able to gather data about large areas of land and ocean,
including remote and inaccessible regions. This has important implications for a
wide range of applications, including agriculture, environmental monitoring, and
resource management. For example, hyperspectral imaging can be used to monitor
crop growth and health, detect environmental pollutants and changes in land use,
and track the movement of wildlife.
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Another important application of hyperspectral images is in agriculture. By an-
alyzing the spectral characteristics of crops, farmers can identify problems such as
nutrient deficiencies, pests, and diseases. This information can then be used to op-
timize fertilizer application and make informed decisions about pest control, ulti-
mately leading to improved crop yields and reduced waste.

Other key applications of hyperspectral images is in mineral and resource ex-
ploration. By analyzing the unique spectral signatures of minerals, geologists and
mining companies can identify the presence and distribution of valuable minerals,
such as copper, iron, and gold, in the subsurface. This information can be used to
guide drilling and excavation, reducing the time and cost required for mineral ex-
ploration.

Hyperspectral images also have important applications in environmental moni-
toring and management (see as Fig. 1.2 (b)). By analyzing the spectral characteristics
of forests, wetlands, and other ecosystems, scientists can monitor changes in vegeta-
tion cover and track the progression of land-use changes, such as deforestation and
urbanization. This information can be used to better understand the impacts of hu-
man activities on the environment and make informed decisions about conservation
and land-use planning.

In addition, hyperspectral images have a wide range of military and security
applications. By analyzing the spectral signatures of objects and materials, military
and intelligence agencies can identify and track the movement of weapons, vehicles,
and personnel. This information can be used to support military operations and
enhance national security. Hyperspectral images is also increasingly being used in
the medical field, where it is being used to diagnose and monitor a range of health
conditions, including skin cancer and other diseases (see as Fig. 1.2 (c)).

Overall, hyperspectral images are a valuable tool for a wide range of applica-
tions, from mineral exploration and agriculture to environmental monitoring and
military operations. Their ability to provide highly specific information about the
composition and properties of objects and materials makes them a valuable resource
for a variety of industries and disciplines.

(a) Remote sensing (b) Environmental monitoring (c) Medical diagnose

FIGURE 1.2: Applications of hyperspectral images

1.3 Limitations of Hyperspectral Images

Hyperspectral images, also known as hyperspectral data or hyperspectral cubes,
are a type of data product obtained from hyperspectral imaging technology that
captures information about the object across a wide range of spectral bands. Despite



4 Chapter 1. Introduction

the vast amount of information they provide, hyperspectral images have limitations
that need to be considered when interpreting and analyzing the data.

One of the main limitations of hyperspectral images is their high cost of the spe-
cialized cameras and spectrometers required to capture the data. Hyperspectral sen-
sors are expensive to build, launch, and maintain, and the data acquisition process
is time-consuming and requires specialized equipment. This makes it challenging
for researchers and scientists to access and use hyperspectral data in their work and
can limit the widespread adoption of the technology and limit its use to only a few
well-funded institutions.

Hyperspectral images also face limitations in terms of atmospheric correction.
The Earth’s atmosphere can cause significant errors in the data acquired from hy-
perspectral sensors, making it necessary to apply atmospheric correction algorithms
to the data before analysis. However, these algorithms are not always accurate, and
errors can remain in the data, affecting the accuracy of the results.

Additionally, the data size of hyperspectral images is very large, making it chal-
lenging to process and analyse. The data must be pre-processed, and algorithms
must be developed to extract useful information from the data, adding another layer
of complexity to the analysis process. Processing and analysing the vast amounts
of data generated by hyperspectral imaging can be a time-consuming and compu-
tationally intensive process, requiring specialized software and high-performance
computing resources.

The biggest limitation is the limited spatial resolution of hyperspectral images.
Unlike other hyperspectral imaging technologies, such as Landsat or Sentinel, hy-
perspectral sensors have a lower spatial resolution, which means that objects on the
ground are often blurred and appear as larger pixels. This can make it difficult to
accurately identify and distinguish between different objects and materials on the
ground. However, this high spectral resolution comes at the cost of lower spatial
resolution, which is the ability to distinguish fine features and details in the image.
The spatial resolution of a hyperspectral image is determined by the size of the pix-
els, which can be affected by various factors such as the altitude of the platform, the
field of view of the sensor, and the available bandwidth. Low spatial resolution in
hyperspectral images can have significant impacts on the accuracy and reliability of
the derived information, particularly in applications that require high spatial accu-
racy, such as urban planning, land cover mapping, and crop monitoring. This paper
will discuss some of the effects of low spatial resolution in hyperspectral images,
including:

(1) Blurring of features: Low spatial resolution can cause features in the image
to become blurred, making it difficult to distinguish between different objects or
surfaces. This can lead to errors in identifying and classifying different materials,
especially in complex and densely populated areas.

(2) Loss of fine details: Hyperspectral images with low spatial resolution can
miss important details that are crucial for accurate analysis and interpretation, such
as small structures, vegetation patterns, and subtle changes in land use. This can
limit the ability to detect and monitor changes over time, and to identify potential
problems and opportunities.

(3) Reduced accuracy of quantitative analysis: Low spatial resolution can also af-
fect the accuracy of quantitative analysis, such as calculating the surface reflectance,
emissivity, or radiance of a target. The spectral signature of an object can be altered
by the mixing of signals from adjacent pixels, resulting in biased or uncertain results.

(4) Increased noise and data reduction: To reduce the amount of data that needs
to be transmitted and stored, hyperspectral images are often resampled to lower
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spatial resolution, which can result in increased noise and loss of information. This
can also make it more difficult to detect and remove artifacts from the image, such
as noise, interference, or atmospheric effects.

In conclusion, hyperspectral images provide a wealth of information about the
physcial object and are a valuable tool for scientific research and environmental
monitoring. However, their high cost, atmospheric correction limitations, and large
data size present challenges that need to be considered while analyzing and inter-
preting the data. Advances in hyperspectral imaging technology and data process-
ing algorithms are expected to overcome these challenges in the near future. Despite
these limitations, low spatial resolution in hyperspectral images can have most sig-
nificant impacts on the quality and usefulness of the derived information. There-
fore, it is important to carefully consider the spatial resolution requirements of each
application, and to use appropriate techniques and algorithms to overcome the lim-
itations of low spatial resolution. We will disscuss about the enhancement methods
to improve the spatial resolution of hypestral images in the next section.

1.4 Resolution Enhancement of Hyperspectral Images

Resolution enhancement of hyperspectral images refers to the process of improving
the spatial resolution of a hyperspectral image. Hyperspectral images are images
captured in multiple wavelength bands, and they are typically of lower spatial res-
olution compared to traditional color images. Resolution enhancement techniques
aim to improve the spatial detail of the image by increasing its resolution. There
are several methods for enhancing the resolution of hyperspectral images, including
deconvolution techniques, and feature-based methods, super-resolution algorithms.
In this dissertation, we mainly focus on super-resolution algorithms.

In a word, the goal of resolution enhancement is to improve the accuracy and
detail of the information that can be obtained from a hyperspectral image. This
information can be used in a variety of applications, including remote sensing, agri-
culture, and environmental monitoring.

1.4.1 Spatial Resolution Enhancement

Spatial resolution enhancement of hyperspectral images is a process of increasing
the level of detail and sharpness in the spatial dimension of hyperspectral images.
This can be achieved using various techniques that aim to either upsample or super-
resolve the spatial information in the hyperspectral data. Some common techniques
are used for spatial resolution enhancement of hyperspectral images, such as inter-
polation [6] and multi-resolution analysis [7]. For interpolation, this technique in-
volves increasing the resolution of an image by filling in the missing values between
the existing pixels. Interpolation techniques include bicubic, bilinear, and nearest-
neighbor methods [8]. Multi-resolution analysis involves decomposing the hyper-
spectral image into multiple levels of spatial frequency components. These compo-
nents are then processed to enhance the spatial resolution of the image. Overall, the
choice of spatial resolution enhancement technique depends on the specific applica-
tion and the characteristics of the hyperspectral data being processed. It is important
to carefully evaluate the results of any spatial resolution enhancement technique to
ensure that the spectral information of the hyperspectral data is not compromised
during the process.
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1.4.2 Spectral Resolution Enhancement

Spectral resolution enhancement of hyperspectral images is the process of increas-
ing the spectral resolution of an image, which involves obtaining additional spectral
bands between the original spectral bands of the image. The spectral resolution is
determined by the number of spectral bands in the image, and the narrower the spec-
tral bands, the higher the spectral resolution. There are several methods for spectral
resolution enhancement of hyperspectral images, including Interpolation [9], band
sharpening [10], spectral unmixing [11], hyperspectral image fusion [12]. Interpo-
lation method [13] involves using interpolation techniques to estimate the values of
additional spectral bands between the original spectral bands. The most commonly
used interpolation techniques for spectral resolution enhancement are linear inter-
polation, cubic interpolation, and spline interpolation. Band sharpening method [14]
involves using a high-resolution multispectral image to sharpen the spectral bands
of a lower-resolution hyperspectral image. The multispectral image is used to esti-
mate the high-frequency information in the hyperspectral image, which is then used
to sharpen the spectral bands. Spectral unmixing method [11] involves decomposing
the hyperspectral image into its constituent spectral signatures and then using these
signatures to estimate the additional spectral bands. Spectral unmixing is based on
the assumption that the hyperspectral image is a linear mixture of the constituent
spectral signatures. Hyperspectral image fusion method [15] involves fusing multi-
ple hyperspectral images with different spectral resolutions to obtain an image with
higher spectral resolution. The fusion can be performed in the spectral domain, spa-
tial domain, or both. It is important to note that spectral resolution enhancement can
increase the information content of the image, but it can also increase the noise and
artifacts in the image. Therefore, it is important to carefully choose the appropriate
method and to tune its parameters to obtain the best possible results.

Feature-based methods are another class of techniques for spectral resolution
enhancement of hyperspectral images that exploit the statistical dependencies be-
tween the spectral and spatial features of the image. These methods aim to recover
the high-frequency information in the spectral domain that is lost due to the limited
spectral resolution of the imaging system. The most commonly used feature-based
methods for spectral resolution enhancement of hyperspectral images are various.
Sparse representation-based method [16] involves representing the hyperspectral
image as a sparse linear combination of a small number of basis vectors. The basis
vectors capture the spectral and spatial features of the image. The method aims to re-
cover the high-frequency information in the spectral domain by solving an optimiza-
tion problem that promotes sparsity in the representation. Non-local means-based
method [17] involves exploiting the redundancy in the spatial and spectral features
of the image to estimate the missing high-frequency information in the spectral do-
main. The method uses a patch-based approach to estimate the spectral values of the
missing high-frequency bands. Principal component analysis-based method [18] in-
volves projecting the hyperspectral image onto a lower-dimensional space that cap-
tures the most significant spectral and spatial features of the image. The method
aims to recover the high-frequency information in the spectral domain by projecting
the image back onto the high-dimensional space. Feature-based methods can pro-
vide good results, but they require careful tuning of parameters and a large amount
of training data for deep learning-based methods. The choice of the appropriate
method and parameters depends on the specific application and the characteristics
of the hyperspectral data.
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1.4.3 Fusion Enhancement

Fusion enhancement is a technique for improving the quality and information con-
tent of hyperspectral images by combining them with other types of data, such as
multispectral or panchromatic images. The basic idea behind fusion enhancement
is to leverage the complementary information provided by different types of data to
improve the spatial and spectral resolution, enhance the contrast and texture, and
reduce the noise and artifacts of the hyperspectral image. Multi-resolution analysis-
based methods [19] involves decomposing the hyperspectral and other types of data
into different frequency bands using multi-resolution analysis techniques such as
wavelet or curvelet transforms. The method combines the information from the
different frequency bands to enhance the spatial and spectral resolution of the hy-
perspectral image. Principal component analysis-based method [20] involves using
principal component analysis (PCA) [21] to extract the most significant spatial and
spectral features from the hyperspectral and other types of data. The method com-
bines the principal components of the different data sources to enhance the contrast
and texture of the hyperspectral image. Non-negative matrix factorization-based
method [22] involves using non-negative matrix factorization (NMF) to extract the
pure spectral components from the hyperspectral and other types of data. The
method combines the spectral components of the different data sources to enhance
the spectral resolution of the hyperspectral image. Deep learning-based method [23]
involves using deep neural networks to learn the mapping between the hyperspec-
tral and other types of data. The networks are trained using large amounts of la-
beled data to extract the complementary information from the different data sources
and enhance the quality and information content of the hyperspectral image. How-
ever, fusion enhancement techniques should carefully select and preprocess the in-
put data, as well as careful tune of parameters for the different methods.
Feature-based methods for fusion enhancement of hyperspectral images aim to
exploit the complementary information of different data sources by selecting and
combining relevant features from the input data. The basic idea behind feature-
based methods is to extract the most informative and discriminative features from
each data source and use them to enhance the quality and information content of
the hyperspectral image. Principal component analysis (PCA) based method [24]
involves using PCA to extract the most significant spatial and spectral features from
the hyperspectral and other types of data. The method combines the principal com-
ponents of the different data sources to enhance the contrast and texture of the hy-
perspectral image. Independent component analysis (ICA) based method [25] in-
volves using ICA to extract the statistically independent components from the hy-
perspectral and other types of data. The method combines the independent compo-
nents of the different data sources to enhance the spectral and spatial resolution of
the hyperspectral image. Sparse representation based method [26] involves repre-
senting the hyperspectral and other types of data as a sparse linear combination of
some overcomplete dictionary, such as wavelet or curvelet transforms. The method
selects the most relevant atoms from the dictionary and combines them to enhance
the quality and information content of the hyperspectral image. Joint subspace
learning based method [27] involves learning a common subspace that captures the
shared and complementary information of the hyperspectral and other types of data.
The method uses techniques such as canonical correlation analysis (CCA) or joint
non-negative matrix factorization (JNMF) to learn the joint subspace and enhance
the quality and information content of the hyperspectral image. But, the appropriate
features and preprocessing of the input data, as well as careful tuning of parameters
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for the different methods are challenges in feature-based methods.

Super-resolution algorithms are commonly used in fusion enhancement meth-
ods that aim to increase the spatial or spectral resolution of hyperspectral images by
fusing them with other types of data that have higher spatial or spectral resolution.
The basic idea behind super-resolution algorithms is to use the high-resolution in-
formation of the other data sources to enhance the spatial or spectral resolution of
the hyperspectral image. Multi-image super-resolution method [28] involves fusing
multiple low-resolution images of the same scene, which are acquired from different
viewpoints or at different times, to generate a high-resolution image. The method
uses techniques such as patch-based methods, super-resolution convolutional neu-
ral networks, or deep learning-based methods to learn the mapping between the
low-resolution and high-resolution images and generate a high-resolution image.
Hyperspectral and panchromatic image fusion method [29] involves fusing the hy-
perspectral and panchromatic images, which have different spatial resolutions, to
generate a high-resolution hyperspectral image. The method uses techniques such
as intensity-hue-saturation (IHS) transformation, wavelet-based methods, or sparse
representation-based methods to fuse the information of the two data sources and
generate a high-resolution hyperspectral image. Hyperspectral and multispectral
image fusion method [30] involves fusing the hyperspectral and multispectral im-
ages, which have different spectral resolutions, to generate a high-resolution hy-
perspectral image. The method uses techniques such as regression-based methods,
tensor-based methods, or deep learning-based methods to learn the mapping be-
tween the two data sources and generate a high-resolution hyperspectral image.

1.5 Contributions of the Dissertation

Input

Noise/RG]IBJ /Observed Generative Prior Network

Imace —— Fusion Learning SR «— +

lg (Chapter 3) Degradated Approximating Operations
Unsupervised . . Unknown Degradation Method
— «—

HSI SR B"“géﬁgfi‘)‘“g SR (Spatial Blur kernel + Spectral CSF Matrix)

HR-HS . Image-specific Framework

Image |nte;’(r:1haa|pt|;regrn|ng SR (Unsupervised + Supervised network)

FIGURE 1.3: The contribution of this dissertation

First, we proposed a deep unsupervised fusion-learning method for HSI SR is
proposed. In detail, we investigate a framework of hyperspectral image prior with
one noise image or fusion context images as the network input for generating a latent
HR-HS image using only the observed LR-HS and HR-RGB images without previ-
ous preparation of any other training triplets. Based on the fact that a convolutional
neural network (CNN) architecture is capable of capturing a large number of low-
level statistics (priors) of images, our deep unsupervised fusion-learning method
promote the automatic learning of underlying priors of spatial structures and spec-
tral attributes in a latent HR-HS image using only its corresponding degraded ob-
servations. Specifically, we investigated the parameter space of a generative neural
network used for learning the required HR-HS image to minimize the reconstruction
errors of the observations using mathematical relations between data. Moreover,
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special convolutional layers for approximating the degradation operations between
observations and the latent HR-HS image are specifically to construct an end-to-end
unsupervised learning framework for HS image super-resolution. The noise input
leads to large space of parameter search, and lack of spatial and spectral information
to generate a well reconstructed HR-HS image. To improve this, we next leverage
the fused context of the observations for providing the insights of the specific spatial
and spectral priors in the network learning.

Second, we proposed a (semi-)blind learning method for unsupervised HSI SR
is proposed. The above deep unsupervised fusion-learning method for HSI SR uses
the designed loss function formulated by the observed LR-HS and HR-RGB images
only, and recovers the latent HR-HS image in a non-blind way with the known spa-
tial degradation operation and spectral degradation CSF, which lacks of general-
ization in real scenario. Motivated by this improvement potential, we exploited a
(semi-)blind learning method for unsupervised HSI SR, which is capable of recon-
structing the HR-HS image from the observations not only with the known spatial
and spectral degradation operations but also with the unknown spatial or spectral
degradation operations or both unknown. In detail, the semi-blind learning can be
divided in two ways, which are implemented by spatial blind only and the spec-
tral blind only, respectively. For example, the unsupervised adaptation is capable
of learning the spatial degradation operation of the observed LR-HS image but can
only deal with the observed HR-HS image with known CSF, and thus it would be
categorized as semi-blind paradigm for possibly learn the spatial degradation opera-
tions only in the observed LR-HS image. In addition, our proposed method can also
be implemented in a complete blind setting (both unknown spatial down-sampling
kernel for LR-HS image and the unknown CSF for HR-RGB image).

Finally, we proposed a generalized internal learning method for unsupervised
HSI SR is proposed. Inspired by the fact that natural images have strong internal
data repetition and the cross-scale internal recurrence, we employed a generalized
internal learning method for unsupervised HSI SR, and aimed to learn an image-
specific CNN model for each under-studying HR-HS data. With regard to naively
adopting the internal spatial recurrence, the down-sampling operation on the ob-
servations usually causes severe spectral mixing of the surrounding pixels, and thus
the deviation of the spectral mixing levels at the training phase and test phase would
be great large. This domain shift in HSI SR possibly degrades the super-resolved
performance in real experiments. To overcome the above limitations, we present
a generalized internal learning method combined with self-supervised method for
unsupervised HSI SR, which extracts the training triplets from the down-sampled
versions of the observations and the LR-HS image to train a specific CNN model for
the under-studying scene.
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Chapter 2

Hyperspectral Image
Super-Resolution

In hyperspectral (HS) imaging, three-dimensional cubic data with decades or hun-
dreds of wavelength bands are captured. Each spatial point (pixel) contains a high
dimensional vector for recording the light intensity at different wavelengths. Thus,
the images acquired using the HS imaging technology contain not only abundant
spatial structures but also detailed spectral signature and well suited to the sub-
stantial and high-performance analysis of imaged scenes. Having the advantages
of detailed spectral distribution, the HS images were successfully used in various
applications, such as remote sensing [2], food inspection [31-33], image classifica-
tion [34-36] and object detection [37-39], and medicine [40—42], and are capable of
achieving high-performance gain compared with other common RGB images. How-
ever, due to the radiant collection for each narrow-spectrum band in HS imaging
sensors, less radiant energy per pixel and per spectral band measurement of an im-
age scene is anticipated compared with the RGB imaging sensors. To ensure suffi-
cient signal-to-noise ratio, the photo collection must be conducted in a much larger
spatial region. This implies that the spatial resolution must be sacrificed to obtain
detailed spectral information. Therefore, there is a trade-off between spatial and
spectral resolution in real imaging sensors. This means that an HS sensor usually
captures low spatial resolution and detailed spectral distribution (high spectral res-
olution) images. In contrast, common RGB sensors can provide much higher spatial
resolution images but only with RGB color information. There are still some diffi-
culties in acquiring high-resolution data in both spatial and spectral domains from
commercial imaging sensors. Therefore, extensive research is necessary to fuse a
low-resolution HS image (LR-HS) with the corresponding HR-RGB (multispectral)
image for generating an HR-HS image using image processing and machine learn-
ing techniques. These fusion methods for generating HR-HS images are in general
referred to as hyperspectral image super-resolution (HSI SR) methods [43].

Due to its ill-posed nature (the unknown number of variables in a latent HR-
HS image is much larger than the known number of variables in the observations),
multispectral and hyperspectral image fusion is a very challenging task. Most pre-
viously reported methods generally leverage various hand-crafted image priors to
regularize the mathematical degradation model between observations and the latent
HR-HS image. They also explore different optimization strategies to achieve the op-
timal solution. However, since the number of the unknown variables in the HSI-SR
problem is much larger than the number of the known variables in the observed LR-
HS and HR-RGB images, there are many solutions via directly solving the ill-posed
problem with the formulated mathematical model. To narrow the solution space
for providing a more plausible HR-HS image, a lot of previous work leverages the
hand-crafted priors to characterize the underlying structure of latent HR-HS images
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and regularize the mathematical model [44]. The used hand-crafted priors in HSI SR
scenario have evolved under modeling various aspects of the latent HR-HS image
from the physical property of spectral signatures (etc. spectral unmixing model) [45],
sparse representation [46], total variation [47] to similarity structure exploring [48]
and have proven that it can achieve significant performance gain. Based on the
physical properties of the observed spectrum in HS images, one research direction
is the investigation of effective representation of high-dimensional spectral vectors
such as matrix factorization and spectral unmixing [49]. The spectral representation
models were evolved from the fact that HS observations can generally be expressed
as a weighted linear combination of the reflectance function basis and their corre-
sponding fraction coefficients [50]. These models achieve acceptable reconstruction
performance. Subsequently, based on the significant success of sparse representation
in natural image processing, several research studies imposed a sparsity constraint
on the spectral representation [51] as prior knowledge, and attempted to model the
spatial structure and local spectral characteristics by automatically learning the spec-
tral dictionary from the observed HR-RGB and LR-HS images. Additionally, based
on possible low-dimensionality of the spectral space, a low-rank image prior tech-
nique was also adopted for exploring the intrinsic spectral correlation of a latent
HR-HS image. This technique proved capable of reducing the spectral distortion to
some extent [52]. Moreover, some recent research studies extensively exploited the
similarity between image priors of global spatial structures and local spectral struc-
tures to further boost reconstruction performance [53,54]. Although the integration
of various hand-crafted image priors, such as physical spectral mixing, mathemati-
cal sparsity of spectral representation, low-rank property, and similarity resulted in
significant progress regarding the HSI SR performance gain, discovering an optimal
image prior for a specific scene is still an extremely difficult task due to the con-
figuration and texture diversity in both the spatial and spectral domains. Different
priors may be desired for the scenes with various characteristics, and to hammer out
a proper prior to a specific scene remains to be an art.

Recently, the deep convolutional neural network (DCNN) has achieved remark-
able success in various computer vision tasks. The successful application of deep
convolutional neural networks (DCNN) in various computer vision tasks allowed
HSI SR to rely on the DCNN’s powerful learning capabilities [55] for robustly recon-
structing a latent HR-HS image, and demonstrated impressive performance using
various neural network architectures [56]. The HSI SR has manifested the DCNN
scheme can effectively capture the intrinsic characteristics of the latent HS images.
In contrast to the traditional optimization methods, the deep learning (DL) method
is capable of automatically learning the underlying image priors in a latent HR-HS
image instead of exploiting hand-crafted image priors. Using previously collected
training samples consisting of LR-HS, HR-RGB images, and their corresponding
HR-HS images, an HS image prediction model in the training phase can be con-
structed, and the corresponding HR-HS image can be efficiently estimated from its
low-quality observations for learning optimal network parameters [57]. However,
most of the current DL methods are implemented in a fully supervised manner. For
optimal network parameter learning, large-scale training triplets must be collected
in advance. However, this is a difficult task, especially in the HSI SR scenario due
to the high-cost of capturing the HR-HS images. Moreover, the fully supervised DL
paradigm usually suffers from insufficient generalization in real applications and
separate HS image prediction models for different HS datasets must be learned.
More recently, Ulyanov et al. [58] proposed a deep image prior (DIP) learning neural
network and stated that a convolutional neural network itself is capable of capturing
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a large number of low-level image statistics for well reconstructing a natural image,
which can be successfully applied to several image restoration tasks. Sidorov et
al. [59] extended the idea of DIP into deep hyperspectral prior (DHP), and adopted
denoising, inpainting and super-resolution for hyperspectral images. However, the
DHPs only leverage the observed LR-HS image for network training and cannot effi-
ciently learn both the spatial structure and spectral attribute priors for reconstructing
a latent HR-HS image. As mentioned above, it is tough to obtain large-scale train-
ing samples in the HS image reconstruction scenario, especially the label samples
of HR-HS images. On the one hand, self-supervised learning is a general learning
framework via resorting to surrogate tasks that can be formulated using only unsu-
pervised data. Self-supervised techniques have been used for various applications
in a broad range of computer vision topics [60], and manifest feasibility in different
vision tasks.

2.1 Mathematical Model-based Super-Resolution

In recent years, hyperspectral image reconstruction has been actively investigated in
the computer vision and computational photography research community, and sub-
stantial improvement has been achieved. This work mainly focuses on hyperspectral
image super resolution (HSI SR) by fusing the available LR-HS and HR-RGB images
obtained from commercial imaging sensors. In this section, the related research work
is briefly reviewed.

The HSI SR problem, following the fusion paradigm of the observed LR-HS and
HR-RGB images (fusion-based HSI SR), is closely related to a multi-spectral (MS) im-
age pan-sharpening task, where the goal is to merge an LR-MS image with its corre-
sponding HR wide-band panchromatic image [61]. Numerous methods for MS pan-
sharpening, mainly including multi-resolution analysis approaches [62] and compo-
nent substitution methods [63], were proposed. The fusion-based HSI SR problem
can be treated as several pan-sharpening sub-problems, where each band of the HR-
MS (RGB) image can be considered to be a panchromatic image. However, this sim-
plification cannot fully use the spectral correlation and usually leads to significant
spectral distortion in the recovered HR-HS image. In remote sensing, pan-sharping
techniques aim to generate an HR multispectral (HR-MS) image via fusing an LR
multispectral (LR-MS) image with an HR panchromatic image [64], which is closely
related to our investigated HSI SR problem solution. The HS/RGB image fusion
problem can follow the simple pan-sharping method by treating it as several pan-
sharpening sub-problem which means that each color (R, G, B) band of the HR-RGB
image acts as a panchromatic image. Although many pan-sharping methods have
been evaluated, this heuristic approach dramatically suffers from high spectral dis-
tortion due to the insufficient spectral information in a single panchromatic image.

Mathematical model-based methods of hyperspectral super-resolution use math-
ematical models to generate high-resolution hyperspectral images from low-resolution
images. These methods require a prior knowledge of the hyperspectral data. In
mathematical model-based methods of hyperspectral super-resolution, handcrafted
priors refer to the use of prior knowledge about the characteristics of hyperspectral
images to guide the process of generating a high-resolution image. These priors are
often built into the mathematical model used in the super-resolution process. One
of the most commonly used handcrafted priors is sparsity, which assumes that the
hyperspectral image has a sparse representation in some domain, such as wavelet or
Fourier domain. This prior is often used in sparse representation-based methods of
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hyperspectral super-resolution. The sparsity prior assumes that only a few basis vec-
tors from the dictionary are required to represent the hyperspectral image accurately.
This prior can be used to constrain the optimization problem and improve the qual-
ity of the generated high-resolution image. Another commonly used handcrafted
prior is the smoothness prior, which assumes that the high-resolution hyperspectral
image has a certain smoothness property. This prior is often used in regularization-
based methods of hyperspectral super-resolution. The smoothness prior can be used
to constrain the optimization problem and generate a high-resolution image that is
spatially smooth. The choice of the appropriate handcrafted prior depends on the
specific application and the characteristics of the input data. Handcrafted priors are
often used in combination with optimization techniques, such as convex optimiza-
tion or non-negative matrix factorization, to generate a high-resolution image. It is
important to note that the use of handcrafted priors can improve the quality of the
generated high-resolution image, but they require a prior knowledge of the hyper-
spectral data and may not be suitable for all applications.

Recently, existing fusion-based HSI SR methods have widely leveraged the hand-
crafted image priors in a latent HR-HS image for robustly solving the inverse op-
timization problem and usually rely on physical and statistical models to exploit
the correlations between different bands of the hyperspectral image and the spatial
structure of the scene. The investigated image priors play a key role in obtaining
a plausible solution in the optimization problem. The popularly used image priors
are mainly used to explore the hidden knowledge in spatial and spectral represen-
tation such as physical spectral mixing, sparsity, low-rank, and similarity [65]. Since
the non-negative physical property of the materials in the scene plays a role in repre-
senting prior for constraining the spectral coefficient, Wycoff et al. [66] proposed non-
negative matrix factorization (NMF) to boost performance. Yokoya et al. [49] pro-
posed to decompose the latent HR-HS image into a non-negative end-member ma-
trix and an abundance matrix called negative matrix factorization (NMF). Then, they
exploited a coupled NMF version (CNMF) to fuse a pair of HR-MS and LR-HS im-
ages, whereas Lanaras et al. [45] used a proximal alternating linearized-minimization
method to optimize the coupled spectral unmixing model for HSI SR. Subsequently;,
the sparsity reguralized decomposition was extensively investigated by imposing
sparse constraints on the abundance matrix [67]. Akhtar et al. [68] proposed a sparse
spatio-spectral representation via computing the sparse coefficients of all pixels in a
local grid region based on the part of selected spectral atoms, and further explored
a Bayesian dictionary learning and sparse coding algorithm for pursuing better per-
formance. Dong et al. [46] investigated a non-negative structured sparse represen-
tation via imposing structure similarity of the latent HR-HS image as constraints on
sparse coefficient estimation. Grohnfeldt et al. [69] employed a joint sparse represen-
tation for separately modeling the spatial structure (local patch) in each individual
band image. Based on the inherent low-dimensionality of the spectral space and the
3D structure in a latent HR-HS image, tensor factorization and low-rank image pri-
ors were actively integrated for the HSI SR problem [70], and the feasibility of the
reconstructed HR-HS image was demonstrated. Most recently, Han et al. [48] fur-
ther combined the local spectral and global structure self-similarity constraints into
a sparsity-promoted model and validated promising performance. All the above
methods constructed the observation model for formulating the degradation pro-
cess of the available LR-HS and HR-RGB images. They attempted to leverage the
hand-crafted priors such as the negative physical property of the materials, spectral
mixing characteristic, sparsity in representation, and similarity structure to pursue
performance boosting. However, it remains to be an art to discover a proper prior
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for a specific scene.

2.2 Deep Learning-based Super-Resolution

Based on the successful application of deep convolutional neural network in nature
RGB image super-resolution, deep learning was also investigated for fusion-based
HSI SR tasks. Instead of exploiting the hand-crafted image priors, in this method,
the inherent image priors hidden in a latent HR-HS image are automatically learned,
and a superior reconstruction performance can be achieved. The current fusion-
based HSI SR employing deep learning is mainly divided into the fully supervised
learning method and the unsupervised learning method. Meanwhile, resolution en-
hancement CNN of hyperspectral images depends on the characteristics of the im-
age and the desired result, which enables the generation of high spatial and high
spectral resolution images from any of the following observational data: (1) low
resolution hyperspectral images, such as LR HS images; (2) high resolution multi-
spectral images, such as HR RGB images; and (3) a combination of low resolution
hyperspectral images and high resolution multispectral images. Depending on the
type of observational data, resolution enhancement CNN frameworks for hyper-
spectral images can be divided into three categories: spatial-CNN, spectral-CNN,
and fusion-CNN.

Motivated by the tremendous success of the DCNN on different vision tasks,
DCNN based methods have been proposed for the HSI SR task, in which hand-
crafted priors exploring is no longer required. To train the HS image prediction
model, it is necessary to previously collect the training triplets, including the LR-
HS, HR-RGB images, and corresponding ground-truth (label), i.e., the HR-HS im-
ages in the fully supervised method, and provided an elaborate design for fusing
multiple modalities of observations with different spatial and spectral structures.
Han et al. [71] conducted an initial investigation by directly inputting the fused data
of an HR-RGB image and an up-sampled LR-HS image to a simple 3-layer CNN,
and used a more complex CNN with a residual structure to achieve better perfor-
mance [72]. Palsson et al. [73] explored a 3D CNN-based MS/HS fusion scheme,
and integrated the principal component analysis (PCA) to reduce the computational
cost. Dian et al. [57] proposed a multi-stage method, and used a simple optimiza-
tion strategy for initial HS reconstruction and final refinement, while adopting a
20-layer CNN for learning a latent HR-HS image from the initial one. More recently,
Wang et al. [74] exploited an efficient hyperspectral image fusion network by itera-
tively integrating the representation relations between the target and observations
into the deep-learning network to achieve superior performance. Han et al. [55] fur-
ther investigated a multi-level and multi-scale spatial and spectral fusion network
for effectively merging the available LR-HS and HR-RGB images with a massive
difference in spatial structure. Xie et al. [75] investigated a MS/HS fusion network
via leveraging the observation models of low-resolution images and the spectral
low-rankness knowledge of HR-HS image, and exploited a proximal gradient strat-
egy for solving the proposed MS/HS fusion framework. Moreover, Zhu et al. [76]
explored a lightweight deep neural network-based framework, namely progressive
zero-centric residual network (PZRes-Net), to pursue the efficiency and effectiveness
of the HS image reconstruction problem. Despite the high performance gain, these
methods fail to generalize well among different datasets, and they need to separately
train the reconstruction models regarding the datasets under investigation, even for
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small imaging condition changes. Although the reconstruction performance has re-
markably progressed, all the above DCNN based methods are required to be trained
with a large number of training samples previously prepared, which are the set of
triplets consisting of not only the LR-HS and HR-RGB images but also the corre-
sponding HR-HS images as labels.

Deep unsupervised learning-based methods of hyperspectral image super-resolution
are an emerging approach that aims to learn the underlying distribution of the low-
resolution and high-resolution hyperspectral images without requiring paired train-
ing data. Unlike supervised methods, unsupervised methods do not require a large
dataset of paired low-resolution and high-resolution hyperspectral images for train-
ing. Instead, they use self-supervised learning or unsupervised learning techniques
to extract information from the low-resolution image and generate the high-resolution
image.

To deal with the generalization limitation in the fully supervised learning method,
the unsupervised neural network was proposed as a good solution to the HSI SR
problem. It is well known that the corresponding training triplets, especially the
HR-HS images, are extremely hard to be collected in real applications. Thus, the
quality and amount of the collected training triplets generally become the bottle-
neck of the DCNN based methods. Most recently, Qu et al. [77] attempted to solve
the HSI super-resolution problem in an unsupervised way and designed an encoder-
decoder architecture for exploiting the approximate low-rank prior structure of the
spectral model in the latent HR-HS image. This unsupervised framework did not
require any training samples in an HSI dataset and could restore the HR-HS im-
age using a CNN-based end-to-end network. However, this method needed to be
carefully optimized step-by-step in an alternating way, and the HS image recovery
performance was still not enough. Based on the deep image prior (DIP) and the fact
that the convolutional neural network itself can capture a large number of low-level
image statistics to achieve a well-reconstructed natural image, Sidorov et al. [59]
extended the DIP concept for automatically learning the underlying priors for HS
images (DHPs) and applied it to the spatial resolution enhancement of an hyper-
spectral image. However, the DHPs can only leverage the observed LR-HS image
for network training and cannot efficiently learn both the spatial structure and spec-
tral attribute image priors for reconstructing a latent HR-HS image. Furthermore,
Zhang et al. [78] leveraged the generated training triplets (the LR-HS, HR-RGB, and
HR-HS images) with different degradation models to learn a common deep model
for predicting an initial HR-HS image, and then exploited unsupervised adapta-
tion learning for fine-turning the initial estimation and automatically learning the
degradation operations of the under-studying observations. Although remarkable
performance gain has been achieved with different degradation models compared
with most state-of-the-art methods, the performance of the fine-turning HR-HS im-
age in the adaptation learning is greatly affected by the initially estimation in the
common model, and is easy to fall into a local minimum solution. In addition, Nie
et al. [79] proposed two steps of learning method, where the spatial and spectral
degradation models were first predicted via modeling the relation between the HR-
HS image and the observations: LR-HS and HR-RGB images, and then the latent
HR-HS image is reconstructed with the previously estimated degradation models.
Liu et al. [80] proposed an unsupervised multispectral and hyperspectral image fu-
sion (UnMHF) network using the observations of the under-studying scene only,
which estimates the latent HR-HS image with the learned encoder-decoder-based
generative network from a noise input and can only be adopted to the observed
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LR-HS and HR-RGB image with known spatial down-sampling operation and cam-
era spectral function (CSF). Later, Uezato et al. [81] exploited the similar method
for unsupervised image pair fusion, dubbed as guided deep decoder (GDD) net-
work for the known spatial and spectral degradation operation only. Thus, the Un-
MHEF [80] and GDD [81] can be categorized into the non-blind paradigm, and lack
of generalization in real scenario. Zhang et al. [82] proposed two-steps of learn-
ing methods via modeling the common priors of the HR-HS image in a supervised
way and then adapted to the under-studying scene for modeling its specific prior
in an unsupervised manner. Although the unsupervised fine-tuning for a specific
target scene is possible to be conducted, it still required the common model learning
in a fully-supervised manner with large amount of prepared training triplets, and
the adaptation performance greatly depended on the pre-estimated HR-HS image
with the learned common model. In addition, the unsupervised adaptation is capa-
ble of learning the spatial degradation operation of the observed LR-HS image but
can only deal with the observed HR-HS image with known CSF, and thus it would
be categorized as semi-blind paradigm for possibly learn the spatial degradation
operations only in the observed LR-HS image. Moreover, Fu et al. [83] aimed to
select/learn an optimal CSF and then designed a 3-band sensor system capturing
an image for a scene, which is capable of leading to a best reconstruction perfor-
mance of a HR-HS. Given the captured image with this specially designed sensor,
they exploited an unsupervised hyperspectral image super-resolution method using
the designed loss function formulated by the observed LR-HS and HR-RGB images
only, and recovered the latent HR-HS image in a non-blind way with the known
spatial degradation operation and CSFE. Further, since the unsupervised adaptation
subnet in [82] and the method [83] utilizes the under-studying observed images only
instead of the requirement of additional training samples for guiding the network
training, they can also be dubbed as self-supervised learning strategy. However,
these learning methods based on the under-studying observed images only are easy
to drop into a local solution, and the final prediction heavily depends on the initial
input of the network. Though, feasibility and potential of the HR-HS image super
resolution with unsupervised strategy is verified, current methods usually explore
different steps of learning for obtaining acceptable performance for this challenge
unsupervised learning.

Deep unsupervised learning-based methods of hyperspectral image super-resolution
are still a relatively new approach, and there is ongoing research in this area. One
of the main advantages of unsupervised learning-based methods is that they do not
require a large amount of labeled data, which can be difficult to obtain in some ap-
plications. However, they can be more challenging to train compared to supervised
methods and may require additional regularization techniques to avoid overfitting.

2.3 Related Work

2.3.1 Deep Image Prior

Deep Image Prior (DIP) [58] is a recently proposed deep learning approach for image
restoration tasks, including image denoising, inpainting, and super-resolution. The
key idea behind DIP is to use a deep neural network as a prior for image restora-
tion, rather than relying on handcrafted priors or models. DIP works by training
a deep convolutional neural network (CNN) to map a random noise vector to an
output image. The network is trained in an unsupervised manner, meaning that it
does not require a dataset of paired low- and high-resolution images for training.
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Instead, the network is trained to minimize the difference between the output image
and a corrupted input image, without any explicit regularization or constraint on the
network weights. During the testing phase, DIP is used to restore a corrupted im-
age by initializing the network with a random noise vector and then optimizing the
network weights to minimize the difference between the restored image and the cor-
rupted image. This optimization process is typically done using a gradient descent
algorithm. The key advantage of DIP is that it can achieve state-of-the-art perfor-
mance on image restoration tasks, without requiring any training data or explicit
prior knowledge. This makes DIP a powerful tool for image restoration in scenarios
where training data is scarce or not available. However, the main limitation of DIP is
that it can be computationally expensive and may require significant computational
resources to run on large images or high-resolution hyperspectral data. In addition,
DIP may not always provide the same level of interpretability or control as tradi-
tional handcrafted prior-based or model-based methods, as the underlying network
architecture and optimization process can be difficult to interpret.

2.3.2 Internal Learning

In deep learning, external data typically refers to data that is not part of the primary
dataset being used to train a model. This can include additional datasets that are
used to augment the training data or provide additional information to the model,
as well as external resources such as pre-trained models, image databases, or text
corpora. The use of external data can be especially beneficial in cases where the
primary dataset is limited in size or scope, or where the model requires additional
context or information to perform well on a particular task. For example, in image
classification, a model might be trained on a small dataset of images, but additional
data from other sources can be used to augment the training data and help the model
learn more robust and generalizable features. External data can also be used to ad-
dress issues such as class imbalance or bias in the primary dataset. For example, in
medical imaging, external data from other hospitals or research studies can be used
to balance the representation of different diseases or conditions in the training data.
However, the use of external data in deep learning can also raise concerns around
generalization and overfitting. It is important to carefully evaluate the quality and
relevance of external data, and to ensure that it is used appropriately and ethically.
On the other hand, internal data in deep learning is used for training and evalu-
ation of the model, and is typically stored in memory or on disk during the training
process. This includes the input data (such as images, audio, or text) as well as the
corresponding labels or targets. The use of internal data in deep learning is cen-
tral to the process of training a model to make accurate predictions on new, unseen
data. During training, the model is repeatedly exposed to batches of internal data,
and adjusts its parameters to minimize the difference between its predicted output
and the true target value. Internal data is typically partitioned into separate sets
for training, validation, and testing. The training set is used to update the model’s
parameters, while the validation set is used to monitor the model’s performance
and adjust hyperparameters such as learning rate or regularization strength. The
test set is used to evaluate the final performance of the model on new, unseen data.
The quality and representativeness of the internal data is critical to the performance
of a deep learning model. If the training data is too limited, noisy, or biased, the
model may fail to generalize well to new data, or may overfit to the training set. It
is therefore important to carefully curate and preprocess the internal data to ensure
that it is representative of the target population, and to use appropriate techniques
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such as data augmentation or regularization to improve the model’s robustness and
generalization ability.

In conclusion, the main difference between internal data and external data is that
internal data is used to directly train and evaluate the model, while external data is
used to support or improve the training process. Internal data is typically carefully
curated and preprocessed to ensure its quality and representativeness, while exter-
nal data may be less controlled and may require additional processing or filtering to
be useful for deep learning. In general, the quality and relevance of the external data
can have a significant impact on the performance of the model, and its integration
with the internal data and training process is a key consideration in the design of a
successful deep learning system.

Based on internal data, internal learning can learn a system or model from its
own internal representations or activities, rather than from external input or feed-
back. In other words, the system is able to generate its own training data and learn
from it, rather than relying solely on external data. Internal learning is commonly
used in the context of artificial neural networks, where the network is trained to
learn a task based on a set of input-output pairs. However, internal learning can
also be used to improve the network’s performance and generalization ability by
allowing the network to learn from its own internal representations, which can cap-
ture higher-level features and relationships in the data. One example of internal
learning in neural networks is unsupervised learning, where the network is trained
to identify patterns or structure in the data without any external labels or feedback.
In this case, the network is able to learn from its own internal representations of the
data, such as the activation patterns of hidden units or the clustering of data points
in feature space. Internal learning can be applied to various types of data, including
natural images. In the context of natural image processing, internal learning refers
to the process of a model learning from its own internal representations or features
of natural images, rather than relying solely on external input or feedback. This can
be achieved using techniques such as autoencoders. In the case of autoencoders, the
model is trained to encode natural images into a lower-dimensional representation,
and then decode the representation back into an image that is as close as possible
to the original. This process encourages the model to learn useful and meaning-
ful features of natural images that can be used for tasks such as image classifica-
tion or segmentation. Another example of internal learning for natural images is
self-supervised learning, where a model is trained to predict certain properties or
relationships in the data based on its own internal representations. For example, a
model can be trained to predict the rotation or color of a natural image based on its
internal features. This process encourages the model to learn useful and meaning-
ful features of natural images that can be used for downstream tasks such as object
detection or semantic segmentation. Internal learning can also be combined with
external feedback, such as in the case of reinforcement learning for natural image
processing. In this case, a model is trained to perform a specific task, such as image
classification or object detection, based on a reward signal that is generated by the
environment. The model can also learn from its own internal representations and
features of natural images to improve its performance on the task.Overall, internal
learning is a powerful approach to natural image processing that can enable models
to learn useful and meaningful features and representations from natural images,
without relying solely on external input or feedback. But, internal learning can also
be challenging, as it requires careful design and tuning of the network architecture,
training algorithm, and hyperparameters to ensure that the network is able to learn
useful and meaningful representations from its own internal activities.
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2.3.3 Self-Supervised Learning

Self-supervised learning is a type of machine learning where a model is trained to
solve a task without the use of explicit supervision or labels. Instead, the model
learns to extract useful features from the input data, which can then be used for
a variety of downstream tasks. In self-supervised learning, the input data itself
serves as the supervisory signal, and the goal of the model is to learn to predict
some aspect of the data that is not provided explicitly as a label. This can be done
in various ways, such as by removing part of the input and asking the model to
reconstruct it, or by asking the model to predict the order of shuffled input se-
quences. Self-supervised learning is a promising approach for training deep neural
networks on large amounts of unlabelled data, which is often readily available, in
order to learn useful features that can be transferred to other tasks. By contrast, tra-
ditional supervised learning typically requires large amounts of labeled data, which
can be expensive and time-consuming to obtain, and may not always be available.
Self-supervised learning has been shown to be effective in a range of applications,
including computer vision, natural language processing, and speech recognition.
Some examples of self-supervised learning methods include contrastive predictive
coding, denoising autoencoders. Self-supervised learning methods have been ap-
plied to hyperspectral image super-resolution, with the goal of learning to recon-
struct high-resolution hyperspectral images from low-resolution inputs in an unsu-
pervised manner.

Specifically, self-supervised learning is a general learning framework via resort-
ing to surrogate (pretext) tasks that can be formulated using only un-annotated data.
In general, the pretext task is usually designed to realize it relying on learning a
proper image representation with large amount of handy images around the world.
Self-supervised techniques have been used for various applications in a broad range
of computer vision topics [84], and manifest state-of-the-art performance among the
approaches for learning visual representation with the unsupervised images only.
To date, the vision tasks generally adopted the self-supervised learning methods, in
which similar samples with the desired data in target task are available for the self-
supervised learning despite incomplete information and some side information such
as mathematically transformed version. However, in the HSI SR scenario, there are
scarce HR-HS images publicly released. It is tough to collect large amounts of HR-
HS images even without the complete correspondence of the triplets for conducting
the representation learning in a self-supervised way. Self-supervised learning meth-
ods that have been used for hyperspectral image super-resolution, for example, deep
internal learning. Deep Internal Learning (DIL) is a self-supervised learning method
that uses internal data as a supervisory signal. In DIL, the model is trained to predict
a portion of the input data from another portion of the input data, without using any
external labels. DIL has been shown to be effective for hyperspectral image super-
resolution, as it can learn to extract useful features from the input data that can be
used for image reconstruction.
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Chapter 3

Unsupervised Learning of
Hyperspectral Image Prior

In this chapter, we proposed a deep unsupervised image-specific generative frame-
work of hyperspectral image super resolution for automatically generating a high-
resolution HS image from its low-resolution HS and high-resolution RGB observa-
tions without any external sample. We incorporate the deep learned priors of the
underlying structure in the latent HR-HS image with the mathematical model for
formulating the degradation procedures of the observed LR-HS and HR-RGB obser-
vations, and introduce an unsupervised end-to-end deep prior learning network for
robust HR-HS image recovery. Experiments on two benchmark datasets validated
that the proposed method manifest very impressive performance, and even better
than most state-of-the-art supervised learning approaches.

3.1 Problem formulation

Given the observed image pair (LR-HS image X € R“*"*L and HR-RGB image
Y € RW*3) where w and h represent the width and height, the goal of HSI SR
is to recover a HR-HS image Z € R"*H*L where W and H represent the width
and height of Y and Z, and L is the number of spectral channels in the HR-HS im-
age. Generally, the mathematical relation for formulating degradation operations
between the observed images: X, Y and the target HR-HS image Z can be expressed
as follows:

X = k(5P) 1 7(5Pa) | 45 Y = Z « C(SPeO) 4 (3.1)

where ® denotes the 2D convolution operator, k(5P represents the spatial 2D blur
kernel, (Spa) lis the spatial decimation (down-sampling) operator, C(5P¢®) is the
spectral sensitivity function of the RGB camera (three 1D spectral filters) for con-
verting the L spectral band to the RGB band, and n is the additive white Gaussian
noise (AWGN) of the noise level ce. The mathematical expression of the above degra-
dation models can be expressed in the following simplified matrix format:

X=DBZ+nY=ZC+n, (3.2)

where B and D stand for the blurring matrix in the spatial domain and down-
sampling matrix, respectively, for transforming Z to X. C denotes the spectral sensi-
tivity function (CSF) of an RGB sensor. Assuming that the degradation parameters
B, D, and C (which can be obtained from the hardware design of the HS and RGB
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sensors) are known, a heuristic approach to intuitively minimize the following re-
construction errors using the observed X and Y for estimating Z is given as follows:

Z* = argminap||X — DBZ||2 + (1 — «)B2||Y — ZC||3, (3.3)
z

where || - ||r stands for the Frobenium norm. Since the element numbers in the
HR-RGB and LR-HS images are different, it generally needs to introduce the nor-
malization weights such as f; = 1/N; and B, = 1/N,, where N; and N, are the
products of the pixel numbers and the spectral bands in LR-HS and HR-RGB im-
ages, respectively. Beside, we further exploit a hyperparameter a« (0 < a < 1)to
adjust the contributions between these two reconstruction errors. Eq. 3.3 aims to
obtain an optimal Z* for minimizing the weighted reconstruction error of the obser-
vations. Using the assumed AWGN in Eq. 3.2, Eq. 3.3 is completely equivalent to
maximize the likelihood of a latent HR-HS image given the observation of X and Y.
It is known that in the HSI SR problem the total number of unknown variables in Z
is much greater than the known variables in X and Y, and this constitutes a severely
ill-posed problem. Recovering a robust HR-HS image based on the observations is
an extremely difficult task. To overcome this problem, most existing methods ex-
plore various hand-crafted image priors to model the underlying structure of the
HR-HS image, and then impose a regularization term on the reconstruction error
minimization problem, which can be formulated as follows:

Z* = argminaf||X — DBZ|[% + (1 — a)Ba||Y — ZC||2 + Ap(Z), (3.4)
z

where ¢(Z) is a term for modeling the underlying structure of Z, and A repre-
sents a hyper-parameter, which balances the regularization term and reconstruc-
tion error distributions. By introducing the prior probability function Pr(Z), where
$(Z) = —log(Pr(Z)), Eq. 3.4 can be explained as the widely used maximum a pos-
terior (MAP) framework. Although high performance gain can be achieved using
various hand-crafted image prior in the HSI SR scenario, finding an appropriate im-
age priors for a specific scene remains a challenging task. This work aims to use
the powerful learning capability of deep-learning networks for automatically learn-
ing the underlying image priors in latent HR-HS images. Based on a DIP work,
where the deep network architecture itself possesses a large number of low-level
image statistics (image priors), a generative network for learning the spatial and
spectral priors in a latent HR-HS image is employed. Then a reliable HR-HS image
constrained by the learned priors using only the low-quality observations is recon-
structed.

3.2 Motivation

This section introduces a deep unsupervised learning framework for the HR image
fusion problem. We will firstly present the motivation from conventional supervised
learning paradigm (common prior learning) to our unsupervised learning frame-
work (specific prior learning), and then detail the proposed specific prior learning
framework with un-supervision as well as the adopted network input and the learn-
able degradation module.
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3.2.1 Common Prior Learning with Supervision

The recent deep learning-based HS image fusion methods manifest the DCNN scheme
can effectively capture the intrinsic characteristics (common priors) of latent HS im-
ages in a fully-supervised learning manner using the previously prepared training
samples (external dataset). Specifically, given N training triplets (X;, Yi, Z;)(i =
1,2,--- ,N), the supervised deep learning methods aim to learn a common CNN
model by minimizing the following loss function:

N
6" = argmin}_ [|Z; — Fenn(Xi, )|, (3.5)
0 i

where Fcnyn represents the transformation of the DCNN network with the to-be-
learned parameters 0. It should be noted that these methods carry out the off-line
training procedure for obtaining the optimal network parameters 0 instead of di-
rectly searching the raw image space Z, and can capture common priors hidden
in the training samples by the powerful modeling capability of the DCNN. After
learning the network parameters 8, the latent HR-HS image for any under-studying
observations (X;, Y;) can be easily reconstructed as: Z; = Fg;\,N(Xt, Y;). Although
the promising performance with these supervised deep learning methods has been
achieved, it is mandatory to provide large-scale training triplets to learn a good
model, including the LR-HS, HR-RGB, and HR-HS images which are especially hard
to be collected in the HS image fusion scenario.

3.2.2 Specific Prior Learning with Un-supervision

In this section, the deep unsupervised fusion-learning framework for the HSI SR
problem is introduced. Recent deep-learning-based HS reconstruction methods proved
that a DCNN is capable of effectively capturing the underlying spatial and spec-
tral structures (common prior information) of latent HS images and demonstrated
promising performance. However, these methods are generally implemented in a
fully supervised manner, and require large-scale training triplets containing LR-
HS, HR-RGB, and HR-HS images, which are difficult to be specifically collected
for obtaining the training labels (HR-HS images). Extensive research on natural
image generation (DCGAN [85] and its variants) proved that high-definition and
high-quality images with some defined characteristics and attributes can be success-
fully generated from a random noisy input without the supervision of high-quality
ground-truth. This indicates that the inherent structure (priors) of a latent image
with the defined characteristics can be captured by searching the neural network
parameter space, starting from a random initial state. Moreover, DIPs [58] were ex-
ploited to model the more specific structures of an under-studying scene with the
guidance of its degradation version only and successfully applied to several natural
image restoration tasks such as image de-noising, impainting, and super-resolution.
In this paper, this un-supervision paradigm is followed, aiming to learn the specific
spatial and spectral structures (priors) of a latent HR-HS image with the guidance
of its degraded observations (LR-HS and HR-RGB images). The conceptual scheme
of the proposed image-specific generative network (ISGM) is illustrated in Figure
3.1. Specifically, a generative neural network Gg (6 is the network parameter to be
learned) is leveraged to model the underlying spatial and spectral structures of a
latent HR-HS image Z. By replacing Z with Gy in Eq. 3.4 and removing the reg-
ularization term ¢(Z) due to the automatically captured priors in the generative
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network, the fusion-based HSI SR model can be reformulated as follows:

6" = argminap;||X — DBGy(zin) ||} + (1 — a)B2|Y — Go(zin)Cl |2, (3.6)
o

where z;,, is the input of the generative neural network, and Gy(z;,); represents the
i — th element of the estimated HR-HS image. Instead of directly optimizing a raw
HR-HS image, which is extremely large and not unique, Eq. 3.6 aims to search the
parameter space of the generative neural network Gy for leveraging the possessed
priors in it. To solve the objective function using the searching parameter space of
the generative neural network, the substantial architecture of the generative neural
networkand a detailed description of the used input data are provided.

3.3 Architecture of the generative neural network

An arbitrary DCNN architecture can be adopted to serve as the generative neural
network Gy. Due to diverse information, such as salient structures, rich textures,
and complex spectra in a latent HR-HS image, a generative neural network Gy is
required to provide sufficient modeling capabilities. Various generative neural net-
works, such as that in the adversarial learning scenario [Pix2pix and others], were
already proposed and demonstrated their great potential to generate high-quality
natural images [86]. In this work, an encoder-decoder architecture with its multi-
level feature-learning property and simplification is leveraged, and the skip connec-
tions between the encoder and decoder paths are leveraged for feature reusing. A
detailed generative neural network is illustrated in Figure 3.1 with different input
data modalities. Both the encoder and decoder consist of 5 blocks, which can learn
the representative features in different scales, and the outputs of all 5 blocks in the
encoder side are transferred to the corresponding decoder with skip connection for
reusing the extracted detailed features. Each block is composed of 3 convolutional
layers, following the RELU activation function, where the max-pooling layer with
a 2 x 2 kernel is used to reduce the feature map size between the encoder blocks,
whereas the up-sampling layer is employed to doubly recover the feature map size
between the decoder blocks. Finally, a convolutional output layer is adopted for es-
timating the latent HR-HS image. However, in the unsupervised learning setting,
there is no ground-truth HR-HS image for guiding or evaluating the training states
of the generative neural network. Then, the observed HR-RGB and LR-HS images
are leveraged to construct the evaluation criterion described in Eq. 3.6.

Regarding the above generative network Gy, any DCNN architecture is possibly
employed to serve as our proposed framework. Since the latent HR-HS images usu-
ally contain large variety of contents such as salient structures, complicated spectra
and rich textures, and thus the adopted generative network Gy should have suffi-
cient modeling capacity to provide reliable HR-HS recovery. Many generative ar-
chitectures [87] have been investigated, and made significant success in generating
high-quality natural images [88] by incorporating the advanced adversarial learn-
ing technique. While our unsupervised framework requires training specific-CNN
model for each under-studying observation, and thus a shallow network is preferred
to reduce the training time. Moreover, being widely known that the context exploita-
tion in larger receptive field using deeper architecture can enhance the representa-
tion capability. Thus, a shallow network, which can explore the context in a larger
receptive field, should be suitable to serve as our network architecture.
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FIGURE 3.1: Conceptual diagram of the proposed image-specific gen-
erative network (ISGM) for unsupervised deep HSI SR.

It is well known that the encoder-decoder network has a shallow structure while
enabling large-scale spatial context exploration due to the down-sampling opera-
tion between the adjacent scales, and then the encoder-decoder structure serves as
the basis of our generative network. In order to learn the representative features
for various situations, both the encoder and the decoder paths in our generative net-
work are built of diverse scales of blocks. Using a convolution-based feature transfer
module (FT Conv module), the outputs of the encoder blocks are transferred to the
associated decoder blocks in order to reuse the derived detailed features. We specif-
ically employ a point-wised convolution layer following the LeakyReLU and Batch-
normalization layers to serve as the FT Conv module, which can make advantage in
two ways compared with the simple skip connection: 1) reduce feature redundancy
by only transferring the un-maintained features in the down-sampling stream to the
decoder path; 2) increase the efficiency of the decoder path by reducing the channel
number of the transfered feature map. In our experiment, since most information
can be maintained in the down-sampling stream, we set the channel number of the
transfered feature as 4 for lowering computational cost. In both encoder/decoder
paths, the block at each scale includes 3 convolution/LeakyReLU pair layers, where
the size of the feature map between the encoder blocks is cut in half by a max-pooling
layer, and the size of the feature map between the decoder blocks is doubled by an
up-sampling layer. Finally, the latent HR-HS image is predicted using a straightfor-
ward convolution-based reconstruction layer.

3.4 Input data to the generative neural network

There remain a difficulty in Eq. 3.6, which should be addressed for the HS image
fusion problem, which is how to design the input of the generative network for cap-
turing both low-level spatial statistics and the spectral correlation in the network
training procedure. We classify the input data into two types, the first is an un-
conditional noisy input with a random perturbation added to check the robustness,
corresponding to the image-specific generative network (ISGM (noise)) model; in
particular, to contrast with the addition of random perturbation, we also perform
experiments without random perturbation, i.e., the ISGM+ (noise) model. The sec-
ond input data is a conditional fusion context of fused observations HR-RGB and
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LR-HS, which corresponds to the ISGM (fusion) framework.

3.4.1 The Noise Input

The deep learning based methods such as DCGAN [85] and its variants verified that
high-definition and high-quality images with a specific concept can be generated
from a random noise, which means that to search the network parameter space from
the initial random state can learn the inherent structure (prior) in the latent image
of a specific concept. In addition, DIP [58] explored image prior possessing capa-
bility of network architecture for different restoration tasks of natural RGB images,
and manifested impressive results. Therefore, a popular generative neural network
can be trained to create a target image with the predefined characteristics, where
randomly sampled noisy vectors based on a distribution function, such as Gaussian
or uniform distribution, are usually used as inputs to ensure sufficient variety and
diversity in the generated images. Motivated by this, we proposed a ISGM (noise)
model. But in our HSI SR task, the corresponding HR-HS images of the observed
degradation version (LR-HS and HR-RGB images) must be acquired. Therefore, an
intuitive way is to adopt an initially sampled noisy vector z), and fix it to search
the optimal network parameter space for a specific HR-HS image. However, the un-
conditional fixed noisy input possibly leads to the generative neural network falling
into a local minimum state. This results in an un-plausible estimation of the latent
HR-HS image. Thus, a perturbation in the unconditional fixed initial input with a
small randomly generated noisy vector at each training step is proposed to avoid a
local minimum state. The input vector for the i — th training step can be expressed
as follows: »

zi. =20 + Bn, (3.7)

where n; is the randomly sampled noise vector at the i — th training step, and
denotes the perturbation degree (a small scalar value). After learning the genera-
tive neural network Gy with the perturbed input, a prediction using the fixed noisy
vector Z* = Gy(z) ) as the final estimated HR-HS image is performed.

This image-specific generative network (ISGM (noise)) model employs noise vec-
tors produced at random and sampled from a uniform distribution as input to pro-
vide low-level spatial statistics. But this research is less effective at identifying spec-
tral and spatial correlations and is more challenging to optimize due to random noise
vectors. We propose a solution to this issue in the next section. In the next part, we
substitute observed LR-HS and HR-RGB images for entirely artificial noise.

3.4.2 The Fusion Context Input

The deep image prior (DIP) network [58] is designed to capture the low-level spa-
tial statistics and use a randomly generated noise vector sampled from the uniform
distribution as the input. However, with the randomly selected noise vector, the
DIP is limited in capturing spectral and spatial correlation, and the optimization
is more difficult. Meanwhile, the learning procedure is usually unstable without
any provided knowledge about the spectral attribute and spatial structure. Hence,
we improved the image-specific generative network (ISGM (noise)) model above by
leveraging the observed LR-HS and HR-RGB images instead of the randomly gen-
erated noise as the network input.

Specifically, we proposed a ISGM (fusion) model, which also learns the network
parameters exclusively using observed LR-HS and HR-RGB images. In the proposed
DSSH framework, given the observed images: X which consists of the attribute of
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the hyper-spectra of the latent HR-HS image in spite of the low resolution in the spa-
tial domain, and Y which possesses the high-resolution spatial structure despite the
small number of spectral channels, we leverage the fused context of the observations
for providing the insights of the specific spatial and spectral priors in the network
learning. Specifically, we first transform the LR-HS image using an up-sampling
layer to the same spatial size with the HR-RGB image and concatenate it with the
HR-RGB image, which is expressed as

Z? = Stack(UP(X),Y). (3.8)

Although we can directly use the simply fused context as the input of the generative
network Gy, it usually leads to converging to a local minimum. In this study, we add
some perturbation to learn a more robust model for capturing the specific spatial
and spectral priors and express it as

Z,, =Z), + \p, (3.9)

where u denotes the randomly generated 3D tensor sampling from the uniform dis-
tribution and has the same size with the fused context Z) while A is a small scale
value representing the perturbation degree. In all of our experiments, we initialize
A as 0.01 and half it in every 1000 steps of the training procedure. The perturbation
is conducted in all training steps of the generative network Gy.

Concerning the designed generative network Gy, it is possible to employ any
DCNN architecture for our proposed framework. The latent HR-HS images usu-
ally contain salient structures, rich textures, and complex spectra, which requires
the generative network Gy to have sufficient modeling capacity. There are multi-
ple generative architectures such as in adversarial learning scenario [89] being pro-
posed, and have manifested significant progress in generating high-quality natural
images [90]. This study follows a simple encoder-decoder architecture with skip
connections for integrating the features between symmetric blocks of encoder and
decoder, which is shown in the backbone network part in Fig. 3.1 The output of the
final convolutional layer is the latent HR-HS image. In our deep image-specific un-
supervised learning setting, we do not have any information about the latent HR-HS
image and cannot construct the criterion for evaluating the network state. Instead,
we aim at resorting to the observed LR-HS and HR-RGB image for constructing the
evaluation criterion.

3.4.3 The RGB Input

Despite the great potential for the real HSI SR scenario, the method above still lead
to limited SR performance even for the well-registered input pair. This study aims
to exploit an unsupervised strategy, and can be easily adapted to deal with the un-
registered pair via incorporating the spatial transformation modules in the existing
approaches. To this end, this work presents a new deep RGB-guided generating
framework for unsupervised HSI SR by treating the observed HR-RGB image as
the network input instead of the random noise. Specifically, we employ the ob-
served HR-RGB image possessing high-resolution spatial structure as the network
input to serve as the conditional guidance instead of a noisy input. Moreover, since
our generative network mainly employs the 2D convolution operation, we adopt a
specifically designed convolution layer to implement the spatial and spectral degra-
dations, and thus obtain the estimated LR-HS and HR-RGB image from the output
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of the generative network to formulate the loss function via evaluating the recon-
struction errors of the LR-HS and HR-RGB observations for the specific-network
training, which requires no any external data in our proposed unsupervised frame-
work. After training, the HR-RGB image with high-resolution spatial structure is fed
into the specific generative model to predict the final HR-HS image. Experimental
results on several public HS datasets demonstrate that the proposed method can ob-
tain promising performance improvement compared to the state-of-the-art methods.
We summarize the main advantages of this study as follows:

I. We elaborate the input to the generative network. We not only leverage the avail-
able observation as input but also as one term of reconstruction error for robust
HR-HS image estimation.

II. We directly learn the specific model using the available observation without the
requirement of any labeled training sample.

ITI. We devise simple specialized convolution layers to implement the degradation
models, such as the modified depth and point convolution layers, which can
be easily optimized together with the generative network.

Unlike the unsupervised learning networks that take the observed HR-RGB and
LR-HS images as input pairs to the generative network, we resort to only a HR-RGB
image as the input. In detail, given the predicted HR-HS image Z = Gg(+), where
Gy denotes the generative network and 0 are its parameters, we specifically design a
depth-wise convolution layer to implement the spatial degradation model: fs,, (Z2)
and a point-wise convolution layer to carry out the spectral transformation fs.(Z),
which are paralleled after the generative network. By simply fixing the weights of
the specifically designed convolution layers using the blurring kernel in the spatial
degradation matrix DB and the CSF matrix C, we can transform the output of the
generative network to obtain the approximated versions of the HR-RGB and LR-HS
images: X and Y. Concretely, we set the weights of the k x k kernel in each channel
of the depth-wise convolution layer fs,, with the 'False” bias term as the blurring
kernel B € R**k and define the ’stride’ parameter as the down-sampling factor
s = Y to obtain a spatially degraded version X € RW*h*L Whilst the kernel weights
Wspe € RIXAIXLX3 of the point-wise convolution layer fs,, with the "False” bias term is
fixed as the CSF matrix C € RL*3, which is decided according to the color camera for
capturing the HR-RGB image, to produce a spectral-degraded version ¥ € RW*H*3,

Then following Eq. 3.6, we minimize the prediction error of the LR-HS and HR-
RGB observations to train the generative network. In Eq. 3.6, since the generative
network Gy has the powerful capability of automatically learning and modeling the
priors in the latent HR-HS image, we do not explicitly impose any regularization
term for prior modeling. The proposed deep RGB-guided generative framework
is shown in Fig. 3.2, which can be trained with LR-HS and HR-RGB observations
without requiring any external data. Next, we will instantiate the architecture of the
generative network and the network input.

Most generative neural networks are used to generate a target image with the
predefined characteristics from a noisy vector, which is often randomly sampled
from a probability distribution, such as uniform or Gaussian distribution. As vali-
dated in the recent research, the randomly sampled noisy input usually enables that
the generated images have enough variety and diversity. Our HSI SR task aims to
learn a corresponding HR-HS image with the observed LR-HS and HR-RGB images.
Simply taking a noise as the input cannot make full use of the available observa-
tions. Thus, we attempt to treat the available observation to serve as the conditional
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FIGURE 3.2: Proposed framework of deep RGB-guided image-
specific generative network (ISGM (RGB)). FT Conv Module denotes
feature transfer convolution module. Spatial Degradation module
is implemented by a depth-wise convolution layer while Spectral
Degradation module is conducted by a point-wise convolution layer.

guidance for our generative network. It is known that the observed HR-RGB im-
age possesses a high spatial resolution structure, and is prospected to guide the 2D
convolution-based generative network to learn a more reliable HR-HS image. It is
also feasible to use the observed LR-HS image as the conditional input of the net-
work. However, a low-resolution spatial structure would cause the network training
procedure into some local minimum position, and thus yield adverse effects on the
predicted results. What is more, the expanding factor in the spectral domain such as
10 for estimating 31 spectral bands from the RGB is usually much smaller than that
of the spatial domain (a total 64 (8 x 8) for an up-sampling factor 8), and thus we
adopt the observed HR-RGB image as the network input for conditional guidance,
which is expressed as Z* = Gy(Y).

In summary, the generative network for our HSI SR task has the following po-
tential inputs with their respective advantages.
1. The randomly sampled noisy vector, which can maintain the diversity of the
generated images;
2. The combined LR-HS and HR-RGB images: fconcat(X 1,Y) (conditional input) for
leveraging both HR spatial structure in Y and spectral attribute in X, where the great
blurring in the LR-HS image would yield a baneful effect on the robust learning of
the plausible spatial structure;
3. The HR-RGB image: Y (conditional input) for leveraging the HR spatial structure
to recover the plausible HR-HS image;
4. The conditional inputs with small perturbation such as noise and dropout opera-
tion in the training phase to avoid dropping to a local minimum.
As mentioned above, our image-specific generative network (ISGM (RGB)) model
employs the HR-RGB image: Y to guide the learning of generative network, and
will provide a comprehensive comparison with different inputs.
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3.5 Loss Function

We expect that the network output: Gy(-) (6: network parameters) should approach
the required HR-HS image: Z. The goal of this work is to search the network pa-
rameter space to pursue a set of optimal parameters for satisfying the above criteria.
However, due to the unknown Z, it is impossible to construct quantitative criteria
directly using Z for this task.

With the availability of the LR-HS and HR-RGB images, we turn to X and Y
to formulate quantitative criteria (loss function) for network learning. Since, as in
Eq. 3.2, the LR-HS image X is a blurred down-sampled version of Z, and HR-RGB
image Y is a transformed version of Z in channel direction using CSF: C, we im-
plement the two operations as two convolutional layers with pre-defined weights
(non-trainable) after the output layer of the baseline hourglass-like network. The
convolutional layer for blurring/down-sampling operator has the kernel size and
stride according to the spatial expanding factor W/w and the kernel weights are
pre-calculated according to Lanczos2 filter. The output of this layer is denoted as
fspa(Gg(n)), which has the same size and should be approximated to X. Thus ac-
cording to X, the first loss function is formulated as:

Li(n,X) = [|X — fspa(Go(n))|[2 (3.10)

While the spectral transformation operation (from Z to Y) is implemented as the
convolutional layer with 1 x 1 kernel size, input and output channels: L and 3, where
the kernel weight is fixed as the CSF: C according to the used RGB camera. Then
the output of this layer should be an optimal approximation of Y. Denoting it as
fspe(Gg(n)), the second loss function is formulated as:

Lo(n,Y) = [|Y = fope(Go(n)||} (3.11)

Via combining the L and L, loss functions, we finally minimize the following total
loss for searching a set of network parameter from the initialed random state:

L(n,X,Y) = argmin L;(n,X) + La(n,Y) (3.12)
0

From Eq. (3.12), it can be seen the network is learned with the available observa-
tions only without any additional training samples. After completing training, the
baseline network output: Gg(n) is our required HR-HS image.

3.6 Experiment Results

In this section, we will conduct extensive compared experiments and perform ab-
lation studies to demonstrate the effectiveness of our proposed deep unsupervised
HS image reconstruction method.

3.6.1 Experimental Setting
Datasets

In this study, we conduct experiments using two benchmark HS image datasets con-
sisting of CAVE [91] and Harvard [92]. The CAVE dataset contains 32 HS images
captured indoors from real-world materials and objects. The HS images have the
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(a) CAVE dataset
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(b) Harvard dataset

FIGURE 3.3: Example images in the CAVE and Harvard datasets.

same spatial resolution, e.g., 512*512, and each HS image consists of 31 successive
spectral bands ranging from 400 nm to 700 nm with a 10 nm interval. Harvard
dataset has 50 HS images collected under daylight illumination, both outdoors and
indoors. The HS images have spatial resolution 1392 x 1040, and each image con-
tains 31 spectral bands captured from 420 nm to 720 nm with a 10 nm interval. For
both datasets, in general case, we generate the corresponding RGB image via adopt-
ing the spectral response function of the Nikon D700 camera [93] for each HS im-
age while obtaining the LR-HS images via Bicubic down-sampling the HS images.
Since our proposed method is a deep unsupervised framework without requiring
any training samples, we can conduct experiments on all images in both datasets
to compare with the traditional optimization-based methods. We illustrate some
example images of the CAVE and Harvard datasets in Figure 3.3.

Evaluation Metrics

To objectively evaluate the performance of the proposed method with different state-
of-the-art methods, we employ five commonly used metrics, consisting of the root
mean square error (RMSE), peak signal to noise ratio (PSNR), structural similarity
index (SSIM), spectral angle mapper (SAM), and relative dimensional global errors
(ERGAS). The RMSE, PSNR, and ERGAS measure the numerical difference between
the recovered HR-HS image and the ground-truth image to evaluate the spatial fi-
delity. Simultaneously, the SAM provides the average spectral angle of the two spec-
tral vectors from the same spatial positions of the recovered and ground-truth HS
images for indicating the spectral fidelity. Further, the SSIM is used to measure the
spatial structure similarity in two images. Generally, a smaller RMSE, ERGAR, or
SAM and a larger PSNR or SSIM mean better performance. In all experiments, we
first set the hyper-parameter « as 0.5 in the loss function of Eq. 3.6 to provide the
compared results, and then adjust « from 0 to 1.0 with the interval 0.2 to evaluate
the reconstruction performance in the ablation study.

Implementation Details

The proposed method was implemented in Pytorch. The input noise was initially
set to the same dimension as the to-be-estimated HR-HS image. To train the gen-
erative network, the Adam optimizer [94] with the simple L, norm-based loss was
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adopted. The learning rate was initialized to le-3 and reduced by 0.7 every 1000
steps. Moreover, the perturbation degree § was initially set to 0.05 and reduced by
0.5 every 1000 steps. The optimization process was terminated after 12,000 steps
and fixed for all images with different upscale factors from different datasets. All
experiments were conducted in the learning environment with Tesla K80 GPU. In
our experiment, the learning time for an image with size of 512 x 512 is about 20
min.

3.6.2 Performance Evaluation

In this section, we provide the compared results using our proposed method with
state-of-the-art approaches, including traditional optimization-based and deep learning-
based methods. Further, we evaluate the compared results of the proposed methods
with different experimental settings, including the input of the generative network
and the different values of the hyper-parameter.

Comparison with traditional optimization-based methods

Table 3.1 shows the compared quantitative evaluation of the super-resolved HS im-
ages generated by the ISGM (noise) model for an up-scale factors of 32 of the CAVE
and Harvard datasets with different paradigms, including the traditional methods
with manually engineered image priors (GOMP [95], MF [50], SNNMF [66]). Since
an HR-HS image in the proposed method can be predicted by the generative neural
network using the initial fixed noise w/o perturbation, two predictions with differ-
ent inputs (denoted as ISGM (noise) and ISGM + (noise)) can be achieved. Although
the proposed ISGM (noise) method can be robustly learned with the provided hyper-
parameters mentioned in the previous section, it is not necessary to adjust these
parameters for different datasets and up-scale factors. It should also be noted that
it is possible to improve its performance to conduct hyper-parameter turning for
different datasets and up-scale factors. The proposed method exhibits comparable
results (without integrating any prior knowledge) with the SNNMF [66] method
by leveraging the manually engineered image priors, which evolved and proved to
be efficient by conducting a long-time research effort. Additionally, the proposed
ISGM (noise) method aims to generate latent HR-HS images from the noise input
and does not leverage any existing rich spectral information and spatial structure
in the observed LR-HS and HR-RGB images for regularizing the generative neutral
network learning. Thus, the HSI SR performance is expected to be improved by
imposing some constraints on the network training using the observations. This is
left for future investigation. A comparison between the results obtained using the
tradational mathematical model-based methods in the CAVE dataset and the Har-
vard dataset (with up-scale factors of 8 and 16) is prensented in Table 3.2. In these
tables, it can be observed that the proposed method achieves better or compara-
ble results with those obtained using traditional optimization-based methods. In
Tables 3.1 and 3.2, the up-arrow indicates better result with larger value while the
down-arrow denotes better result with smaller value.

Meanwhile, we provide the compared results using our proposed ISGM (fusion)
method with state-of-the-art approaches with traditional optimization-based meth-
ods. There are many optimization-based methods recently proposed for the HS
image fusion, including Generalization of Simultaneous Orthogonal Matching Pur-
suit (G-SOMP+) method [96], Sparse Non-negative Matrix Factorization (SNNMF)
method [97], Bayesian sparse representation (BSR) method [98], Couple Spectral
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TABLE 3.1: Comparison results between state-of-the-art traditional

optimization-based methods methods (GOMP [95], MF [50], and

SNNMF [66]) and ISGM (noise) method in the CAVE and Harvard
Datasets with the Expanding Factor: 32.

Spatial Expanding Factor = 32

Dataset Cave Harvard
Method RMSE| | PSNRT | SSIMT | SAM/| | ERGAS?T | RMSE] | PSNR?T | SSIMT | SAM] | ERGAST
GOMP 6.47 32.48 - 14.19 0.77 4.08 38.02 - 4.79 041
MF 3.03 39.37 - 6.12 0.40 1.96 43.19 - 2.93 0.23
SNNMF 3.26 38.73 - 6.50 0.44 2.20 42.03 - 3.17 0.26
ISGM (noise) 3.47 38.17 0.951 8.31 0.46 2.82 40.12 0.957 3.96 0.43
ISGM+ (noise) 3.34 38.47 0.955 8.12 0.44 2.62 40.75 0.963 391 0.42

Unmixing (CSU) method [93], and Non-Negative Structured Sparse Representa-
tion (NSSR) method [46]. The traditional optimization-based methods generally
employed various hand-crafted priors for reconstructing robust HS images. The
degradation operations (spatial blurring/down-sampling and spectral transforma-
tion) should be known in all the methods. Our proposed unsupervised network
attempts to learn the specific priors of the latent HR-HS image automatically. For
a fair comparison, we first approximate the Bicubic degradation using Lanczos ker-
nel for initializing the weight of the spatial degradation block and initializing the
spectral transform block with the CSF of Nikon D700 camera and do not conduct
learning for these block. We conducted experiments for the spatial expanding fac-
tors 8 and 16 for performance evaluation, and the compared results on both CAVE
and Harvard datasets are shown in Table 3.2.

From Table 3.2, we can observe that our proposed ISGM (fusion) method achieves
comparable performance with the NSSR method [46] and better results than all
other methods for the CAVE dataset while manifests the best performance than
all optimization-based methods for the Harvard dataset. Especially, in comparison
with the best optimization-based CSU [93] method, our method can lift the PSNR
1.41dB and 1.66dB, respectively for the upscale factors 8 and 16 in the Harvard
dataset. Moreover, from the compared results in Table 3.2, it can be seen that dif-
ferent optimization-based methods illustrate unstable performance trends. For ex-
ample, the CSU method [93] shows better performance than the NSSR method [46]
in the Harvard dataset while the NSSR method [46] significantly outperforms the
CSU method in the CAVE dataset. The performance instability of the optimization-
based methods may be caused by the adopted hand-crafted priors where proper pri-
ors should be designed according to the content and characterization of the under-
studying images in different datasets. Although our proposed framework only lever-
ages the degraded observations: the LR-HS and HR-RGB images without the re-
quirement of an external dataset as in the optimization-based methods, it is able of
learning the specific prior of an under-studying image using the powerful modeling
capability of a deep generative network. Therefore, stable and plausible reconstruc-
tion results on both datasets have been achieved as shown in Table 3.2.
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TABLE 3.2: Comparison results between state-of-the-art traditional

optimization-based methods methods and ISGM (noise, fusion, RGB)

and ISGM+ (noise) method in the CAVE and Harvard Datasets with
the Expanding Factor: 8 and 16.

Spatial Expanding Factor = 8
Dataset CAVE Harvard
Method RMSE| | PSNRT | SSIM 1 | SAM| | ERGAS] | RMSE] | PSNR?T | SSIM 1 | SAM| | ERGAS|
GOMP 5.69 33.64 - 11.86 2.99 3.79 38.89 - 4.00 1.65
SNNMF 1.89 43.53 - 3.42 1.03 1.79 43.86 - 2.63 0.85
MEF 2.34 41.83 - 3.88 1.26 1.83 43.74 - 2.66 0.87
BSR 1.75 44.15 - 3.31 0.97 171 44.51 - 2.51 0.84
CSuU 2.56 40.74 0.985 5.44 1.45 1.40 46.86 0.993 1.77 0.77
NSSR 1.45 45.72 0.992 2.98 0.80 1.56 45.03 0.993 2.48 0.84
ISGM (noise) 2.08 42.50 0.975 5.36 1.16 2.38 42.16 0.965 2.35 1.09
ISGM+ (noise) 1.96 42.98 0.977 522 1.10 2.12 43.23 0.971 2.30 1.01
ISGM (fusion) 1.44 45.61 0.992 3.27 0.79 117 4827 | 0.993 1.75 0.77
ISGM (RGB) 1.35 46.20 0.992 3.05 0.77 1.07 49.17 0.994 1.59 0.72
Spatial Expanding Factor = 16
GOMP 6.08 32.96 - 12.60 1.43 3.85 38.56 - 4.16 0.77
SNNMF 2.45 42.21 - 4.61 0.66 1.93 43.31 - 2.85 0.45
MEF 271 40.43 - 4.82 0.73 1.94 43.30 - 2.85 0.47
BSR 2.36 41.57 - 4.57 0.58 1.93 43.56 - 2.74 0.42
Csu 2.87 39.83 0.983 5.65 0.79 1.60 45.50 0.992 1.95 0.44
NSSR 1.78 44.01 0.990 3.59 0.49 1.65 44.51 0.993 2.48 0.41
ISGM (noise) 2.61 40.71 0.967 6.62 0.70 2.81 40.77 | 0.953 3.01 0.75
ISGM+ (noise) | 2.50 41.03 0.969 6.43 0.67 2.56 41.66 0.959 2.95 0.71
ISGM (fusion) 1.76 43.84 0.999 3.76 0.49 1.32 47.16 0.992 1.99 0.47
ISGM (RGB) 1.71 44.15 0.990 3.63 0.48 1.28 47.37 0.992 1.92 0.49

Comparison with deep learning-based methods

Table 3.3 shows the compared quantitative evaluation of the super-resolved HS im-
ages generated by the ISGM (noise) model for an up-scale factors of 32 of the CAVE
and Harvard datasets with different paradigms, including the unsupervised meth-
ods with learned priors (DHIP [59], uSDN [77]), and fully supervised deep-learning
methods (PNN [99], 3D-CNN [100], and CMHF-net [75]). In Table 3.3, it can be
observed that the proposed method significantly outperforms the SoTA methods,
belonging to the same unsupervised paradigm with the learned image priors (DHIP
[59] and uSDN [77]). For the results obtained using the uSDN [77] method, the re-
leased code (https://github.com/mbaddeley/usdn, accessed on October 18, 2020),
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TABLE 3.3: Comparison results between unsupervised methods with
learned image priors (DHIP [59] and uSDN [77]), and fully super-
vised deep-learning methods (PNN [99], 3D-CNN [100], and CMHF-
net [75]) and ISGM (noise) method in the CAVE and Harvard Datasets
with the Expanding Factor: 32.
Spatial Expanding Factor = 32
Dataset CAVE Harvard
Method RMSE/ | PSNRT | SSIMT | SAM/ | ERGAST | RMSE/ | PSNRT | SSIMT | SAMY. | ERGAST
PNN 610 | 3242 | 0962 | 1473 | 135
Supervised 3D-CNN 463 | 3482 | 0937 | 896 1.09
CMHF-net 351 | 3723 | 0962 | 7.30 0.82
uSDN 422 | 3579 | 0922 | 1575 | 052 333 | 3775 | 0973 | 6.09 052
DHIP 1601 | 2473 | 0745 | 13.08 | 215 1325 | 2623 | 0719 | 5.68 141
Unsupervised
ISGM (noise) | 347 | 3817 | 0951 | 831 0.46 282 | 4012 | 0957 | 3.96 0.43
ISGM+ (noise) | 3.34 | 3847 | 0955 | 8.12 0.44 262 | 4075 | 0963 | 391 0.42

was re-run with default hyper-parameters, and only 8 samples out of 32 images pro-
vided correct super-resolved results. Thus, the average performance using only 8
correct samples is presented in Table 3.3. Moreover, the proposed method exhibits
better performance than the fully supervised deep-learning methods and most tra-
ditional methods. One possible reason for this performance is the small number of
samples used for training the HSI SR model, which is a challenge issue in the HSI SR
scenario. A comparison between the results obtained using the unsupervised SoTA
methods in the CAVE dataset and Harvard dataset is prensented (with up-scale fac-
tors of 8 and 16) in Tables 3.4 respectively. In these tables, it can be observed that
the proposed method achieves better or comparable results with those obtained us-
ing SOoTA methods. Furthermore, it must be clarified that the uSDN method cannot
produce accurate results for the same samples, especially for large up-scale factors,
and the average evaluations computed only with the correct outputs are presented
in Tables 3.3 and 3.4.

Recently, deep learning-based methods have been extensively investigated for
HS image fusion, most of which are implemented in a completely supervised and
non-blind way. A few works attempted to employ an unsupervised non-blind strat-
egy for the HS image fusion scenario, such as the unsupervised sparse Dirichlet-
net (uSDN) [77], the deep hyperspectral image prior (DHP) [101], and the GDD
method [81]. Our method falls in the unsupervised direction for HS image fusion.
In this part, we provide the comparison with both supervised and un-supervised
deep learning-based methods including SSF-Net [56], ResNet [102], DHSIS [57],
uSDN [77], and DHP [101]. Since the supervised deep learning-based methods need
training samples for model learning, we follow the experimental setting as in [56]
and only give the compared results on 12 test images of the CAVE dataset and 10
test images of the Harvard dataset. The compared results on the CAVE and Harvard
datasets are shown in Table 3.4 for both spatial expanding factor: 8 and 16, respec-
tively. From Table 3.4, we can see that our proposed method can greatly outperform
the deep unsupervised learning-based methods as well as manifests better perfor-
mance than the supervised methods. In detail, our proposed method improves the
PSNR values with 4.58dB/6.03dB and 3.94dB/6.80dB to the best unsupervised deep
learning method for the upscale factor 8/16 on both CAVE and Harvard datasets.
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TABLE 3.4: Comparison with the deep non-blind learning-based

methods including the supervised approaches: SSENet [56], ResNet

[102], DHSIS [57] and the un-supervised approaches: uSDN [77],

DHP [101], GDD [81] on the CAVE and Harvard datasets for both

spatial expanding factors: 8 and 16.
Spatial Expanding Factor = 8
Dataset CAVE Harvard
Method RMSE| | PSNR? | SSIM 1 | SAM| | ERGAS| | RMSE| | PSNR? | SSIM + | SAM| | ERGAS|
SSFNet 1.89 | 4441 | 0991 | 3.31 0.89 218 | 4193 | 0991 | 438 | 098
Supervised ResNet 147 | 4590 | 0993 | 282 | 079 165 | 4471 | 0984 | 221 1.09
DHSIS 146 | 4559 | 0990 | 3.91 0.73 137 | 4602 | 0981 | 354 | 117
uSDN 437 | 3599 | 0914 | 539 | 0.6 242 | 4211 | 0987 | 3.88 1.08
DHP 760 | 3140 | 0871 | 825 | 420 794 | 3086 | 0803 | 3.53 | 3.15
Unsupervised
GDD 168 | 4422 | 0987 | 3.81 0.96 130 | 47.02 | 0990 | 194 | 090
ISGM (noise) | 2.08 | 4250 | 0975 | 536 116 238 | 4216 | 0965 | 235 1.09
ISGM+ (noise) | 196 | 4298 | 0977 | 522 1.10 212 | 4323 | 0971 | 230 1.01
ISGM (fusion) | 144 | 4561 | 0992 | 327 | 079 117 | 4827 | 0993 | 175 | 077
ISGM (RGB) | 135 | 4620 | 0992 | 3.05 | 077 107 | 4917 | 0994 | 159 | 072
Spatial Expanding Factor = 16
SSFNet 218 | 4193 | 0991 | 438 | 098 194 | 4356 | 0980 | 314 | 098
Supervised ResNet 193 | 4357 | 0991 | 358 | 051 1.83 | 4405 | 0984 | 237 | 059
DHSIS 236 | 4163 | 0987 | 430 | 049 1.87 | 4349 | 0983 | 288 | 054
uSDN 360 | 37.08 | 0969 | 619 | 041 931 | 3939 | 0931 | 465 1.72
DHP 1131 | 27.76 | 0805 | 10.66 | 3.09 1038 | 3844 | 0754 | 457 | 208
Unsupervised

GDD 212 | 4224 | 0983 | 441 0.61 166 | 4464 | 098 | 250 | 064
ISGM (noise) | 2.61 | 4071 | 0967 | 6.62 | 0.70 281 | 4077 | 0953 | 3.01 0.75
ISGM+ (noise) | 250 | 41.03 | 0969 | 643 | 067 256 | 4166 | 0959 | 295 | 071
ISGM (fusion) | 176 | 43.84 | 0999 | 376 | 049 132 | 4716 | 0992 | 199 | 047
ISGM (RGB) | 171 | 4415 | 0990 | 3.63 | 048 128 | 4737 | 0992 | 192 | 049

Moreover, compared with the best supervised methods, the improvements of the
PSNR values are 0.36dB/2.12dB and 0.02dB/3.20dB, respectively, which demon-
strates a significant margin profit of our method over the deep learning SoTA ap-
proaches for the large upscale factor. As we know that there usually have no suffi-
cient training samples in supervised deep learning-based HS image reconstruction
tasks compared with the gray/RGB image super-resolution problem. For example,
there are only 32 HS images in the CAVE dataset and 50 images in the Harvard
dataset, which are far less than the training sample numbers such as thousands of
training samples in the RGB image super-resolution task. Although the network
optimization is separately carried out for each dataset, the learned CNN model us-
ing the training sample still faces difficulty for well being adapted to the test sample.
While our method can not only make full use of the powerful modeling capability of
the deep network but also effectively learn the specific prior for an under-studying
scene. Thus, the great performance gain with our proposed method has been ob-
tained even compared with the supervised deep learning-based approaches.
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TABLE 3.5: Ablation study of the evaluation results using our pro-

posed method: ISGM+ (noise) with different weights « values of 0.3,

0.5 and 0.7 in the CAVE and Harvard datasets for both spatial ex-
panding factors: 8, 16 and 32.

Dataset CAVE Harvard

Spatial Expanding Factor | « | PSNRT | SAM| | ERGAS]| | PSNR?T | SAM/| | ERGAS|

03| 4219 5.09 0.95 43.07 2.16 0.93

8 05| 4291 4.40 0.86 41.68 2.19 1.06

0.7 | 4216 4.75 0.92 41.85 2.18 1.09

03| 40.75 571 0.54 40.95 2.90 0.66

16 0.5 | 40.75 5.87 0.55 40.79 2.70 0.62

0.7 | 4042 5.64 0.58 41.90 2.48 0.52

03| 38.87 7.07 0.33 39.46 3.85 0.44

32 0.5 | 38.03 7.26 0.37 40.02 3.51 0.39

0.7 | 39.11 6.62 0.33 39.07 3.38 0.39

Ablation study

In order to evaluate the effect of different data terms on the loss function in ISGM
(noise) model, we set the hyper-parameter a value as 0.3, 0.5 and 0.7, respectively,
and provide the compared result in Table 3.5. Table 3.5 manifests the quantitative
metrics of PSNR, SAM and ERGAS with our ISGM+ (noise) method, which illus-
trates that there are no large impact on the super-resolution performance via fine-
tuning the hyper-parameter «. We are going to investigate in detail this phenomenon
in the future.

In our proposed ISGM (fusion) method, we adjust the hyper-parameter « from 0
to 1.0 to verify the effectiveness of the loss terms in Eq. 3.6. The compared results on
the CAVE dataset for the upscale factor 8 are shown in Table 3.6, which manifests the
best performance can be achieved with « = 0.4 and the second best one is obtained
with & = 0.5. When we set « as 0 or 1.0, which means only one loss term has been
used while completely ignoring the other one, the reconstruction performance is
significantly degraded especially with &« = 0. However, with a changing from 0.2 to
0.8, the reconstruction performance remains very stable, which means the plausible
and robust HR-HS image can be achieved as long as the incorporated loss is adopted
without large effect by the weight value.

We validate the performance effect of ISGM (RGB) by varying the block (scale)
numbers in the generative network, the used loss terms and the employed network
inputs. As we mentioned above, we employed an encoder-decoder architecture to
serve as our specific CNN model, where both encoder and decoder paths contain
multiple blocks for extracting multi-scale contexts in different receptive fields. To
verify the effect of the used multi-scale, we vary the block numbers from 2 to 5,
and we carry out the HR-HS image learning experiments. The compared results
are shown in Table 3.7, which manifests the larger block number enables the perfor-
mance improvement while the generative network even with two blocks only can
also achieve very promising results. Moreover, as described in Eq. 3.6, we adopted
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TABLE 3.6: Ablation study of our proposed ISGM (fusion) method
with different & in the loss function (Eq. 3.6) in the CAVE dataset for
upscale factor: 8.

Spatial Expanding Factor = 8
Dataset CAVE

alpha | RMSE] | PSNR? | SSIM 1 | SAM/ | ERGAS|
0.0 2598 | 1997 | 0.631 | 40.02 | 12.50
0.2 152 | 4499 | 0990 | 324 0.67
04 145 | 4545 | 0991 | 3.16 0.63
0.5 146 | 4535 | 0991 | 3.13 0.64
0.6 149 | 4226 | 0991 | 3.5 0.66
0.8 147 | 4520 | 0991 | 3.13 0.66
1.0 333 | 3836 | 0961 | 473 1.51

TABLE 3.7: Ablation studies of different block numbers of the genera-
tive network and loss terms on CAVE dataset with the up-scale factor

8.
Block Loss RMSE] | PSNRT | SSIMt | SAM| | ERGAS)
number
2 145 | 4549 | 0992 | 347 | o081
3 Both 142 | 4569 | 0992 | 328 | 081
4 138 | 4605 | 0993 | 313 | 077
Lossl 2627 | 1985 | 0601 | 4353 | 16.19
; Loss2 330 | 3857 | 0972 | 368 | 188
Both 135 | 4620 | 0992 | 305 | 077
Skip w/o FT Conv 1.54 44.97 0.992 3.29 0.91

the reconstruction errors of both observed HR-RGB and LR-HS images as the loss
function (denoted ‘both” loss), and it is also possible to employ one loss term for our
network training, denoted as lossl and loss2, respectively. The compared results
with different loss terms are also given in Table 3.7, which demonstrates two terms
of loss achieve much better performance. At the same time, we also verify the ef-
fectiveness of the FT Conv module, and provide the compared results with the FT
Conv module or the simple skip connection in Table 3.7, which manifests that the FT
Conv module can improve the PSNR 1.23dB.

Finally, we verify the effectiveness of our proposed ISGM (RGB) method with
the RGB-guided input. As mentioned above, the potential inputs to our generative
network have several choices such as the noise, the combined data of two observa-
tions (denoted as ‘Fused’), the HR-RGB observation with HR spatial structure and
the possible condition (HR-RGB or LR-HS) with small perturbation including noise
and dropout. Our method takes the HR-RGB image as the conditional guidance to
the generative network since the HR spatial structure would benefit the plausible
estimation of the absent spatial information in the LR-HS observation. The com-
prehensive comparisons with different network inputs are manifested in Table 3.8,
and the conditional guidance with the HR-RGB image gives the best super-resolving
performance.
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TABLE 3.8: Ablation studies of different network inputs on CAVE
dataset with the up-scale factor 8.

Block number:5 Loss: both

Input RMSE/ | PSNR?T | SSIM1 | SAM/ | ERGAS]
Noise 210 | 4253 | 0978 | 5.30 112
Fused 146 | 4547 | 0992 | 327 0.81

Fused+ Perturbation | 144 | 4561 | 0992 | 372 0.80

RGB+Perturbation 1.35 46.20 0.992 3.05 0.77

RGB+dropout 1.36 46.13 0.993 3.06 0.76

RGB 1.51 45.11 0.989 3.68 0.86

Perceptual Quality

To visualize the reconstruction results of the ISGM (noise) model, two representative
images from the CAVE and Harvard datasets, respectively, with different upscale
factors (8, 16, and 32) are shown in Figures 3.4-3.9 using different deep unsuper-
vised methods (DHIP [59], uSDN [77], the proposed (ISGM (noise) method, and
the ISGM+ (noise) method with a perturbation term). In all figures, the first row
shows the original HR image and the super-resolved results with spatial and spec-
tral fidelity indexes (PSNR Sam for the recovered images using different methods),
whereas the second row shows the difference images between the recovered HR-
HS image and the ground-truth HR-HS image. In these figures, it can be observed
that the proposed ISGM (noise) method is capable of recovering the HR-HS image
with a smaller difference to the ground-truth HR-HS image and more reliable spa-
tial /spectral indexes for most cases, excluding the results of uSDN in Figure 3.9. As
mentioned in section above, although the uSDN method is capable of achieving im-
pressive performance for some specific images using the default hyper-parameters,
it cannot provide accurate results for most of the images, especially for those with
large upscale factors. Despite the better results obtained for some images using the
uSDN method, accurate recovered results cannot be achieved for 20 images out of
the total 50 images. Moreover, the proposed ISGM+ (noise) method is capable of
further improving the performance of the ISGM-version method for all images with
different upscale factors.

Finally we provide the visual comparison with the traditional optimization-based
method: CSU [93] and NSSR [46], the supervised deep learning-based methods:
DHSIS [57], and the un-supervised deep learning-based methods: uSDN [77], DHP
[101]. Figure 3.10 and 3.11 show the compared results (spectral band 16: 550nm
and band 31: 700 nm) of one representative image from the CAVE dataset and the
Harvard dataset, respectively. From Fig. 3.10 and 3.11, we can see that our pro-
posed method manifests a more plausible visualization, especially in the difference
between the recovered HR-HS image and the ground-truth image, which verifies the
higher spatial accuracy of our proposed method in a specific band. In addition, we
further attempt to provide a global evaluation of all spectral bands in the recovered
HS image instead of a specific band. We calculate SAM values of all pixels to mea-
sure the spectral distortion and express them as the angle degree with value range
[0; 180]. The obtained SAM values of all pixels can be considered as the intensities of
a SAM image and visualized in Fig. 3.12. Small magnitudes in the visualized SAM



40 Chapter 3. Unsupervised Learning of Hyperspectral Image Prior

ISGM+ (noise)

(PSNR/Sam: Inf./0) (33.81/6.93) (39.46/5.58)  (41.03/4.33)  (47.12/2.48) (47.37/2.43)

DHIP_diff. uSDN_diff. SNNMF_diff. ISGM (noise)_diff. ISGM+ (noise)_diff.

FIGURE 3.4: Recovered HR-HS image of the 'Balloon’ sample in the

CAVE dataset using the DHIP [59], uSDN [77], SNNMF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 8.

(PSNR/Sam: Inf./0) (31.07/7.26) (38.63/8.42)  (37.44/9.46)  (44.57/3.56)  (44.77/3.51)

DHIP_diff. uSDN_diff. SNNMF_diff. ISGM (noise)_diff. ISGM+ (noise)_diff.
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FIGURE 3.5: Recovered HR-HS image of the 'Balloon’ sample in the

CAVE dataset using the DHIP [59], uSDN [77], SNNMF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 16.

images mean the small angle degrees and small spectral distortion. From Fig. 3.12, it
can be observed that the SAM images of our proposed method show much smaller
values for most pixels than the state-of-the-art methods.

3.7 Conclusion

In order to address the super-resolution issue for hyperspectral images, we provide
a unsupervised deep hyperspectral image super-resolution framework with two dif-
ferent input modalities. A deep convolutional neural network is used to automati-
cally learn the spatial and spectral features of latent HR-HS images from perturbed
noisy input data and the fusion context that naturally collects a significant quantity
of low-level image statistics. A special depth-wise convolution layer is designed
to achieve degenerate transformations between observations and desired targets,
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(PSNR/Sam: Inf./0) (29.72/9.08) (35.16/16.30) (33.88/11.97) (42.83/3.88) (42.93/3.85)
DHIP_diff. uSDN_diff.  SNNMF _diff. 1sam

(noise)_diff. ISGM+ (noise)_diff.
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16*16

FIGURE 3.6: Recovered HR-HS image of the 'Balloon’ sample in the

CAVE dataset using the DHIP [59], uSDN [77], SNNMF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 32.

HR DHIP uSDN SNNMF

(PSNR/Sam: Inf./0) (29.79/2.54)
DHIP_diff. uSDN_diff.  SNNMF_diff. ISGM (noise)_diff. ISGM+ (noise)_diff.

FIGURE 3.7: Recovered HR-HS image of the 'img1’ sample in the Har-

vard dataset using the DHIP [59], uSDN [77], SNNMF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 8.

(42.45/2.68)  (46.09/1.59)  (42.33/1.65)  (43.35/1.62)

g

and this generates a universally learnable module that only uses low-quality obser-
vations. Without requiring training samples, the proposed an unsupervised deep
learning framework can efficiently take advantage of the HR spatial structure of
HR-RGB images and the detailed spectral characteristics of LR-HS images to deliver
more accurate HS image reconstruction. We simply train the network parameters
using the observed LR-HS and HR-RGB images and a generative network structure
to reconstruct the underlying HR-HS images. Extensive research using the CAVE
and Harvard datasets demonstrate the promising results in quantitative evaluation.
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FIGURE 3.8: Recovered HR-HS image of the 'img1’ sample in the Har-

vard dataset using the DHIP [59], uSDN [77], SNNMEF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 16.

(PSNR/Sam: Inf./0) (24.95/3.02) (42.25/2.47)  (45.63/1.91)  (39.31/3.61)  (39.80/3.60)
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FIGURE 3.9: Recovered HR-HS image of the 'img1’ sample in the Har-

vard dataset using the DHIP [59], uSDN [77], SNNMEF [66], and the

proposed methods and corresponding difference images between the
ground-truth and recovered images with an upscale factor of 32.
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(a) Visualized results of spectral band 16: 550 nm
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(b) Visualized results of spectral band 31: 700 nm

FIGURE 3.10: Visual compared results of one representative image:

paints from the CAVE dataset with the traditional optimization-based

method: CSU [93] and NSSR [46], the supervised deep learning-based

methods: DHSIS [57], and the un-supervised deep learning-based

methods: uSDN [77], DHP [101] for spatial expanding factor: 16. (a)

Visualized results of spectral band 16: 550 nm. (b) Visualized results
of spectral band 31: 700 nm.
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(a) Visualized results of spectral band 16: 550 nm
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(b) Visualized results of spectral band 31: 700 nm

FIGURE 3.11: Visual compared results of one representative image:

imgb4 from the Harvard dataset with the traditional optimization-

based method:CSU [93] and NSSR [46], the supervised deep learning-

based methods: DHSIS [57], and the un-supervised deep learning-

based methods: uSDN [77], DHP [101] for spatial expanding factor:

16. (a) Visualized results of spectral band 16: 550 nm. (b) Visualized
results of spectral band 31: 700 nm.

csu NSSR DHSIS uSDN DHP ISGM (fusion)

. 180
180

Harvard:

imgb4 |

FIGURE 3.12: Sam results (spectral band 16: 550nm) of one rep-

resentative image: paints from the CAVE dataset and imgb4 from

the Harvard dataset with the traditional optimization-based method:

CSU [93] and NSSR [46], the supervised deep learning-based meth-

ods: DHSIS [57], and the un-supervised deep learning-based meth-
ods: uSDN [77], DHP [101] for spatial expanding factor: 16.

CAVE:
paints
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Chapter 4

Unsupervised Blind Learning of
Hyperspectral Image
Super-Resolution

4.1 Traditional Non-Blind Spatial/Spectral Degradation

From the predicted HR-HS images of the generative neural network, it is possible to
use mathematical degradation operations to approximate the LR-HS and HR-RGB
images and then formulate quantitative criteria (loss function) for network learn-
ing in Eq. 3.6. However, mathematical operations outside the generative neural
network may result in difficulties in the training procedure. In this work, without
any loss of generalization, two parallel special convolutional blocks are leveraged to
implement the traditional non-Blind spatial/spectral degradation model following
the generative neural network and construct an end-to-end learnable framework.
Specifically, the vanilla convolution layer is modified to be adapted for approximat-
ing the blurring/down-sampling operations and spectral transformation. Since, in
a real scenario, each spectral band undergoes the same blurring/down-sampling
transformations, the same kernel is defined for different spectral bands (channels)
in a depth-wise convolutional layer with the stride parameter as the spatial expand-
ing factor, and the bias term is set to ‘False’. The formula for the blurring/dawn-
sampling transformation can be expressed as follows:

X = foe(Go(z),)), (4.1)

where fpp() represents the transformation of an especially designed depth-wise
convolutional layer.

For implementing the spectral transformation from the generated HR-HS image
Z to the approximation of X, a point-wise convolutional layer with 3 output chan-
nels is applied, and the bias term as set to ‘False’. The formula for this spectral
transformation can be expressed as follows:

Y = fe(Go(z,)), (4.2)

where fc() represents the spectral transformation with the point-wise convolutional
layer. Using these two parallel blocks, an end-to-end learnable framework can be
realized. For the known spatial blurring/down-sampling degradation, the kernel
weight of the especially designed depth-wise convolutional layer with the known
ones is initialized, and the trainable parameter is set to ‘False’. Similarly, kernel
weights are set for the point-wise convolutional layer as the known CSF (spectral
transformation matrix) of the RGB camera. Therefore, the proposed image-specific



dthapter 4. Unsupervised Blind Learning of Hyperspectral Image Super-Resolution

generative model (ISGM) framework is considerably flexible and can be easily adapted
to various degradation models. Moreover, it also has the prospect of automatically
learning the transformation parameters in the embedded convolutional blocks for
unknown degradations, which is left for future research. By replacing the spatial
and spectral degradation operations with the designed convolutional blocks, the loss
function for training the proposed deep unsupervised fusion learning network can
be rewritten as follows:

0" = arg;nin“ﬁlHX — foB(Go(zin))|[F + (1 — ) B2l|Y = fc(Go(zin))[[F,  (43)

The optimization of Eq. 4.3 for obtaining the optimal parameter set of the gen-
erative neural network can be considered to be a kind of “zero shot” learning [103].
During the training procedure, only the low-quality image pairs (that is, the ob-
served LR-HS and HR-RGB images) are used without the corresponding label (the
HR-HS images) and thus the proposed method is completely unsupervised of being
generalized for any real observations. The detail implementation for the proposed
image-specific generative model (ISGM) is summarized in Algorithm 1.

Algorithm 1 Algorithm of the proposed deep unsupervised fusion learning method.

Require: The observed LR-HS image X and HR-RGB image Y
Ensure: Latent HR-HS image Z

1: Sample z), from uniform distribution with seed 0

2: fori = 0 to max. iter. (I) do

3:  Sample “éo,l) from uniform distribution

Perturb z) with “20,1)‘ zi =20 + ﬁnéo,l)
Z=Gy(zl 001

X = fpp(Z)

Y = fc(Z)

Loss function: aB:||X — X||2 + (1 — a)B2||Y — Y| |2
Compute the gradients regarding Gy

10:  Update 6 using the ADAM algorithm [94] as 6'

11: end for

12: Z = Gy(2))

o P2 N g

4.2 Learnable Blind Method

The degradation operations (spatial blurring/down-sampling and spectral transfor-
mation) should be known in all the methods. But is is unrealistic in a real scenario.
How to implement the degradation operations (Blurring, down-sampling, and spec-
tral transformation) following the generative network for developing an end-to-end
learning framework is another problem.

Our proposed ISGM (blind) method attempts to learn the specific priors of the
latent HR-HS image automatically to provide reconstruction results with unknown
degradation models. In the following, we introduce details of our proposed method
to the above problems. We leverage the observed LR-HS and HR-RGB images in-
stead of the randomly generated noise as the network input. Simultaneously, we
employ two specific convolutional layers to approximate the degradation opera-
tions, which can be implemented as both learn-able or fixed degradation models for
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different real problem settings. Next, we will substantiate the adopted input data to
our self-supervised network and the implementation of the learn-able degradation
module.

4.2.1 Non-blind

Non-blind degradation refers to a scenario where the degradation model and its
parameters are known. Hyperspectral Image Super-Resolution (HSI-SR) refers to
the task of increasing the spatial resolution of a hyperspectral image. In the case
of non-blind degradation in HSI-SR, we have prior knowledge of the degradation
model and its parameters, which can help us design effective algorithms for im-
age super-resolution. The degradation model typically includes the blurring kernel
and the downsampling operator used to generate the low-resolution image from
the high-resolution image. One popular approach for solving HSI-SR problems is
through the use of deep learning-based methods, where convolutional neural net-
works (CNNSs) are trained on pairs of low-resolution and high-resolution hyper-
spectral images. These networks learn to map the low-resolution image to the high-
resolution image, effectively removing the effects of the degradation model. To train
these networks, it is important to have a large dataset of paired low-resolution and
high-resolution hyperspectral images that are degraded using the same degradation
model. Once trained, these networks can be used to perform super-resolution on
new low-resolution hyperspectral images with the same degradation model.

In non-blind degradation, the degradation model and its parameters are known
in advance, which means that the process of restoring the original image is simpler
than in the case of blind degradation, where the degradation model and its parame-
ters are unknown. Knowing the degradation model and its parameters can be very
helpful when it comes to developing image restoration algorithms because it allows
us to design methods that can effectively compensate for the specific types of degra-
dation that have occurred. This knowledge can also be used to develop efficient
algorithms for super-resolution, denoising, deblurring, and other image restoration
tasks. In contrast, in the case of blind degradation, the restoration process is more
challenging since the degradation model is unknown, and the task becomes one of
estimating the model parameters as well as the original image. This makes the prob-
lem much more difficult and requires more advanced algorithms to solve.

4.2.2 (Semi-)Blind

From the predicted HR-HS image of the generative network, we can employ the
degradation operations to obtain the approximated LR-HS and HR-RGB images
for constructing the evaluation criterion of network training. However, simply us-
ing the mathematical operations to approximate the degradation model would lead
to this part outside the network and cannot integrate into an end-to-end learning
framework. In this study, we leverage two parallel blocks (seen as Fig. 4.1) fol-
lowing the generative backbone to approximate the degradation models as a whole
learnable framework. Specifically, we modify a conventional depth-wise convolu-
tion layer to adapt to the blurring and down-sampling transformation. Since the
same blurring and down-sampling transformation is conducted in each spectral
band in a real scenario, we impose the same kernel on different spectral bands in
the depth-wise convolution layer and set stride as a spatial expanding factor and the
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FIGURE 4.1: Concept of two parallel blocks for the degradation

bias term as False. The formulation for the blurring and down-sampling transfor-
mation is expressed as

X = fspw(Ge(Zixyy)), (4.4)

where fspw(-) denotes the operation in the specific depth-wise convolution layer.
In detail, let denote the same kernel in the depth-wised convolution layer, which
is used to separately convolute with all channels in the generated HR-HS image
Gg(Z{Xy}), as kspy € RIX1X5%s the transformation of fSDW<G9(I{Xy})> with the
spatial expanding factor as stride and the False bias would be boiled down to the
conventional mathematical 2D convolution and nearest down-sampling operators
via reducing the first- and second- modes of kspw to k € R¥**:

X =k ® Gy(Zxy)) P | (4.5)

where the weight parameters of kspw can be predefined by setting as the known
blurring kernel of the real degradation procedure or automatically be learned when
the blurring procedure is unknown. Thus, we can simply implement the fspw using
the specific depth-wise convolution layer, and then easily get the approximated LR-
HS image from the generated HR-HS image with Gy.

Furthermore, we employ a conventional convolution layer with kernel size 1 * 1
and the output channels 3 to implement the spectral transformation. Similarly, we
set stride as 1 and the bias term as False, which is formulated as

Y = fsc(Ge(Z(xvy)), (4.6)

where fsc(-) denotes the operation in the spectral convolution layer. In fsc(-), the
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convolution kernel ksc € RE*3*1%1js used to convert the detailed spectra of the gen-
erated HR-HS image Gg(Z{xy;}) to the degraded RGB image. Moreover, by reducing
the third- and fourth- modes of kgc, the learnable kernel has the same dimension-
ality as the spectral sensitivity function C(57) of an RGB sensor, and thus can be
adopted to approximate the C(57°) in our overall network. With the above design,
these two blocks can be parallelly implemented in our end-to-end learnable frame-
work. If the blurring kernel of the spatial degradation is known, we simply initialize
the weights of layer as the known kernel and set trainable as False in the learning
procedure. Similarly, we also set the weights of the 1+ 1 kernelin fsc(-) as the known
CSF of the RGB camera or automatically learn it in the network training procedure.
Thus, the investigated learnable framework is very flexible and easily adapted to
different real settings. Via substituting the degradation operation with our designed
convolution blocks, the loss function for training our deep self-supervised network
can be rewritten as

(0%, 05pw, O5c) = argemin“ X — fspw (Ge(Zxyy)) ||

2
+ (1= a) |[Y = fsc(Go(Zixny)) |
s.t.0 S Gg (Z{XY}) S 1Vi.

i

(4.7)

In Eq. 4.7, it can be seen that instead of optimizing directly on the latent HR-HS
image, we learn the parameters of the generative network for well reconstructing
the target. The optimization process of our network can be explained as a kind
of “zero-shot” self-supervised learning [104], where the generative network Gy is
trained using a test image pair (i.e., the observed LR-HS and HR-RGB images) only
and no ground-truth HR-HS image is available. Thus, we dub our method as a self-
supervised learning framework for HS image fusion.

4.3 Experiment Results

4.3.1 Comparison with (Semi-)Blind Methods

Our proposed ISGM(blind) method is exploited in a unified framework, which is
capable of reconstructing the HR-HS image from the observations not only with
the known spatial and spectral degradation operations but also with the unknown
spatial or spectral degradation operations or both unknown. Thus our proposed
method can be implemented in a complete blind setting (both unknown spatial
down-sampling kernel for LR-HS image and the unknown CSF for HR-RGB image).
The compared results using our proposed method with semi-blind and complete-
blind settings, the state-of-the-art unsupervised semi-blind methods: UAL method [82]
for spatial blind only, and the spatial blind implementation of NSSR [46] via setting
the incorrect spatial kernel, have been given in Table 4.1. Since the UAL method [82]
used the specified kernels for verifying the effectiveness to be adopted to various
spatial kernels, we utilized Bicubic down-sampling without the lack of generaliza-
tion, the average down-sampling [46], and the specified spatial kernels: K1 and K2
in [82], to create the LR-HS image, and then manifest the compared HS image re-
construction performance via automatically learning the down-sampling kernels in
our proposed ISGM(blind) method for a fair comparison. From Table 4.1, we can
see that our proposed method outperforms most SOTA methods in the same experi-
mental setting, and has great potential to be adopted to any real scenario. With the
same experimental setting, our proposed method improves the PSNR values from
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TABLE 4.1: Comparison with the (semi-)blind methods including the

unsupervised semi-blind approaches: UAL [82] and the semi-blind

implementation of NSSR [46] on the CAVE and Harvard datasets for
both spatial expanding factors: 8 and 32.

Spatial Expanding Factor = 8
CAVE Harvard
Method Real Down-sampling
Kernel RMSE/| | PSNRT | SSIMT | SAM/| | ERGAS | | RMSE| | PSNRT | SSIMT | SAM| | ERGAS|
NSSR (Bic) [46] Bicubic 3.41 38.03 0.968 5.35 1.52 2.76 39.77 0.981 2.00 1.30
NSSR (Ave) [46] Average 276 39.77 0.981 2.00 1.30 3.27 38.55 0.972 517 1.78
K1 1.85 43.23 0.986 6.72 - 2.08 42.38 0.982 2.67
UAL [82]
K2 201 42.72 0.986 6.78
K1 1.47 4514 | 0990 | 3.54 0.66 1.15 4759 | 0994 | 170 0.78
ISGM
K2 1.56 44.71 | 0989 | 3.64 0.69 112 4775 | 0994 | 170 0.79
(Spatial blind)
Bicubic 1.70 44.05 | 0988 | 3.70 0.75 1.33 4628 | 0992 | 195 0.93
ISGM
Bicubic 1.64 44.36 | 0989 | 3.66 0.72 1.28 46.67 | 0992 | 1.86 0.89
(Spectral blind)
ISGM
Bicubic 1.68 4410 | 0988 | 3.72 0.74 1.32 4644 | 0992 | 191 0.91
(Complete blind)
Spatial Expanding Factor = 32
UAL [82] K1 2.66 40.43 0.983 7.62 - 2.14 41.82 0.979 3.30
ISGM K1 2.96 39.21 0.972 6.68 0.32 1.87 43.22 0.987 291 0.35
(Spatial blind) Bicubic 2.84 39.42 0.973 6.56 0.32 1.96 42.71 0.986 292 0.36
ISGM
Bicubic 275 39.80 0.974 6.26 0.31 1.92 43.00 0.986 2.87 0.37
(Spectral blind)
ISGM
Bicubic 4.17 36.75 0.972 6.31 0.39 3.71 37.46 0.984 295 0.43
(Complete blind)

43.23dB/42.73dB to 45.14dB/44.71dB with the degradation kernels K1/K2 [82] for
the upscale factor 8 on the CAVE dataset while from 42.38dB to 47.59dB with the
kernel K1 on the Harvard dataset. Finally, we also added the compared results of
the traditional optimization-based NSSR with incorrect spatial kernel in Table 4.1.
In these additional experiments, we created the LR-HS image by down-sampling
the original HR-HS image with the average kernel and Bicubic operation, respec-
tively. Since the NSSR method cannot automatically learn the spatial degradation
operation, we assumed the spatial down-sampling kernel as Gaussian kernel with-
out the lack of generalization under the unknown spatial degradation assumption,
and conducted the NSSR method to recover the HR-HS image, denoted as NSSR
(Ave) and NSSR (Bic), respectively. From Table 4.1, it is obvious that our proposed
method significantly improve the performance compared with NSSR [46] under the
blind-experimental settings.

4.3.2 Comparison with SoTA Methods

For comparing our ISGM (blind) method, we first carried out our tests for the spatial
scale factors 8 and 16, and we contrasted our approach with the most recent tech-
niques, such as those based on mathematical optimization: GOMP [95], MF [50],
SNNMEF [66], CSU [45], NSSR [46], supervised deep learning-based methods: SCT-
SDCNN (w/o the HR-RGB image as input) [105], SSFNet [48], DHSIS [57], ResNet
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TABLE 4.2: Compared results with the SoTA methods including
mathematical optimization-based and deep learning-based methods
on both CAVE and Harvard datasets with the up-scale factor 16.

Dataset CAVE Harvard
Method RMSE| | PSNR?T | SSIMt | SAM| | ERGAS| | RMSE] | PSNRt | SSIMT | SAM| | ERGAS|
GOMP [95] 6.08 32.96 - 12.60 1.43 3.83 38.56 - 4.16 0.77
Mathematical MEF [50] 2.71 40.43 - 4.82 0.73 1.94 43.30 - 2.85 0.47
optimization SNNME [66] 2.45 42.21 - 4.61 0.66 1.93 43.31 - 2.85 0.45
CSU [45] 2.87 39.83 | 0.983 5.65 0.79 1.60 4550 | 0.992 1.95 0.44
NSSR [46] 1.78 44.01 0.990 3.59 0.49 1.65 4451 0.993 248 0.41
SSFNet [48] 2.18 4193 | 0991 4.38 0.98 1.94 43.56 | 0.980 3.14 0.98
DHSIS [57] 2.36 41.63 | 0987 | 4.30 0.49 1.87 4349 | 0983 2.88 0.54
MHF-net [75] - 44.51 0.992 4.00 0.38 - 46.23 | 0.987 3.09 0.54
LTTR [107] - 4248 | 0987 | 4.25 0.47 - 4582 | 0.986 3.11 0.65
Deep CNN-FUS [106] - 40.37 | 0979 5.85 0.59 - 43.47 | 0.966 5.41 0.92
learning ResNet [102] 1.93 4357 | 0.991 3.58 0.51 1.83 4405 | 0984 | 237 0.59
MoG-DCN [108] - 46.84 | 0.995 2.62 0.31 - 46.43 | 0.987 2.93 0.53
uSDN [77] 3.60 37.08 | 0.969 6.19 1.35 9.31 39.39 | 0931 4.65 1.72
DUFL [109] 2.61 40.71 0.967 6.62 0.70 2.81 40.77 | 0.953 3.01 0.75
ISGM (blind) 171 4415 | 0.990 3.63 0.48 1.28 47.37 | 0.992 1.92 0.49

[102], CNN-FUS [106], LTTR [107], MHF-net [75], MoG-DCN [108], and unsuper-
vised deep learning-based methods: uSDN [77], DUFL [109]. Table 4.2 compares
the outcomes of the upscaling factor 16 for the Harvard and CAVE datasets. The
supplemental material displays the comparison outcomes of the upscaling factor 8.
According to Table 4.2, our method can perform much better than the majority of
SoTA methods across all evaluation metrics. More particular, our approach outper-
forms both unsupervised optimization-based and deep learning-based approaches,
and on the CAVE dataset, it exhibits better or equivalent outcomes with the su-
pervised deep learning approach. The suggested approach greatly outperforms all
SoTA approaches for the Harvard dataset. Next, we further conducted experiments
for much larger spatial upscale factor: 32. The compared results on two images from
both CAVE and Harvard datasets are given in Table 4.3, where all compared meth-
ods are implemented for the well-registered HR-RGB and LR-HS pairs. It should
be noted that the compared #2-MDN method [110] was proposed for HSI SR for the
unregistered HR-RGB and LR-HS observation. In order to give a fair comparison,
the values of the #?>-MDN method in Table 4.3 are the results for the well-registered
input pair.

4.3.3 Ablation Study

Different Settings in the Proposed ISGM (blind) Method

In our proposed DSSH method, we employ the fused context as the input of the
generative network instead of noise as in DHP [101], which is expected to provide
insight about spectral correlation and the high-resolution spatial structures existed
in the observed LR-HS and HR-RGB images. In addidition, DHP simply adopts a
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TABLE 4.3: Compared results of two representative images from both
CAVE and Harvard datasets with the SOTA methods including the u2-
MDN [110] method for the up-scale factor 32.

CAVE Harvard
ballon cloth imgl imgb5
PSNR | SAM | ERGAS | PSNR | SAM | ERGAS | PSNR | SAM | ERGAS | PSNR | SAM | ERGAS

CNMF [93] 39.27 | 9.71 0.26 30.52 | 6.55 0.54 37.25 | 2.86 0.15 39.06 | 2.14 0.17
CSU [45] 4152 | 4.68 0.19 3347 | 5.52 0.40 39.12 | 2.30 0.12 39.01 | 2.37 0.18
NSSR [46] 4320 | 3.35 0.16 33.30 | 4.58 0.31 3991 | 2.24 0.14 39.12 | 217 0.17
uSDN [77] 4154 | 4.56 0.20 3348 | 4.16 0.35 39.30 | 2.27 0.12 39.72 | 2.10 0.16
u?>-MDN [110] | 43.59 | 1.93 0.16 3485 | 4.31 0.30 40.97 | 2.06 0.11 39.76 | 2.08 0.15
ISGM (blind) | 46.12 | 2.44 0.11 36.80 | 3.62 0.26 48.38 | 1.24 0.07 49.98 | 1.36 0.13

TABLE 4.4: Compared results with the SoTA methods on the NUS
dataset with the up-scale factor 16.

Dataset NUS
Method RMSE| | PSNRT | SSIMT | SAM|
Mathematical CSU [45] 1.65 44.80 0.976 3.23

optimization NSSR [46] 1.21 47.56 0.972 2.78

DHSIS [57] 1.47 45.48 0.981 3.15

ResNet [102] 1.19 43.06 0.975 2.83

Deep
uSDN [77] 221 41.77 | 0.970 5.15

learning
ISGM (blind) | 1.18 4759 | 0986 | 257

randomly generated noise as the input, which cannot leverage the spectral corre-
lation in the observed LR-HS image and the HR spatial structure in the observed
LR-HS image for constraining the network learning, while our method leverages
the combined observations with a small perturbed noise as the input of the net-
work, and is expected to reconstruct a more robust and stable HR-HS image. It is
possible to replace the noise input as the fused context: Z;xy) in DHP to validate
the effectiveness of different components in our proposed method. We provided the
compared results using the DHP network with the perturbed combination of the
observed images in Table 4.5. It can be seen that our method can achieve much bet-
ter reconstruction performance. Also, we implement the spatial degradation model
as a learnable module inside the DSSH framework. With the known kernel of the
spatial degradation model, we simply set the trainable parameter as False. In con-
trast, we can simultaneously learn the kernel and the generative network with the
unknown spatial kernel. Table 4.5 gives the compared results using different set-
tings: the input of the generative network (noise or the fused context: Z;xy,) and
the spatial degradation kernels including the known kernel with Lanczos approxi-
mation, and the unknown kernel: the widely used Gaussian kernels with different
standard deviations and automatically learned kernel. Regarding to the Gaussian
kernel, the hyper-parameter: standard deviation is needed to be defined previously.
Firstly, we conducted a pilot experiment with different parameters: 1/2, 1/+/2 and
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TABLE 4.5: Compared results using different settings: the input of the

generative network (noise or the fused context: Z;xy}) and the spa-

tial degradation kernels including the known kernel (Lanczos), and

the unknown kernels: the widely used Gaussian kernels with differ-

ent standard deviations and automatically learned kernel, in our pro-

posed DSSH method for both CAVE and Harvard datasets with the
spatial expanding factors: 8 and 16.

Factor Kernel CAVE Harvard

RMSE]| | PSNRT | SSIMT | SAM/ | ERGAS] | RMSE| | PSNRT | SSIMT | SAM| | ERGAS]

DHP-Lanczos+Zxyy 3.33 38.36 0.961 473 1.51 3.81 37.26 0.942 2.14 141

Lanczos+Noise 2.10 42.53 0.978 5.30 1.12 2.15 42.63 0.975 232 1.01

Lanczos+Zxy, 144 45.60 0.992 3.27 0.80 1.17 4827 | 0.993 1.78 0.77

8 Gauss1+Zxyy 597 33.21 0.936 5.55 255 447 35.48 0.960 248 1.74

Gauss2+Zxyy 6.17 33.05 0.932 6.05 2.60 6.56 32.51 0.943 5.06 2.36

Gauss3+Zxyy 6.96 31.86 0.926 6.03 2.95 6.82 30.85 0.929 491 2.29

Learned+Zxyy 1.70 44.05 0.988 3.70 0.75 1.33 46.28 0.992 1.95 0.93

DHP-Lanczos+Zxyy 4.20 36.26 0.948 5.53 0.95 471 35.32 0.992 2.52 0.90

Lanczos+Noise 2.60 40.75 0.970 6.42 0.70 9.46 38.14 0.876 8.52 7.71

16 Lanczos+Zxy, 1.77 43.85 0.989 3.76 0.50 1.32 47.16 0.992 1.99 0.47

Gaussian+Z xyy 5.64 33.64 0.943 6.68 1.21 3.84 36.67 0.973 2.71 111

Learned+Zxy) 2.17 41.95 0.983 4.56 0.47 1.51 45.21 0.990 224 0.52

2 x factor/6 on the CAVE dataset with the expanding factor 8, and then utilize the
parameter achieving the best performance on the CAVE dataset for other experi-
ments. From Table 4.5, it is obvious that with the known spatial kernel, the best
performance can be obtained for both CAVE and Harvard datasets with different
spatial expanding factors. However, the performances with a wrong selected spatial
kernel are decreased greatly while automatically learning the spatial kernel leads to
a little performance decreasing compared with the known kernel results.

Next, we adjust the hyper-parameter « from 0 to 1.0 to verify the effectiveness
of the loss terms in Eq. 4.3. The compared results on the CAVE dataset for the up-
scale factor 8 are shown in Table 4.6, which manifests the best performance can be
achieved with « = 0.4 and the second best one is obtained with & = 0.5. When we
set a as 0 or 1.0, which means only one loss term has been used while completely
ignoring the other one, the reconstruction performance is significantly degraded es-
pecially with « = 0. However, with a changing from 0.2 to 0.8, the reconstruction
performance remains very stable, which means the plausible and robust HR-HS im-
age can be achieved as long as the incorporated loss is adopted without large effect
by the weight value.

Finally, we verified the effectiveness of our method on the NUS dataset. The
compared results with different paradigms for HSI SR task are given in Table 4.4,
which also manifests great improvement margin over the SOTA methods.

4.3.4 Perceptual Quality

Moreover, we show the visualization results (one band) of a representative image
with several unsupervised model-based and deep learning-based methods in the
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TABLE 4.6: Ablation study with different « in the loss function (Eq.
4.7) on the CAVE dataset for upscale factor: 8.

Spatial Expanding Factor = 8
Dataset CAVE

alpha | RMSE| | PSNR?T | SSIM 1 | SAM/ | ERGAS|
0.0 25.98 19.97 0.631 40.02 12.50
0.2 1.52 44.99 0.990 3.24 0.67
0.4 1.45 45.45 0.991 3.16 0.63
0.5 1.46 45.35 0.991 3.13 0.64
0.6 1.49 42.26 0.991 3.15 0.66
0.8 1.47 45.20 0.991 3.13 0.66
1.0 3.33 38.36 0.961 4.73 1.51
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FIGURE 4.2: Visual difference results of the representative images:

Paints in the CAVE dataset of mathematical optimization-based

methods: CSU [45], NSSR [46] and deep learning-based methods:

uSDN [77], DUFL [109], DHSIS [57] and our method on the CAVE
dataset with the up-scale factor 16.

=
L z]o

first two rows of Fig. 4.2 and Fig. 4.3 for both CAVE and Harvard dataset by the up-
scale factor 16, which also demonstrate our proposed method achieves much smaller
reconstruction errors on all spatial positions. To provide the compared spectral re-
covery fidelity of all wavelength bands instead of one band, we compute the SAM
value (Angular degree: 0° — 180°) of each pixel in the representative images, and
visualize the SAM intensity as an image in the third row of Fig. 4.2 and Fig. 4.3 with
the up-scale factor 16. Further, the spectral curves of one pixel in the representative
images are also provided in Fig. 4.4 and Fig. 4.5, which manifests the high spectral
fidelity of our proposed method.

4.4 Conclusion

This chapter proposed a novel deep self-supervised learning framework for hyper-
spectral image reconstruction. The proposed framework is completely non-dependent
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FIGURE 4.3: Visual difference results of the representative images:

imgb4 in the Harvard dataset of mathematical optimization-based

methods: CSU [45], NSSR [46] and deep learning-based methods:

uSDN [77], DUEL [109], DHSIS [57] and our method on the CAVE
dataset with the up-scale factor 16.

1.1
™~
J; \\
12 P FEEN N o S
VT N e
0.9 o \.:}
o2
- R U
E 0.8 \_..--""-\”‘a",,_,—..
T
> 0.7 4
o]
X
e 0.6 """-..h_’.\\ P
\..-""-..,”-J
0.5
=== Groundtruth === MNSSR
Rk --- CSU ~=- uSDN
0.3 DUFL ma= LIS
400 450 500 550 600 650 700

Wavelenth (nm)

FIGURE 4.4: The recovered spectral curve of one pixel in the rep-

resentative images: Paints in the CAVE dataset of mathematical

optimization-based methods: CSU [45], NSSR [46] and deep learning-

based methods: uSDN [77], DUFL [109], DHSIS [57] and our method
on the CAVE dataset with the up-scale factor 16.

on any hand-crafted prior and previously collected training triplets. Via leveraging
the designed architecture of generative network itself for capturing the prior of the
underlying structure in the latent HR-HS image, we employed the observed LR-HS
and HR-RGB images only for network parameter learning. Further, we implemented
the degradation models in a learnable manner inside our proposed framework and is
prospected to be used flexibly in different real scenarios. Experiments on two bench-
mark HS image datasets validated that the proposed DSSH method manifested very
impressive reconstruction performance, and even better than most state-of-the-art
supervised learning approaches.
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FIGURE 4.5: The recovered spectral curve of one pixel in the rep-

resentative images: imgb4 in the Harvard dataset of mathematical

optimization-based methods: CSU [45], NSSR [46] and deep learning-

based methods: uSDN [77], DUFL [109], DHSIS [57] and our method
on the CAVE dataset with the up-scale factor 16.
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Chapter 5

Unsupervised Internal Learning of
Hyperspectral Image
Super-Resolution

Inspired by the fact that natural images have strong internal data repetition and
the cross-scale internal recurrence, Shocher et al. [111] exploited a zero-shot super-
resolution (ZSSR) for the RGB images, and aimed to learn an image-specific CNN
model for each under-studying test data. Via extracting the LR-HR pairs from the
down-sampled versions of the LR image and itself as training samples, ZSSR trained
a CNN model to infer the complicated image-specific LR-HR relations, and then ap-
plied the learned relations (model) on the LR observation to provide the HR estima-
tion. However, ZSSR has to down-sample the observation to lower-resolution data
for extracting training pairs and would lead to a very limited amount of training
samples, especially for large-upscale SR problems. As a result, ZSSR has usually ap-
plied for super-resolving the LR observation with small up-scale factors such as 2 or
4. It is well known that the up-scale spatial factor in the HSI SR scenario is required
to be very large such as from 8 to 32, and then the naive adaptation of ZSSR to the
HSI SR task would be impractical. Moreover, the essential attributes in HS images
are the owed detail spectral distribution potentially for distinguishing the materials
with a subtle difference, and thus lift the spectral fidelity in HSI SR task should be
the concentrated aspect. With regard to naively adopting the internal spatial recur-
rence like in the ZSSR paradigm, the down-sampling operation on the observations
usually causes severe spectral mixing of the surrounding pixels, and thus the de-
viation of the spectral mixing levels at the training phase and test phase would be
great large. This domain shift in HSI SR possibly degrades the super-resolved per-
formance in real experiments.

To overcome the above limitations, this study proposes a novel deep internal
and self-supervised learning framework for HSI SR, which is image-specific gener-
ative model of generalized internal learning (ISGM (GIL)). On one hand, given the
observations: the HR-HS and HR-RGB images for a specific scene, similar in ZSSR
we down-sample them into LR-HS and HR-RGB sons and then extract the train-
ing triplets from the son images and the original LR-HS to conduct deep internal
learning. On the other hand, we further extract the input pairs from the original
observations: LR-HS and HR RGB images as training samples without the ground-
truth to conduct deep self-supervised learning. To effectively leverage the unlabeled
training samples, we specifically design the degradation blocks to transform the pre-
dicted HR-HS image to the LR-HS and HR-RGB images, which are used to formulate
the loss function for network training. The proposed internal and self-supervised
learnings are aggregated into a unified framework, where the deep network with an
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encoder-decoder architecture is shared for both branches of learning. By integrat-
ing the self-supervised learning without ground-truth label with the ‘supervised
internal learning, the domain shift caused by different spectral mixing levels can be
expected to be significantly mitigated, and thus greatly lift the spectral recovering
performance in the HSI SR task. We conduct extensive experiments on two bench-
mark HSI datasets, and demonstrate the significant superiority of our method over
SoTA CNN-based HSI SR methods.

In summary, our main contributions are three-fold:

1) We present a novel deep internal learning method for unsupervised HSI SR,
which extracts the training triplets from the down-sampled versions of the observa-
tions and the LR-HS image to train a specific CNN model for the under-studying
scene.

2) We exploit deep self-supervised learning via leveraging the observed LR-HS
and HR-RGB images without the corresponding ground-truth as the complemen-
tary training samples which can potentially mitigate the domain shift, especially for
the great gap of the spectral mixing levels between the training samples in inter-
nal learning and the ongoing HR-HS prediction from the observations. Specifically,
we design the special convolution blocks to implement the degradation operations
inside the learning framework, and then produce the estimations of the observed
LR-HS and HR-RGB images from the predicted HR-HS image to construct a loss
function for network learning.

3) We combine the internal and self-supervised learning into a unified end-to-end
framework for HSI SR. In detail, we adopt a weight-shared network with encoder-
decoder architecture for both internal and self-supervised learning, where following
the output of the self-supervised learning we append the convolution-based degra-
dation blocks and investigate a joint optimization strategy for network training.

5.1 Deep Supervised External Learning

In recent years, deep learning approaches have been widely studied for HSI SR
tasks to automatically learn a common model for any observed LR-HS/HR-RGB
pair without manual exploration of the image priors, and demonstrate remarkable
performance gain over the traditional prior-based methods. Han et al. [71] firstly
stacked the up-sampled LR-HS and the HR-RGB images together, and then adopted
a simple 3-layer CNN to estimate the latent HR-HS image. Later, more complex
CNN architectures with residual structure and dense connection [72] have been pro-
posed for boosting SR performance. Palsson et al. [73] proposed performed a 3D
CNN architecture to perform MS/HS fusion by first dimensionality reduction for
decreasing computational time. Dian et al. [57] exploited a combined optimization
and learning method for HSI SR, which firstly obtained an initial HR-HS estima-
tion via solving a Sylvester equation, and then adopted a CNN network to refine
the initial result. More recently, Wang et al. [74] proposed a coarse-to-fine HS im-
age learning procedure by iteratively exploring the relationship between the target
and the observations, and illustrated great performance improvement. Moreover,
Han et al. [55] focused on handling the extreme difference issue of the spatial struc-
ture in two modalities of observations, and proposed a multi-scale and multi-level
fusion learning framework. All of the mentioned networks are implemented in a
fully-supervised way, and are needed to be trained using a large number of external
samples, which consist of not only the easily captured LR-HS/HR-RGB images but
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also the high-cost HR-HS images. Furthermore, although the learned models poten-
tially have the common modeling capability for dealing with any observation while
cannot take account of the specific attributes for an under-study scene.

5.2 Zero-Shot Learning

Zero-shot learning is a type of machine learning technique where a model can rec-
ognize and classify objects or concepts it has never seen before by leveraging prior
knowledge or information. In other words, the model can perform well on new
tasks without requiring any training data or examples specific to that task. This is
achieved by training the model to understand the relationships and similarities be-
tween different classes or concepts. For example, if a model has been trained on a
dataset of animal images and their corresponding labels, it can still classify a new
animal it has never seen before by using its understanding of the relationships be-
tween different animal categories (e.g. mammals, birds, reptiles) and the features
they share (e.g. fur, wings, scales). Zero-shot learning has applications in various
tields, such as natural language processing, computer vision, and robotics, where it
can be used to improve the accuracy and efficiency of models by reducing the need
for large amounts of training data. Recently, zero-shot learning is utilized in im-
age processing, especially for natural images super-resolution. Zero-shot learning
can be applied to natural image super-resolution, which is the process of generat-
ing high-resolution images from low-resolution inputs. In traditional approaches,
super-resolution models are trained on pairs of high-resolution and low-resolution
images to learn the mapping between them. However, zero-shot learning can be
used to enhance super-resolution models by leveraging prior knowledge about the
image content and structure. This is achieved by training the model on a set of high-
resolution images and their corresponding attributes, such as edges, textures, and
patterns, without explicitly providing low-resolution images. During inference, the
model can then generate high-resolution images from low-resolution inputs by us-
ing its understanding of the relationships between different image features and their
corresponding attributes. For example, if the model has learned that a certain edge
pattern in a high-resolution image corresponds to a particular texture, it can use this
knowledge to enhance the texture details in a low-resolution image with a similar
edge pattern. Zero-shot learning in natural image super-resolution has the poten-
tial to improve the quality and accuracy of super-resolved images, particularly in
scenarios where obtaining pairs of high- and low-resolution images for training is
difficult or time-consuming.

5.3 Deep Internal Learning

Inspired by the strong internal data repetition and the cross-scale internal recurrence
in a natural image, Shocher et al. [111] proposed a deep internal learning network
for the RGB images, dubbed as zero-shot super-resolution (ZSSR). The ZSSR method
aimed to learn an image-specific CNN model for each under-studying data via syn-
thesizing the internal training samples, i.e. the internal LR-HR pairs from the LR
image and its down-sampled version. This method was specifically proposed for
natural RGB image super resolution, and demonstrated promising performance for
super-resolving the LR observation with small up-scale factors such as 2 and 4. This
study aims to integrate the internal learning for the HSI SR task. However, in the
HSI SR scenario, the up-scale factor is usually large such as from 8 to 32, and then
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the synthesized internal training samples extracted from the observations and their
down-sampled versions would be extremely small. The network training with the
internal samples would not generate a model with sufficient modeling capability.
Thus, the naive adaptation of the existing internal learning to the HSI SR task pos-
sible cannot work well. In addition, the beneficial attributes in HS images are the
detail spectral distribution for effectively distinguishing the materials with a subtle
difference, and thus enhancing the spectral reliability in HSI SR task should be more
important. Whilst the down-sampling of the observation in the conventional inter-
nal learning usually causes severe spectral mixing in the synthesized samples, and
then results in heavy domain shift between in training and test phases, which greatly
degrades the super-resolved performance in real experiments. Therefore, this study
proposes to leverage the observations without the ground-truth as the training sam-
ples for self-supervised learning, and guides the internal network learning to proper
direction.

5.4 Proposed Image-Specific Generative Model of General-
ized Internal Learning

Instead of utilizing hand-crafted image priors, the deep learning networks can au-
tomatically learn the intrinsic image priors hidden in the training data and have
been successfully applied for HSI SR tasks to provide superior SR performance. The
current dominated research paradigm mainly leverages the previously collected ex-
ternal dataset to off-line learn a common model while several works realize the deep
learning framework in an unsupervised way with the help of the mathematical rela-
tion between the observations and the required HR-HS image. In this subsection, we
survey both deep supervised external learning and unsupervised learning methods.
In this section, we first introduce the formulation of the HSI SR problem to merge the
observed LR-HS and HR-RGB images, and describe the motivation for our method.
Then, we present our unsupervised CNN-based method for the HSI SR, which can
build a specific model by conducting the internal learning and complementary self-
supervised learning with the observed images only.

5.4.1 Motivation

In the conventional fully-supervised CNN based methods, it is necessary to previ-
ously build the external dataset including large number of training triplets {x,, yu, z, }
where x,, and y,, are n — th LR-HS and HR-RGB images as the CNN network inputs
while z,, is the corresponding label, and then learn an off-line HSI-SR model by
minimizing the reconstruction errors of the external training HR-HS samples as the
follows:

N
n=1/

N
- CNN
6" = arg min Y llzn — f5

n=1

(anyn) H%r (5.1)

where 6 is the network parameters to be optimized. After finishing the network
learning at the training phase, the observed LR-HS and HR-RGB images: x;, y; of an
arbitrary test scene are inputted to the CNN model with the fixed parameters 6* to
produce the corresponding HR-HS estimation: z; = f5"N(x;, yt).

Unlike the supervised paradigm above, this study leverages the observed images
only to train a specific CNN for the under-studying data via synthesizing the train-
ing triplets from the observation and their down-sampled versions for ‘supervised’
learning and producing un-labeled training samples from the observations only
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for unsupervised learning, which can also be called as internal and self-supervised
learning, respectively. Fundamental of the internal learning is the fact that there
is strong internal data repetition in natural images, such as a large number of re-
peated small patches inside a single image within the same scale as well as across
various scales. Thus, on the one hand, we take the observed LR-HS image as the
HR-HS training label and down-sample the observed HR-RGB and LR-HS images
to synthesize its corresponding training inputs, which have been verified to pos-
sess similar super-resolving relations to some extent in spite of different resolution
scales. On the other hand, in contrast with the required high-fidelity on the spa-
tial structures in the natural image SR task, the HSI SR expects more to recover the
high-reliable spectral characteristics. However, the spectral mixing levels may be
significantly made heavier by down-sampling the observed LR-HS image, which
itself has a very low spatial resolution, and thus results in a great gap of the spec-
tral mixing between the internal samples and the true un-available samples in the
real HSI SR scenario. Then, this study appeals to the un-labeled observations, and
uses them as the complementary training samples without ground-truth to conduct
self-supervised learning, which is expected to bridge the great gap of the spectral
mixing level between the internal samples and the true-scale samples. The con-
ceptual architecture of our deep internal and self-supervised learning framework is
shown in Fig. 5.1, which mainly consists of two branches of training flows with the
shared encode-decode network. In detail, we adopt a simple encoder-decoder net-
work architecture for learning multi-level contexts and conducting fusion between
encode-decoder paths. Concretely, the encoder and decoder paths, contain the same
number of blocks, and a point-wise convolution-based bridge (PWCB) between the
corresponding blocks of the two paths is adopted to transfer the learned detail fea-
tures of the encoder to the decoder path. Each block in the encoder path is composed
of 2 convolution layers with kernel size 3 * 3, following the batch-normalization and
LeakyRELU activation layers, where the first convolution has the stride parameter
2 to decrease the feature map size of the previous one to half. In addition, the block
in the decoder path firstly concatenates the transfered feature of the PWCB and the
up-sampled feature of the previous decoder’s block, which doubly recovers the fea-
ture map size between the adjacent decoder blocks, and then serially employ two
convolution layers with kernel sizes 3 * 3 and 1 * 1, respectively, for feature learning.
Finally, a convolution reconstruction layer is used for predicting the latent target
as the output of the specific CNN model. According to the above description, we
aim to learn a specific CNN model for each under-studying scene via leveraging the
observed images and their transformations. Generally, following the similar expres-
sion of Eq. 5.1, we formulate the loss function of our internal and self-supervised
learning as:

0* :argmein Ixt — To(f5 NN (Ta(xe, ye))) 13

(5.2)
+llye = (NN (T (xe, y) 13,

where Ti(-), T2(+), and T3(-) represent the optional spatial or spectral transforma-
tions according to the internal and self-supervised learning while f>NN denotes the
transformation of the specific CNN model. In the following subsection, we substan-
tiate the implementation of the transformation operations and the concrete architec-
ture of the specific CNN model.
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FIGURE 5.1: Conceptual diagram of the proposed ISGM (GIL)
method.

5.4.2 Unsupervised Internal Learning: UIL

Our unsupervised internal learning (UIL) aims to combine the powerful modeling
capability of CNN and the internal recurrence characteristics inside a single image,
and construct an image-specific CNN model for super-resolving this under-studying
image with no external training samples. Specifically, we train the CNN on examples
extracted from the test image itself. Such examples are produced by down-sampling
the observed LR-HS and HR-RGB images: x;, y;, to synthesize the lower-resolution

versions of themselves, x;°", y;°", which are expressed as the follows:
= (xt 4% ye I°) (5.3)

where |° denotes the spatial down-sampling operation of the s scale factor as the
desired one in the HSI SR task. Then, we can obtain the pseudo-supervised sam-
ple triplets (xj°",yi’",x;) to train our specific CNN model just like in the fully-
supervised learning. From Eq. 5.2, we set Ty (x;, y:) as (x{°", y5°") while deleting T»(-)
since the corresponding training label x; is available, and then the loss function for
our UIL can be formulated as:

(", ¥2")

L= |lxe = NN (6, yi") I3 (54)

It is possible to build the specific CNN model with the UIL only, and then deploy
the resulting learned CNN to the observed images: x; and y; as the LR input to
the network for predicting the desired HR-HS output. It should be noted that the
learned CNN model is fully convolutional, and hence can be directly applied to
the observed images of different sizes with the training samples. However, in the
HSI SR scenario, the upscale factor s is usually very large while the observed LR-
HS image itself is of small size with low spatial resolution and then results in an
extremely small size of the down-sampled version from the LR-HS image to extract
enough training samples for the internal learning. Moreover, the spectral mixing gap
between the cross-scale images would significantly degrade the spectral recovery
fidelity with the internal samples. Therefore, we next integrate the self-supervised
learning by using the observed images without the corresponding ground-truth as
training samples.
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5.4.3 Pseudo-Supervised Internal Learning: SIL

We use the observed LR-HS and HR-RGB images: (x;,y:) as the un-labeled compli-
mentary samples to guide the network learning process in the proper direction for
reliable spectral recovery. In spite of the in-availability of the corresponding ground-
truth of (x;,y:), the degradation models from the underlying HR-HS image to the
observations are usually mathematically formulated as in Eq. 3.4. Thus, this study
leverages the mathematical relation of the degradation model between the underly-
ing HR-HS image and the observed LR-HS and HR-RGB images, and implements
them using specially designed convolution blocks to transform the network output
into the approximated LR-HS and HR-RGB observations, which then can be ap-
plied for evaluating the reconstruction errors of the un-labeled network inputs. In
the aspect of network evaluation with the inputs only, we dub this un-supervised
method as deep self-supervised learning. Specifically, we design a special depth-
wise convolution layer with the same kernel for all spectral bands to approximate
the spatial degradation operation while adopting a point-wise convolution layer to
approximate the spectral transformation operation inside our network. By institut-
ing the spatial and spectral degradation operations for T, (-) and T3(-) in Eq. 5.2 and
leaving out T; (-) with directly using (x¢, y;) as the inputs, the loss function for our
self-supervised learning is expressed as:

Ls =||xt — Dspat (f5 "N (xe,y1)) I3+

SCNN

5 (5.5)
HYt - DSpeC( 9 (Xt,)’t))||2,

where Dsq and Dgp,. represent the transformations of the spatial and spectral degra-
dation blocks in our SIL, respectively. In general, with the known imaging condi-
tions for the observed LR-HS and HR-RGB images, we can feasibly set the kernel
weights of the depth-wise convolution layer as the point spread function of the HS
sensor and the kernel weights of the point-wise convolution layer as the camera
spectral function of the color sensor whilst we impose the bias parameters for both
layers as False. With the simple implementation using the special convolution lay-
ers for both spatial and spectral degradations, we can conduct the self-supervised
learning in an end-to-end manner, and produce the specific CNN model with the
un-labeled samples.

5.4.4 Image-Specific Generative Network of Generalized Internal Learn-
ing: ISGM (GIL)

Via combining unsupervised and pseudo-supervised internal learning and leverag-
ing two kinds of data: (xj°",y5*",x;) and (x;,y¢) as training samples, we propose
a unified framework for simultaneously conducting UIL and SIL. The combined
framework uses a shared network to carry out both internal and pseudo-supervised
learning. The loss £ of UIL is formulated using the training sample: (x°", y;°", x;)
while the loss Lg of SIL is obtained using (x¢,y:). Compared with the input sam-
ple (x;,y:) in the SIL, the input of (x{°",y:°") to the UIL branch has much less pixel
number, and is one fraction of s? for s-upscale HSI SR problem. To this end, the
naive integration of the losses £; and L5 would significantly decrease the impact
of the UIL on the learned model compared with the SIL. To mitigate this issue, we
firstly augment the pseudo supervised samples (x;°", y;°", x;) using flipping and ro-

tation operations, and incorporate all augmented samples for formulating the UIL
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loss. The total loss of our overall learning method is formulated as:

Liotas =L1+ Ls

== F5N 5, 35 3

+ th - DSpat( GSCNN(XfIyt))H%

+ lyt = Dspec (f5 ™ (xe, 31)) 13

As shown in Eq. 5.6, our deep ISGM of generalized internal learning (GIL) adopts
a shared network to carry out both UIL and SIL. Note that the conventional super-
vised CNNs for HSI SR, which is trained on a large-scale external dataset of LR-HS,
HR-RGB and HR-HS triplets, have to capture the rich diversity of all potential re-
lations among the observations and the target, and thus these supervised methods
prefer much deeper and more complex network architectures. In contrast, the esti-
mation relations from the observed LR-HS and HR-RGB images to its correspond-
ing HR-HS image for a specific scene is significantly simpler, and hence could be
well modeled by a much shallower and simpler network structure. In our exper-
iments, we adopt a simple encoder-decoder network architecture for the specific
CNN model f;NN. In detail, the encoder and decoder paths, respectively, contain
5 blocks, and the skip connections are used to bridge between the corresponding
blocks of the two paths for reusing the learned detail features of the encoder. Each
block in both paths is composed of 3 convolution layers, following the RELU ac-
tivation function. A max-pooling layer with a 2 x 2 kernel is adopted to decrease
the feature map size to half between adjacent encoder blocks whilst an up-sampling
layer is used to doubly recover the feature map size between the adjacent decoder
blocks. Finally, we reconstruct the latent target using a convolution output layer.
Moreover, in both unsupervised and pseudo-supervised internal learning, there are
two available modalities of data: (x{°", y;°") or (x;, y:) with very large differences in
the spatial resolution, and cannot employ equal operations on them as the network
input. Therefore, we first conduct a simple up-sampling on the HS image with lower
spatial resolution x;°" (x;) to the same spatial size with the RGB image yi°" (y:), and
then concatenate them together as the input to our network:

5.6)

XYson = fconcat(fLIP (Xson)/ YSon)

5.7
xy:fconcat(fup(x),y), (5.7)

where feoncat and fiyp represent the concatenating and up-sampling transformation,
respectively. After a predefined iteration of network training for our specific CNN
model, the concatenated data xy is inputted to the network to predict the latent HR-
HS image.

5.5 Experiment Results

In this section, we will conduct extensive experiments to demonstrate the effective-
ness of our proposed deep internal and self-supervised learning method. We first
introduce the experimental setting, including the same used datasets and evaluation
metrics, and then provide the comparisons with the state-of-the-art (SoOTA) methods
and the ablation study.
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5.5.1 Comparisons with the State-of-the-art Methods

To verify the effectiveness of our ISGM (GIL), we compare the HSI SR performance
with different SOTA paradigms including the unsupervised prior-based methods:
Generalization of Simultaneous Orthogonal Matching Pursuit (GOMP) [96], Sparse
Non-negative Matrix Factorization (SNNMF) [97], Bayesian sparse representation
(BSR) [96], Non-Negative Structured Sparse Representation (NSSR) [46] and cou-
ple spectral unmixing (CSU) [93], supervised deep learning methods: SSFNet [56],
ResNet [102], DHSIS [57], and unsupervised deep learning methods: uSDN [77],
DHP [59], DUFL [109], GDD [81]. The compared results with the scale factors s = 8
and s = 16 for both CAVE and Harvard datasets are shown in TABLE 5.1. The up
arrow in TABLE 5.1 indicates that the larger the value, the better the HSI SR per-
formance; the down arrow is the opposite. From TABLE 5.1, we can observe that
our proposed method achieves the best performance than all state-of-the-art (S0TA)
methods of different paradigms on the upscale 8 and 16 of both CAVE and Harvard
datasets. Compared with the best unsupervised deep learning paradigm: GDD [81],
our method can lift the PSNR 1.9dB/1.65dB and 3.06dB/3.8dB, respectively for the
upscale factors 8/16 of both CAVE and Harvard datasets.

5.5.2 Ablation Study

As mentioned in Section 5.4, the network learning can be implemented with the syn-
thesized internal training triplets (unsupervised internal learning: UIL), the obser-
vations without ground-truth data (pseudo-supervised internal learning: SIL) and
our ISGM (GIL). We conducted experiments with different learning conditions, and
provided the ablation studies for both CAVE and Harvard datasets. We extensively
carried out verification using three upscale factors s = 4,8,16. Moreover, we also
validated the performance w/o data augmentation on the UIL, and provided the
compared results on the upscale factors: 8 and 16. All the results of the ablation
studies are shown in TABLE 5.2. TABLE 5.2 (a) obviously manifests that the UIL re-
sults are in very limited performance due to the small number of synthesized train-
ing triplets and the domain shift between training and testing phases. Although the
data augmentation on UIL does lift the HSI SR performance at some extent, it is far
from enough compared with the SOTA methods as shown in TABLE 5.1. The SIL by
taking the relation between the latent HR-HS and the observations into account can
greatly improve the SR performance in spite of the unsupervised learning without
any label data. The incorporation of the UIL and SIL can further boost the HS im-
age resolved results for all upscale factors: 4, 8 and 16 in both CAVE and Harvard
datasets.

Next, we validate the performance effect by varying the network architectures.
As we mentioned above, we employed an encoder-decoder architecture to serve as
our specific CNN model, where both encoder and decoder paths consist of multi-
ple blocks for extracting multi-scale contexts in different receptive fields. Thus, we
change the block numbers from 3 to 5, and manifest the possible performance varia-
tion. Furthermore, the learned features in the encoder path have been transferred to
the decoder path using a point-wise convolution-based bridge (PWCB), where the
channel number can be adjusted to turn the balance between the transferred encoder
feature and the learned feature of the decoder’s previous block. We carried out the
experiments by setting the channel number as 4 and 64 in the PWCB, and demon-
strated the compared performance for the upscale factor 8 of the CAVE dataset as
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TABLE 5.1: Compared evaluation results between unsupervised
prior-based methods: BSR [96], CSU [93], GOMP [96], SNNMF
[97], NSSR [46], supervised deep learning methods: SSFNet [56],
ResNet [102], DHSIS [57], unsupervised deep learning-based meth-
ods: uSDN [77], DHP [59], DUFL [109], GDD [81] and our pro-
posed method with the scale factors: 8 and 16 in CAVE and Harvard
datasets.
Spatial Expanding Factor = 8
Dataset CAVE Harvard
Method RMSE| | PSNR? | SSIMt | SAMJ | ERGAS] | RMSE] | PSNR? | SSIM1 | SAM| | ERGAS]
GOMP 569 | 33.64 - 11.86 2.99 379 | 3889 - 4.00 1.65
SNNMF 1.89 | 43.53 - 3.42 1.03 179 | 43.86 - 2.63 0.85
Unsupervised
BSR 175 | 44.15 - 3.31 0.97 171 | 4451 - 2,51 0.84
Prior-based
Csu 256 | 4074 | 0985 | 5.44 1.45 140 | 46.86 | 0993 | 1.77 0.77
NSSR 1.45 45.72 0.992 2.98 0.80 1.56 45.03 0.993 2.48 0.84
SSFnet 1.89 44.41 0.991 3.31 0.89 2.18 41.93 0.991 4.38 0.98
Supervised
ResNet 1.47 45.90 0.993 2.82 0.79 1.65 44.71 0.984 2.21 1.09
Learning-based
DHSIS 146 | 4559 | 0990 | 3.91 0.73 137 | 46.02 | 0981 | 3.54 1.17
uSDN 437 | 3599 | 0914 | 539 0.66 242 | 4211 | 0987 | 3.88 1.08
DHP 760 | 3140 | 0.871 | 825 4.20 794 | 30.86 | 0.803 | 3.53 3.15
Unsupervised
DUFL 2.08 42.50 0.975 5.36 1.16 2.38 42.16 0.965 2.35 1.09
Learning-based
GDD 1.68 44.22 0.987 3.81 0.96 1.30 47.02 0.990 1.94 0.90
ISGM (GIL) 1.39 46.10 0.993 3.12 0.77 1.00 50.08 0.995 1.47 0.56

Spatial Expanding Factor = 16

GOMP 6.08 32.96 - 12.60 1.43 3.85 38.56 - 4.16 0.77
SNNMF 2.45 4221 - 4.61 0.66 1.93 43.31 - 2.85 0.45
Unsupervised
BSR 2.36 41.57 - 4.57 0.58 1.93 43.56 - 2.74 0.42
Prior-based
CSuU 2.87 39.83 | 0983 | 5.65 0.79 1.60 4550 | 0.992 | 1.95 0.44
NSSR 1.78 4401 | 099 | 3.59 0.49 1.65 4451 | 0993 | 248 0.41
SSFnet 2.18 4193 | 0991 4.38 0.98 1.94 4356 | 0.980 | 3.14 0.98
Supervised
ResNet 1.93 4357 | 0.991 3.58 0.51 1.83 4405 | 0984 | 237 0.59
Learning-based
DHSIS 2.36 4163 | 0987 | 4.30 0.49 1.87 4349 | 0983 | 2.88 0.54
uSDN 3.60 37.08 | 0969 | 6.19 0.41 9.31 39.39 | 0.931 4.65 1.72
DHP 11.31 27.76 | 0.805 | 10.66 3.09 10.38 3844 | 0.754 | 457 2.08
Unsupervised
DUFL 2.61 40.71 | 0967 | 6.62 0.70 2.81 40.77 | 0.953 | 3.01 0.75
Learning-based
GDD 2.12 4224 | 0983 | 4.41 0.61 1.66 4464 | 0986 | 2.50 0.64

ISGM (GIL) 1.73 44.17 0.990 3.73 0.48 1.14 48.84 0.994 1.68 0.32
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TABLE 5.2: Ablation studies with the three learning strategies: UIL,
SIL and ISGM (GIL) and w/o data augmentation of the UIL for dif-
ferent upscale factors: 4, 8, 16 in both CAVE and Harvard datasets.

(a) Comparisons with the three learning strategies: UIL, SIL and ISGM (GIL) and
w /o data augmentation for the upscale factors: 8 and 16.

Spatial Expanding Factor = 8
Dataset CAVE Harvard
Method RMSE] | PSNR?T | SSIMT | SAM| | ERGAS] | RMSE| | PSNRT | SSIMt | SAM/ | ERGAS|
UIL 8.78 29.73 | 0.868 | 17.58 4.71 8.93 30.80 | 0.926 | 831 3.54
SIL 1.46 4547 | 0992 | 3.27 0.81 1.16 48.37 | 0.993 1.74 0.79
GIL 1.40 45.92 0.993 3.14 0.79 1.01 49.95 0.995 1.48 0.56
UIL + Aug 7.75 31.16 0.870 | 17.49 3.81 7.84 31.36 0.934 8.42 3.57
ISGM (GIL)+Aug | 1.39 46.10 | 0993 | 3.12 0.77 1.00 50.08 | 0.995 1.47 0.56
Spatial Expanding Factor = 16
UIL 16.65 24.64 0.785 | 21.72 4.69 12.25 28.04 0.899 9.85 2.50
SIL 1.83 43.50 0.989 3.92 0.51 1.31 47.19 0.992 1.98 0.46
GIL 1.77 43.89 | 099 | 3.79 0.49 1.19 4844 | 0.99%4 1.77 0.33
UIL + Aug 11.07 27.88 | 0.832 | 20.45 2,97 10.60 2844 | 0908 | 9.13 2.38
ISGM (GIL)+Aug 1.73 4417 0.990 3.73 0.48 1.14 48.84 0.994 1.68 0.32

(b) Comparisons with the three learning strategies: UIL, SIL and ISGM (GIL) for the
upscale factor 4.

Spatial Expanding Factor = 4
Dataset CAVE Harvard
Method | RMSE] | PSNR?T | SSIMT | SAM| | ERGAS| | RMSE] | PSNRT | SSIMtT | SAM/ | ERGAS|
UIL 9.51 31.70 0.884 15.73 9.84 424 36.69 0.968 5.57 4.18
SIL 1.19 4732 | 099 | 291 1.32 0.99 49.71 | 0.994 1.52 1.17
ISGM (GIL) | 1.10 4791 | 0995 | 2.80 1.26 0.87 51.79 | 0.996 1.32 0.97
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TABLE 5.3: Ablation studies for network architectures.

Block Channel Number in PWCB: 4 Channel Number in PWCB: 64

Number | RMSE| | PSNR{ | SSIMt | SAM| | ERGAS] | RMSE| | PSNRT | SSIMT | SAM/| | ERGAS/

3 1.38 46.07 | 0.993 3.10 0.78 1.37 46.19 0.993 3.06 0.77
4 1.35 46.23 0.993 3.08 0.75 1.35 46.31 0.993 3.00 0.77
5 1.39 46.10 0.993 3.12 0.77 1.36 46.23 0.993 3.01 0.77

uSDN
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FIGURE 5.2: Visualization error map results of an example image:

paints from CAVE dataset compared with unsupervised prior-based

methods: CSU [93], NSSR [46], supervised deep learning methods:

DHSIS [57], unsupervised deep learning-based methods: DHP [59],
uSDN [77], GDD [81] and the proposed method.

shown in Table 5.3. From Table 5.3, it can be seen that the best reconstruction per-
formance is achieved when the block number of the network is set as 4. And the
channel number increasing in the PWCB from 4 to 64 has only a slight positive effect
on the reconstruction performance, and some results are almost same with different
channel numbers. However, a larger channel number would increase the number
of parameters, which results in a heavier computational cost. Therefore, from Ta-
ble 5.3, it can be concluded that the block in the encoder/decoder paths and channel
in the PWCB has the suitable number 4 for providing acceptable reconstruction per-
formance.

5.5.3 Perceptual Quality

We also provide some compared visualization results with the unsupervised prior-
based CSU [93] and NSSR [46], the supervised deep learning-based DHSIS [57] and
the unsupervised deep learning-based methods: uSDN [77], DHP [59], GDD [81] in
Fig. 5.2 and 5.3, which further verify that our proposed ISGM (GIL) method has
achieved great performance improvement compared with state-of-the-art methods.

5.6 Conclusion

This chapter investigated a novel unsupervised learning network for multispectral
and hyperspectral image fusion by conducting both internal and self-supervised
learnings. Specifically, we first down-sampled the observations and produced the
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FIGURE 5.3: Visualization error map results of an example image:
imgb4 from Harvard dataset compared with unsupervised prior-
based methods: CSU [93], NSSR [46], supervised deep learning meth-
ods: DHSIS [57], unsupervised deep learning-based methods: DHP
[59], uSDN [77], GDD [81] and the proposed method.
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FIGURE 5.4: Visualization SAM results of example images from

CAVE and Harvard datasets compared with unsupervised prior-

based methods: CSU [93], NSSR [46], supervised deep learning meth-

ods: DHSIS [57], unsupervised deep learning-based methods: DHP
[59], uSDN [77], GDD [81] and the proposed method.

LR-HS son, HR-RGB son images to synthesize the training triplets, which are intu-
itively adopted to train a specific CNN model for the under-studying image. To
increase the robustness of the specific CNN, we further leveraged the observed
data without the ground-truth image to carry out unsupervised learning, which can
tune the rough internal CNN revolving to the optimal parameter space. Extensive
experiments on two benchmark datasets demonstrated that our proposed method
achieved a significant improvement compared with the SOTA HSI SR methods.






71

Chapter 6

Conclusion

Hyperspectral (HS) imaging can capture the detailed distribution in the spectral di-
rection, and obtain an abundant spectral signature with dozens or even hundreds
of bands at each spatial position of a scene, which greatly benefits performance im-
provement in various HS processing systems. However, existing HS imaging sen-
sors usually get the HS data in a low spatial resolution and greatly restrict the wide
applicability in the reality. Thus, generating a high-resolution hyperspectral (HR-
HS) by merging the degraded observations: a low-resolution hyperspectral (LR-HS)
image and a high-resolution Multispectral/RGB (HR-MS/RGB) image, called as HS
image super resolution (HSI SR). Depending on the reconstruction principle, HSI SR
is divided into two main categories: traditional mathematical model-based methods
and deep supervised learning-based methods. For the mathematical model-based
methods, most HSI SR methods aim to explore various hand-crafted priors for regu-
larizing the mathematical model, and employ optimization procedures to solve this
problem. Specifically, such methods mainly focus on constructing a mathematical
formula to model the degradation procedure of HR-HS images into LR-HS images
and HR-RGB images. Since the known variables in the observed LR-HS/HR-RGB
images is much less than the underestimation in the latent HR-HS image, this task
is a severely ill-posed problem, and direct optimization of the formulated mathe-
matical model would lead to a very unstable solution. Therefore, existing methods
often exploit various priors to regularize the mathematical model, i.e. imposing con-
strain on the solution space. Although the improvements to some extent have been
achieved by elaborating the hand-crafted priors, the super-resolving performances
are usually unstable according to the content of the under-studying images, and
heavy spectral distortion may be caused due to the insufficient representative ca-
pability of the empirically designed priors. For the deep supervised learning-based
methods, motivated by the tremendous success of the DCNN on different vision
tasks, DCNN-based methods have been proposed for the HSI SR task to automati-
cally learn the inherent priors in the latent HR-HS image. Although the reconstruc-
tion performance has remarkably progressed, all the above DCNN-based methods
are required to be trained with large-scale external datasets including the degraded
LR-HS/HR-RGB images and their corresponding HR-HS images, which are difficult
to be collected especially for the HSI SR scenario. To solve these problems, we pro-
posed three frameworks to achieve the goal of unsupervised hyperspectral image
super-resolution. Overall, the main contributions of this dissertation are three-fold
and summarized as follows.

In Chapter 3, we proposed a deep unsupervised fusion learning framework for
HSI SR. This chapter suggests an unsupervised framework to automatically gener-
ate HS target images using only LR-HS and HR-RGB observations without using
an external training database. The framework is motivated by the fact that convo-
lutional neural networks have a significant amount of underlying image statistics
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(a prior) and are more likely to generate images with regular spatial structure and
spectral patterns than noisy data. We specifically look into two HS image genera-
tion paradigms: To train HR-HS targets from a data generation perspective, 1) ran-
domly chosen noise is used as input to the generative network, and 2) background
fusion of LR-HS and HR-RGB observations is used as input to the generative net-
work to reconstruct targets from a self-supervised learning viewpoint. By focusing
on maximizing the generative network’s parameters rather than the initial HR-HS
aim, both approaches can produce a priori models that are automatically tailored to
the object scene under investigation. To construct our generative network and cre-
ate target HR-HS images from noisy or merged backdrop backgrounds, specifically,
we employ an encoder-decoder architecture. Assuming the methods for the under-
estimated LR-HS and HR-RGB observations” spatial and spectral degradation are
known, we can then produce approximations of the observations from the degraded
generated HR-HS images, which can be intuitively used to derive the observation
reconstruction error as a network training loss function. Our unsupervised learn-
ing framework not only enables us to model the prior information of the specific
scene under study to reconstruct a trustworthy HR-HS estimate without the need
for external datasets, but it also readily adapts to observations made under various
imaging conditions, which can be accomplished naively by altering the degradation
operations in our framework.

In Chapter 4, we proposed a novel blind learning method for unsupervised HSI
SR. Understanding the spatial and spectral degradation mechanisms is necessary for
deeply unattended HSI SR. The spatial blur kernel in LR-HS imaging and the camera
spectral response function (CSF) in RGB sensors are two degradation processes that
are difficult for regular users to understand in depth because they result from the
various optical designs of HS imaging devices and RGB cameras. Furthermore, par-
ticular estimations of degradation processes under various imaging circumstances
may further skew the outcomes. This makes it challenging to learn something about
the deterioration of each scene under investigation in practical applications. In this
work, a unique unsupervised blind technique is employed to automatically learn
degradation parameters simultaneously and construct a grid in order to address the
aforementioned issues. We specifically suggest three strategies to address various is-
sues, based on the unknown components: 1) a spatially blind technique that, when
the LR-HS observation is finished, automatically learns the spatial blur kernel since
the RGB sensor’s CSF is known; 2) a spectrally blind technique that, after the HR-
RGB observation is over but the burr kernel of the HS image is known, automati-
cally learns the CSF transformation matrix; 3) A totally blind technique that learns
both the CSF matrix and the spatial blur kernel. In order to execute the spatial and
spectral decomposition processes, we have developed specific convolutional layers
based on our previously presented unsupervised system. The parameters of the lay-
ers are automatically processed as the weights of the learnt sum kernels and CSF ma-
trices. The spectral decomposition procedure has been implemented using a point-
wised convolutional layer in output channel 3 to obtain approximations of HR-RGB
images, while the spatial decomposition procedure has been implemented using a
deep convolutional layer in which the kernels of the various spectral channels are
identical and the range parameters are defined as extended scale factors. In order
to simultaneously learn the unique pre- and degradation knowledge of the HR-HS
images and to construct a highly generic HSI SR system, an integrated framework
has been constructed using the learning implementation of the degradation mech-
anism. Furthermore, the suggested framework can be used uniformly to various
types of blind HSI SR and is extremely scalable to arbitrary HSI SR observations by
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employing the applied convolution parameters as known blur kernels or CSFs.

In Chapter 5, we proposed a generalized internal learning method for unsuper-
vised HSI SR. We synthesize a labeled training triplet using only LR-HS and HR-
RGB observations and use them as training data for supervised and unsupervised
learning along with the unlabeled observations to build a more potent image-based
CNN model for the under-utilized HR-HS data since natural images have strong
intrinsic and internal recurrence at various scales. We constructed training triples
of LR-HS/HR-RGB subversions and LR-HS observations that have the same cor-
relation with LR-HS/HR-RGB observations and HR-HS objects, despite their varied
resolutions, by first reducing the observed LR-HS and HR-RGB pictures to their sub-
versions. It is feasible to train an image-specific CNN model for the HR-HS object
using artificial training examples. This process is known as internal learning. How-
ever, there are rarely many synthetically labeled training samples, particularly for
large spatial expansion factors, and further reducing LR-HS observations results in
significant spectral blurring of neighboring pixels, leading to biased spectral blur-
ring levels in the training and testing phases. As a result, these restrictions could
make naive internal learning super-resolution less effective. We present a general-
ized internal learning technique for more trustworthy HR-HS image reconstruction
in order to overcome these constraints. This method combines naive internal learn-
ing with our self-supervised learning method for unsupervised HSI SR.
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