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Abstract

Sleep is an essential physiological process for the human body. People spend about one-third of
their lives sleeping. Both sleep duration and sleep quality are important to human health. Sleep quality
describes how restful and restorative the sleep process is. Over 80 sleep disorders are known to affect
sleep quality. Among them, sleep-related breathing disorder (SRBD) is the second factor. Sleep-related
breathing disorders are sleep disorders in which breathing abnormalities occur during sleep. Abnormal
snoring and respiratory arrest or abnormally low breathing during sleep reduce oxygen levels in the
blood, increasing the risk of depression, cardiovascular disease, stroke and even death. Therefore,

monitoring and analysis of respiration during sleep is gaining increasing importance in healthcare.

Polysomnography (PSG) is considered the gold standard for diagnosing sleep disorders, but PSG
is usually performed in an unfamiliar sleep laboratory under the supervision of a medical technician
and is often worn with many sensors that interfere with sleep. It is often the case. This research group is
developing a breathing sound measurement system that constantly monitors the quality of sleep in a
general home environment. This system can easily measure breath sounds during sleep all night with
high accuracy without disturbing sleep. The purpose of this research is to develop a technique to
classify patterns of breathing sounds and to analyze the quality of breathing in order to more accurately
analyze the state of sleep from breath sound information. There are various patterns of sleep breath
sounds, such as normal breath sounds and snoring, and abnormal breath sounds and snoring. To
develop a method to classify these patterns, to develop an algorithm to calculate ventilation from breath

sounds, to estimate the sleep apnea index (AHI), and to assess the quality of breathing during sleep. try.

Specifically, the temporal feature waveform (TCW) is calculated after partly removing the noise of the
breathing sounds of sleep with a band-pass filter. Based on the time feature waveform, a respiratory
signal effective for analysis is extracted from low-level signals and phase-divided into a respiratory
phase and an apnea or low signal. Mel-frequency cepstrum coefficients (MFCC) are then obtained for
the respiratory phases, and an agglomerative hierarchical clustering (AHC) algorithm is applied to
distinguish between normal/abnormal breathing, normal/abnormal snoring, and normal/abnormal
breathing. , tossing and turning, etc., which are less relevant to breathing. The categorized breathing
patterns are analyzed every 30 seconds and the relative tidal volume of the breath is calculated. In
addition to verifying the effectiveness and accuracy of the technology and analysis method proposed in
this study, a method of estimating the apnea syndrome index (AHI) and converting the ventilation
volume into high, medium, and low levels, We propose a method to evaluate the quality of breathing in

a patient and verify its effectiveness.



This paper consists of six chapters, including an introduction and conclusion.
Chapter 1 introduces the background and overview of this research.

Chapter 2 describes a signal-processing technique for analyzing breath sounds during sleep and a
method for classifying breathing patterns. Breathing sound data during sleep often includes disturbed
breathing due to bruxism or body movement, ambient environmental noise, etc. In this chapter, the
Time Characteristic Waveform (TCW) and the Characteristic Moment Waveform (CMW) are
calculated for respiratory sound signals that have undergone preprocessing, such as filtering noise to
preprocess the respiratory sounds, and the segmentation of inspiration and expiration is performed. The
Mel-Frequency Cepstrum Coefficients (MFCC) are obtained for each respiratory cycle and applied as a
feature vector to the Agglomerative Hierarchical Clustering (AHC) algorithm. This method is used to
classify ordinary respiratory signals (normal and abnormal breathing, normal and abnormal snoring)

from signals less relevant to respiration, such as tossing and turning and environmental noise.

In Chapter 3, using the technology described in Chapter 2, breathing sound data during sleep are
classified into apnea, hypopnea, normal breathing, abnormal breathing, normal snoring, and abnormal
breathing for each 30-second frame. In addition, we describe a method for classifying events such as no

snoring and rolling over and determining the respiratory state.

In Chapter 4, we propose a method for estimating the apnea-hypopnea Apnea-Hypopnea Index
(AHI) for classified abnormal breath sounds and low-level breath sound signals, compare it with the

diagnostic results of PSG, and examine its validity. And verify usefulness.

Chapter 5 describes a method for estimating ventilation volume from breath sounds. Because
normal breath sounds are correlated with ventilation, this study used a quantitative approach to
calculate normal breathing and normal snoring and a qualitative method to calculate apnea/hypopnea
and abnormal breath sounds. We will propose and compare it with the diagnosis result of PSG and

verify its validity.

In Chapter 6, as an application development, an example of applying the breathing sound
classification method proposed in this study to heart sound analysis is presented. Finally, we will
explain the construction of a data collection distribution system for sharing auscultation data collected

at different facilities and hospitals using blockchain technology.

Chapter 7 presents the conclusions and prospects of this study.



=
e =

BEIR 1ZAMRIC & o TRAIR RAEBEN 70w 2 TH 2B, NIEEOK 3 HD 1 2 EEIRIC
B3, MEIRFFME L BEIROE X, b0 b ABO@HICE s THETH 5, HIROH &1L,
MEIR 7 o2 AR ENLFLRO D THENL D 2052 KTDDOTH 5, 80 LA Lo RHEHRFEE 23
ROHICHELZGA2LHAILNT W2, 205 b, MEREIEDF[EE (SRBD) (1,
2HEHOBERL 2o T3, MEIREE D IPIfRE 13, IR P o B 235648 5 2 MR FE
FHTH O, HEIRF O EE 720 & CIPERAE E F 72 1ZEBE IR W IR 7 8 X o T O
FREMET L. 52k, DIEBER, P, SOICREICEZ Y A7 BEE 5, L
2T, BERPOIFFEDE=XY v 7L, ~ VAT TICBL TR AHEEHR I TS,

MERRA Y 777 7 (PSG) X, MERFEEZWOT—LT v A Z Vv X —=F LI NTWw32,
PSG 138, EREHIMNE BTt clENZ VIEIRREE CfTbh, 2 0e v F2EITH
N7 DMEROY T L 256 d % v, KTEI7 Vv — 7 Tld, —RFERE T ClEROHE %
HRICE=42Y v 73 2 BETTRES 27 22K L TWd, Ke AT 403, BEROTL
JEIC 72 & T > D IS RS IR IR D WP ¥ % R B IS RHI -2 2 L ASATRECTH B, AWISET
E. PRI OIEH A DIEARDRAEE X U IEFEIC T2 720, BEMRF O A% — v i3 e
W D & TS 2 BT O H L 375, BEIRMEIE ICZ, EFEZPRE L WO E, #
HRMREFEL WRERERA BN =V RBH D, INHLONX—VvENRATIHE ZOW
MR E D SR EEZ BT 2702 o 2T T 5 2 & & MEARFRHEIPIRE (53 o 544
(AHD) %#EET 2 &, O ICHERFOITROE %25 T2 & & ZilAh 5,

BAKRICIZ, EEIRED ) 4 X% NV FART7 4 VR —C—HBELEZ0L, B
W (TCW) 2R T 2, RERIRRERIZ ICE D & | ST ICA 2 2 PRES 2 KL v ofF
oYL, KT« — X L IR 72 HERESIC 7 2 —X0Ed 5, Kic, K7 =
— R LT AR 7 A 7 LR (MFCC) %Zke, BERMBEERN 2, 7220 v
(AHC) 7=V XL % M L <. IEH M/ B 2Rk e, EERCOTE/RERNTE,
F e, FIRY 7 U BEME DKV D DIC T 5, DI NPR X — v R 30T
SO L, MR O EME 2 BT 5, RITIE CIRE L 228l & T riEic LT, %
DHENE & IEMEEZBGEES 2 & & o, MIPIYEBREE O (AHD Z#ET 3 hiEL., #
SEZEPEL AV ICBRE L, RO OE % i+ 2 HiERIREL. x oAt E KR
AET 5,

KA - M2 a® TELrOERINATVDS

%1 BT, Ao REMEE RS,



2 BTk, MEAREE OIS % TS % 72 @ D5 B ALIREAlT & WS & — v DR
FEC oWl 2, MEIRFEOMIRE 7 — X 1Cid, RE L Y CEhc X 2 o gL
FOBRE ) A X EREEND LML, RETIH, MREEATEL T/ 4 X% 7 4
NRY v T I K BRI & i L 72 WIS S LT, RERRREEIE (TCW) & %
Ee— Ay PEIE (CMW) 2B L, WA EWPRD5E %175 BWFRY 4 7 v icxnt LT,
AN T A 7 LR (MFCO) %2 ko, Fi~2 b e LT, BEMBEEN S 7
A& Y v 7 (AHC) 7A=Y XA~EML T, @FORES (EFPERE REFER, 1E
HONE LERFEWIE) & EiRO LBRE A X7 EFRICBEE DR WES I T 5
&5 BT 2 b~
53 BTk, B2 BTl A v, MERFFOMIRE T -2 % 30T L
— LT LT, SRR (REPIR, TE 7R, RE R, EE LR WTE, BEGVUE,
BILOERY ZEDA Xy ML, WIROIRREZ HH] 3 2 ik d~ 5

HH o4 BmTIE, oI N BEWPRE L AR L SOV EF 50 U T RO AR
Apnea-Hypopnea Index (AHI) OH#EEFikZ$RE L. PSG 02 WifsH & likEt L, Z o
2L H R GRS 5,

#5 BT, WPRE D O BB OHEIE B IO VT~ 5, IEH O 35 &
CHBMER R o2 720 RIFFEClE, IEHE QPR E EF R F IO TIRERMIC,
TP AR 5 X OV BH RS IO W TR EERNICEE S 2 ik ZRRE L. PSG 02
Witdi IR & UGS L. % 0% M2 RGEES %,

56 BmTIE, JCHERE L <. RMECRE L W o 387735 % O i I s
TE3HEHE, Tuy rFo—vEiEACERR S ERCRIEECRELZER T — 2 %
WET 2700757 — ZIUESES 2T LOEICOWTEIET 3,

FTETE, ZofFRoEmE SBOEEICOVWTHRRD,



contents

Chapter 1 INtroduction.......ccocieiiiiiisiisiiisiinsisniiessinisiessieisiesssisssisssiesssesssssssesssssssasssesssesssessaess 1
1.1 Research back@roUnd..........cooi ittt ettt et 1
1.2 Review of sleep breathing analysis.........c.cccvivviviecieiiirieieerieseeseesieseeie e see s e ereesreessesesenaeens 4
1.3 AIm Of thiS dISSETALION. ....eiviitieiirtiitieteeie sttt ettt ettt ettt ettt sbe ettt seeeen 6
L4 OULIINC. ...ttt s b e 7
RETEIEIICES. ...ttt ettt ettt ettt 8

Chapter 2 Sleep breathing sound classification...........cccocvievveicniinnsiinscienseccnans .11
2.1 Introduction to breath SOUNAS........cc.ooiiiiiiiiriiii et 11
2.2 breath SOUNA SEZMENTATION. ...cuveiiieriieeiiecieeiee it et eette e aeeeieestraebeestreataeeseesseasssessassnsessseesnns 12

2.2.1 breath SOUNA PrEPIOCESSINEZ. . ..cueovervirtirtertirtiatertenteetent et eetet ettt et ettt eteetesreseesaesaeerestenaens 13
2.2.2 breath sound envelope calculation............ccoocioiiiiiiiiiiiiie et 15
2.2.3 breath phase SEZMENtAtION. .........coiiiiiiierieiieie ettt et ette st et e et e e eaeeee e neeenee 17
2.3 breath soUNd ClassifICAtION. .......c.eiiiiriiiriiteere ettt ettt 18
2.3.1 breath cycle category defiNItioN........c.cccuieeieriiiitieiie et cie ettt sae e e saeeaaeeeaeas 21
2.3.2 breath sound feature eXtraCtion..........coiiieierieiieie ettt see e 22
2.3.3. Agglomerative Hierarchical CIUSTETING..........c.covveerriiiiienieeiieiieerie e ee e eneee s 27
2.4. cluster result automatic 1abelling..........ccooiiiiiiiiiee e 30
2.4.1. The Zeroth coefficient in CIUSTEIING. ... .ccviiueiieieiiei ettt 31
2.4.2. The first coefficient i CIUSEETING . ......ccoovrieriiieieiriic ettt 32
2.4.3. The second coefficient in CIUSTETING.........cceeeririiriiriiriiieie ettt 33
2.5 SUIMNIMIATY ... ..t e e st e e s e e e e ehse b e et et s e e e sae et e e e e eaeeaneeaeaaneeais 35
RETETEIICE. ...t ettt ettt e e bt et e et e b e et e et e eteenbeembeeteeneeeneenes 35

Chapter 3 Sleep breathing state identification...........ccccevvervecscirsvericenscennecnnenn. .41
3.1 breath SOUNA ClPPING.....cciiiiiiieiieiert ettt ettt ettt sre b ste e b e sta e beetsessaessesseessensaenns 41
3.2 breathing states definition and identification..............cccoeiieiiiniiiiinninie e 43

3.2.1. Apnea state identifiCation...........ccceciiiiiieriiircie ittt seeeseeeeeeneaeans 43
3.2.2. Hypopnea state 1dentification..........c.cciuierieriiieiiieiie st it seeeieesvecivesieesveeieeneneans 44
3.2.3. Normal breathing state identifiCation............c.ceiiriiiiiiiiiie e 46
3.2.4. Abnormal breathing state identification...........cccccceeiiiiiieiieniiierieece e 46
3.2.5. Normal snoring state identification.............cceoeiieririiieniiniieeseee e 47
3.2.6. Abnormal snoring state identifiCation...........c.coevererirircrinenieseee ettt 48

3.2.6. Event state 1dentifICAtION. ........coouuiitiiiieeieeie ettt e e e et e e e e st e e e e e s esaareeeeseennnees 49



3.3 SUIMIMATY ...ttt ettt ettt et e bt ekt e et e et ebe et ea e e bt eaeesbeemeesbeemteeeeenbeameenaeenbensean 50

RETRIEIICE. ...ttt ettt et e e et e sttt e bt ettt e baeanteesbaeebeenanean 50
Chapter 4 Apnea-Hypopnea Index calculation...........cocueveieccrensiericcernscennccanenens .52
4.1 Introduction Of AHT.......c.o ettt et ae e 52
4.2 Apnea Index CalCULAtION. .........coiiciiieiiecieie ettt ettt b e e e sae e e s teesesnneseessenreas 53
4.3 Hypopnea indeX CalCulation. .........coeiuirerierieiinieniiieieieteitet ettt ettt 54
4.4 Algorithm performance and robustness evaluation on PSG-audio dataset.............ccccoccrenenene 55
4.5 SUIMIMATY ...0eiteeititeieeeie et e seteeiee e taesttesbeessaeesaeesasaeseesaseeasseessaeasaeanseessseansseessaenssasnseessseansesassesnes 56
RETETEIICE. ...ttt ettt ae et e et e e e et e e e et e e beeeaenseenbeeseeneeeneenes 56
Chapter 5 Tidal volume estimation based on breathing sound......................... .59
5.1 Introduction to tidal VOIUME. .........ccccoiriiiiiiiniiiciiicicice e 59
5.2 tidal VOIUME ESTIMALION. ... .c.eiitiiiiitietietie et et et et eee et eataetcanee et asaeeaeaeseesaeneenseeeseaseansaaseansaeenans 60
5.3 Quantitative tidal vOIUME EStIMATION. ....c..iiuiiiieieitieieeti et e et eee e ee et eee e eeeeee e eneneeeas 62
5.3.1 normal breathing tidal volume eStimation...........ccecererriiierienieseeie e eece e 63
5.3.2 Normal snoring tidal volume eStiMation..............cceceivereeriereenieneesieeaeseeesveseesaeseneeeees 63

5.4 Qualitative tidal vOIUME €STIMATION. ........ccviiiiieitieiieeetie ettt ettt ere et e cre et e etre e teeeveeeareeeaeeeene 64
5.4.1 tidal volume estimation during abnormal breathing and abnormal snoring................... 64
5.4.2 tidal volume estimation during apnea and hypopnea............cccccevvervvevrveinieeneeinieennenenne 66

5.5 SUIMIMIATY ... ettt ettt ettt e e e e eaae et e e e e e ea et e e s e e ene e e seeameeenseaeeseaneaemneaneaennen 68
RETETCIICE. ...ttt ettt et e ae et eeae e e e eeeeaeeeeebeesaenseenbeeseenseeneanes 69
Chapter 6 Application eXtenSION......cccicieiiiiiieniisniiinniiniiieisieisinnssnsistisssssstesstessssssisssesssesssessees 71
6.1 clustering method applied to heart sound MONItOTING.........ccuerviiuieriinieieiee e 71
6.1.1 Introduction to heart SOUNd MONILOTING. ......ccereruiriineriiirenierte ettt 71
6.1.2 Heart sound monitoring method............coociiiiiiiiiiiic e 72
6.1.3 Data ACQUISITION. . c.ueeiiiieiieestieitiestteeettesteeteesstaesseeeebeestaeaseeseseassaeasseenssaanseessseenseennseenses 73
6.1.4 Feature Extraction and Similarity Calculation...............ccoocvevieriininiieniiiieniereeeee s 74

6.1.5. Experiment and ReESULL.......c..co.ooiiiiiiiiiiic e 75

6.2 Medical data sharing method based on blockchain technology.........ccccccocveinininininiiinienen 78
6.2.1 Introduction to blockchain technology ... 78
6.2.2. Data sharing method. .........o.coiiiiii et 79
6.2.3 Data SEIUCTUTC. .. .eeeiie ittt ettt ettt ettt et e st esbteesbeesbbeenteeanbeesabeeaneanees 80
6.2.4 BloCKChAIN StITUCTUTIE. .. .coutiuieiieiiiiiiiictiitirtt ettt ettt ettt ettt ean et eve b e sne e 81
6.2.5 RetrieVing PrOCESSING. ....c.ccutiiiiiiiriiiiiiti sttt sttt ettt ettt 81

6.2.6.Experiment and ReSUIL..........co.ooiiiiiiiiiieie et 82



6.7 SUIMIMIATY ... veeiieeiiieeite et eteeete et e estteeabeeeteeateestaeaasaaasseessasassestsasssaeassesnsaaanseesbeasssaanseesaseansseenses 84

RETETEINCES. ...ttt ettt e et ettt e bt e et e et et e e bt e aesaeeneeemeeeteeteeaseeseeameeseesaesean 85
Chapter 7 ConClUSION....cocieireinnniciserosienssssmsssnessserosssrsssssssssssssseresssrsssassssasssasesssas .. 87
7.1 summary and CONCIUSION. .....cuirtiriiteteieieri ettt ettt sttt b et sb e be b besbe st e b ee e eneenes 87
7.2 FULUTE WOTK ..ottt ettt bttt et ettt et et ebe et e neeae e st eneebeeaeae 88

ACKNOWICAZEMENL.......ccriiriiriiriininiinsiieinisinssenissesistessesssiessesssiessssssessssesssssssssssenns ..89




Main Technical Term and Notations

Terminology Nouns Notations Pages
Sleep-Related Breathing Disorders SRBD 1
Obstructive Sleep Apnea OSA 1
Cardiovascular diseases CVDs 1
Rapid Eye Movement REM 2
Polysomnography PSG 2
oxygen saturation Sp0O2 2
Respiratory inductance plethysmography RIP 3
Respiratory Rate RR 5
Time Characteristic Waveform TCW 5
Characteristic Moment Waveform CMW 5
Support Vector Classifier SVC 6
Apnea-Hypopnea Index AHI 6
Voice Activity Detection VAD 6
Mel-frequency cepstral coefficients MFCC 7
Agglomerative Hierarchical Clustering AHC 7
Signal-to-Noise Ratio SNR 13
Principal Component Analysis PCA 19
Upper Airway Obstruction UAO 22
Zero-Crossing Rate ZCR 23
Fast Fourier Transform FFT 24
Linear Prediction Cepstrum Coefficient LPCC 26
Discrete Cosine Transform DCT 26
Automatic Speech Recognition ASR 26
Non-Rapid Eye Movement NREM 41
Respiratory Rate Variability RRV 41
American Academy of Sleep Medicine AASM 42
mean nocturnal oxygen saturation MnO2 54
lowest nocturnal oxygen saturation LoO2 54
Starling Resistor Model SRM 60
Breath-Sound Amplitude BSA 60
Blanket Fractal Dimension BFD 60
Maximum Breathing Pause Interval MBPI 66
Electrocardiography ECG 72
Electronic Medical Records EMRs 79
Practical Byzantine Fault Tolerance PBFT 81




Chapter 1

Introduction

This introductory chapter introduces the background, review of breathing sound analysis, and the

aim of this thesis.

1.1 Research background

Sleep is a necessary physiological process for the human body. People spend approximately
one-third of their lifetime on sleep. The amount of sleep needed depends on various factors, such as age,
body conditions, or lifestyle. The National Sleep Foundation guidelines advise that the sleep time that
healthy adults need is between 7-9 hours[1]. However, enough sleep hours do not necessarily guarantee
to get high-quality sleep. Sleep quality and sleep time are both critical for human health. Sleep quality
measures how restful and restorative the sleep process proceeds. More than 80 sleep disorders are
known to affect sleep quality, divided into seven categories. These categories include insomnia,
sleep-related breathing disorders, central disorders of hypersomnolence, circadian rhythm sleep-wake
disorders, parasomnias, sleep-related movement disorders, and other sleep disorders[2]. Among all
these disorders that cause poor sleep quality, Sleep-Related Breathing Disorders(SRBD) is the second

one of all sleep-related disorders(the first one is insomnia)[3].

SRBD is characterized by disordered respiration during sleep, such as abnormal breathing pauses
or abnormally low airflow during sleep. SRBD includes many breathing anomalies, including
Obstructive Sleep Apnea (OSA), central sleep apnea, sleep-related hypoventilation, and sleep-related
hypoxemia disorder. In clinical, a person may be diagnosed with more than one type. OSA is one of the
most common and severe sleep-related breathing disorders. OSA is characterized by recurrent complete
or near cessation of breathing airflow during sleep. Hypopnea(hypoventilation) is characterized by
diminished or restricted respiratory effort with oxygen desaturation. Apnea or hypopnea can last from a
few seconds to minutes and occur at least five times or more an hour in adults. Hypoxemia occurs

when oxygen desaturation drops and carbon dioxide levels rise. It is often associated with other SRBDs
[4].

SRBD is associated with significant medical comorbidities and deteriorates life quality. Many
studies have examined the role of SRBD as a pathogenic factor that increases Cardiovascular
diseases(CVDs) and cerebrovascular diseases. Blood pressure and heart rate decrease during apnea and

an enormous increase at the end of the apnea. These recurrent episodes increase the risk of



cardiovascular diseases and hypertension[5]. SRBD is also accompanied by diabetes, depression,
cancer, or sudden death. The common symptoms of OSA are snoring during sleep and excessive
daytime sleepiness. SRBD not only cause considerable healthcare cost but also increases the risk of

traffic accidents and decreases work efficiency.

SRBD cause less oxygen reaches the brain and blood, negatively affecting the balance of oxygen
and carbon dioxide in the blood and causing hypoxia. SRBD has been proven responsible for an
exceptionally high heart attack risk and sleep fragmentation. Sleep stages are differentiated by whether
or not Rapid Eye Movement(REM) is present. Sleep can be divided into three non-REM stages(N1, N2,
and N3) and one REM stage. Stage N3 is also called "deep sleep". Deep sleep is essential for restoring
the body and brain, and adequate deep sleep is crucial for body functioning. However, apnea triggers
arousal to start awakening to take a breath; these arousals are usually unconscious, but it disrupts the
temporal sequence of sleep stages, resulting in significant fragmentation of deep sleep[6]. The
fragmentation of deep sleep leads to chronic sleep deprivation and excessive daytime sleepiness.
Patients suffering from OSA typically present with depression, cardiovascular disease, stroke, or even

death.

Males are more affected by OSA than females, and this prevalence increases with age.
Approximately 12% of the adult population in the United States suffer from OSA. In 2015, the cost of
diagnosing and treating OSA was about 12.4 billion dollars. 1/7 of the adult population (about one
billion) is estimated to suffer from OSA worldwide[7]. Although the diagnosing rate of OSA has
increased substantially over the last two decades, it is still highly undiagnosed. According to [7], the
estimated cost burden of undiagnosed OSA was more than 149 billion dollars in 2015, mainly

including:
e  The lost productivity and absenteeism
e Increased risk of comorbidities
o Increased traffic accidents and workplace accidents

Only 12% of respondents reported their concerns about OSA to doctors, and only 30% of patients
were warned about the risk of OSA by doctors. About 80% of OSA patients are undiagnosed. Many
patients perceive OSA as trivial and do not understand the impact it has on quality of life or refuse the

test and treatment because of the expensive cost[8]

The test and diagnosis of SRBD is the first step to treatment. Polysomnography (PSG) is the
clinic's golden standard for monitoring and diagnosing OSA. The PSG records physiological signals of

the body with various sensors and electrodes, including oxygen saturation (SpO2), brain



waves(electroencephalogram), heart rate(electrocardiogram), leg movements, and breathing airflow[9].
The PSG usually uses the nasal cannula to monitor breathing airflow. The nasal cannula can detect
pressure changes in breathing airflow with pressure transducers. Although PSG can record
comprehensive body signals and generates an accurate sleeping report, it has several disadvantages in
practice. PSG is usually performed in a hospital or sleep laboratory and requires the patient to spend
the whole night in the laboratory; the unfamiliar sleep environment may negatively influence sleep
quality. The electrodes and sensors attached to the human body may cause uncomfortable during sleep.
PSG needs reservation as it needs a medical technician to operate. The PSG usually takes several days,

and the costs are expensive. The graphical representation of PSG ias shown in Figure 1.1.

Figure 1.1 The polysomnography and nasal cannual

Researchers also developed other easy-used methods for monitoring breathing during sleep. One
frequently used method is the pneumotachograph. A pneumotachograph is usually placed in a mask
over the nose and mouth to measure the airflow rate by detecting the pressure change across a small but
laminar resistance[10]. Pneumotachograph also causes discomfort, requiring the mask to seal well to
prevent air leakage. Another frequently used breath monitoring method is Respiratory inductance
plethysmography(RIP). RIP uses two flexible bands attached to the chest and abdomen to measure the
chest and abdominal wall movement. It can be used to quantify lung volumes noninvasively[11].
However, the accuracy of RIP in OSA monitoring still needs investigation[12]. Non-contact
microphones can also be used to monitor breathing. As SRDB often accompanies snoring, snoring
sounds can be used for detecting SRDB early. The microphone is usually placed above or beside a
subject's head at an approximate distance of one meter[13]. However, This method is only suitable for

people with snoring. The graphical representation of these three methods is shown in Figure 1.2.



Figure 1.2 (a)RIP (b) pneumotachograph (c) non-contact microphone

With the development of an aging society, the elderly population in Japan is expected to continue
to grow. It is estimated that the number of people aged 65 and above will increase to 37.8 billion, or
33% of the total population, in 2060[14]. The need for home medical care is rising, which allows older
people to monitor health and diagnose health issues in a home environment rather than a hospital.
There is an urgent need to develop new low-cost, easy-to-operate, non-invasive sleep breath monitoring
methods that can be used in a home environment. The breath sound-based methods are popular in
respiration monitoring as it satisfies the demanding aforementioned and only involve acquiring and

processing respiratory sound signals.

1.2 Review of sleep breathing analysis

While breathing, a variety of respiratory sounds are produced. The vibration and turbulence of
airflow generate respiratory sounds into and out of the airways and lung tissue. Normal breath sounds
can be divided into four specific sounds: tracheal, bronchial, bronchovesicular, and vesicular. Each of
the four can be heard over a particular region of the thorax [15]. The auscultation positions of each type
of breath sound are shown in Figure 1.3. According to the recording location, respiratory sounds can be
classified into lung and tracheal. The lung sounds are detected over the chest wall. The tracheal sounds
are detected over the extrathoracic part of the tracheal or at the suprasternal notch. Among respiratory
sounds, tracheal sounds are of particular interest in the monitoring of breathing activity and detection
of upper airway obstruction because it is easy to detect and can reflect the pathological status of the

upper airway.
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Figure 1.3 Auscultation position of breath sounds

The widely available smartphones and wearable devices also made it possible to monitor
respiration during sleep in a home environment. The primary function of these devices is to acquire
vital human signs portably in real-time. These devices made monitoring chronic illnesses, such as
cardiovascular diseases and SRDB, available in a home environment[16-17]. Monitoring respiratory
quality using respiratory sound is becoming a hotspot in recent years. Much research has been done on
the acquisition and analysis of respiratory sounds[18-20]. As the Respiratory Rate(RR) is a vital
parameter for the human body, some researchers focus on the respiratory rate estimation from breath
sounds. Fang et al. proposed a novel sleep respiratory rate detection method based on the Time
Characteristic Waveform(TCW) and Characteristic Moment Waveform (CMW) method. A portable
and wearable sound device is developed to acquire the breathing sound signal and evaluate the severity
of OSA[21]. Nam used a built-in smartphone microphone to record nasal breath sounds and calculate
the respiratory rate. The respiratory rate was measured using inductance plethysmography bands and
respiratory sounds, respectively. The comparison was performed, and the results show that this method
achieved high accuracy even if the smartphone is as far as 30 cm away from the nose[22]. Many
researchers developed various wearable devices, either commercially available or at the research state,
for detecting and assessing the severity of OSA. Surrel proposed a wearable and energy-efficient
system for monitoring OSA during sleep. It is designed as an embedded system using a single-channel
electrocardiogram signal and achieved a classification accuracy of up to 88.2% on the PhysioNet
Apnea-ECG dataset[23]. Oliver developed a system consisting of non-invasive physiological sensors.
Sensors are connected via Bluetooth to a smartphone to store breath sound data. The blood oximeter
data are also presented to the user intelligibly[24]. Bsoul developed a real-time sleep apnea monitoring

system named Apnea MedAssist, for recognizing OSA episodes with a high degree of accuracy that



can be used in a home environment. Apnea MedAssist uses the patient’s single-channel nocturnal ECG
to extract feature sets and the Support Vector Classifier (SVC) to detect apnea episodes. It is
implemented on smartphones and achieves a classification F-measure of 90% and a sensitivity of
96%][25]. Rosenwein proposed a breath sound analysis method to calculate the Apnea-Hypopnea
Index(AHI) as a measure of OSA severity. The breath sounds of 186 adults referred to OSA were
recorded with non-contact microphones in laboratory and home environments, respectively. Suspected
Apnea/Hypopnea events were automatically detected with the energy envelope of the audio signal. Six
features were calculated from supposed periods and classified using a binary random forest classifier;
the apnea’hypopnea events can be detected with an accuracy rate of 86.3%[26]. Almazaydeh
introduced an automated method to detect sleep apnea based on breath sound signals. The sound signal
was filtered and segmented, and a Voice Activity Detection(VAD) algorithm was used to measure the
envelope of the signal during breath and breath hold and classify the signal into sound and silence

segments[27].

Other researchers focus on the research about the correlation between breath sounds and upper
airway narrowing. In [28], bronchial constriction in children was detected by evaluating the sound
breath spectrum. Breath sounds acquired near the mouth were analyzed to extract frequency parameters,
and the highest frequency of inspiratory breath sounds was calculated. They found that some spectrum
curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully
indicate airway narrowing. Besides these in-laboratory research, other commercial products also utilize

breath sounds to monitor breath quality during sleep[29-31].

1.3 Aim of this dissertation

Although there are many devices or techniques available for breath monitoring during sleep, few
of them provide an overall method to monitoring breathing during sleep, especially a few of them focus
on the relationship between breathing airflow and sleep quality. As the breath airflow is the direct
signal related to the ventilation, it can provide information about oxygen and carbon dioxide balance in
the blood. Monitoring breath airflow provides immediate and accurate measuring of breathing quality
during sleep. Furthermore, the breath signal acquired in a home environment is more complicated than
in a clinical environment. As in the home environment, noise often contaminates the breathing sound
signal obtained by sensors. The body movement or sensor friction also causes the signal to be unstable.
This research focuses on the analysis of breath sounds for breath airflow estimation and breath quality

evaluation during sleep, providing an overall breath quality evaluation and SRBD early detection



method that can be used in a home environment. The primary function of this research is shown in

Figure 1.4.
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Figure 1.3 The main function of this research

1.4 Outline

Chapter 1 introduces the background and overview of this research.

Chapter 2 describes the sleep-breathing sound classification method. During the breath sound
recording, it is often contaminated by noise such as heart sound or ambient noise. First, the breath
sound is preprocessed to filter the noise. Second, the breath sound signal is segmented by the Time
Characteristic Waveform(TCW) and Characteristic Moment Waveform(CMW). Third, for each breath
cycle, the Mel-frequency cepstral coefficients (MFCC) is extracted as the feature vector and classified

with Agglomerative Hierarchical Clustering(AHC).

Chapter 3 introduces the sleep-breathing state identification. As the breath sounds are not directly
related to breath airflow, it is essential to identify the breathing state based on breath sounds. The
whole breathing sound file was segmented into 30-second long clips. Seven breathing states are defined
and determined based on the classification result and breath regularity. Each clip is classified into

apnea, hypopnea, normal breathing, abnormal breathing, normal snoring, abnormal snoring, and event.

Chapter 4 introduces the Apnea-Hypopnea Index(AHI) estimation method based on breath sound.
AHI is calculated with different digital signal processing techniques. The AHI of the whole file is
calculated for evaluation of the apnea severity. Subjects with different OSA severity are selected to

evaluate the performance of the proposed method.

Chapter 5 introduces the tidal volume estimation method based on breath sounds. Tidal volume is
quantitatively calculated for normal breathing and normal snoring states and qualitatively for

apnea’/hypopnea and abnormal states.



Chapter 6 applies the proposed method to the heart sound analysis. The classification method
presented in chapter 2 is used to classify heart sounds into different categories based on the recording

quality. A block-chain based data sharing method is proposed for the system development.

Chapter 7 is the summary and conclusion.
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Chapter 2

Sleep breathing sound Classification

2.1 Introduction to breath sounds

Respiratory sounds are the specific sounds generated by air movement through the respiratory
system and are produced by turbulent airflow in the pharynx, glottis, and subglottic region. The sound
is transmitted to the body surface through the lung tissue and chest wall. Breath sounds are
synonymous with lung sounds, which are essentially the same[1]. Breath sounds are affected by many
factors, such as age, gender, breathing pattern, and so on. There are differences in breathing frequency,
tidal volume, vital capacity, and gas flow rate among different individuals, and the resulting breath
sounds are also different. Breath sounds are directly related to airflow movement, lung shape changes,
and airway secretions, which are essential clues for diagnosing lung diseases. It helps diagnose various
respiratory disorders and can convey important clinical information about the respiratory system[2].
These symptoms can be diagnosed by hearing the lungs sound with a stethoscope. This diagnosis is

called auscultation.

Based on the location of auscultation, breathing sounds can be classified into tracheal, bronchial,
bronchovesicular, and vesicular sounds. The tracheal sound heard at the suprasternal notch ranges from
100 Hz to almost 5000 Hz, with a sharp drop in power at a frequency of approximately 800 Hz and
little energy beyond 1500 Hz. The lung sound heard over the surface of the chest or back, frequencies
range from 100 Hz to 1000 Hz, with a sharp drop at approximately 100 to 200 Hz. Vesicular breath
sounds are soft, low-pitched sounds heard over most peripheral lung fields. Bronchovesicular sounds
are medium-pitched across the mainstream bronchi, between the scapulae, and below the clavicle.
Vesicular sounds are soft sounds heard throughout most lung fields[3]. Table 2.1 provides a summary
of normal breath sounds. Abnormal lung sounds include diminished lung sounds and adventitious
breath sounds, which various conditions, including asthma, heart failure, or pneumonia, can cause.
Pneumonia can cause air or fluid in or around the lungs; emphysema can cause over-inflation of a part
of the lungs. Adventitious sounds refer to sounds that are heard in addition to the expected breath
sounds mentioned above. The four most adventitious lung sounds are wheezing, stridor, rales, and
rhonchi[4]. Normal lung tissue has a similar effect with a low-pass filter as it allows low-frequency
sounds to transmit while filtering high-frequency sounds. As the pathological lung tissue is usually

occupied by fluid other than air, it can transmit more high-frequency sounds[5-6].
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Table 2.1 types and characteristics of normal breathing sounds

Type Location Frequency range pitch
Tracheal Suprasternal notch 100-5000Hz, energy drop at Loud, high
800Hz pitch
Bronchial chest near second and third intercostal Similar to tracheal high
space
Bronchovesicular | posterior chest between the scapulae and in Intermediate between Intermediate
the center part of the anterior chest vesicular and bronchial
Vesicular throughout most of the lung fields 100-1000Hz,energy drop at Low
200Hz

One normal respiratory cycle can be divided into four primary stages: inspiration, inspiration
pause, expiration, and expiration pause[7]. During the inspiration phase, the air flows into the lungs and
expands. The inspiratory pause is from the moment that inspiratory airflow stops to the beginning of
the expiratory phase. During the expiration phase, the lungs are forced to compress, and the air is
forced out. An expiratory pause is from when expiratory airflow stops to the beginning of the next
inspiratory phase. A respiratory cycle lasts 4 to 5 seconds for an adult at rest. Inspiration and expiration
each require about 2 seconds. A pause of 2 to 3 seconds occurs between each respiratory cycle. The
pause can be extended up to 10 seconds[8]. During the pause, there is no air movement into or out of
the lungs, and the lung volume is equivalent to the Functional Residual Capacity[9]. A typical

respiratory cycle example is shown in Figure 2.1.

Figure 2.1 typical breathing sound

2.2 breath sound segmentation

Parameters of breath sounds, such as duration, amplitude, and frequency, reflect the physiological
conditions of the respiratory system. The loudness and frequency characteristics of breath sounds
depend on how narrow the upper airway is and the airflow rate through it. During awake, the neural
regulation of the upper airway prevents it from collapsing and keeps it open. However, during sleeping,

the muscles that regulate the upper airway relax. This may cause the upper airway to get narrower, and
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the velocity of the air moving through it increase, and it has a corresponding effect on breathing sound

characteristics and changes the frequency of breath sounds.

Meanwhile, this also causes breath to become quicker and more shallow, especially during the
Rapid Eye Movement(REM) stage[10]. The Respiration Rate(RR) or breath rate is the number of
breaths a person takes per minute. Normal RR ranges from 12 to 20 times per minute for an adult at
rest. A RR under 12 or over 20 breaths per minute while resting is considered abnormal. RR is widely
used to monitor the physiology of the human body. It is not only an important indicator of potential

respiratory dysfunction but also a key indicator of physiologic processes[11].

The essential step in calculating RR is segmenting the breath sound into breath cycles. Breath
sound segmentation is the division and identification of breath sound cycles and the boundaries of each
phase. It can provide parameters like the breathing rate and breathing duration and helpful information
about the condition of the lung physiology. Most breath sound segmentation algorithms are based on
envelope calculation to obtain the changing intensity of breathing. The rule for identifying inspiration
and expiration is that the inspiratory pause period is less than the expiratory pause period[12-17].
Research on breath sound segmentation mainly focused on signal preprocessing methods to improve
segmentation accuracy under low Signal-to-Noise Ratio(SNR) conditions. Hilbert transform and
Shannon entropy are usually used for envelope calculation[18-19]. The common method to segment
breath sounds calculates the envelope and sets a threshold for it. Skalicky D proposed a breath phase
segmentation method that uses the Hilbert transform to calculate the envelope and find the minimum
values of the envelope as the segment points. This method has relatively high robustness and efficiency
with low computation[20]. Nam Y proposed a RR estimation method using beath sound recorded by a
smartphone. The envelope is calculated by Hilbert Transform, and the envelope is smoothed and
bandpass filtered to segment breath sound[21]. Some researchers used Voice Activity Detection(VAD)

method or artificial neural network to segment breath sounds[22-23].

However, these methods are only suitable for stable breathing. For people with SRBD, the
breathing waveforms are not regular, and the breathing intensity and respiratory rate are highly variable
during the whole night sleeping. During recording, ambient noise such as rollover noise or
environmental noise may also be recorded. These noises usually have a higher intensity than breath
sounds. It is challenging to directly segment the breathing sound based on the original envelope as the
breath sound is often covered by high-intensity sound. Recorded breath sounds are preprocessed to

remove noise, and the Time Characteristic Waveform(TCW) is used to calculate the envelope[24-25].

2.2.1 breath sound preprocessing
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The recording of breath sound signals is easily contaminated by noise, such as white noise, heart
sounds, interference caused by friction between sensors and skin, and sudden environmental sounds.
These noises inevitably degrade the recording. The first step in analyzing breath sounds is to remove
the heart sound interference. Heart sounds are often mixed through the microphone when recording the
breath sound. Heart sounds are low-frequency signals, and energy concentrates in [20,200Hz]. It highly
overlaps with breath sounds in the frequency range below 200Hz. Many methods have been proposed
for heart sound reduction from breath sounds[26-30]. However, most methods are only applied for
breath sounds recorded over the chest. As the tracheal sound is used in this research, the interference of
heart sound is less to tracheal sound than lung sound recorded on the chest. A bandpass filter is used to
remove heart sound. As the primary energy of tracheal sounds concentrates in the frequency range of
[50, 2500 Hz], the breath sounds were bandpass filtered by a Butterworth filter with a cutoff frequency
of [50,2500Hz]. The filtering process helps reduce the effects of heart sounds and high-frequency
noises, meanwhile maintaining the main frequency components of breathing sounds. As the highest
filter frequency is 2500Hz, the file was downsampled to 5S000Hz according to the Nyquist — Shannon

sampling theorem to reduce the file size and speed up the calculation efficiency.

After the heart sound reduction, removing low and high-frequency noises is necessary. Adaptive
filtering can eliminate environmental and physiological noise, but it requires multiple sound sources for
noise estimation [31]. The white noise and the breathing sound spectrum are overlapped, and
orthogonal wavelet decomposition has an adaptive time-frequency localization function, which can be
used to distinguish the white noise from the signal mutation part[32]. The Daubechies4 wavelet
performs 5-level decomposition, and the visuShrink soft threshold is used. The VisuShrink approach
employs a single, universal threshold for all wavelet detail coefficients. A comparison of breath sounds

before and after the preprocessing is shown in Figure 2.2.

Figure 2.2 breath sound before (top) and after preprocessing(bottom)
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2.2.2 breath sound envelope calculation

The calculation of TCW assumes the noise part of the sleep breath sound signal as a signal with
zero mean and unit variance. Suppose the sleep breathing sound signal is r(t), the random noise signal
is n(t), and the real output signal is y(t) =r(t)*n(t). In a & neighborhood of time t, the multi-scales
characteristic waveform of a signal denoted as ¢(t, §), defined as the variance of the output y(t), can be

gotten by

c(t,8) = [ (y() = 7(©)" dr = [ y(r)2dt — 269(1)? @.1)
Where

1 t+4
70 =35 ywr

The calculation time is proportional to the time scale d, and the larger J, the envelope gets
smoother. For a signal with length N, the computation of TCW needs 8N additions and multiplications.
The normal respiratory duration is 3-5 seconds. So the time scale 3 is set to half the breathing duration

as 1.5 seconds. A breath sound clip and the corresponding TCW envelope are shown in Figure 2.3.

Figure 2.3 TCW envelope of a breath sound clip

Breath sound amplitude is an essential parameter for calculating the envelope. However, snoring
or abrupt ambient noise is much louder than normal breathing. High-amplitude snoring sounds often
made the normal breathing sounds inaudible. The movement of the body or sensor position also causes
the signal amplitude level to change dramatically. In these situations, the normal breathing sound is
often misjudged as apnea. Identifying the low amplitude signal and proceeding with special processing
is necessary. This research separates the recording signal into normal and low signal parts, and each

part is processed using different analysis methods. Apnea is a breathing pause time longer than 10
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seconds; therefore, the breathing signal part with a pause time longer than 10 seconds is defined as a
low signal part. Otherwise is specified as the normal signal part. For the low-signal part, special

processing is needed to extract useful information from a low-intensity signal.

The TCW envelope with a threshold TH_LN is used to separate the breathing sound signal into

low signal and normal signal parts. The separate algorithm can be described as following steps:
Step 1:calculate the TCW.
Step 2: Separate the envelope into a low and normal part with threshold TH_LN.
Step 3: merge all normal parts with intervals of less than 10 seconds.
Step 4: merge all low parts with intervals of more than 10 seconds.

The breathing sound signal amplitude is normalized to [-1,1], and the TH_LN is set as 0.05 based
on empirical experiments. For the low signal part, it is necessary to extract the breathing sounds with
low intensity from the total signal. It is essential to amplify the signal amplitude for the low signal part.
The Loudness Normalization extracts the minor signal from the louder signal. Loudness normalization
changes the audio intensity to bring the average loudness to a target level[33]. This may cut the peaks
that exceed the recording medium’s limits. A threshold is needed to set the target loudness level. Based
on the empirical experiments, the threshold is set as 0.2. Figure 2.4 shows a signal clip and the signal
after loudness normalization. The breath signal from the beginning to 10 seconds has a low amplitude
compared with the snoring at 25 seconds; this clip is misjudged as apnea without a normalization
process. After Loudness Normalization, the low signal part is enlarged, and the snoring part is cut to

the maximum level. The corresponding envelope is amplified for extracting breathing information.

00001014-100507[002]F Skclip01050.wav

false apnea

Figure 2.4 low signal fragment before(top) and after(bottom) loudness normalization
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2.2.3 breath phase segmentation

The Characteristic moment waveform (CMW) is calculated for breath sound phase segmentation
based on TCW. The CMW is derived from the image shape identification in image processing[24]. It is
calculated according to Equation 2.2.

t+1

1t,8,) = [, (t — )%c(t, §)dr (2.2)

Where | and is time scale and & are neighbourhood of time t. The § is set as half of the breath

cycle length. The scale parameters (5,1) is set as (2.5, 0.1) in this research.

After the TCW and CMW calculation with suitable time scales, breath sound can be segmented as

the following steps.

Step 1: Calculate the local maximum point sequence of CMW, mark each point as the breath

cycle beginning and end points.

Step 2: Calculate the local maximum point sequence of TCW, mark each point as the center of

breath phases.

Step 3: for each local maximum point of TCW, take this point as the center point, search left and
right respectively until TCW is less than the TH LN, mark the stop points as the beginning and end

points of inspiration or expiration.

During the tracheal sound recording, the inspiration is usually much louder than the expiration,
making expiration hard to detect. Therefore in this research, only the inspiration is segmented and used
for the following analysis. The representation of a 30 seconds breath sound segmentation is shown in
Figure 2.5. One breath cycle is marked, for example. The breath cycle beginning and end points are
marked with a 4-point star, and the center of inspiration is marked with a round point. The beginning
and end point of inspiration is marked with a vertical green dotted line. The segment result is shown in

Figure 2.6. Each inspiration is marked with the green rectangle.

Figure 2.5 the representation of breath sound segmentation
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Figure 2.6 breath sound segment result

2.3 breath sound classification

Although the RR can be calculated by breath sound segmentation, the information RR can provide
is limited. It does not provide information about the frequency characteristics of each breath cycle.
Breath sounds are indicators of lung tissue pathology, the location of secretions in the tracheobronchial
tree, and upper airway obstruction—many SRBD symptoms cause differentiation in the breath sound
generated during sleep. Previous studies have analyzed the relationship between sleeping breath sounds
and the symptom of SRBD. Different symptoms of SRBD have different breath sound patterns or
breath sound abnormalities[34]. Snoring is the most common symptom of SRBD. It is the indicator of
OSA. In addition to snoring sounds, the obstruction or restricted upper airway often cause irregular
breath sounds or disturbed breath rhythms. Labored breathing, gasping, or choking may also be
detected during sleep[35]. Recognition and classification of breathing sound patterns and breathing
sound abnormalities are important components for lung function diagnosis. In the clinic, this task is
usually performed by experts with auscultation. However, for sleep monitoring, the recorded breath
sounds usually last several hours, and automatic recognition and classification are needed. Many
studies have been done on breath sound recognition and classification. These methods can be classified

into supervised methods and unsupervised methods based on whether or not uses the labeled data.

The supervised methods usually consist of two steps: training and testing. During the training step,
the labeled datasets is used to train a neural network(or other classifiers) that to classify data or predict
outcomes accurately. As the input data is fed into the neural network, it adjusts its weights until it can
detect the underlying patterns and relationships between the input data and the output labels, enabling it
to yield accurate labeling results when presented with test data. During the test step, a new dataset

without labeling is fed to the trained model. The trained model can predict its label[36]. For the breath
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sound classification, the spectrograms of the training dataset are often extracted as the input for a
neural network. A spectrogram is a visual representation of the frequencies of a signal as it varies with
time, able to represent time, frequency, and amplitude all on one graph. The features of the
spectrogram, such as the texture and energy distribution, are extracted by the neural network. However,

the supervised method needs a large training dataset.

Many studies have been done to classify breathing sounds[37-38]. Bruno proposed a public
respiratory sound database for the automatic analysis of respiratory sounds, which includes 920
recordings acquired from 126 participants and two sets of annotations. One set contains 6898 annotated
respiratory cycles, some including crackles, wheezes, or a combination of both[39]. Mohammad
Fraiwan proposed a dataset that includes sounds from seven ailments and normal breathing sounds. The
dataset contains audio recordings from examining the chest wall at various vantage points. These data
provide lung sound recordings from 112 Middle Eastern subjects experiencing many pulmonary health
conditions[40]. However, these datasets have limited size and are recorded during the daytime. As the
breath sounds recorded during sleep, have different characteristics compared with daytime, Whether
they are suitable for sleep breath analysis still needs investigation. Some researchers also use deep
learning methods to segment breathing sounds[41-45]. However, most of these methods used
small-size training datasets that might be insufficient to train and evaluate robust neural networks.
Besides the training dataset problem, supervised methods may also encounter the overfitting problem.

The representation of the supervised breath sound classification method is shown in Figure 2.7.

training

training set I —
2 spectrogram lassifics

|. e neural network classification

and labc result

spectrogram
Figure 2.7 The representation of supervised breath sound classification method
The unsupervised method usually segments breath sound into short frames with overlaps and
extracts each frame's feature set [46]. The frequently used features include zero crossing rate,
spectrogram centroid, spectrogram flatness, etc. The feature set then proceeds with dimension
reduction to get low-dimension features. Then it is usually classified with clustering methods.
Azarbarzin proposed an automatic and online snore detection algorithm. The Vertical Box algorithm

detected the potential snoring episodes, Principal Component Analysis(PCA) was applied to reduce a
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10-dimensions into a 2-dimensional feature set, and the K-means clustering algorithm was used to
classify all breathing episodes into snore or no-snore categories[47]. Umeki presents an unsupervised
respiratory sound classification method based on the subject-adaptation method. The lung sounds are
classified into normal/abnormal by a subject-adaptation of acoustic lung-sound models, which achieved
an accuracy of 82.7%[48]. The representation of the supervised breath sound classification method is
shown in Figure 2.8. These unsupervised methods do not need labeled data sets for training. However,
the feature of each frame usually has a low discriminative ability. Breath cycles with different lengths

have different frames. This may also have an adverse effect on classification accuracy.

framing

feature set
extraction

feature set
reduction

classification result

Figure 2.8 The representation of unsupervised breath sound classification method

As traditional supervised and unsupervised breath sound classification methods both have their
advantages and disadvantages, a new classification is needed that can utilize both their benefits. Breath
sounds vary significantly from person to person. It is challenging to use supervised methods to classify
the breath sound, as acquiring a large training dataset is challenging. One night breath sound recording
usually lasts several hours and may include thousands of breath cycles. The manual analysis is
time-consuming. However, this research focuses on breath ventilation estimation. This requires that the
breath cycles be classified into several distinct states, and the breath ventilation can be easily estimated
according to these states. Furthermore, breath sounds are non-stationary signals, but a single breathing
cycle can be regarded as stationary. As the breath cycle is the basic unit of all-night breathing, it is
essential to analyze the characteristics of each breath cycle to identify the breathing states. Based on
these assumptions, an unsupervised classification method based on Mel-Frequency Cepstrum
Coefficients(MFCC) and Agglomerative Hierarchical Clustering(AHC) is proposed to classify breath
cycles into several categories based on their characteristics. MFCC vector is extracted as the feature of

each breath cycle. All MFCC vectors form an MFCC matrix as the input for AHC input. MFCC vectors
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are clustered into several clusters automatically. It is an unsupervised method with high discriminative
ability. The flowchart of the classification method is shown in Figure2.9.
:I!IIIi‘kI

normal signal cvele
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low signal normalization nomn-apnea
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Figure 2.9 The flowchart of the classification method

2.3.1 breath cycle category definition

After the segmentation, the entire breath signal is separated into apnea and non-apnea parts(in
section 2.2.2). Non-apnea regions are segmented into breath cycles. For these non-apnea breath cycles,
as the breath cycle is the basic unit of sleep breathing signal, it is necessary to identify the
characteristics of each breath cycle. These characteristic parameters of each breath cycle include
frequency distribution, pitch, breath rate, etc. So that the breathing states, such as normal breathing,
snoring, and abnormal snoring, can be identified by these parameters. Breathing patterns may include
various states, such as normal breathing, snoring, long and labored breathing, and other irregular
breathing rhythms. Breath sounds can be classified into different categories based on various criteria.
As this research focuses on breath ventilation estimation, the classification criterion is based on the
upper airway states. Several breathing categories are defined based on the spectrum characteristics of

breath cycles. These categories are as follows.
(1)Normal breathing

As shown in Figure 2.1, normal breathing sounds have inspiration and expiration stages and clear
pauses between them. The frequency range of typical tracheal sound is much broader than normal lung
sound, with frequencies ranging between [100,5000]Hz, most of the energy concentrated between
[100,1500]Hz, with a sharp drop in energy above a frequency of approximately 800Hz[49]. The
frequency variability in inspiration or expiration could be more apparent. The energy distribution in
low frequency is smooth, indicating that the respiratory system is in a stable state and the upper airway

is not obstructed.
(2)Abnormal breathing

Unlike normal breathing, abnormal breathing sounds usually do not have two stages or a clear

pause between inspiration and expiration. A common cause of abnormal breathing is Upper Airway
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Obstruction (UAO). It becomes noisy in the case of UAO, demonstrating an increase in the peak
spectral power at 1 kHz and an increase in the mean spectral power between [600,1300]Hz[50].
Another common abnormal breathing is breathing with sputum in the respiratory system. Sputum
deposition can block the airway and lead to hypoventilation and carbon dioxide retention, which

change the spectrum characteristics of breath sounds[51].
(3)Normal snoring

Normal snoring, also called simple snoring, occurs when there is a partial collapse of the throat's
soft tissues. Air moves around lax tissue near the back of the throat and causes tissue to vibrate. It often
arises from the palate but can also involve other soft tissues of the upper airway. The collapse of
normal snoring is incomplete, and the air can flow through the respiratory system to maintain adequate

ventilation. As such, simple snoring is generally not considered a health threat[52].
(4)abnormal snoring

Abnormal snoring (also called Apneic Snoring) is caused by partial or complete airway
obstruction. Apneic snoring causes a partial or complete airflow stop, resulting in little or no oxygen
going to the blood. For the apneic snoring, at the end of the obstruction, the closed upper airway is
suddenly opened, and the pressures of the upper and lower airflows are suddenly balanced, causing the
upper airway to repeat multiple openings and closings in a short period, producing a popping sound.
The collapse degree and resistance of the upper airway may vary significantly from the beginning to
the end of inspiration, thus affecting the vibration of the upper airway tissue[53-54]. The snoring
sounds in patients with Obstructive Sleep Apnea and simple snoring have different characteristics and
effects on breath quality. It is essential to discriminate between these two types of snoring to evaluate

the influence on breathing quality.
(4) Uncertain

During the recording, breath sounds are usually contaminated with noises, such as ambient noise
or friction noise caused by body movement. When unexpected audio activity is mixed with breathing
sounds, the breathing state can not be identified, as the breath signal is usually covered by noise. This

type of audio activity is defined as an uncertain category.

2.3.2 breath sound feature extraction

The essential step for classifying breath cycles defined above is feature extraction. Audio features

can be classified into time-domain features and frequency-domain features. As this research focuses on
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breath ventilation estimation and classification and aims to determine the characteristics of each breath
cycle, frequency-domain features are more related to breathing states. Each breathing cycle has
different frequency-domain features, such as Zero-Crossing Rate(ZCR), pitch, spectral centroid, and
frequency range[55]. However, some categories have similar frequency ranges or spectral centroids,
like abnormal and normal breathing. It is necessary to extract features with high discriminative ability.

The parts should satisfy the following requirements:

(1) The feature dimensions of each breath cycles with different length should be the same so that

the classification algorithm can eliminate the influence of breath duration.

(2) The feature is related to breathing states and has a high discriminative ability. The breathing

states defined above can be clearly classified into different categories.
(3) The feature calculation is easy to extract and have low computation cost.

Based on the requirements mentioned above, the Mel-scale Frequency Cepstral
Coefficients(MFCC) are used as the feature of each breath cycle. According to research about the
human hearing mechanism, the human ear has different hearing sensitivity to sound waves of different
frequencies. The human ear has a higher resolution of low-frequency sounds than high-frequency
sounds. The Mel scale maps the human auditory perceived frequency to the actual frequency of the
sound. By converting the frequencies to the Mel scale, features can better match the human auditory
perception[56]. The Mel scale describes the nonlinear characteristics of the human ear frequency, and

its relationship with frequency in Hertz can be approximated by Equation 2.3.

f
Mel(f) = 2 1 —+1
el(f) 595 * 0g10(700+ )
2.3)
fis the frequency in Hertz. The relationship between frequency in Hertz and Mel-scale frequency is

shown in Figure 2.10, maximum frequency in Hertz is 20 kHz.
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Figure 2.10 the relationship between frequency in Hertz and Mel-scale
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The Mel-scale Frequency Cepstral Coefficients(MFCC) is a cepstral parameter extracted in the

Mel-scale frequency domain[57]. The MFCC extraction algorithm usually includes the following:
e Pre-emphasis.
e  Windowing the signal into frames.

e Applying the Fast Fourier Transform (FFT) on frames to get the short-time Fourier transform

spectrum(STFT).

Then the STFT spectrum was filtered with Mel filter banks to get the Mel-spectrum. The Mel-spectrum
was transformed into Mel-frequency cepstrum by taking the logarithm and then applying the Discrete
Cosine Transform(DCT) to get MFCC coefficients. The MFCC feature describes the power spectral
envelope of a single frame. The MFCC extract algorithm is shown in Figure 2.11. The MFCC

extraction algorithm is as follows:

Figure 2.11 MFCC extract algorithm

(1) pre-emphasis

Pre-emphasis processing is passing the signal through a high-pass filter. Applying a pre-emphasis
filter to a signal to amplify high frequencies are helpful in several ways. It can balance the frequency
spectrum since high frequencies generally have less amplitude than lower frequencies. It can also
compensate for the high-frequency part of the voice signal suppressed by the pronunciation system and
highlight the high-frequency formant. The pre-emphasis processing can be expressed as the following

equation:
y(t)=x(t)-ax(t-1) 2.4

x(t) is the original signal, y(t) is the signal after pre-emphasis. @ is the filter coefficient, usually set as

0.95 or 0.97 in natural language processing. It is set as 0.97 in this research.

(2) Framing and windowing
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Breath signals are short-term stationary signals. After pre-emphasis, it is often necessary to divide
the signal into short time frames with overlaps. After the framing, each frame is multiplied by a
window function, such as a Hamming window, to increase the continuity of the left and right ends of
the frame. A good approximation of the frequency profile of the signal is obtained by concatenating
adjacent frames. However, in this research, the breath cycle with different lengths should extract
features of the same size. Therefore, the framing step is replaced with breath segmentation in this

research. The entire breath cycle signal is taken as one frame to perform FFT.
(3) Power Spectrum

Since it is usually difficult to see the characteristics of the signal in the time domain, it is usually
observed by FFT transforming it into an energy distribution in the frequency domain. Different energy
distributions can represent different speech characteristics.After FFT, the power spectrum is calculated

using the following formula

|FFT(x)|?
P=———
(2.5)

x is signal of one breath cycle, N is the signal length.
(4) Mel-spectrogram

A Mel-spectrogram is a spectrogram where the frequencies are converted to the mel scale. As
mentioned before, the human ear has different hearing sensitivities to sounds of different frequencies.
The voice signal between 200Hz and 5kHz greatly influences the hearing system. When two sounds of
unequal loudness act on the human ear, the louder sound will affect the perception of the lower
loudness sound, making it difficult to detect. This phenomenon is called Audio Masking. Because the
lower frequency sound transmits farther on the inner cochlear basilar membrane than the higher
frequency sound, the lower frequency sound tends to mask the higher frequency sound. The critical
bandwidth for lower-frequency masking is smaller for higher frequencies[58]. Therefore, the
researchers designed a set of bandpass filters from low frequency to high frequency according to the
size of the critical bandwidth from dense to sparse to filter the input signal[59]. The sound frequency is
divided by the critical band, and the voice is divided into a series of frequency groups in the frequency
domain to form a filter bank, a Mel filter bank. The Mel filter bank is designed to simulate the
non-linear perception of sound by the human ear, with more substantial discrimination at lower
frequencies. There are many filters in the low-frequency region, and they are densely distributed, but in
the high-frequency region, the number of filters becomes relatively less, and the distribution could be
more sparse. The signal energy output by each bandpass filter can be taken as the primary feature of the

signal. Since this feature does not depend on the nature of the signal, it does not make any assumptions
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and restrictions on the input signal. It utilizes the research results of the auditory model. Therefore, this
parameter is more robust than the Linear Prediction Cepstrum Coefficient (LPCC) based on the channel
model, more in line with the acoustic characteristics of the human ear, and has better recognition
performance when the SNR decreases[60]. The number of filters is usually set between 24-40. In this
research, the filter number is set as 32 based on previous research. The 32 Mel filter banks used in this
research below 5k Hz are shown in Figure 2.12. Each filter in the filter bank is triangular in shape with
a center frequency f(m) where the response is one and decreases linearly towards O until the center
frequencies of two adjacent filters are reached, and the interval between each f(m) widens as the value
of m increases. The frequency is multiplied and accumulated with each filter for the power spectrum
obtained after FFT. The obtained value is the energy value of the frame data in the frequency band
corresponding to the filter. In this research, 32 energy values were obtained. Since the framing
operation is not used in this research, each breath cycle is taken FFT as one frame. Therefore the

energy values with the same length are obtained.

Figure 2.12 32 mel filter banks between 0-2500 Hz

(5) Take logarithm for energies to obtain the log-Mel Spectrogram.

The Mel-spectrogram is usually represented on a log scale. The logarithm is taken on Mel

spectrogram to change the unit of energy into decibel.
(6) Discrete Cosine Transform

The log mel-spectrogram computed in the previous step is highly correlated. It can be
decorrelated by applying the Discrete Cosine Transform(DCT), resulting in a compressed
representation called MFCC. The MFCC of the audio signal is usually a two-dimension matrix, each
column present for a frame, and each row in the matrix corresponds to the Mel-frequency cepstral
cocefficients for the corresponding frame. In this research, each breath cycle is taken as one frame.
Therefore a one-dimension MFCC vector is calculated for each breath cycle. For Automatic Speech

Recognition (ASR), the resulting cepstral coefficients 2-13 are retained, and the rest are discarded[61].
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The reason for discarding the high-order coefficients is that they represent rapid changes in filter bank

coefficients, and these fine details do not contribute to ASR.

The first coefficient represents the energy of a frame. It is usually discarded in ASR because it
does not carry more information about semantics. However, in this study, the first coefficient is useful
in breath sound classification, so the 1-13 cepstral coefficient is kept as an MFCC vector. Each MFCC
vector represents the feature of each breath cycle. All the MFCC vectors are concatenated to form a
feature matrix. The column is the breath cycle numbers. The row is the MFCC vector length. After
transposition, this matrix can be used for classification. The procedure of the MFCC matrix is shown in

Figure 2.13.

MEFCC matrix

Figure 2.13 feature matrix calculation procedure

2.3.3. Agglomerative Hierarchical Clustering

As a vector can be presented as a point in a high dimension space by its Cartesian coordinates, all
the MFCC vectors can be presented as points in a high dimension space. Since similar breath cycles
have similar MFCC vectors, the points are also close to each other in space. Therefore, all the points
can be separated into several clusters in the space based on the distance between points. The represent

of clustering is shown in figure 2.14.
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classification based on distance

Figure 2.14 MFCC vector clustering based on distance

The distance between these two points can measure as the distance between the two points. Based
on our experiences, the Euclidean distance gave the most satisfying cluster result. The Euclidean
distance between two points in Euclidean space is the length of a line segment between the two points.
In general, if p and q are two points in n-dimensional Euclidean space, then the distance between them
can be calculated by Equation 2.5. The calculated Euclidean distance is a number greater than 0. It can
be normalized to (0, 1] to better reflect the similarity between users. The similarity of p and q can be

calculated by Equation 2.6 and 2.7.

d(p, @) =1 — 9% + (P2 — q)? + - + (Pn — Gn)?
(2.6)

Similarity(p,q)=1/(1+d(p,q)) 2.7

Clustering is an unsupervised machine-learning method that finds natural groups(clusters) of
observations based on the internal structure of the data. The input data used for clustering is unlabelled,
and the algorithm will discover interesting data structures. Cluster algorithm analysis groups data based
solely on the information found in the data that describes the objects and their relationships. The goal is
that objects within groups are similar, while objects in different groups are different. The greater the
similarity (homogeneity) within groups and the greater the differences between groups, the better the
clustering. Hierarchical clustering is a method of cluster algorithm that can discover the structure of the
data set in an unsupervised way. The agglomerative method secks iteratively to merge nodes into
bigger clusters. The divisive method splits bigger nodes into smaller ones. Both these two methods can

build a hierarchy of all data.
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Agglomerative Hierarchical Clustering (AHC) is the most common type of hierarchical
clustering[62]. Pairs of clusters are successively merged until all clusters have been merged into one
big cluster that contains all objects. Two nodes or clusters with the minimum distance are merged at
each iteration. The result is a tree-based representation of all the objects named a dendrogram. The
dendrogram may correspond to a meaningful taxonomy. Each horizontal cut of the dendrogram yields a
clustering result. AHC needs only a similarity or distance matrix of the dataset for implementation. The
procedure of hierarchical clustering is shown in Figure 2.15. The number of clusters needs to be set

before the algorithm begins.

agelomerative

A
[
1
|
|
1
1
1
]
]
i
i
i
i
]
i
1
I
1
]
]
1
]
i
i
]
'
i
I
|
i
i

€ e

divisive

Figure 2.15 Hierarchical clustering procedure

A 120 minutes length breath sound file was selected for demonstration. 592 breath cycles are
segmented. The 32 Mel-scale filters are set in MFCC extraction. Based on the structure of the
dendrogram. The dendrogram was divided into 7 clusters. The dendrogram is shown in Figure 2.16.
The dendrogram is truncated to show the main structure. The breath cycle numbers of each cluster are
listed in Table 2.2. The x-axis is the breath cycle index in the file, the y-axis is the Euclidean distance

of each MFCC vector.

Hierarchical Clustering Dendrogram

clip index

Figure 2.16 dendrogram of cluster result
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Table 2.2 property of each cluster

cluster NO. color breath cycle number

1 cyan 38

2 black 1

3 Purple 3
4 orange 6
5 blue 34
6 Green 13
7 red 497

2.4. cluster result automatic labelling

The AHC will output a series of labels for each point, representing the clusters it belongs to.
Although the clustering algorithm can separate data into clusters, it does not explain each group's
nature after grouping. As an automatic model, the working mechanism of clustering is opaque, and
the clustering results are challenging to understand and judge[63]. This feature of the clustering
algorithm also hinders the subsequent analysis of the clustering results. Therefore, almost all the
analysis work on clustering results needs manual processing, which is time-consuming. Especially
when faced with high-dimensional data, the time and space overhead of manual analysis of clustering
results will increase significantly. Specific to the above breath cycle clustering results, although all
breathing cycles are divided into seven categories, the particular characteristics of each category still

need manual interpretation.

In recent years, projecting high-dimensional data into a low-dimensional subspace and analyzing
it has achieved remarkable results. As the first three dimensions of the MFCC vector have the most
prominent ability to describe the envelope of the cepstral spectrum, the first three dimensions of each
MEFCC vector are used to visualize the MFCC matrix in a 3-dimensional space. The clustering result
mentioned above is shown in Figure 2.17. The three axes are the zeroth, first, and second coefficients

of the MFCC vector. The color of each point corresponds with the dendrogram.

Figure 2.17 cluster result of MFCC matrix in 3-dimensional space
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2.4.1. The Zeroth coefficient in clustering

The zeroth coefficient represents the log energy of a frame. It is usually discarded in ASR
because it only carries information about the speaker's volume and only carries a little semantic
information. However, the log energy of a breath cycle is vital in breath sound classification as it
carries information about the upper airway. The snoring breath cycle usually has higher log energy
than the breathing cycle. Figure 2.18 shows the points' location from the zeroth coefficient dimension
view. Cluster 5, cluster 6, and cluster 7 have larger log energy than clusters 1-4. Therefore, cluster 5,
cluster 6, and cluster 7 can be identified as a snoring state, while cluster 1-4 can be identified as a
non-snoring state. One snoring cycle with a higher zeroth coefficient is shown in Figure 2.19, and one

normal breathing cycle with a lower zeroth coefficient is shown in Figure 2.20.

ow average log-energy h coeflictent high aver og-energy

Figure 2.18 cluster result view from zeroth coefficient

Figure 2.19 snoring cycle with higher zeroth coefficient, (top) waveform, (middle)STFT Spectrum,
(bottom)MFCC
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00001014-100507[002]F_Sk.we

Figure 2.20 breathing cycle with lower zeroth coefficient,(top) waveform, (middle)STFT Spectrum,
(bottom)MFCC

2.4.2. The first coefficient in clustering

The cepstral coefficients are a measurement of similarity between the log-Mel cepstral spectrum
and the cosine function waves of different frequencies. The first cepstral coefficients capture the
primary trend with which the values of this sequence vary. It is also the periodicity of the log-Mel
cepstral spectrum envelope. The log-Mel cepstral spectrum of normal breathing has more energy in the
low-frequency region and less in the high-frequency region. In other words, the slope of the log-Mel
cepstral spectrum has a negative slope. Since the envelope of the log-Mel cepstral spectrum is similar
to that of the cosine wave mentioned above, the first cepstral coefficient of normal breathing will have

a positive value.

In contrast, the log-Mel cepstral spectrum of abnormal breathing will have a negative value. The
reason that abnormal breathing has more high-frequency energy is related to the upper airway state.
When the upper airway partially collapses, it gets narrower, and the airflow rate increase to produce
more high-frequency sound. The relationship between the log-Mel cepstral spectrum and the first
coefficient is shown in Figure 2.21. Figure 2.22 shows the points' location from the first coefficient
dimension view. From the first coefficient dimension view, cluster 5 and 6 have more high-frequency
energy. Therefore, they can be identified as an abnormal state. While clusters 1-2 and cluster 7 have

more low frequency, they can be identified as a normal state.
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ive first coetticient

Figure 2.21 the relationship between log-Mel cepstral spectrum and first coefficient

more high frequency

Figure 2.22 cluster result view from first coefficient

2.4.3. The second coefficient in clustering

The second cepstral coefficients capture the proportion of middle frequency and high/low
frequency. If the breath sound has more energy in the middle-frequency region and less in the
low/high-frequency region, the slope of the log-Mel cepstral spectrum has a negative second coefficient.
On the contrary, it has a positive second coefficient. The second coefficient has a smaller ability to
distinguish than the first coefficient, and as the coefficients' order increase, the discriminative power

gradually decreases. However, the outlier could be easier to identify combined with the second
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coefficient. This type of outlier point represents a sound that is not similar to any other clusters. This
type of sound usually does not generate by the human respiratory system and can be taken as a noise or
uncertain category. Clusters 3 and 4 are outlier clusters away from the space's breathing or snoring
clusters. Therefore, all the cluster characteristics can be identified based on location in the space that is
composed of the zeroth, first, and second coefficients. The features of each cluster can be summarized
in table 2.3. Cluster 3 and cluster 4 can be merged into one cluster that is labeled with uncertain.
Cluster 5 and cluster 6 can be merged into one cluster that labeled with abnormal snoring. The
relationship between the log-Mel cepstral spectrum and the second coefficient is shown in Figure 2.23.

Figure 2.24 shows the points' location from the second coefficient dimension view.

-

more middle tre

Figure 2.24 cluster result view from second coefficient

Table 2.3 characteristics of each cluster

cluster color breath cycle number category
NO.

1 cyan 38 Normal breathing
2 black 1 Abnormal breathing
3 Purple 3 uncertain
4 orange 6 uncertain
5 blue 34 Abnormal snoring
6 Green 13 Abnormal snoring
7 red 497 Normal snoring
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A 2 minutes signal clip is selected from the result shown in Figure 2.25 to demonstrate the
clustering result. The top is the breath sound signal. The bottom is the clustering results. Each
breathing cycle is assigned a label(apnea,normal snoring, abnormal snoring, normal breathing,

abnormal breathing, uncertain).

00001014-100507[002] ch12_840-960

40

classification result

T s]
Figure 2.25 cluster result of 2 minute breath signal clip

2.5 Summary

An unsupervised sleep breath sound classification method is proposed to classify breath cycles
into normal breathing, abnormal breathing, normal snoring, abnormal snoring, and uncertain categories
based on the breathing states. First, the entire signal is separated into low signal and normal signal parts.
Next, the low signal is normalized with Loudness Normalization. TCW is calculated as the signal
envelope. TCW and CMW are used to segment breath sounds into breath cycles. Apnea is detected in
the time domain with TCW envelope. MFCC vectors are extracted as the feature vector for each breath
cycle. The MFCC matrix is clustered with AHC. The zeroth, first and second coefficients identify the

characteristics of each cluster.

Reference

[1] Pelech A N. The physiology of cardiac auscultation[J]. Pediatric Clinics, 2004, 51(6): 1515-1535.

35



[2] Sarkar M, Madabhavi I, Niranjan N, et al. Auscultation of the respiratory system[J]. Annals of
thoracic medicine, 2015, 10(3): 158.

[3] Bohadana A, Izbicki G, Kraman S S. Fundamentals of lung auscultation[J]. New England Journal
of Medicine, 2014, 370(8): 744-751.

[4] Naqvi S Z H, Choudhry M A. An automated system for classification of chronic obstructive
pulmonary disease and pneumonia patients using lung sound analysis[J]. Sensors, 2020, 20(22): 6512.
[5] Zimmerman B, Williams D. Lung Sounds. [Updated 2022 Aug 29]. In: StatPearls [Internet].
Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK 537253/

[6] Pramono R X A, Bowyer S, Rodriguez-Villegas E. Automatic adventitious respiratory sound
analysis: A systematic review[J]. PloS one, 2017, 12(5): e0177926.

[7] Doyle D J. Acoustical Respiratory Monitoring in the Time Domain[J]. The Open Anesthesia
Journal, 2019, 13(1)

[8] Hamke E E, Jordan R, Ramon-Martinez M. Breath activity detection algorithm[J]. arXiv preprint
arXiv:1602.07767, 2016.

[9] Del Negro C A, Funk G D, Feldman J L. Breathing matters[J]. Nature Reviews Neuroscience, 2018,
19(6): 351-367.

[10] Gould G A, Gugger M, Molloy J, et al. Breathing pattern and eye movement density during REM
sleep in humans[J]. Am Rev Respir Dis, 1988, 138(4): 874-877.

[11] Cretikos M A, Bellomo R, Hillman K, et al. Respiratory rate: the neglected vital sign[J]. Medical
Journal of Australia, 2008, 188(11): 657-659.

[12] Sierra G, Telfort V, Popov B, et al. Monitoring respiratory rate based on tracheal sounds. First
experiences[C]//The 26th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE, 2004, 1: 317-320.

[13] Jin F, Sattar F, Goh D Y T, et al. An enhanced respiratory rate monitoring method for real
tracheal sound recordings[C]//2009 17th European Signal Processing Conference. IEEE, 2009:
642-645.

[14] Kulkas A, Huupponen E, Virkkala J, et al. Intelligent methods for identifying respiratory cycle
phases from tracheal sound signal during sleep[J]. Computers in Biology and Medicine, 2009, 39(11):
1000-1005.

[15] Jin F, Sattar F, Pwint M. Phase Segmentation of Noisy Respiratory Sound Signals using Genetic
Approach[C]/BIOSIGNALS (2). 2008: 122-127.

36



[16] Azam M A, Shahzadi A, Khalid A, et al. Smartphone based human breath analysis from
respiratory sounds[C]//2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2018: 445-448.

[17] Castro J, Marti-Puig P. Real-time identification of respiratory movements through a
microphone[J]. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 2014,
3(3): 64-75.

[18] Feldman M. Hilbert transform in vibration analysis[J]. Mechanical systems and signal processing,
2011, 25(3): 735-802.

[19] Benitez D, Gaydecki P A, Zaidi A, et al. The use of the Hilbert transform in ECG signal
analysis[J]. Computers in biology and medicine, 2001, 31(5): 399-406.

[20] Skalicky D, Koucky V, Hadraba D, et al. Detection of Respiratory Phases in a Breath Sound and
Their Subsequent Utilization in a Diagnosis[J]. Applied Sciences, 2021, 11(14): 6535.

[21] Nam Y, Reyes B A, Chon K H. Estimation of respiratory rates using the built-in microphone of a
smartphone or headset[J]. IEEE journal of biomedical and health informatics, 2015, 20(6): 1493-1501.
[22] Abushakra A, Faezipour M. Acoustic signal classification of breathing movements to virtually aid
breath regulation[J]. IEEE journal of biomedical and health informatics, 2013, 17(2): 493-500.

[23] Hsiao C H, Lin T W, Lin C W, et al. Breathing sound segmentation and detection using transfer
learning techniques on an attention-based encoder-decoder architecture[C]//2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,
2020: 754-759.

[24] Yan Z, Jiang Z, Miyamoto A, et al. The moment segmentation analysis of heart sound pattern[J].
Computer methods and programs in biomedicine, 2010, 98(2): 140-150.

[25] Fang Y, Jiang Z, Wang H. A novel sleep respiratory rate detection method for obstructive sleep
apnea based on characteristic moment waveform[J]. Journal of healthcare engineering, 2018.

[26] Nersisson R, Noel M M. Heart sound and lung sound separation algorithms: a review[J]. Journal
of medical engineering & technology, 2017, 41(1): 13-21.

[27] Gnitecki J, Hossain I, Pasterkamp H, et al. Qualitative and quantitative evaluation of heart sound
reduction from lung sound recordings[J]. IEEE transactions on biomedical engineering, 2005, 52(10):
1788-1792.

[28] Canadas-Quesada F J, Ruiz-Reyes N, Carabias-Orti J, et al. A non-negative matrix factorization
approach based on spectro-temporal clustering to extract heart sounds[J]. Applied Acoustics, 2017, 125:

7-19.

37



[29] Falk T H, Chan W Y. Modulation filtering for heart and lung sound separation from breath sound
recordings[C]//2008 30th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE, 2008: 1859-1862.

[30] Molaie M, Moradi M H. Heart sound localization in respiratory sounds based on singular
spectrum analysis and frequency features[J]. ETRI Journal, 2015, 37(4): 824-832.

[31] Jatupaiboon N, Pan-Ngum S, Israsena P. Electronic stethoscope prototype with adaptive noise
cancellation[C]//2010 Eighth International Conference on ICT and Knowledge Engineering. IEEE,
2010: 32-36.

[32] Sello S, Strambi S, De Michele G, et al. Respiratory sound analysis in healthy and pathological
subjects: A wavelet approach[J]. Biomedical Signal Processing and Control, 2008, 3(3): 181-191.

[33] Wolters M, Mundt H, Riedmiller J. Loudness normalization in the age of portable media
players[C]//Audio Engineering Society Convention 128. Audio Engineering Society, 2010.

[34] Kim T, Kim J W, Lee K. Detection of sleep disordered breathing severity using acoustic
biomarker and machine learning techniques[J]. Biomedical engineering online, 2018, 17: 1-19.

[35] Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical
guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults[J].
Journal of clinical sleep medicine, 2009, 5(3): 263-276.

[36] Hastie T, Tibshirani R, Friedman J, et al. Overview of supervised learning[J]. The elements of
statistical learning: Data mining, inference, and prediction, 2009: 9-41.

[37] Reichert S, Gass R, Brandt C, et al. Analysis of respiratory sounds: state of the art[J]. Clinical
medicine. Circulatory, respiratory and pulmonary medicine, 2008, 2: CCRPM. S530.

[38] Fernando T, Sridharan S, Denman S, et al. Robust and interpretable temporal convolution network
for event detection in lung sound recordings[J]. IEEE Journal of Biomedical and Health Informatics,
2022

[39] Rocha B M, Filos D, Mendes L, et al. An open access database for the evaluation of respiratory
sound classification algorithms[J]. Physiological measurement, 2019, 40(3): 03500

[40] Fraiwan M, Fraiwan L, Khassawneh B, et al. A dataset of lung sounds recorded from the chest
wall using an electronic stethoscope[J]. Data in Brief, 2021, 35: 106913.

[41] Fernando T, Sridharan S, Denman S, et al. Robust and interpretable temporal convolution network
for event detection in lung sound recordings[J]. IEEE Journal of Biomedical and Health Informatics,
2022.

[42] Sun X, Lu Z, Hu W, et al. SymDetector: detecting sound-related respiratory symptoms using
smartphones[C]//Proceedings of the 2015 ACM International Joint Conference on Pervasive and

Ubiquitous Computing. 2015: 97-10

38



[43] Palaniappan R, Sundaraj K, Ahamed N U. Machine learning in lung sound analysis: a systematic
review[J]. Biocybernetics and Biomedical Engineering, 2013, 33(3): 129-135.

[44] Chen Y, Sun Y, Lv J, et al. End-to-end heart sound segmentation using deep convolutional
recurrent network[J]. Complex & Intelligent Systems, 2021, 7(4): 2103-2117.

[45] Acharya J, Basu A. Deep neural network for respiratory sound classification in wearable devices
enabled by patient specific model tuning[J]. IEEE transactions on biomedical circuits and systems,
2020, 14(3): 535-544.

[46] Xia T, Han J, Mascolo C. Exploring machine learning for audio-based respiratory condition
screening: A concise review of databases, methods, and open issues[J]. Experimental Biology and
Medicine, 2022, 247(22): 2053-2061.

[47] Azarbarzin A, Moussavi Z. Unsupervised classification of respiratory sound signal into
snore/no-snore classes[C]//2010 Annual International Conference of the IEEE Engineering in Medicine
and Biology. IEEE, 2010: 3666-3669.

[48] Umeki S, Yamashita M, Matsunaga S. Classification between normal and abnormal lung sounds
using unsupervised subject-adaptation[C]//2015 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA). IEEE, 2015: 213-216.

[49] Gavriely N, Palti Y, Alroy G. Spectral characteristics of normal breath sounds[J]. Journal of
applied physiology, 1981, 50(2): 307-314.

[50] Yonemaru M, Kikuchi K, Mori M, et al. Detection of tracheal stenosis by frequency analysis of
tracheal sounds[J]. Journal of applied physiology, 1993, 75(2): 605-612.

[51] Niu J, Cai M, Shi Y, et al. A novel method for automatic identification of breathing state[J].
Scientific reports, 2019, 9(1): 1-13.

[52] Deary V, Ellis J G, Wilson J A, et al. Simple snoring: not quite so simple after all?[J]. Sleep
medicine reviews, 2014, 18(6): 453-462.

[53] Van Brunt D L, Lichstein K L, Noe S L, et al. Intensity pattern of snoring sounds as a predictor
for sleep-disordered breathing[J]. Sleep, 1997, 20(12): 1151-1156.

[54] Shen F, Cheng S, Li Z, et al. “Detection of snore from OSAHS patients based on deep learning”,
Journal of Healthcare Engineering, 2020

[55] Sharma G, Umapathy K, Krishnan S. Trends in audio signal feature extraction methods[J].
Applied Acoustics, 2020, 158: 107020.

[56] Zhou X, Garcia-Romero D, Duraiswami R, et al. Linear versus mel frequency cepstral
coefficients for speaker recognition[C]//2011 IEEE Workshop on Automatic Speech Recognition &

Understanding. IEEE, 2011: 559-564.

39



[57] Han W, Chan C F, Choy C S, et al. An efficient MFCC extraction method in speech
recognition[C]//2006 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2006: 4
pp.

[58] Oxenham A J. Mechanisms and mechanics of auditory masking[J]. The Journal of physiology,
2013, 591(Pt 10): 2375.

[59] Kopparapu S K, Laxminarayana M. Choice of Mel filter bank in computing MFCC of a
resampled speech[C]//10th International Conference on Information Science, Signal Processing and
their Applications (ISSPA 2010). IEEE, 2010: 121-124.

[60] Misra S, Das T K, Saha P, et al. Comparison of MFCC and LPCC for a fixed phrase speaker
verification system, time complexity and failure analysis[C]//2015 International Conference on Circuits,
Power and Computing Technologies [ICCPCT-2015]. TEEE, 2015: 1-4.

[61] Zheng F, Zhang G, Song Z. Comparison of different implementations of MFCCIJ]. Journal of
Computer science and Technology, 2001, 16(6): 582-589.

[62] Pellegrini T, Portélo J, Trancoso I, et al. “Hierarchical clustering experiments for application to
audio event detection”, Proceedings of the 13th International Conference on Speech and Computer,
2009

[63] Forina M, Armanino C, Raggio V. Clustering with dendrograms on interpretation variables[J].

Analytica Chimica Acta, 2002, 454(1): 13-19.

40



Chapter 3

Sleep breathing state identification

3.1 breath sound clipping

During the day, breathing can be controlled, both consciously and unconsciously. As the
volitional control and wakeful stimuli wane during sleep, the physiological response differs from that
of a wake. The breathing regularity increases with the depth of sleep, and irregular breathing patterns
usually only occur during Non-Rapid Eye Movement(NREM)[1]. During sleep, the respiratory
function is regulated by a complex interaction between the central neural system and mechanical
effectors. Many factors affect the mechanics of breathing and ventilation, further magnify in respiratory
disorders. The research on Respiratory Rate Variability (RRV) and respiratory states during sleep are
still challenging since it requires sophisticated clinical techniques and continuous monitoring of
breathing airflow over many nights[2-4]. These signals are easily affected by body movement, ambient
noise, and other types of interference. Therefore, the analysis of breathing sound signals is often
hampered by these signal aberrations. Although the method proposed in chapter 2 can classify each
breath cycle into different categories, It is still challenging to identify the respiratory states in a certain
period by only one single breath cycle. Using several breath cycles in a specific time period other than
a single breath cycle is more reasonable for identifying the breathing states. Therefore, several

breathing cycles series in a short time are taken as a unit for analysis.

The entire breath sound file is cut into short clips to identify the breathing states in a short period.
The duration of the clip length is based on respiratory rate. One clip should be short enough to separate
each breathing stage. Therefore the audio signal in one clip is stable. Meanwhile, one clip should
contain several breathing cycles so that it is long enough to identify the breathing states. The usual
respiratory rate during sleep is 12 to 20 times per minute. One clip is better to contain 5-10 breathing

cycles.

Further, considering the apnea time in a severe case, the breathing pause usually lasts more than
20 seconds. The length of 30 seconds to 60 seconds is considerable. Since the PSG signal is continuous,
the signal needs to be divided into time segments when analyzing the sleep state through PSG. The
hospital technician determines the sleep state by analyzing each signal in the segment. The segments
extracted from the continuous PSG signals are called epochs. Technicians judge the sleep stage of each

epoch by the ratio of different types of brain waves. The standard epoch length defines 30 seconds in
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sleep staging, according to the American Academy of Sleep Medicine (AASM) [5-6]. Therefore, to

accord with the AASM definition, in this research, the length of the clip duration is set at 30 seconds.

For evaluation of the performance of the proposed method, the PSG-Audio dataset was used in
this research as the data source. The dataset comprises 212 polysomnograms along with synchronized
tracheal sound. The dataset contains edf files comprising polysomnogram signals, rml files containing
all annotations added by the medical team[7-8]. The edf files contain 20 channels. The data from the
nasal cannula pressure(in channel 12) and tracheal sound(in channel 19) are extracted from edf files for
analysis. The nasal cannula pressure is a standard method to monitor breathing ventilation during
sleep[9-10]. The tracheal sounds are extracted from the PSG-Audio dataset. The corresponding
respiratory events(obstructive apnea/mixed apnea/hypopnea) are extracted from rml files. The sampling
frequency of nasal cannula pressure and tracheal sound are 100 Hz and 48000 Hz, respectively. A 5
minutes data clip is shown in Figure 3.1. The Y-axis of the top sub-figure is an Arbitrary unit,
abbreviations as a.u. The Y-axis of the bottom sub-figure is Hypopnea, Mixed Apnea, Obstructive
Apnea, and normal breathing(abbreviation as normal). The basic properties of selected channels in the

EDF files are summarized in Table 3.1.

Table 3.1 basic properties of the selected channels in the EDF files of the dataset

Channel | Channel Description Sampling Physical Physical

ID Label frequency(Hz) | minimum(a.u.) | maximum(a.u.)

12 Flow Patient | Pressure cannula 100 -100 100

19 Tracheal High-quality contact | 48000 -100 100
microphone

0-1200

0 Q5 2 40 )
‘.,"flf‘SEﬂH'lt‘—‘

)5 120 135 150 165 180

Time
Figure 3.1. data extracted from PSG-Audio (top)tracheal sound, (middle)pressure cannula, (bottom)respiratory
events
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3.2 breathing states definition and identification

The respiratory pattern refers to breathing rate, depth, and rhythm. Many studies have been done
on respiratory pattern analysis. Benchetrit analyzed the diversity of breathing patterns in terms of tidal
volume, respiratory duration, and other derived variables and proposed that the variability of breathing
patterns could be explained either by a central neural mechanism or by the instability in chemical
feedback loops of the respiratory system[11]. Yuan summarized the characteristics of several abnormal
breathing patterns, like Kussmaul’s breathing and Cheyne-Stokes respiration[12]. However, these
studies focused on the respiratory pattern during awake. Hudgel analyzed the breathing pattern
variability during sleep with a tightly sealed face mask. They found that the increase in resistance
occurred almost entirely above the larynx[13]. However, they only used six healthy adult subjects. As
this research focuses on the breathing quality evaluation during sleep, the breath states are defined
based on the upper airway states. Similar to the breathing cycle classification method, the breathing
states of each clip are defined based on the characteristics of all the breathing cycles in the clip. All the

states are defined as follows.

3.2.1. Apnea state identification

According to the definition, breathing pauses for more than 10 seconds during Apnea [14]. Apnea
diagnosis is vital in sleep monitoring as it is a common health threat. Apnea deteriorates the balance of
oxygen and carbon dioxide in the blood, thus causing a series of comorbidities. After the breathing
pause, there is usually followed by several abrupt breathing cycles with apneic snoring. From the
aspect of breathing ventilation, the breathing quality of the apnea period is low as the blood oxygen

drops dramatically.

Based on the definition, Apnea can be identified in the time domain as the breath cycles have been
segmented in chapter 2. The intervals between each inspiration can be calculated based on the segment
result. Therefore if the breathing pause time is longer than 10 seconds, the clip is defined as an apnea

state. A clip of that identified as Apnea is shown in Figure 3.2.
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Figure 3.2 a Apnea clip,(top)tracheal sound, (middle)classification result, (bottom)respiratory events label

3.2.2. Hypopnea state identification

Hypopnea is a common symptom of sleep-related breathing disorders. Hypopnea is 10 seconds or
more of shallow breathing in which a person’s airflow drops by at least 30%. At the same time, blood
oxygen levels also drop by at least 3%[15]. According to the American Academy of Sleep Medicine
(AASM), the definition of Hypopnea also has a different version[16]. Like the Apnea state, the longer

Hypopnea lasts, the more severe its effect on health.

The definition of Hypopnea includes several criteria related to the breathing state. Therefore it is
challenging to identify Hypopnea through breathing sounds. As the Hypopnea definition has two
criteria: shallow breathing and blood oxygen levels dropping, in this research, two criteria are used to

identify the hypopnea state.
(1) Breath interval criterion

As mentioned before, the normal respiratory rate is 12-20 times per minute. Therefore the normal
breath cycle duration is 3-5 seconds. As the Apnea definition is respiration stops more than 10 seconds,
a shallow breath can be defined as a breath interval more than the normal range but does not exceed the
apnea threshold, which is between 5 and 10 seconds. If the shallow breath lasts more than 10 seconds,
it can be identified as Hypopnea. A clip of the hypopnea state identified on this criterion is shown in
Figure 3.3. The respiration stops between 6-15 seconds. The pause time is between the criterion, thus,
is identified as a hypopnea state. This result is in accord with the respiratory events label judged by

experts.
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Figure 3.3 hypopnea identified based on breath cycle interval criterion

(2) Abnormal breathing criterion

The other criterion in the hypopnea definition is the blood oxygen levels drop by at least 3%.
However, the blood oxygen level does not directly correlate with breath sounds. The blood oxygen
level can be estimated from the upper airway state. In contrast, the upper airway state is closely related
to the breath sound frequency characteristics. In chapter 2, the breathing cycles related to upper airway
partial obstruction are classified as abnormal breathing or abnormal snoring. Therefore, if the abnormal
breathing state lasts more than 3/4 proportion, the clip can be identified as a hypopnea state. A clip of
the hypopnea state determined based on this criterion is shown in Figure 3.4. In this clip, six breath
cycles are segmented. Four breath cycles are classified as abnormal snoring. One breath cycle is
classified as abnormal breathing. One breath cycle is classified as normal snoring. Although the breath
intervals are in the normal range, the classification result indicates that the upper airway was in an
unstable state or partially obstructed. This result is in accord with the respiratory events label judged by

experts.
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Figure 3.4 hypopnea identified based on abnormal breathing state
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3.2.3. Normal breathing state identification

Normal breathing is usually stable breathing during a specific time. During a normal breathing
state, the respiratory system and upper airway are stable, and the breathing rate and intensity are stable.
However, from the aspect of breathing quality evaluation, the blood oxygen level is not sensitive to
slight breathing intensity irregularity[17-18]. Therefore, one or two irregular or abnormal breathing in
one clip usually do not affect the breathing quality significantly. Based on this basis, if most of the
breathing cycle in a clip is normal breathing based on the classification results, and the breathing rate
and intensity are regular, then the clip state is defined as normal breathing. As a clip usually contains
6-10 breathing cycles on average, one or two irregular breathing cycles can not significantly influence
the clip's breathing quality. Therefore, the average breathing cycle time proportion threshold is set as
3/4. Clips of typical breathing types are shown in Figure 3.5. The breathing signal in Figure 3.5 is a
normal breathing state because all the breathing cycles in this clip are classified as normal, and each

breath cycle has regular intensity.
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Figure 3.5 normal breathing clip in normal signal

3.2.4. Abnormal breathing state identification

The classification method proposed in chapter 2 can classify breathing cycles as abnormal based
on the frequency characteristics. Identifying a clip as abnormal breathing is more challenging as the
respiratory rate and intensity must be considered. During an abnormal breathing state, the frequency
characteristics of each breathing cycle are different from normal breathing, and the respiratory rate and
intensity are also irregular. The definition of abnormal breathing is similar to normal breathing, and the
proportion threshold is set between (1/4, 3/4). A clip of the abnormal breathing type is shown in Figure
3.6. Three breathing cycles in this clip are classified as abnormal breathing, as these breathing cycles
present different spectrum characteristics compared with regular breathing cycles. Although the

respiratory rate is in the normal range, and the intensity and duration of each breathing cycle in this clip
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are irregular, indicating that the upper airway is in an unstable state, it does reach the degree that causes

hypopnea. Breath states like this can be considered as mild abnormal.
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3.2.5. Normal snoring state identification

During normal snoring(simple snoring), the breathing rate and cycle duration are almost the same
as normal breathing, only with high intensity. Each snoring cycle presents a clear regular
fundamental-harmonic structure. Therefore the definition is similar to normal breathing, and the
identification threshold is also the same as normal breathing. A clip of the typical snoring type is
shown in Figure 3.7 and Figure 3.8. The breathing signal in Figure 3.7 is a standard normal snoring
state. All the breathing cycles in this clip are classified as normal snoring. Each breathing cycle
presents a regular intensity and duration. Although there is one unstable breathing cycle in Figure 3.8
based on the classification result, from the aspect of ventilation, this abnormal snoring cycle does not
deteriorate the breathing quality significantly. Therefore, the breathing state of this clip can be

considered normal snoring.
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Figure 3.7 normal snoring clip
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on result

Figure 3.8 normal snoring clip( with one abnormal snoring cycle)

3.2.6. Abnormal snoring state identification

Abnormal snoring is caused by partial or complete obstruction of the upper airway, resulting in an
unstable breathing airflow[19-20]. During abnormal snoring, the upper airway is usually obstructive,
and the pressures of the upper and lower airflows change dramatically, causing the upper airway to
repeat multiple openings and closings in a short period, producing a popping sound. Although the
breathing sound intensity is high, the airflow usually drops dramatically. The collapse degree and
resistance of the upper airway may vary significantly from the beginning to the end of inspiration, thus
affecting the vibration of the upper airway tissue. Abnormal snoring does not present a clear regular
fundamental-harmonic structure. The definition is similar to abnormal breathing, and the identification
threshold is also set between(1/4, 3/4). A successive abnormal snoring state is often associated with a
hypopnea state. A clip of the normal snoring type is shown in Figure 3.9. Based on the classification
results, there are four abnormal snoring cycles. These abnormal snoring cycles have varying intensities
and spectrum structures. These abnormal snoring cycles do not deteriorate the breathing quality. But

the successive abnormal snoring does cause hypopnea.
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Figure 3.9 abnormal snoring clip
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3.2.6. Event state identification

The cluster results of uncertain type are usually ambient noise or unusual events that cause loud
sound. The typical cluster results in uncertain categories are turnover noise, sleep talk, cough, bruxism,
etc. These parts can be detected and eliminated in speech processing by Voice Activity Detection
(VAD)[21-22]. These types of voice activity also can influence sleep quality. Large-scale turning over
and stretching of limbs usually occur during a shallow sleep state. However, dedicating the breathing
states to these types of activities is challenging. Compared with breathing signals, these activity signals
usually have high intensity, and the breathing signal is usually submerged. It is difficult to deduce the
breathing states even though a clip has few breathing cycles adjacent to uncertain parts. Clips with
long-duration uncertain activity need to be analyzed with special methods that identify the types of
activity and the correlation with sleep quality. This research only focuses on the breathing signal to
evaluate the breathing quality. Therefore, neglecting these parts in the breathing state identification
stages is reasonable. If more than 1/4 of the clip is contaminated by these sounds, the clip is defined as
an event. A clip of the ordinary event type is shown in Figure 3.10. The classification of the activity is
uncertain as it has a particular spectrum that is unlike any breathing. By checking the sound signal
manually, it is most likely the frictional noise caused by turning over. The patient turns over on the bed
from 4 seconds to 16 seconds. The recording microphone captures this friction noise. As the existence

of this long duration of the noise, the breathing state can not be calculated from this clip.
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Figure 3.10 event clip

The criterion for clip states identification is summarized in table 3.1. After state identification, all
clips are labeled with a state automatically. Therefore, the whole night breathing states variation can be

obtained. This result is used for the sleep quality evaluation in chapter 4 and chapter 5.
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Table 3.1 the criterion of clip states identification

NO. state criterion

1 apnea Breathing pause time>10 second

2 hypopnea 7<breathing pause time<10 , or abnormal breathing lasts more than 10 seconds
3 abnormal Snoring abnormal Snoring cycles time proportion between (1/4, 3/4)

4 normal Snoring normal Snoring cycles time proportion>3/4

5 abnormal Breathing abnormal Breathing cycles time proportion between (1/4, 3/4)

6 normal Breathing normal Breathing cycles time proportion>3/4

7 event Uncertain cycles time proportion>1/4

3.3 Summary

To evaluate the breathing quality in a short period, the breath sound recording file was cut into a
30-seconds length clip. The classification results and the regularity of each breathing cycle identify the
clip state. Apnea is identified by a breathing pause time of more than 10 seconds. Hypopnea is
identified by a breathing pause time of more than 7 seconds and less than 10 seconds, or abnormal
breathing lasts more than 10 seconds. Normal breathing, abnormal breathing, normal snoring, and
abnormal snoring are identified by a cycle time proportion threshold of 3/4. The event is identified by
an uncertain activity time proportion of 1/4. Each clip is labeled with a state. The whole night breathing

states variation can be obtained by concatenating all the state labels.
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Chapter 4

Apnea-Hypopnea Index calculation

4.1 Introduction of AHI

The Apnea—Hypopnea Index (AHI) is the number of apnea and hypopnea events per hour during
sleep. It is used to indicate sleep apnea severity. The AHI is calculated by dividing the number of apnea
and hypopnea events by the number of hours of sleep. It can also separate as Apnea Index and
Hypopnea Index[1]. The AHI values for adults are categorized into four levels in the clinic. Normal:
AHI<5, Mild sleep apnea: 5<AHI<15, Moderate sleep apnea: 15<AHI<30, severe sleep apnea:
AHI>30[2]. AHI is the parameter used most commonly to diagnose and categorize the disease severity
of OSA, and the use of the AHI is a common practice in most studies[3-4]. The relationship between

AHI levels and health risk is shown in Figure 4.1.

moderate

normal

health risk

AHI score
Figure 4.1 AHI level and health risk

The calculation of the Hypopnea Index is more complicated compared with the calculation of the
Apnea Index. Most experts agree on the standard definition of apnea as a breathing pause of more than
10 seconds. Hypopneas are more subjective since they occur when upper airways partially collapse. As
a result, there are multiple criteria for what counts as hypopnea. Experts have experimented with
defining hypopneas according to a certain percentage of decreased airflow, coupled with associated
changes in blood oxygen levels or arousals from sleep. However, hypopneas may be measured
differently because the American Academy of Sleep Medicine (AASM) has published several versions
of the hypopnea definition, and as a result, different definitions of hypopnea can lead to different AHI

scores[5-7].

As the apnea and hypopnea clip were identified in chapter 3, to evaluate the accuracy and
effectiveness of the identification result, the Apean Index and Hypopnea Index are calculated from

identification results and compared with the label extracted from PSG-audio dataset.
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4.2 Apnea Index calculation

For each apnea clip identified in chapter 3, the length of the clip is 30 seconds, and the apnea
definition is a breathing pause time of more than 10 seconds. For the apnea, at the end of the
obstruction, the closed upper airway is suddenly opened, and the pressures of the upper and lower
airflows are suddenly balanced. This cause the upper airway to repeat multiple openings and closings
in a short period, producing a snoring sound called apneic snoring. This ventilation process with
snoring may repeat 2-5 times[8]. Therefore, there is usually one apnea event in each clip. Figure 4.2

shows a 5 minutes length of PSG-audio data with apnea.
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Figure 4.2 a 5 minutes length of PSG-audio data

Although apnea can be identified by breathing pause time, a few clips are still misjudged as
hypopnea. These apnea clips usually with pause time around the threshold(10 seconds). Figure 4.3
shows a clip of the pause time just almost 9 seconds, merely more than the threshold. From the clinical
aspect, these misjudgments do not change the sum number of AHI. From the breathing quality aspect,
mild apnea and severe hypopnea similarly influence sleep quality. Therefore, these misjudgments are

acceptable.
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Figure 4.3 apnea clip misjudged as hypopnea
4.3 Hypopnea index calculation

The definition of the American Academy of Sleep Medicine (AASM) is an abnormal respiratory
event lasting more than 10 seconds with more than a 30% reduction in thoracoabdominal movement or
airflow and more than 4% oxygen desaturation. This is the approved hypopnea definition by the
Centers for Medicare and Medicaid Services[9]. Nevertheless, in 2005 the AASM reported that several
clinical definitions of hypopnea are in clinical use, and there needs to be a clear consensus[10]. Besides
the definition from AASM, in a further attempt to improve standardization, the AASM recently
published the manual for the Scoring of Sleep and Associated Events. In this manual, there is a
“recommended” and an “alternative” hypopnea definition; and either can be used at the discretion of
the clinician or investigator[11]. Besides the AASM definition, other institutions also published similar

criteria, such as the Chicago Creterion[12-16].

As hypopnea identification has been discussed in chapter 3 based on two criteria, it will not be
discussed here again. However, recent studies suggested that simple snoring also is related to
Hypopnea. According to Victor Hoffstein’s research, simple snoring does not cause a sustained
deterioration of MnO2(mean nocturnal oxygen saturation) but causes the variability of LoO2(lowest
nocturnal oxygen saturation) significantly[17]. Based on this research, the airflow during simple
snoring is similar to normal respiration. However, after a specific duration, the nocturnal oxygen
saturation fluctuation increases and decreases ventilation quality at a moderate level. Although the
accurate drop time is not precise, according to the research by Gruber, the interval to equilibration of
oxygen saturation is within 4.5 minutes[18]. Therefore after a specific time of successive simple
snoring, the breathing state deteriorates and may lead to Hypopnea. The last time to identify this type

of Hypopnea is challenging as it probably has an individual variance. However, the last time is more
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than 5 minutes, meaning that when normal breathing ends and simple snoring starts, after
approximately 5 minutes, the airflow drops to a medium level with high probability and may cause
Hypopnea. A type of this clip is shown in Figure 4.4. There are eight normal snoring cycles in this clip,
and these cycles have nearly regular intensity and duration. Based on these parameters, it looks like the
breathing is in a normal state. However, as it is a clip in the time domain that was snoring last several
minutes, the airflow still dropped into the hypopnea range. Based on our research, this type of
Hypopnea is rare in the PSG-audio dataset. However, the relationship between simple snoring and

Hypopnea still needs more analysis in the future.
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Figure 4.4 normal snoring clip after the normal snoring started more than 5 minutes

4.4 Algorithm performance and robustness evaluation on PSG-audio dataset

Six patients with different Apean-Hypopnea Index(AHI) were selected to test the effectiveness
and robustness of the apnea/hypopnea identification method. The accuracy is calculated by Equation
4-1. The characteristic of the data chosen and algorithm performance is shown in table 4-1. The AHI
calculation result of two hour recording is shown in Figure 4.5. The first sub-figure is the tracheal
sound. The second sub-figure is the nasal pressure signal. The third sub-figure is the apnea/hypopnea
events label extracted from the dataset. The fourth sub-figure is the apnea/hypopnea identification
result for each clip( the clip length is 30 seconds). It can be seen from the Figure that Apnea Index

accuracy is higher than Hypopnea Index.

correct prediction clip number
AHI

Accuracy =

@.1)
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Table 4-1 algorithm accuracy on data with different AHI

Patient id AHI from AHI from Algorithm
dataset calculation accuracy
00000995-100507-001-002 17 20 71%
00000995-100507-001-001 65 77 77%
00001000-100507-001-001 26 33 69%
00001008-100507-001-001 8 10 75%
00001010-100507-001-001 25 30 80%
00001014-100507-002-002 47 35 74%

Figure 4.5 AHI calculation result of two hour recording

4.5 Summary

The AHI calculation method based on the breath states of clips is proposed in this chapter. Apnea
detection is based on the breathing pause time. However, hypopnea detection is more complicated. 3
criterion is defined to associate the breathing sound with hypopnea. Six patients with different
Apean-Hypopnea Index(AHI) were selected to test the effectiveness and robustness of the proposed

method. The experiment results show that the average accuracy is more than 70%.
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Chapter 5

Tidal volume estimation based on breathing sound

5.1 Introduction to tidal volume

Tidal volume is the amount of air that moves in or out of the lungs with each respiratory cycle at
rest. The tidal volume of an ordinary person is almost 6-10 times the weight in kilograms. Therefore,
for a person weights 60 kilograms, the tidal volume is approximately 360-600mL. The average tidal
volume is around 500 mL in a healthy adult male and about 400 mL in a healthy female[1]. Tidal
volume is one of the parameters for monitoring respiratory ventilation and pulmonary function. It is
related to age, gender, respiratory pathology, and body metabolism. When a person breathes in, oxygen
from the surrounding atmosphere enters the lungs, then diffuses across the alveolar-capillary interface
to reach arterial blood. At the same time, carbon dioxide continuously forms as long as metabolism
takes place. Expiration occurs to expel carbon dioxide and prevent it from accumulating in the body.
The representation of tidal volume is shown in Figure 5.1. The volume of inspired and expired air that
helps keep oxygen and carbon dioxide levels stable in the blood is what physiology refers to as tidal
volume[2]. Tidal volume results from inspiration time(in seconds) and inspiration airflow rate( in ml/s).
Another concept related to tidal volume is Minute Volume(also known as Respiratory Minute Volume).
It is the total amount of air moved into and out of the respiratory system per minute[3]. It is the product
of respiratory rate and tidal volume. Therefore the relationship between minute volume, tidal volume,

respiratory rate, and airflow rate can be described in Equation 5.1

tidal volume = inspiratory time * inspiratory airflow rate

minute volume = respiratory rate * tidal volume

(5.1)

. . . exspiration
inspiration I (

Figure 5.1 the represent of tidal volume
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5.2 tidal volume estimation

Many researchers have focused on analyzing the relationship between breathing sound and tidal
volume due to its potential to assess breathing quality and lung function. One of the standard models to
simulate the upper airway function is the Starling Resistor Model(SRM). This method models the
upper airway as a rigid tube with a collapsible segment. Upper (upstream, nasal) and lower
(downstream, hypopharyngeal) segments have fixed diameters and defined resistances. According to
this model, the airflow rate and breathing sound amplitude follow a relationship compatible with jet
noise production in a pipeline[4-5]. This model can be used to predict the effects of transmural pressure
on airflow dynamics and the severity of upper airway obstruction during sleep. The representation of
SRM is shown in Figure 5.2. Some researchers focused on estimating the respiratory airflow rate
through respiratory sounds and proposed various models or algorithms. It is well known that breathing
sound amplitude is positively correlated with airflow rate. However, determining the exact quantitative
relationship is still challenging. Gavriely proposed that the Breath-Sound Amplitude (BAS) and flow(F)
can be expressed in the form of BAS=k*Fa, a is approximately 1.75, significantly less than the second
power that some previous research presented[6]. Yap proposed a method to use average power and an
exponential model to estimate respiratory flow through tracheal sound, which reached an estimation
error of 5.8+3.0%[7]. Natasa used the Blanket Fractal Dimension(BFD) to assess the tidal volume from
tracheal sounds recorded by an Android smartphone, the smallest normalized root-mean-squared error
of 15.877%+9.246% was obtained with the BFD and exponential model[8]. Yadollahi extracted
average power, the logarithm of the variance, and the logarithm of the envelope of tracheal sound as a
feature. They compared the ability of these features to fit the flow-sound relationship, suggesting that
the logarithm of the variance is the best feature to describe the flow-sound relationship with a linear
model[9]. Other studies indicated that the Shannon entropy and sound variance also have an

exponential relationship with the respiratory flow[10-11].

tracheal

upsiream downstream
seome
segment segment

collapsible segment

Figure 5.2 the Starling Resistor Model
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Most of these papers indicate that the airflow rate and respiratory sound amplitude follow a power
law based on the SRM. The relationship used to estimate respiratory flow rate can be presented in

Equation 5.2:

logF.s; = C1log(E) + C, (5.2)

Fest is the estimated airflow rate(ml/min), E is the respiratory sound amplitude, and C1 and C2 are the
coefficients. C1 and C2 are determined by the human upper airway structure and can be calculated via
a few breaths with a known flow rate for each participant. C2 is determined by the length and diameter
of the upper airway, Cl is related to the airflow power(a), representing the sound generation
mechanism, and C1 is variable during apnea based on the collapsibility degree. The model parameters
can be derived from the breaths with known airflow rates and then used with the rest of the breath
sounds to estimate airflow. This procedure is called calibration. The representation of calibration is
shown in Figure 5.3. Current methods require calibration to determine the model coefficients C1 and
C2. Yadollahi found that the parameters of the flow-sound relationship during sleep and wakefulness
are different. For monitoring the tidal volume during sleep, the model parameters should be calibrated

with respiratory sounds during sleep[12].

spirometry

Microphone

Figure 5.3 the calibration procedure

During sleep, the upper airway of OSA patients is highly variable. Therefore, the coefficients in
Equation 5-2 are also highly variable. These above methods often do not apply to predict breathing
patterns in the human upper airway during snoring or apnea. During snoring, the sound amplitude is
higher than normal breathing. On the contrary, the respiratory airflow is lower than normal breathing.
During an apnea, the airflow vanishes and emerges periodically. The main reason is that the upper
airway is usually in an unstable state. As the airflow-amplitude relationship is related to upper airway
states, these coefficients are also highly variable during snoring or apnea. Based on the

abovementioned conclusions, estimating tidal volume using different methods based on the breathing
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states is reasonable. In this paper, qualitative and quantitative tidal volume estimation methods are

proposed based on breathing states.

5.3 Quantitative tidal volume estimation

To evaluate the calculation accuracy, the nasal cannula pressure is used as the surrogate signal of
airflow rate. A nasal cannula is usually placed into the nose, and a pressure transducer is attached. It
detects the pressure fluctuations caused by inspiration and expiration. Much research shows that the
nasal cannula pressure signal can achieve a breathing monitoring performance comparable to a
conventional pneumotachograph[13-15]. Thurnheer proposed that the square-root transform of nasal
pressure and airflow follows a linear relationship[16]. Montserrat simultaneously measured nasal flow
and pneumotachograph signal on six healthy subjects and verified that the nonlinear square root of
nasal pressure could fit the pneumotachograph signal[17]. Therefore the relationship used to estimate

respiratory flow rate from nasal pressure can be presented in Equation 5.3
Fest = kl\/ﬁ (5.3)

Fest is the estimated airflow rate(ml/min), and P is the nasal pressure. k1 is coefficients. Although the
absolute value of Fest needs to calibrate, a relative Fest value without calibration can also use to
analyze the airflow rate change trend. The value of log(E) and can be used as the surrogate of airflow.
A 15 seconds nasal pressure signal and the corresponding tracheal sound are shown in Figure 5.4. The
tracheal sound amplitude is normalized to [-1,1], and the nasal pressure signal is between [-100,100].
During the inspiration, the chest wall and diaphragm expand to increase the alveoli volume so airflow
into the lungs. This cause the alveolar pressure to drop to negative. After the mid-inspiration, the
intra-alveolar pressure rises to 0. During the expiration, the volume of the lungs decreases, causing the
alveolar pressure becomes positive[18]. The area under the pressure signal curve corresponds to air

volume breathing in or out.

Figure 5.4 tracheal sound(top) and nasal cannula pressure(bottom) signal
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5.3.1 normal breathing tidal volume estimation

During normal breathing state, the upper airway keeps stable. The breathing sound amplitude
follows a logarithm relationship described in equations 5-3. Once the model coefficients C1 and C2 are
calibrated, the airflow rate can be calculated in absolute value(ml/min). The tidal volume(TV) can be

calculated by integration of airflow rate with inspiration time.
TV = C; [ Foei () dt (5.4)

As the envelope values are positive, negative nasal pressure signals (inspiration) are converted
into positive values. Only the inspiration part of the breathing cycle is discussed, as the inspiration part
of tracheal sound has a higher signal intensity than expiration. The relative tidal volume calculation

based on tracheal sound is as follows:
(1) calculate the envelope of tracheal sound by TCW.
(2) Segment the inspiration and expiration of breathing sound.
(3) Calculate the inspiration airflow rate by equation 5-2 based on envelope of inspiration

(4) Calculate the inspiration airflow rate by equation 5-2 based on the nasal pressure, as a

reference for evaluation.

The result of one clip with normal breathing state is shown in Figure 5.5. The sub-figure from top
to bottom is (a)tracheal sound, (b)nasal pressure, (c)relative tidal volume calculated by breathing
sound(TiV_sound), (d)relative tidal volume calculated by nasal cannula pressure(Tiv_pressure). The
Pearson correlation coefficient is introduced as a metric to evaluate the correlation of TiV_sound and

TiV_pressure. The Pearson correlation coefficient is 0.68, which shows a high correlation.

Figure 5.5 relative tidal volume of normal breathing state

5.3.2 Normal snoring tidal volume estimation
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During the normal snoring state, the upper airway slightly or partially collapses. According to the
AASM, simple snoring usually does not interfere with the patient’s sleep or cause excessive daytime
sleepiness[19]. Simple snoring is generally not considered a health threat compared with apnea.

However, it is a probable risk factor for the development of OSA.

As the upper airway can be regarded as a stable state, the normal snoring sound amplitude-flow
can also be regarded as follows a logarithm relationship described in equation 5-1 but with a different
model coefficient compared with normal breathing. According to the research by Saha, snoring sound
generation is associated with upper airway diameter, length, and wall thickness. Upper airway
narrowing is the only factor that positively and significantly contributes to snoring intensity[20]. The
upper airway partially collapses, reducing the diameter. Meanwhile, the length and wall thickness are
invariable. Therefore the coefficients of normal snoring can be regarded as proportional to the
coefficients of normal breathing. Based on our research, the practical value can be set as 0.4. The result
of one clip with a normal snoring state is shown in Figure 5.6. The sound intensity is much higher than

normal breathing, while the pressure signal drops significantly to a lower level.

00001014-100507[002]_ch12_240-270

Figure 5.6 tidal volume of normal snoring state

5.4 Qualitative tidal volume estimation

5.4.1 tidal volume estimation during abnormal breathing and abnormal snoring

As mentioned in chapter 3, the upper airway anatomy is unstable during abnormal breathing and
abnormal snoring. Therefore, the tidal volume can not be calculated quantitatively. However, it is
possible to estimate the tidal volume qualitatively. The SpO2 is a reading that shows the amount of
oxygen available in human blood to deliver to the heart, brain, lungs, and other muscles and organs.
The LoO2(lowest nocturnal oxygen saturation) is the lowest SpO2 value during a specific time and has

a high correlation with tidal volume. The LoO2 is usually divided into three levels in the clinic. Large
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than 95% is considered a high level, less than 90% is considered low(hypoxemia), and between 95%
and 90% is considered medium(mild) hypoxemia[21-22]. Therefore, the tidal volume levels are divided

into high/medium/low levels corresponding to the LoO2 levels.

The tidal volume level is mainly determined by airflow intensity and breathing rate. Based on the
definition of abnormal breathing and abnormal snoring states in chapter 3, the airflow intensity and
breathing rate are above the apnea threshold. Therefore the tidal volume levels are at either average or
median levels. Although the airflow intensity could not be calculated quantitatively from breathing
sounds, the breathing rate calculated is relatively accurate. The criterion defined in chapter 3 for
identifying hypopnea is used to separate the tidal volume levels into normal/median levels. An
abnormal breathing clip with tidal volume at a normal level is shown in Figure 5.7. The sound and
pressure signals show that the breathing state is unstable, and the breathing intensity and cycle duration
are irregular. However, from the ventilation aspect, the tidal volume is normal as the breathing rate is
in the normal range. An abnormal breathing clip with tidal volume in the median level is shown in

Figure 5.8. The breathing rate is below the normal range.

Figure 5.7 abnormal breathing with normal tidal volume level

Figure 5.8 abnormal breathing with median tidal volume level
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5.4.2 tidal volume estimation during apnea and hypopnea

During apnea or hypopnea, the upper airway is highly variable, and the state of obstruction,
collapse, and opening occur repeatedly. It is challenging to estimate the tidal volume value
quantitatively. However, it is possible to assess the tidal volume level qualitatively. Based on the
research by Ma[23], nocturnal hypoxemia severity is proportional to the breathing pause time. To
evaluate the severity of apnea and hypopnea, the Maximum Breathing Pause Interval(MBPI) is
calculated as a parameter. According to the Apnea definition, the threshold to distinguish the
low/medium level of tidal volume is set to 15 seconds. Clips with MBPI<15 and MBPI>15 are shown
in Figure 5.9 and Figure 5.10, respectively. The SpO2 change lags with the breath airflow. It starts to
drop after a short time of limited airflow. Since the clip duration is set as 30 seconds, it is long enough

to ignore the lagging effect.

00001014-100507[002] ch12_1440-1470

Figure 5.9 apnea with MBPI<=15,Lo0O2 between 90%-95%

00001014-100507[002] ch12_1830-1860

Figure 5.10 apnea with MBPI>15,Lo0O2 between below 90%
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The tidal volume level estimation during hypopnea is challenging as it is related to the last time.
According to Victor Hoffstein’s research, the upper airway collapsing does not cause a sustained
deterioration of MnO2(mean nocturnal oxygen saturation) but causes significant variability of
LoO2(lowest nocturnal oxygen saturation)[24]. Based on this research, the tidal volume level during
hypopnea beginning is similar to normal respiration. Still, after a certain duration, the nocturnal oxygen
saturation fluctuation increases and decreases ventilation quality at a moderate level. Although the
accurate SpO2 drop time is not clear, according to the research by Gruber, the interval to equilibration
of oxygen saturation is within 4.5 minutes[25]. Therefore the SpO2 drop threshold is set at 4 minutes,
meaning that when normal breathing ends and hypopnea starts, after approximately 4 minutes, the
SpO2 drops to a low level with high probability. Figure 5.11 is hypopnea that lasts less than 4 minutes.
The SpO2 drops slightly, and the LoO2 drops to between 95% and 90%. Figure 5.12 is hypopnea that

lasts more than 4 minutes. The SpO2 drops slightly, and LoO2 drops to below 90%.

00001014-100507[002] ch12_960-990

Figure 5.11 hypopnea lasts less than 4 minutes from hypopnea starts

00001014-100507[002] ch12_1920-1950

Figure 5.12 hypopnea lasts more than 4 minutes
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The overall results of one hour are shown in Figure 5.13. The top sub-figure is the tidal volume
level calculated by the proposed method, the x-axis represents the clip index, and each clip is 30
seconds long. The middle sub-figure is the LoO2 which is divided into high/medium/low levels, and
the uncertain level corresponds to the uncertain states. The bottom sub-figure is the SpO2 level that is

used to calculate the LoO2.

Figure 5.13 The prediction result: (top)tidal volume level prediction, (middle)LoO2, (bottom)SpO2

The accuracy is calculated by Equation 5-5. Six patients with different Apean-Hypopnea
Index(AHI) were selected to test the effectiveness and robustness of the proposed method. The
characteristic of the data chosen and algorithm performance is shown in table 5-1. The algorithm
accuracy is 88.3% in the group with mild apnea. As for the moderate apnea group, the algorithm
accuracy slightly drops to 85.8%. In the severe apnea group that sound signal containing ambient noise,

the algorithm accuracy is still above 83%.

correct prediction number

Accuracy = -
Y= Yotal number — uncertain number
5.5
Table 5-1 algorithm accuracy on data with different characteristics
Apnea Patient number | Data length(hour) Data characteristic Algorithm
severity accuracy
mild 1 2 Mild apnea, no simple snoring 88.3%
moderate 3 6 Moderate apnea, little simple snoring 85.8%
Severe 2 4 Severe apnea, little simple snoring, 83.3%
containing ambient noise

5.5 Summary

A tidal volume level prediction method is proposed based on unsupervised clustering and snoring

parameters. The amplitude-airflow follows a logarithm relationship. The normal breathing and snoring
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tidal volume are calculated quantitatively based on this relationship. The abnormal breathing and
abnormal snoring tidal volume are calculated qualitatively based on the breathing rate. The apnea and
hypopnea tidal volume is calculated qualitatively based on the MBPI and hypopnea last time.
Quantitative estimation can provide an absolute airflow value after the coefficients' calibration. The
qualitative method can offer a coarse-grained tidal volume level estimation that does not need any

calibration. In addition, this method can be used for sleep breathing monitoring in a home environment.
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Chapter 6

Application extension

6.1 clustering method applied to heart sound monitoring

6.1.1 Introduction to heart sound monitoring

Studies have shown that Sleep-Related Breathing Disorders are closely related to Cardiovascular
Disease(CVD). There is a close association between SRBD and myocardial infarction, congestive heart
failure, and atrial fibrillation[1]. People with SRBD, such as OSA or insomnia, also have a higher rate
of suffering from heart arrhythmias and coronary artery disease than the general public[2]. Heart sound
auscultation is an easy way to analyze CVD compared with Electrocardiography(ECG). Many
pathologic cardiac conditions can be diagnosed by analyzing heart sounds. Similar to the breathing
sound acquisition, the heart sound recording also often gets contaminated with breathing sounds or
ambient noise. The first step of heart sound analysis is to extract analyzable parts from the record file.
Much research has been done to classify heart sounds for analysis based on sound quality. Tanveer
proposed a shape-based approach to retrieve similar heart sounds. The morphological variations of
audio envelopes were extracted and compared with a constrained non-rigid transform[3]. Guy Amit
proposed a method for identifying morphological characteristics of heart sounds and classifying them
into different states using the hierarchical clustering algorithm[4]. Kamarulafizam proposed a method
to discriminate the typical heart sound from the abnormal heart sound based on Time-Frequency
Distribution. The classification proceeded with an Artificial Neural Network and achieved a high

accuracy[5].

The research mentioned above focuses on extracting various features of heart sounds from the
time or frequency domain and uses different algorithms to classify them into different categories. But

there are still many problems current research did not resolve:

(1)The dataset used in the abovementioned research is all high-quality heart sounds with little
noise or contamination. However, the rise of mobile devices such as home stethoscopes and wearable
devices has made it possible to predict and monitor the danger of CVD during sleep in a home
environment. Audience noise is often mixed in the sound file when recording heart sounds in a home
environment, complicating subsequent analysis[6]. It is challenging to detect the noise parts from the

heart sound parts. A heart sound segment contaminated with noise is shown in Figure 6.1.

(2)The recorded heart sounds are often contaminated with lung sounds or snoring, which can also
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be helpful in CVD monitoring. Snoring is usually a sign of OSA, which raises the risk of stroke, heart
attack, and other cardiovascular problems. Nevertheless, current methods only classify heart sounds as
healthy and pathological while ignoring this cardiopulmonary condition. A heart sound segment

contaminated with snoring is shown in Figure 6.2.

heart sound contaminated with noise

,1204024406_000to150minutesclip0l

Figure 6.1

lee

Figure 6.2 heart sound contaminated with snoring sound

The breathing sound clustering method proposed in chapter 2 was adapted and applied to heart
sound for analysis. Different analysis methods can proceed on each cluster to monitor CVD danger
based on cluster characteristics. Several modifications are made based on the difference between the

characteristics of heart sound and breathing sound..

(1) Compared with breathing sound, heart sound energy concentrate in a narrow frequency band

in low frequency, mainly in 20-200Hz, therefore, the preprocessing is different from breathing sound.

(2) The number of Mel filter banks used for filtering heart sound could be reduced compared with

breathing sound.

6.1.2 Heart sound monitoring method
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The proposed method consisted of 5 main steps. The first step is data acquisition. The heart sound
is recorded with a chest piece and a digital recorder during sleep. The second step is preprocessing. The
audio file was filtered and segmented into clips. The third step is feature extraction. MFCC vectors
were extracted as a feature to represent each segmented clip. The fourth step is clustering with AHC.
The Euclidean distance was calculated between each clip and formed a distance matrix. The
dendrogram is built to show the structure of the audio file. The fifth step is cluster analysis, optimal
cluster numbers were set based on the structure of the dendrogram, and the property of each cluster can
be determined by the location of the MFCC vector in space. The flowchart of the whole system is

illustrated in Figure 6.3.

Figure 6.3 Flowchart of heart sound monitoring system

6.1.3 Data Acquisition

The heart sound was recorded by a small chest piece (3M Littmann) attached to the mitral position
by adhesive tape. The chest piece was connected with a digital recorder (Olympus Voice-Trek V-843)
with wires to record audio. The acquisition proceeded during the night after the subjects had fallen
asleep. The record file format is MP3, the sampling rate is 44.1k Hz, and the bit depth is 16-bit. As it is
non-intrusive, it does not cause uncomfortable. The devices used in the acquisition are shown in

Figure6.4, and the representation of the data acquisition system is shown in Figure 6.5.
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digital recorder

chest piece

Figure 6.5 Abstract illustration of the heart sound acquisition system

The record file was preprocessed into .wav format. The first step of preprocessing is filtering and
denoising. As heart sound frequency is concentrated in 20-200Hz, a 20-200 Hz Butterworth bandpass
filter was used to filter noise. The recording files were downsampled to 400Hz. The second step of
preprocessing is segmentation. The entire file was cut into clips. The duration of the clip length is
settled by considering the micro and the macro aspect. One clip should be short enough to separate the

noise or respiration sound from the heart sound. Therefore the audio signal in one clip is stable.

Meanwhile, the clip should be long enough to contain at least several heartbeat cycles. As the
heart rate of a healthy person is usually between 60 to 100 beats per minute while resting, the record

file was segmented into clips 10 seconds in length. Each clip contains around 10-15 heart sound cycles.

6.1.4 Feature Extraction and Similarity Calculation
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Similar to the process steps in chapter 2, the MFCC vectors are extracted as feature vectors. The
similarity calculation is also the same. Figure 6.6 shows the waveform and the Mel-spectrum of a heart

sound clip with a duration of 10 seconds.
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Figure 6.6 The waveform, Mel-spectrum of a heart sound clip

6.1.5.Experiment and Result

Student volunteers were selected to participate in experiments. The recording files were processed
with python 3.7. A 173 minutes length file was chosen from all data and segmented into 10 seconds
length clips. Therefore 1038 clips were used in the experiments. The STFT spectrum window length is
64ms with an overlap of 32ms. The 20 Mel-scale filters were set in MFCC extraction. As many
researchers suggested that the 13-dimension MFCC coefficients used in ASR achieved good
performance[10], 13-dimension MFCC coefficients were used in the experiments. The distance matrix
size is a symmetry matrix with a size (of 1038,1038). The dendrogram of the clustering result is shown
in Figure 6.7. Based on the structure of the dendrogram. The dendrogram was divided into 4 clusters.
The clusterl, cluster2, cluster3, and cluster4 were presented with red, green, blue, and cyan,

respectively.

The first three dimensions of each MFCC vector are used to visualize the MFCC matrix in a
3-dimensional space. The space is shown in Figure 6.8. The three axes are the zeroth, first, and second
coefficients of the MFCC vector. The color of each point corresponds with the dendrogram. As there
are 1038 data points, the dendrogram was truncated to show the main structure of all data. One clip was
selected from each cluster as the representative, Clips are labelled based on the location in the 3D space.

The property and accuracy of each cluster are listed in Table 6.1.
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Figure 6.7 The truncated dendrogram of the clustering result

Figure.6.8 The 3D visualization of feature space

Table 6.1 cluster result

Cluster NO. | number property color
Cluster 1 3 Heart sound with noise cyan
Cluster 2 453 Heart sound green
Cluster 3 3 Ambient noise blue
Cluster 4 579 Heart sound with lung magenta

sound

The waveform and spectrum of examples present for each cluster were shown in Figure 6.9. Each

cluster can be analyzed by the different method based on its property.
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Figure .6.9 representative spectrum of cluster 1,cluster 2, cluster 3 and cluster 4(from top to buttom)

77



cluster 1: Clips in cluster 1 were heart sounds contaminated by friction noise. A different

denoising method is needed to remove noise. This part is analyzable after denoising.

Cluster2: most clips in cluster 2 are high-quality heart sounds. This part is analyzable and can be

used for subsequent analysis directly.

cluster 3: most clips in cluster 3 were noise caused by turnover. Heart sound is covered by noise.

This part can be removed or discarded.

cluster 4: most clips in cluster 4 were heart sounds mixed with lung sounds. This part's
characteristic is that frequency components between 50-2500Hz last for more than 1 second. The heart
sound and lung sound separation process needs to proceed, or the lung sound removal method needs to

be used to extract heart sound.

6.2 Medical data sharing method based on blockchain technology

6.2.1 Introduction to blockchain technology

The heart sound monitoring system can be used in many communities or laboratories. The system
may be deployed on different database platforms, such as Oracle or Microsoft SQL server databases.
Therefore the data are scattered in a different database. The data usually need to be collected together
for analysis. There is no unified way to access and share them. The data are typically exported from the
database and aggregated together by Database Administrators. This is a time-consuming process and is
under threat of data leakage. Blockchain is a tamper-proof, anonymous peer-to-peer network where
each node has a copy of the full ledger. Blockchain technology can be applied in the health and medical
domain to provide a holistic, transparent, whole picture of scattered records [12]. This helps the user to
get a full picture of scattered data and sustain crucial trust in the system, meanwhile providing a secure

method for users to protect their privacy and share their records[13].

Some research has been done on blockchain technology to utilize its characteristics in the health
and medical field to utilize its attributes in the health and medical field. Asaph Azaria built a novel,
decentralized system based on blockchain technology to deal with Electronic Medical Records (EMRs).
Patients can access their EMRs that spread to various providers and organizations [14]. Qi Xia
proposed a blockchain-based system to resolve the problem of medical data sharing among
organizations in a trustless environment. All actions done to data were recorded in blockchain in a
universal format [15]. Alevtina Dubovitskaya proposed a framework based on blockchain technology
for cancer patient care to provide security and privacy-preserve access control over EMR data [16]. Yi

Chen designed a storage scheme to securely store EMRs on blockchain and cloud storage, and a service
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framework for sharing EMRs was introduced [17]. Hongyu Li proposed a blockchain-based data
preservation system to solve the EMRs sharing problem. Users can store and share data with high
security on the blockchain framework [18]. Faisal Jamil proposed a novel drug supply chain
management system based on Hyperledger Fabric and blockchain technology. This system launched an
intelligent contract to manipulate access control to electronic drug records and patient EMRs [19]. In
this paper, a new user-oriented blockchain-based data-sharing method among different databases is
proposed. Users can access personal records stored in different databases through the semi-private
blockchain with their private keys. Heterogeneous records can be processed and retrieved in a unified

format. User’ s privacy is protected by asymmetric encryption.

6.2.2. Data sharing method

The flowchart of the system is shown in Figure 6.10. Users can record their heart or breathing data
with a smartphone or smart bracelet. These data are usually stored in a different database. In this paper,
a user-oriented semi-private blockchain is built to link databases together and provide service for users.
Each registered user or doctor is one node of the blockchain. Users can use their private key to retrieve
all their records stored in a different database with the functionality of blockchain. All records were

processed and presented in a universal form.

Figure 6.10 Flowchart of the data sharing system

The semi-private blockchain is implemented in this paper to facilitate users' retrieval and improve
system security. It has the following advantages of using a semi-private blockchain compared with the

public blockchain:
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(1) Launching a semi-private blockchain-based application most closely resembles how a

company or organization runs a commercial website.

(2) Each node has been certificated, so the risks of being attacked and business failure are low.

This simplified implementation and deployment.

(3) The semi-private blockchain uses Practical Byzantine Fault Tolerance(PBFT) algorithm as the
consensus protocol. As a result, it consumes fewer resources to reach a consensus state than a public

blockchain.

6.2.3 Data Structure

The data stored in a database can be divided into two parts: personal information and medical
information. Personal information refers to the part that involves personal privacy, such as name, age,
and contact information. Medical information refers to the part other than personal information, mainly
including user symptoms, allergy records, heart sound recording files, etc. The data storage of the
system is shown in Figure 6.11. Personal information is stored in the blockchain, and medical
information is stored in a different database. An index is formed as a pointer to link personal and
medical information. The index consists of two parts: the record address and the hash value of the
record. The record address points to the access address of the record. The hash value is a verification
code of the record. It changes whenever the record is modified. Personal information and index are
stored in the semi-private blockchain; medical information is stored in databases that are spread among

different databases. These two parts were linked together by the unique index.

Figure.6.11 Data Storage of System
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Each node is equal in the semi-private blockchain, so the data on the blockchain was open to
every registered node. While data records contain private information, Asymmetric encryption is
introduced to encrypt personal information. Asymmetric encryption provides a pair of keys for each
user: the public key and the private key. One can be used as an encryption key, and only the other key
can be decryption. The public key is stored in the database and opened for the administrator. The user's
private key encrypts medical information, and the administrator can encrypt medical information with
the user's public key. The private key is kept secret by the user—the user's vital public decrypts
personal information. Only the user himself can use decryption. The hash value of the record will be

checked to make sure records were untampered during this process.

6.2.4 Blockchain Structure

A blocklist represents the block's structure in a particular order. The structure of the blocks is
shown in Figure 6.12. Two vital data structures used in the blockchain are pointers and linked lists.
Pointers are parameters that hold information about the location of another variable. It points to the
address of the previous block. Linked lists are a sequence of blocks where each block connects to the
last block with the help of the pointer pointing to the former block. The hash algorithm calculated the
header address to assure security. The main body of the block is the personal information and record

index. There is a bounty part at the bottom of each block.

‘J_ block header | | block header ‘J— block header
prev hash j prev hash prev hash
personal info personal info personal info
recordl recordl recordl
record N record N record N
bounty bounty bounty
Block N-1 Block N Block N+1

Figure 6.12 Blockchain structure

6.2.5 Retrieving Processing

The user can access all his medical records, which were stored separately through a private key.

The retrieval process is shown in Figure 6.13. These records are stored in different databases. A
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transform method is introduced to process records in a unified format. Retrieved records are
transformed into {key, value} pairs. JSON is introduced as an intermedia. According to the
characteristics of a semi-private blockchain, the entire traversal process from the first block to the last
block is required to retrieve the information stored in it. According to the user's private key, the
traversal process finds the record belonging to the user and decrypts the record with the private key to
obtain the index and a hash value of the record. After verifying that the hash value is correct, the
records are filtered from the database according to the index. The transform algorithm is used to

process records into JSON.

Figure 6.13 Record Retrieve Process

All record fields are changed into five types: empty, string, number, date, and Boolean, based on
their original types. The date and timestamp are changed into yyyy/mm/dd format. The number type is
changed into float type. The string type is changed into text type. The Boolean type is changed into
True/False type. As different databases use different encoding methods, such as Shift JIS and UFT-8,
Unicode is used as a uniform encoding method to make sure all records are stored and shown correctly

on the Internet without garbled.

6.2.6.Experiment and Result
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Experiments are carried out on Hyperledger Fabric with Python 3.7.3. Hyperledger Fabric is an
open-source enterprise-grade distributed Permissioned blockchain technology platform. It supports

smart contracts authored in general-purpose programming languages.

Medical and health records are downloaded from the official website of the Department of Health
& Human Services(USA) as a test dataset. For the sake of brevity, the records have been simplified.
One user (IdentificationID=999-99-9999) is chosen as an example. This user has two records stored in
two different databases. The records have a different structure and data format. Record one was created
in a community hospital. Record two was created in a bigger hospital after the user was examed in the
community hospital. The record stored in the MySQL database is shown in table 6.2. Record two,
stored in the PostgreSQL database, is shown in table 6.3. The user uses the private key as a decryption
key to decrypt personal and record indexes. Then the indexes are used to get access to records. These
two records were retrieved by index from the blockchain. The hash code is checked in this retrieving

process to make sure records did not tamper with.

The retrieved result in the JSON file is shown in Figure 6.14. The result consists of three parts.
The first part of the JSON file is the user’s personal information, the second part is recorded one, and

the third part is recorded two. The minus symbol is used to fold sections in the JSON file.

Table 6.2 The Record No.1

Column Name Value

DoctorID 12000

IdentificationID | 999-99-9999

Physical Exam General Appearance: no acute distress
Medications HUMULIN INJ 70/30 20 units ac breakfast
Assessment Sub optimal sugar, control with retinopathy
Timestamp 3/24/2011 12:00:00 AM

Table 6.3 The Record No.2

Column Name Value

DoctorID 10000

IdentificationID | 999-99-9999

Problems DIABETES MELLITUS (ICD-250.)
Medications HUMULIN INJ 70/30 20 units ac
Vital Signs 63:130:98.0:72:16:118/60

Orders Follow-up/Return Visit: 3 months
RecordDate 8/6/2010
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Figure 6.14 Records Retrieved from Different Databases

6.7 Summary

The breathing sound clustering method proposed in chapter 2 is applied to classify heart sounds
into clusters and extract analyzable parts for analysis. Record files were segmented into clips, and
MFCC was extracted as the feature vector for each clip. AHC was performed on all clips to classify
them into clusters and form a dendrogram. The structure of the dendrogram determined the optimal
cluster number. Each cluster can be processed using different methods to extract analyzable parts based
on its property. Experiments show that the proposed method achieves high accuracy compared with the
manually labeled result. However, the cluster number still needs to be determined by humans based on
the structure of the dendrogram. Future work needs to focus on the research of cluster number decision

criteria that can make the method fully automatic.

A blockchain-based method is proposed to share data stored in different databases. Records stored
in various databases are divided into personal and medical information. The record index is abstracted
for each record of heterogencous medical and health information. Personal information and record
index are encrypted and stored in blocks to link records together. The user can retrieve records with a
private key through blockchain and transform them into a unified form. JSON is introduced as
intermedia to process data. The multimedia file, like the medical image-sharing method, will be

considered in future research.

84



References

[1] Aggarwal S, Loomba R S, Arora R R, et al. Associations between sleep duration and prevalence of
cardiovascular events. Clinical cardiology, Vol.36,No.11,2013,pp:671-676.

[2] CaoY, XuY H. Effects of sleep disorders on cardiovascular disease. Vol.25, No.1,2020,pp:86-88
[3] Syeda-Mahmood T, Wang F. Shape-based retrieval of heart sounds for disease similarity
detection.European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2008, pp:568-581.
[4] Amit G, Gavriely N, Intrator N. Cluster analysis and classification of heart sounds. Biomedical
Signal Processing and Control, Vol.4, No.1,pp:26-36.

[5] Ismail K, Salleh S H, Arif A K, et al. Heart Sound Analysis Using MFCC and Time Frequency
Distribution[J]. Biomedical Engineering, No.14,pp:946-949.

[6] Park K S, Choi S H. Smart technologies toward sleep monitoring at home. Biomedical engineering
letters, Vol.9,No.1,2019,pp.73-85.

[7] Tiwari V. MFCC and its applications in speaker recognition[J]. International journal on emerging
technologies, Vol.1No.1, 2010, pp.19-22.

[8] Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol.2,No.1,2012,pp. 86-97.

[9] Le Bel F. Agglomerative Clustering for Audio Classification using Low-level Descriptors,
Research Report, 2017

[10] Dave N. Feature extraction methods LPC, PLP and MFCC in speech recognition. International
journal for advance research in engineering and technology, Vol.1,No0.6,2013,pp.1-4.

[11] Jolliffe T T, Cadima J. Principal component analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol.374,N0.2065,2016

[12] Ekblaw A., Azaria A., Halamka J. D. and Lippman A., A Case Study for Blockchain in
Healthcare:“MedRec” prototype for electronic health records and medical research data, Proceedings
of IEEE open & big data conference, 2016, pp.13-13.

[13] Al Omar, A., Rahman M. S., Basu A. and Kiyomoto S., Medibchain: A blockchain based
privacy preserving platform for healthcare data,International conference on security, privacy and
anonymity in computation, communication and storage, 2017, pp.534-543.

[14] Aczaria A., Ekblaw A., Vieira T. and Lippman A., Medrec: Using blockchain for medical data
access and permission management, 2016 2nd International Conference on Open and Big Data IEEE,
2016, pp.25-30.

[15] Xia Q. I., Sifah E. B., Asamoah K. O., Gao J., Du X. and Guizani M., MeDShare: Trust-less

medical data sharing among cloud service providers via blockchain. IEEE Access, 2017, pp.5:

85



14757-14767.

[16] Dubovitskaya A., Xu Z., Ryu S., Schumacher M. and Wang F., Secure and trustable electronic
medical records sharing using blockchain,AMIA annual symposium proceedings, 2017, 2017: pp.650.
[17] Chen Y., Ding S., Xu Z., Zheng H.and Yang, S., Blockchain-based medical records secure
storage and medical service framework,Journal of medical systems, Vol.43, No.1, 2019, pp.S.

[18] Li H., Zhu L., Shen M., Gao F., Tao X.and Liu S., Blockchain-based data preservation system
for medical data,Journal of medical systems, Vol.42, No.8, 2018, pp.141.

[19] Jamil F,, Hang L., Kim K.and Kim D., A Novel Medical Blockchain Model for Drug Supply

Chain Integrity Management in a Smart Hospital. Electronics, Vol.8, No.5, 2019, pp.505.

86



Chapter 7

Conclusion

7.1 summary and conclusion

Sleep disorders significantly deteriorate sleep quality and become a hot social issue with the
development of an aging society. SRBD is the second one of all sleep disorders. It causes many
comorbidities and costs lots of healthcare resources. PSG is the golden standard for evaluating sleep
quality and diagnosing SRBD. However, it has many disadvantages, such as the high cost,
uncomfortable during sleep, and complicated operation. Other methods for sleep monitoring, such as
the RIP or pneumotachograph, their application scenarios are also limited. Therefore, a non-intrusive,
easy-to-use, and low-cost sleep breathing monitoring method is indispensable for healthcare in the
home environment. The sleeping breath sound is suitable for sleep monitoring in daily life at home.
However, sleeping breath sound is not directly related to breathing airflow and is often contaminated
with noise. This study aims to develop a breathing sound analysis method for breathing quality

evaluation during sleep.

The tracheal sound is preprocessed to remove noise. The TCW and CMW are calculated to
segment the breath sound. Based on the envelope, the breathing signal is separated into a low signal
part and a normal signal part. The normal signal part is segmented into breathing phases by TCW and
CMW. The low signal part is normalized and then segmented. MFCC of each breathing cycle is
extracted and classified into normal breathing/abnormal breathing/normal snoring/abnormal

snoring/uncertain categories with the AHC algorithm.

As the breath sounds are not directly related to breath airflow, the entire breathing sound file was
segmented into 30-second long clips. Seven breathing states are defined and determined based on the
classification result and breath regularity. Each clip is classified into apnea, hypopnea, normal
breathing, abnormal breathing, normal snoring, abnormal snoring, and event. Therefore the breathing

sound is related to breathing states.

AHI is the commonly used parameter to evaluate the severity of apnea. AHI is calculated with
different digital signal processing techniques. The apnea index is calculated based on the identification
of the breathing states, and the hypopnea index is calculated based on two criteria: the breathing rate
and abnormal breathing cycles. The PSG-audio dataset is used for the performance evaluation. Subjects

with different OSA severity are selected to evaluate the performance of the proposed method.
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Tidal volume is a commonly used parameter to evaluate the breathing ventilation level. However,
current methods that can calculate tidal volume need calibration and are only suitable for stable
breathing. Therefore, a tidal volume level estimation method using breathing sounds is proposed. Tidal
volume is quantitatively calculated for normal breathing and snoring states and qualitatively for

apnea’/hypopnea and abnormal states.

The proposed classification method is applied for the heart sound analysis. Similar to sleeping
breath sound monitoring, the sleeping heart sound is often contaminated with ambient noise or snoring,.
The whole night's heart sound is classified into several categories based on the recording quality. A

block-chain based data sharing method is proposed for the system development.

7.2 Future work

The method's accuracy in this study is affected by other factors, such as ambient noise will cause
misjudgment. Also, breathing during sleep is affected by many factors, such as sleep position,
pulmonary disease, and body movement. It is challenging to monitor these factors based on breathing
sounds. In the future, these factors will be considered to monitor sleep quality. The breathing sound
analysis method will be improved with the deep learning methods. More useful parameters will be used
to identify the breathing states during sleep. Sleep quality will be evaluated with more factors such as

sleep position or head direction. .
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