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CHAPTER 1

Introduction

1.1 Searching for a Theory on the Origin of the
Universe

“Where do we come from? What are we? Where are we going?” These deep age-
old questions that vex humanity all the time are given in the title of a painting by
Paul Gauguin (Figure 1.1.1). In a similar version, these questions are also asked by
cosmologists: “How was the universe born? What is the universe made of 7 What will
the universe be like in the future?” Remarkably, to some extent, these questions have

reliable quantitative answers that have been tested against cosmological observations.

Two fundamental observational facts opened current modern cosmology. One
fact is the expansion of the universe, which was first discovered by Edwin Hubble,
who found that distant galaxies are receding from us with velocities increasing with
distance [37]. The other fact is the homogeneous and isotropic of the universe on
large scales (2 100 Mpc). The large-scale homogeneity is supported by the uniform
distribution of galaxies on scales larger than 300 million light years [88]. The strong
evidence for isotropy is the highly isotropic distribution of thermal radiation at about
3 K which is permeating the universe [78]. This thermal radiation was first discovered
by Arno Penzias and Robert Wilson in 1965 [63], and it is now called the cosmic
microwave background (CMB).

Combining these two observational facts with the theory of general relativity,

one obtained a paradigm called the standard Hot Big Bang (HBB) model, which
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Fig. 1.1.1: The painting named “Where Do We Come From? What Are We? Where
Are We Going?” by Paul Gauguin, 1897-98. This painting is download from the
Museum of Fine Arts, Boston. [www.mfa.org]

successfully describes the universe’s evolution from about 1 second after the beginning
(if there is) to the present time. Figure 1.1.2 shows the brief thermal history of the
universe based on the HBB model.

The standard HBB model is relatively simple and elegant and provides a testable
account of the universe’s history. No current observational evidence contradicts the
Big Bang scenario. However, some shortcomings do exists. For example, the small
temperature fluctuations in the CMB are coherent on a scale which is much larger
than the largest possibly causal connected region !; this issue is often referred as
the horizon problem of the HBB model. Although the universe is homogeneous and
isotropic on large scales, it also has structures like clusters, galaxies, and stars on
small scales. The HBB model can explain how these structures develop, but it cannot
account for the origin of these structures. Most cosmologists now agree that all these
mysteries may have a common explanation called the inflation [11, 36, 46, 74, 81].

Under the inflation scenario, the universe first undergoes an epoch of accelerated
expansion dominated by vacuum energy. Then it enters several phases of decelerated
expansion as depicted by the HBB model. Inflation solves the shortcomings of the
HBB model by allowing the cosmological perturbations to be causally connected again

at the beginning and by increasing the horizon’s size in the early universe. In other

IThe boundary of the largest causal connected region is often called the horizon.
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Fig. 1.1.2: A brief thermal history of the universe and several important moments.
This figure refers to references [29, 54].

words, inflation provides a natural quantum-mechanical mechanism to explain the
origin of the cosmological perturbations in the large structure of matter and in the
CMB.

Unfortunately, since the energy scale associated with inflation is so large (~
101 TeV), it is very difficult to probe its physics experimentally. However, at least
one signature of inflation is within reach of observations. The production of the pri-
mordial gravitational waves (GWs) is a crucial prediction of the inflationary scenario
of the early universe [80, 32], since, during inflation, quantum fluctuations of the
gravitational field would be generated simultaneously as those of other fields. How-
ever, unlike other non-gravitational fields that would eventually decay or transform
as most inflation models suggest, fluctuations of gravitational field will be preserved
and propagated to the present universe. Therefore, the signatures of primordial GWs,

if observed, would give us the shape of the early universe that has not been seen yet.
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1.2 Primordial Gravitational-Waves as a Probe of
the Early Universe and the Purpose of this
Thesis

Roughly speaking, there are two ways we can observe the primordial GWs: indi-
rect and direct observations. A particular pattern of the CMB polarization called
the B—mode could be produced by primordial tensor perturbations (i.e. primordial
GWs). These pattern cannot be mimicked by other space-time perturbations (like
the scalar perturbations). Therefore, searching for the B-mode in CMB offers an
indirect way of searching for the primordial GWs. In 2014, BICEP2 Collaboration
once reported the detection of B-mode of CMB and claimed that it was due to the
primordial GWs [6]. But later analysis found that the signal was due to the polarized
interstellar dust [7].

The direct GW observations that began in 2015 [1, 2, 3] have opened up a new
window to investigate various astrophysical phenomena which cannot be probed by
conventional observations based on electromagnetic waves. Although the current
terrestrial GW detectors are only sensitive to single, strong, and low-redshift GW
events such as the merging of black holes, future detectors are expected to detect
much weaker and high-redshift GW events or even the primordial GWs generated
in the early universe. For example, the third-generation ground-based GW detector
such as the Einstein Telescope and Cosmic Explore are expected to be able to detect
GW events with redshift up to z ~ 100. Furthermore, the space-based detector Deci-
hertz Interferometer Gravitational-Wave Observatory (DECIGO), with its primary
target—secarching the primordial GWs produced during inflation, is planned to launch
a precursor observatory in the 2030s [75, 41]. Given these perspectives, it will be
essential to study the methods of distinguishing primordial GWs from other GW
signals.

In the present universe, the signal of primordial GWs is expected to be in the form

of a stochastic gravitational-wave background (SGWB). SGWB is very different from



1. INTRODUCTION

Fig. 1.2.1: The first observed GW event generated from a binary black hole merger.
It has a specific waveform in the time domain and a flash in the time-frequency axis;
these are not the case for an SGWB. This figure is from reference [2].

the signal of a single GW event generated by astrophysical objects, for example, the
merger of binary black holes as shown in Figure 1.2.1. Because SGWBs do not possess
a specific waveform, we can only characterize them by their energy densities, like those
in Figure 1.2.2, which shows the expected energy densities of SGWB for different
sources, the observational limits, and the sensitivities of GW detectors. Detection of
the inflationary SGWB is difficult because its energy density is expected to be tiny.
As we can see from Figure 1.2.2, in a typical frequency band of the GW detectors
(1 — 10 Hz for ground-based detector LIGO-Virgo or 1072 — 1 Hz for space-based
detector LISA), the expected energy density of SGWB in the slow-roll inflation (the
blue line below) is much smaller than the energy density of typical astrophysical
SGWB, like those generated by binary black holes or binary neutron stars (the purple
and green lines in the middle).

Numerous studies have been carried out on the methods for separating the astro-
physical components in SGWB, for example: spectral separation [82, 5, 62, 64, 20, 65],
subtraction [67, 61, 76, 53, 70], anisotropies [9, 49, 18], and so on. These methods
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Fig. 1.2.2: Theoretical predictions of the energy density parameter Q(f) for the
SGWRB of the slow-roll inflation and astrophysical sources, including Binary Black
Holes (BBH) and Binary Neutron Stars (BNS). This figure also shows the detector’s
sensitivity (like LIGO-Virgo and LISA) and the observational bounds (like CMB) for
the SGWB. This figure is from reference [4].

work well to place upper limits on the inflationary SGWB. However, in these meth-
ods, it is hard to guarantee that after subtraction, the remaining components are
of the inflation origin without a priori assumption on an exact inflation model. For
this reason, in this thesis, we investigate whether the inflationary SGWB is distin-
guishable from the other components of SGWB in direct observational experiments
without any prior assumptions on the exact inflation model.

We focus on a unique and universal prediction of inflation: the generation of the
super-horizon modes, modes with wavelengths larger than the horizon. Super-horizon
modes could be generated during inflation but cannot be generated by any process in
the post-inflationary universe. In consequence, the inflationary super-horizon modes
of GWs have a standing-wave nature after the horizon re-entry [33, 35, 34, 26, 14].
The standing-wave nature is supposed to be observed as a unique property of the
inflationary SGWB, that is, an angular correlation between GWs from the opposite
directions. Although this property has already been noticed in the literature, we
would like to emphasize it as a unique prediction of inflation and name it the antipodal
angular correlations (AAC). The astrophysical SGWB, on the other hand, will not

have such type of angular correlations because individual astrophysical sources are
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not correlated with each other.

About 20 years ago, Allen, Flanagan and Papa [14] showed that the above unique
property of inflationary SGWB cannot be detected in the GW strain correlation
analysis due to the finite frequency resolution in practical observations. Moreover,
Margalit, Contaldi and Pieroni [51] recently pointed out that metric perturbations
along the line-of-sight will randomize any phase information in the primordial GWs.
The effect of metric perturbation will, of course, influence the detectability of the
AAC. Taking into account the above two effects, in this thesis, we first investigate
whether we can construct another estimator (such as the intensity) sensitive to the
AAC. Since the analysis tells us that the unobservable of the AAC seems to be
unavailable in practice, we then clarify the (un)observable angular correlations in the
inflationary SGWB.

This thesis is organized as follows. In Chapter 2, we briefly review the HBB model
and describe two main shortcomings in this model. In Chapter 3, after briefly review-
ing its history, we introduce the inflation theory as a solution to the shortcomings of
the HBB model; then, we present a simple model of inflation: the single field slow-roll
inflation. In Chapter 4, we review the basic theory of GWs, focusing on the geometric
description based on general relativity. We also derive the basic equation governing
the evolution of GWs in cosmology and review the production of primordial GWs
in inflation. Chapter 5 is devoted to the study of the AAC property in inflationary
SGWB. We first review how to characterize an SGWB and then make a comprehen-
sive deviation of the AAC property. After that, we analyze the detectability of AAC

in both frequency and time domains. We conclude this thesis in Chapter 6.

1.3 Units and Notation

In most part of this thesis, we will use the natural units, i.e., the following fundamental
constants are set to unity,

h=c=kp=1. (1.3.1)
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We will depart form these natural units when concerning observations. In natural

unit, all dimensions can be expressed in terms of the unit of energy, that is,
[Length] " = [Time] " = [Mass] = [Temperature] = [Energy] . (1.3.2)

In this thesis, we shall follow the sign conventions of Minsner, Thorne and Wheeler
[56]. In particular, we use the metric signature (—, +, 4+, +). We use Greek letters to
denote spacetime indices, and Latin letters from the middle of the alphabet (i, 7, ...) to
denote spatial indices. Spacetime indices are run through the values 0, 1,2, 3 ; spatial

indices are run through 1,2,3.



CHAPTER 2

The Hot Big Bang (HBB) Model

2.1 The HBB Model of the Universe

Our present understanding of the evolution of the universe is based upon the standard
Hot Big Bang (HBB) model of cosmology, or the Friedmann-Lemaitre-Robertson-
Walker (FLRW) cosmology model as another name. This model is based on two basic
observational facts: the expansion of the universe and the large-scale homogeneity and
isotropy. The expansion of the universe is based on Edwin Hubble’s discovery in 1929
that the distant galaxies are receding from us with a velocity that increases with
their distance [37]. A uniform distribution of galaxies on scales = 100 Mpc [28] tells
us the universe is homogeneous on a large scale. The best evidence for the isotropy
is the discovery of the cosmic microwave background (CMB) by Arno Penzias and
Robert Wilson in 1965 [63] that shows a perfect blackbody spectrum in which the
temperature fluctuations are only |§7/T| < 3 x 1077.

A spatially homogeneous and isotropic universe can be described by the FLRW

spacetime metric

2

ds® = —c*dt* + a®(t
S c + a*(t) T

+ 7r2d6? 4 r? sin® 0de? | | (2.1.1)

where a(t) is called the scale factor and we say that the universe is expanding when
@ > 0 or contracting when a < 0 . The sign of k represents the spatial curvature of

the universe. This dissertation only considers the spatially flat (k = 0) case.

Tn this thesis, we use a dot to represent the time derivative, i.e., = dz/dt, & = d?x/(dt).
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On a large scale, the evolution of the scale factor a(t) thus represents the evolution

of the universe. The function a(t) is determined by the Einstein equations
1
R, — §ng, =81G T, . (2.1.2)

In a zeroth-order approximation, the energy-momentum tensor 7}, must have the
same symmetries of homogeneity and isotropy as the FLRW spacetime; therefore, it

takes the form of a perfect fluid,

T} = diag (—p, p, p, p), (2.1.3)

where the energy density p and the pressure p are functions of time only.
Take the FLRW metric (2.1.1) and the energy-momentum tensor (2.1.3) into the

Einstein equation; the time-time component yields the Friedmann equation

(9)2 _ %p, (2.1.4)

the spatial-spatial component yields

2% (g) 3 (g)Q = —81Gp. (2.1.5)

The conservation of energy-momentum, V, T = 0, gives the equation
) a
p—l—3C—L(p—|—p) =0. (2.1.6)

Combining equation (2.1.5) and the Friedmann equation (2.1.4) results in the accel-
eration equation
a ArG

o= —T(p—l—iﬂp) : (2.1.7)

Only two of the above four equations are independent; which one to use depends on
the situation.

To fully determine the evolution, we need one more equation. This can be given

10
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by the equation of state of the cosmological fluid, p(t) = wp(t), where w is called
the equation-of-state parameter. For nonrelativistic particles (“matter”), w = 0; for
relativistic particles (“radiation”), w = 1/3 ; for vacuum energy (or the cosmological
constant A), w = —1. Plugging the equation of state into the Friedmann equation

(2.1.4) and the equation (2.1.6), we obtain the evolution equations for each single

fluid

Matter : poca ®, aoct??; (2.1.8)

Radiation : poca™?, a o t'/?; (2.1.9)
A

Cosmological constant A : p = Frveiide Vit (2.1.10)
m

Observational data tells us that in the present epoch, the universe is dominated
by a cosmological constant which accounts for nearly 70% of its total energy den-
sity [87], matter accounts for approximately 30% [8], while radiation accounts for
less than 0.01%. Relations (2.1.8) and (2.1.9) tell us that as the scale factor a(t)
decreases toward the past, then matter would dominate the energy density of the
universe for a while. Eventually, radiation would dominate at the beginning of the
universe. Therefore, in the HBB model, the universe’s rough history is separated
into three parts: it starts from a radiation-dominated (RD) epoch, then turns into a
matter-dominated (MD) epoch as the expansion, and reaches the present cosmological

constant dominated epoch.

2.2  Shortcomings of the HBB Model

Before we carefully examine these shortcomings, let us first define some useful quan-
tities in the discussion of cosmology.

If we write the FRLW metric (2.1.1) in a conformal form:

ds* = —a*(t)(dn? — dx?), (2.2.1)

11
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then the spatial coordinate x is called the comoving distance, and the time coordinate
n is called the conformal time. The conformal time 7 is related to the (cosmic) time

t by
1
a(t)

Since light travels along null curves on which ds? = 0, for photons, its conformal

dn = dt. (2.2.2)

time is equal to its comoving distance. Therefore, the conformal time of photon defines
the maximum radius of a region that can be causally connected. Such maximum
causally connected radius is called the (comoving) particle horizon, or (comoving)

causal horizon, and it is equal to the conformal time 7(¢):

0(t) = /0 Q‘Z:) | (2.2.3)

Another scale that is frequently used to estimate the size of the universe is the
Hubble radius, H='(t). The function H(t) is defined as the fractional rate of the

increase of distances:
da a
Ht)=(— = - 2.2.4
0= (%) /=2 (22.4)

and it is called the Hubble parameter. Since the physical distance from a nearby
galaxy to us can be represented as 1 = a(t)x, the receding velocity of the galaxy
is v = dl/dt = H(t)-1. The Hubble radius H !, therefore, represents the time it
would have taken for the galaxy to attain its present separation if it had maintained
the present receding velocity all the time. Thus the Hubble radius also gives us an

approximation of the local size of the universe. The comoving Hubble radius, H™!, is

defined as
a - 1
— = —. 2.2.5
(a> Ha ( )

Now let us take a look at the shortcomings of the HBB model. The first one

H—l

is the large-scale smoothness, or the horizon problem as it was usually called. The
temperature fluctuation of CMB at the level of 6T/T ~ 107 tells us that the universe
was very smooth when the CMB photons observed today decoupled from electrons

and started to propagate freely at the age of about 3.8 x 10° years. This moment is

12
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called the decoupling and it defines a hyper-surface named the last-scattering surface
(LSS) in the space-time diagram (see Figure 2.2.1) 2. The smoothness of the LSS
implies that different points on it should have been causally connected before. In the
space-time diagram, this means that the past light-cones for two arbitrary points are
crossing (the situation of diagram (a) in Figure 2.2.1). We can see directly from the
diagram that the cross of light-cones is equivalent to the condition 2npss > 19, where
nrss and 1)y are the conformal times at decoupling and present, respectively. On the

other hand, we can also calculate each conformal time in the HBB scenario by

t gy a /

R 220
where we have changed the variable from ¢ to the scale factor a. At each moment,
the scale factor can be estimated from its relation with temperature 7' oc a=! 3. The
temperature of the universe at decoupling is about 2000 K and at present is about
2.7 K. However, numerical calculations 4 show that the conformal time at the LSS
is only about nrss/no =~ 0.02, comparing with the current conformal time 7. This
is to say that there are points on the LSS for which their past light-cones do not
overlap (the situation (b) in Figure 2.2.1). Thus, these points have not ever been
causally connected before. Nevertheless, all the points on LSS indeed have a uniform
temperature to within one part in 10° according to the CMB observation, and this is
quite unnatural.

The second one is the small-scale inhomogeneity, or called the initial perturbation
problem. While the universe is very smooth on large scales, it also has abundant struc-
tures such as stars, galaxies, and clusters on scales smaller than 100 Mpc. The seeds
of these structures should be the initial perturbations in the early universe. However,
the HBB model can explain only the formation of these structures by the growth of
initial perturbations through gravitational instability; it has trouble explaining the

generation of the initial perturbations.

2Before decoupling, photons were kept in equilibrium with electrons by Compton scattering (see,
for example, [86] with a detailed description of the thermal history of the universe).

3See, for example, section 5.4 in [83] for the deviation.

4For example, section 17.6.5 in [48].

13



2. THE HOT BIG BANG (HBB) MODEL

~Observer AL Mo,

/ \/ Last- scatterlng surface

(b)

Fig. 2.2.1: An illustration of the horizon problem in the spacetime diagram. The
solid diagonal lines represent past light-cones for each spacetime point where the light
signals came in. All the causal processes that can influence each spacetime point are
within its past light-cone. According to the CMB observation, two arbitrary points
x1 and x5 on the LSS have almost the same temperature, which implies that their
past light-cones should be crossing (the situation of diagram (a)). However, in the
HBB model, calculation shows that 2npsg < 19 (the situation of diagram (b)). This
means that the past light-cones for these two points do not cross, and they have never
been causally connected.

14
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Suppose a perturbation at present has the proper wavelength (i.e. physical wave-
length) Ao = A(tp). This wavelength can be associated with an invariant quantity
M (M) that represents an amount of non-relativistic mass contained inside of a sphere

of radius A/2 [60]:

M(X) = %ﬂ (g)gpn.r., (2.2.7)

where py .. is the energy density of the non-relativistic mass. For a typical galaxy with
mass M ~ 10" M, where Mg, is the mass of the Sun, the present proper wavelength
of perturbation Ag is about 1 Mpc [60]. Now the proper wavelength would evolves as
A(t) = a(t)Ao o t" if we assume a(t) o< t". On the other hand, the Hubble radius
H=! evolves as H ' = n~'t. Then the ratio between the proper wavelength and
the Hubble radius follows \/H ! oc n - t""!. In the Big Bang model n < 1 in the
initial and matter-dominated phase. The above relation means that the wavelength
of perturbations smaller than the Hubble radius today will be larger than the Hubble
radius in the past as ¢ — 0. However, normally physical processes can only have
influence over a scale smaller than the Hubble radius. It is unnatural that the relevant
astrophysical perturbations are much larger than the Hubble radius in the past.
The horizon and initial perturbation problems are not the only shortcomings that
the HBB model suffers from. There are also the flatness and the monopole problems

[87], but the two problems we have just introduced are more serious than the others.

15



CHAPTER 3

Inflation Theory

3.1 Brief History of the Inflation Theory

The idea of an early possible exponential expansion was proposed by several authors
in the late 1970s, and early 80s [81, 42, 74, 59]. However, it was Alan Guth [306]
who gave a clear physical motivation to introduce an exponential expansion phase in
the early universe. Guth’s model, now called the “old inflation,” assumes a scalar
field initially trapped in a false vacuum state due to a supercooling of the initial hot
universe. The energy of the universe would remain constant for a while and thus
provide an exponential expansion. The inflation would be stopped by the quantum
barrier penetration effect in which the scalar field penetrates to a true vacuum state
(see the potential (a) in Figure 3.1.1). The scalar field would then oscillates around
the true vacuum state, and the universe would translate into the radiation-dominated
phase. However, this intuitive picture did not work because the inflation produced
was too short to solve any problems [87, 60].

Guth’s model was soon replaced by a version proposed by Linde [46] and by
Albrecht, and Steinhardt [11], known as the “new inflation”. This version is based
on the Coleman-Weinberg [25] type potential (the potential function (b) in Figure
3.1.1). This potential function is very flat around ¢ = 0. The inflation may begin with
V(¢ = 0). This state is unstable due to quantum fluctuations, and the scalar field
would slowly roll towards the global minimum of the potential. The inflation ends with
the scalar field oscillating around the global minimum. The key difference between

the new and old inflation scenario is that for the new scenario ¢ # 0 and thus could
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3. INFLATION THEORY

(a) (b)

Fig. 3.1.1: Two models of the potential function for inflation.

ensure sufficient inflation to make the universe homogeneous [45]. Unfortunately, the
new inflation model requires the potential of the scalar field ¢ to have a quite flat
plateau near ¢ = 0, which is quite unlikely in a pre-inflationary state of the universe.

So far, more than hundreds of different inflation models have been proposed [52],
but no single model can be considered entirely satisfactory. Of course, in the lack
of the underlying fundamental physics in the early universe, one is free to play with
potential and invent more new models. Nevertheless, inflation as a plausible theory is
not due to the number of models it allows but because it can solve the HBB model’s
problems and explain the origin of the universe’s large-scale structure. Let us see how

inflation could do this.

3.2 Inflation as a Solution to the Shortcomings of

the HBB model

In section 2.2 we have shown two problems of the HBB model; in this section,
we explain how inflation, i.e., an accelerated expansion epoch before the radiation-

dominated period, could solve these problems.
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3. INFLATION THEORY

3.2.1 Solution to the Horizon Problem

The cause of the horizon problem is that the comoving particle horizon (i.e., the
conformal time) at the LSS, ngg, is too small compared with the present comoving
particle horizon 7ny. This problem can be solved by introducing an accelerating ex-
pansion period before the RD to increase the (comoving) particle horizon in the early
universe. As in equation (2.2.6), we can change the integral variable for the conformal

time into the scalar factor, that is

n:/ot%:/oa[{iadana):/oaﬂ1d(1na), (3.2.1)

where H ! is the comoving Hubble radius defined in (2.2.5). In the HBB model,
because H ! is always an increasing function (H ' o< a for the RD epoch and H ! oc
a'/? for the MD epoch), the main contribution to 7 must comes from late-times. To
“gain” sufficient causal distance 7pgs to solve the horizon problem, one reasonable

way is to make H ! decrease for a while in the early times; this is equal to
H ' = (a)! is decreasing <  is increasing < d > 0. (3.2.2)

Therefore, an accelerating expansion period can solve the horizon problem.

3.2.2 Explaining the Origin of Perturbations

The problem with generating initial perturbations is that in the initial time, pertur-
bations’ wavelengths are large the Hubble radius. A natural solution to this problem
is to again make the wavelength smaller than the Hubble radius in the early times,
A < H7! when t ~ 0. If this condition is satisfied, physical processes can lead to ini-
tial perturbations. Now consider an exponential expansion period with a(t) oc efint.t
before the RD phase, where Hj, is the Hubble parameter during inflation and we

assume it is nearly a constant. Then the evolution of the Hubble radius H ' = a/a
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Fig. 3.2.1: The evolution of the Hubble radius H~' and the physical wavelength of
perturbation. Note that the horizontal axis is taken to be loga(t) so the wavelength
evolves as a straight line.

after adding an inflation phase becomes:

3t
H_! = const. (inflation) — 2t (RD) —» 5 (MD) — H; ' = const. (AD) .
(3.2.3)

Ao

—iyal(t), evolves as the

On the other hand, the wavelength of perturbation, A(¢) =

same as the scale factor:
Aoe!fint- (inflation) — AotY/? (RD) — A\ot?? (MD) — Moef™ (AD).  (3.2.4)

Plotting the evolution of H ! and ) into the Fig. 3.2.1, we see that after introducing
an inflation period, the wavelength of perturbation can be smaller than the Hubble
radius at both the initial and the present epoch. This condition is possible because,
during inflation, the Hubble radius remains constant while the wavelength increases

exponentially.
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3. INFLATION THEORY

3.3 A Simple Model of Inflation: Single Field Slow-
Roll Inflation

The above section shows how inflation could solve two shortcomings of the Big Bang
model. In this section, we introduce an exact and perhaps the simplest inflation
model: called the single field slow-roll inflation.

Since inflation means an accelerating expansion, that is, @ > 0, according to the

acceleration equation (2.1.7), this corresponding to

1
p<—3p. (3.3.1)

In other words, inflation means a period dominated by a component with the equation-
of-state parameter w < 1/3.
To satisfy the above condition, a simple choice is a positive cosmological con-

stant Ayr! which posses an energy density p = Ay /(87G) and a pressure p =

—Aine. /(87G), that is, w = —1. From the Friedman equation (equation (2.1.4) in
Chapter 1),
G A
H? = 7; p= 3f~ = Const. , (3.3.2)

we see the Hubble parameter is a constant, and we denote it by H = Hy,s.. The scale
factor evolves as a(t) oc effintt,

To mimic this cosmological constant, let us consider a scalar field ¢(x,t) assigned
to cach spacetime point. The scalar field has the dimension of energy, ¢[eV], and it is
associated with a potential energy V' (¢). We shall call this scalar field the “inflaton
field”, and suppose that the universe only contains this inflaton field plus a flat FLRW

metric in the inflation period. Now let us consider under what conditions this scalar

field could behave like a cosmological constant.

IThis cosmological constant is different from the cosmological constant responsible for the current
accelerating expansion.
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3. INFLATION THEORY

The action for the inflaton field is the usual action of a scalar field:

1
5= [[atev=3 |- 30,000 - V(o) (3.5.9

where g represents the determinant of the metric g,,. The energy-momentum tensor

of the inflaton field can be found by

2 08,
T, =——— . 3.34
H /_g 59;“/ ( )
With the help of the relation §\/—g = (—1/2)\/—¢ g, 6", we could obtain
, 1
Ty = 000,60 — g {58%58,,@5 + V(qﬁ)} : (3.3.5)

Take the flat FLRW metric (equation (2.1.1) in Chapter 1) into the above relation,
suppose the inflaton field is also spatially homogeneous, that is, ¢(x,t) = ¢(t), we

can read the energy density and the pressure of the inflaton field as follows

Pint, = %(qéi)? +V(e), (3.3.6)
Pint. = %(q&b)? ~V(9). (3.3.7)
We see that if
%(cb)? < V(¢), (3.3.8)
then
Pint. X —Pint. = V(9) (3.3.9)

that is, if the scalar field changes very slowly as a function of time, then it could
behave like a cosmological constant Aj,r. The condition (3.3.8) is often called the
first slow-roll condition.

If condition (3.3.8) is satisfied, we also require that this condition be maintained
over an extended period to solve the problems in the Big Bang model. This require-

ment can be satisfied by imposing that the absolute value of the time derivative of
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the left-hand side of condition (3.3.8) should be much smaller than the absolute value

of the time derivative of the right-hand side; this will leads to
|6 < [dV/(dg)], (3.3.10)

which is called the second slow-roll condition.
In this scalar-field-dominated period, the Friedmann equation and the energy-

momentum conservation equation are:

e
H? = ”Tpinf, , (3.3.11)

Pint. + 3H (pint. + pine.) = 0. (3.3.12)

Taking the energy density (3.3.6) and the pressure (3.3.7) into equation (3.3.12), we

obtain an equation that governing the evolution of the scalar field:

- . AV
3Hp = ———. 3.3.13
p+3He = -7 (3.3.13)
This equation mimics the equation of motion of a particle; —dV/(d¢) acting like an
accelerating force, the expansion of the universe acting like a friction term which slows
the “movement” of the inflaton field toward the point of minimum potential.
Take time derivative of equation (3.3.11) and using equation (3.3.12), we obtain

a useful relation

H = —41G(¢)*. (3.3.14)
According to the first slow-roll condition (3.3.8), equation (3.3.11) becomes

H? ~ % (4). (3.3.15)

Combining the first slow-roll condition (3.3.8), equation (3.3.14), and equation (3.3.15),
we obtain

—H < 3H?, (3.3.16)
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3. INFLATION THEORY

that is to say, the Hubble parameter H changes very slowly over the time scale H™!.

In summary, a homogeneous scalar field ¢(t) associated with a potential energy
V(¢) can act like a cosmological constant and triggers inflation; on the condition that
the scalar field changes very slowly as a function of time, and its potential is very
large to dominated the energy density of the universe. To ensure the inflation lasts for
an extended period, the second slow-roll condition (3.3.10) should be satisfied. The
evolution of the scalar field is governed by equation (3.3.13), and during inflation, the

Hubble constant H remains almost constant.
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CHAPTER 4

Theory of Gravitational Waves

(GWs)

4.1 Two Different Languages for Describing GWs

There are two different languages that we could use to describe gravitational waves.
One is the geometric language of general relativity, in which the metric of spacetime

g, can be divided into
Juv = gp,V + h/_w s |hl“’| <1 y (411)

where g, is the background spacetime that could be the FLRW geometry, and grav-
itational waves, h,,,, are interpreted as the perturbations in the spacetime geometry.
The other language is the classical or even quantum field-theoretical language, in which
we do not interpret h,, as a spacetime metric but as a spin-2 massless field living
in flat spacetime with the Minkowski metric g, = 1., governed by the Fierz-Pauli

action [31, 47]:

S = % / A*2 (—Oahy 0" MM + 20,hy 0" B — 20,h" O, h + O*ho,h) . (4.1.2)

where h = n*h,,,.
Both languages have their advantages. The geometric language is very suitable for
describing the propagation of gravitational waves in a background spacetime, the in-

teraction of gravitational waves with detectors, and all the astrophysical mechanisms
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4. THEORY OF GRAVITATIONAL WAVES (GWS)

of gravitational wave production. On the other hand, the field-theoretical language is
convenient for describing the energy and momentum carried by gravitational waves
or the cosmological gravitational wave production mechanism. Both languages are
descriptions of the linearized theory of gravity, but they are from different perspec-
tives. One is from the geometric perspective of general relativity, the other from the
quantum field theory perspective. Which one to be used depends on the situation.
Since the subject of this thesis is the observation of primordial GWs, we will use the
geometrical language most of the time, except in the discussion of the production of

primordial GWs. Let us review the geometric description of GWs.

4.2 Geometrical Description of GWs

The geometric point of view for gravity is the viewpoint taken by general relativ-
ity. The concept of gravitational waves merges from a weak-field approximation to
Einstein’s equations.

Consider the weak-field situation
v = N + h,u,u7 |h,u,V’ <1 , (421)

and we want to expand Einstein’s equation to linear order in h,,. For the convenience

of discussion, we assume the background is a flat spacetime with the Minkowski metric

Nuv -
The calculation is straightforward; only remember that since one expands in pow-
ers of hy,, indices are raised and lowered using 7, and »*”. To linear order, the

Riemann tensor becomes
Roupy = %(auaghw + 000, hyus — 040 hap — 0aOshy) . (4.2.2)
The Ricci tensor R, = gaﬁRaﬂgy S naﬁRawy becomes
R, = %((‘Wayhm + 0%0yhyo — 0%0ahyy — 0,0,h) , (4.2.3)
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4. THEORY OF GRAVITATIONAL WAVES (GWS)

where h is also defined by h == *h,s. The curvature scalar R = g"" R, =~ 1" R,
becomes

R = 0"0"h,,, — 0°0ah. (4.2.4)

Finally, in linear approximation, the Einstein equation R,, — (1/2)Rg,, = 87G1),,
becomes

0,0 hyey + 0,0 M0, — 000"y — 10" hog = 167G T, (4.2.5)

here we define the “bar” operator as any symmetric tensor by

- 1
hp,z/ = h';w - 577;41/}% (426)

and to write the field equation in the above form we also used the relation lzzW = hy.

Equation (4.2.5) is called the linearized field equations [56).

4.2.1 Lorentz Gauge

In the linearized field equations, the ten components (4.2.5) are not all independent.
In fact, we could choose a specific coordinate in which the following conditions are
satisfied

0"hy =0, (4.2.7)

Under the above conditions, the linearized field equations (4.2.5) become a simple

form

Oh,, = —167GT,

iz

(4.2.8)

where [ = 0,0% is the d’Alembertian operator. Condition (4.2.7) is called the Lorentz
gauge condition. The choice of a particular coordinate is often called fizing the gauge.
The reason why we can impose the Lorentz gauge condition on the field equation

is as follows. First, let us consider an nfinitesimal coordinate transformations (ICT)

s I//L = M + 5/1" (429)
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where ¢ are four arbitrary functions and we require that there derivatives |0,¢,| are

not larger than |h,,|. Then, under this ICT, the metric perturbations transform as
Py = Wy = Ty — 0p — 006, - (4.2.10)

Using the above relation, we can check that the Riemann tensor (4.2.2) is invariant

under the transformation of (4.2.9); that is
R:)zuﬂy = Rauﬁu- (4.2.11)

Therefore, linearized field equations (4.2.5) are also invariant under the ICT.
Then we can use this freedom in the choice of coordinates to require that 9, /" =

0 in a new coordinate system; this requirement is equal to choosing &* so that
OEH = 0, h . (4.2.12)

Because the d’Alembertian operator is invertible, equation (4.2.12) always has a so-
lution. Therefore, we can always find a coordinate system that satisfies the Lorentz

gauge condition (4.2.7).

4.2.2 Plane Wave Solutions and the Transverse Traceless Gauge

In the case of vacuum, the linearized field equation (4.2.8) under the Lorentz gauge

reduces to the familiar wave equations
Ol = 000%hy = 0. (4.2.13)

Solutions for these wave equations are propagating gravitational perturbations called
gravitational waves (GWs).

The simplest solution to (4.2.13) is the monochromatic plane wave solution
By (x,t) = Re { A, e} | (4.2.14)
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where k2% = —kot + k - x, and Re{...} means take the real part inside the bracket.
The amplitude A, and the wave vector k, are constants. Take (4.2.14) into (4.2.13)

and (4.2.7), one obtain the following relations:

ko’ = |k|* & ko k* =0, (4.2.15)
ktA, =0; (4.2.16)

the first relation means that k* is a null vector; the second means that the wave
vector k, is orthogonal to the amplitude A, .

However, not all of the six (ten minus four fixed by Lorentz gauge) degrees of
freedom (DOF) in Buv are physical DOF. In fact, there are only two physical DOF in
the propagating wave solution (4.2.14), and the other four are residual gauge freedom.
This fact can be seen as follows.

Suppose the spacetime perturbations h,, have already under the Lorentz gauge,
that is 8“1_@“, = O*(hy — %hnu,,) = 0. Then if we perform a further ICT of (4.2.9),

the metric perturbations of course would transform like (4.2.10). However, the trans-

1
j2%

formed perturbations h/,, could still be in the Lorentz gauge, i.e., G“B;W =0, as long
as we require [J§, = 0 for the infinitesimal transformation parameter. Since [, = 0
always have solutions, we could always make this coordinate transformation under
the Lorentz gauge. Subtracting these four residual gauge freedom, we are left only
two physical degrees of freedom in B;w-

We can show that ! after some specific coordinate transformations, the metric

perturbations Ay, in (4.2.14) satisfy the conditions
huo=0, h%=0, &hy;=0. (4.2.17)

These conditions define the transverse-traceless gauge, or T'T gauge. Note that, since
h = hf; = 0, there is no difference between l_zW and h,, in TT gauge.

Consider a monochromatic plane wave propagating in the z direction. In the TT

1See, for example, Section 18.1 in reference [48].
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gauge, the constraints hj = 0, hj;" = 0, and hTTZ reveal that the only non-

vanishing components of hy,, are hy', by [, byl and h,[ which satisfy the relations

hid = —hp" = Re {A ")} (4.2.18)

RIT = pTT — Re { A, e (=1+2) 4.2.19
zy yx )

where A, and Ay represent two independent amplitudes. Introducing two polariza-

tion tensors defined as

00 0 0 0000
01 0 0 0010

e, (2) = e (2) = . (4.2.20)
00 —-1 0 0100
00 0 0 0000

A monochromatic plane wave propagating in the z direction in the TT gauge can be

written as

hir (2,t) = Re {Ap el (z) e*T1H)} (4.2.21)

where P = +, X represent two different polarization states.

Any gravitational waves can be resolved into a superposition of plane waves. We
can introduce the transverse-traceless gauge of (4.2.17) for each plane wave in the
superposition. Since these conditions are all linear in h,,, we conclude that for
arbitrary gravitational wave, one can find a special coordinate frame in which hy,

satisfies the constraints of (4.2.17), that is

by — hE,,T (for arbitrary GW) . (4.2.22)
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4.3 Cosmological GWs

In the last section, we have seen that the concept of gravitational waves is just two
propagating physical degrees of freedom among the metric perturbations. In this
section, we make a complete classification of the metric perturbations. Since the
subject of this thesis is the primordial GWs generated in inflation, we will derive the
equations governing the tensor perturbations. The background of perturbations is
assumed to be the FLRW spacetime instead of the flat spacetime of Minkowski.
Most of the derivations in this section refers to references Dodelson and Schmidt
[29], Maggiore [48] and Matsubara [55]. Two classical review articles on cosmolog-
ical perturbation theory are Kodama and Sasaki [44] and Mukhanov, Feldman and

Brandenberger [58].

4.3.1 Scalar-vector-tensor Decomposition of Metric Pertur-

bations

Let us consider an FLRW spacetime with small metric perturbations. For the con-
venience of discussion, we shall use the conformal time 7, and the comoving spatial

coordinates x as the coordinates z# = (n,x), and write the FLRW background as
ds* = a*(n) (—dn® + dx*) = a*(n) - Nuwdadz"” . (4.3.1)
Then the spacetime with perturbations h,,(n,x) can be written as
ds® = a*>(n) (N + Ry )dz*dz” . (4.3.2)

Next, we decompose the ten independent components of h,, via their behaviour
under spatial rotations. Because the time-time component hgy is invariant under

spatial rotations, it is a 3-scalar, and we write it as

hoo = 2A, (4.3.3)

30



4. THEORY OF GRAVITATIONAL WAVES (GWS)

where A(n,x) is a scalar field.
The time-space component h; transforms as a spatial vector under rotations thus,
it is a 3-vector, and we decompose it into a longitudinal part and a transverse part

by a scalar field B and a vector field E;:
where FE; satisfies the constraint
O'E; =0. (4.3.5)

The meaning of this decomposition becomes evident when we go to Fourier space.
First, we define the following convention on Fourier transform, that is, for a function

of the comoving coordinates x, f(x), its Fourier transform is defined by 2

fk) = / B f(x)e *x (4.3.6)

SO
d3k -
= k)ek* 4.3.

1) = [ G0, (137)
where k is called the comoving wavenumber. Then using this convention, we have the
correspondence:
thus in Fourier space,

hOi — hoi(na k) = Zsz(ta k) + Ez<n7 k) ) (439)

with k'E; = 0. It is clear that hg; is decomposed into a longitudinal part with a scalar
field B and a transverse part with a vector field E;.

Next is the space-space component h;;, which is a symmetric 3-tensor with six

2Usually, the function f(k) is written as f (l~{) In this thesis, as long as there is no ambiguity, we
omit this notation for the brevity of the formula.
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independent components. We decompose it as
ij

1 1
hij = —251']'0 + <&0j — 561]V2> D+ 5 (&L-Fj + a]E) + hET (4310)

where ¢;; is the Kronecker delta function and V? = 6;;0'd is the flat space Laplacian,

and with the constrains

O'F; =0, (4.3.11)
Init =0, (4.3.12)
§Yh T =0, (4.3.13)

In Fourier space, this decomposition becomes

. .
hij = —26;;C — (k;k:] — g\kmj) D+ %(k:iFj + kiFy) + bt (4.3.14)

with &'F; = 0, k'hj;" = 0, and 67hS;" = 0. That is, we decompose the six independent
components of h;; into a “scalar part” by two scalar fields C' and D, a “vector part”
by a divergence-free vector field F}, and a “tensor part” by a transverse-traceless
tensor field hiTjT.

One can prove that there is a one-to-one correspondence between h,, and the

variables {A, B,C, D, E;, F;, h:'} under the boundary conditions that

) 1]

B—0, D—=0, VD=0, F—0, (4.3.15)

at spatial infinity. Therefore the above scalar-vector-tensor decomposition is an

unique and invertible transformation.

4.3.2 The Dynamical Equation for Tensor Perturbations

In a curved background, the gauge transformation of (4.2.10) will become

T = Py = Ty = V& = V&, (4.3.16)
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where ?u is the covariant derivative with respect to the background metric g, in the
current case g, is the FLRW metric. As mentioned in the last section, the linearized
theory is invariant under this gauge transformation. So it is no surprise that not
all the variables in the scalar-vector-tensor decomposition have physical degrees of
freedom. In fact, it can be shown that the tensor perturbations are invariant under
the gauge transformation of (4.3.16):

Wit =hT. (4.3.17)
This means that the two degrees of freedom in tensor perturbations are physical
degrees of freedom. Furthermore, the decomposition theorem states that each type of
perturbations (scalar, vector and tensor) evolve independently at linear order [29].
Therefore, to determine the evolution of one specific perturbation, we do not need to
worry about other types of perturbations, at least in linear order. Let us derive the
dynamical equation for tensor perturbations, and we will see that it admits wave-like
solutions in a vacuum. These solutions represent cosmological gravitational waves.

The metric which only contains tensor perturbation is
ds® = —dt* + a*(t) (6 + hy;") da'da’ . (4.3.18)

For the convenience of discussion, we also denote the spatial metric as g;; = a*(d;; +

hi;*). What we want is the perturbed Einstein equations:
SG = 87G ST, (4.3.19)

where 0G% = 0RY 4 §,,0R. First, we need to compute the Christoffel symbol T}, in
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linear order of Ay, the result is

[0y =0=T%=T%; (4.3.20)
2
% = Hgij + %aoh?f; (4.3.21)
; 1
Ty, = Héi; + §aoh?jT; (4.3.22)
o
=5 (Oihi’ +Ohyy — Bihyy’) (4.3.23)

Note that the index of hiTjT and its derivatives 8khiTjT are raised and lowered by &%

and &;;, so there is no difference between the up and down index in them.

iJ
Then from the Christoffel symbol, we can compute the Ricci tensor R, but
what we need is only the spatial-spatial components R;; that contain the tensor

perturbation. From its definition

R = R%.;
! * ; ] (4.3.24)
= 8QF% — oIy, + Fgﬁfzj — F%Fm ,
one obtains
R, = 2H? ay 43 2H 0yhtt “—288hTT 1VQhTT 4.3.25
ij = +a 91J+2a Oij+2 0007 — 5 ij (4.3.25)
The curvature scalar R is
R=¢""R,, = inu_i 2H? a 4.3.26
=4 uw — g zg—aQ +a 5 ( )

and it does not contain any linear tensor perturbations. Therefore the left-hand side
of the perturbed Einstein equation (4.3.19) becomes dR’;. From equation (4.3.25)

and relation R'; = g** Ry;, one obtain
. 1. 1
5G; = 55* <3H Aohy; + Oodohy; — gv%gf) : (4.3.27)
We can do a similar decomposition in the energy-momentum tensor 7). The
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tensor part in the decomposition corresponds to the anisotropic stress of cosmological
constitutes. The most significant contribution to this term is the anisotropic neutrino
stress. In this thesis, we will neglect it and set the right-hand side of equation (4.3.19)
to zero for the tensor perturbations.

According to the constrains (4.3.12) and (4.3.13), the two independent components
in tensor perturbation are traceless and transverse to the wave vector k. Specialize

to the case k = €., and write h;ij as

hy hy 0
' = he —h. 0> (4.3.28)
0 0 0
then from 6G'; — 6G?5 = 0 one obtain
3Hohy + 0oOph, — $v2h+ =0, (4.3.29)

and h, obey the same equation. Change to the conformal time 1 so that 0y =

a~'d/(dn), then equation (4.3.29) become

Hy, + 2%h;, —V2hp =0, (4.3.30)

where P = +, x. These are the evolution equation for the tensor perturbations in

the FRLW spacetime.

4.4 The Generation of Primordial GWs During
Inflation

The standard inflation scenario supposes that the universe consists of a uniform and

yet unknown (but could be the scalar field we introduced in Section 3.3) inflation
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field and a uniform spacetime field described by the FLRW metric during the infla-
tion period. Upon these uniform backgrounds, there are perturbations, i.e., quantum
fluctuations in these fields. In particular, the quantum fluctuations of tensor pertur-
bation seed the inflationary primordial GWs that we are interested in this thesis. In
this section, we quantify the quantum fluctuations of tensor perturbation.

One crucial point about the initial quantum fluctuations is that they are stochastic
variables. This is because no known theory can predict for instance the initial value of
the tensor perturbation h;;(nm, %) at a specific point x in space. We can only predict
and measure the statistical properties of these stochastic variables, for example, their
mean values and correlators. While the mean value of the perturbation, (h;;(1in,X))
3 can be set to zero, the variance, i.e. the average of the square of the perturbation,
can not be set to zero. Therefore, the variance of the perturbations is observable.

It is not unreasonable to assume that the generation of the perturbation is a Gaus-
sian random process according to the central limit theorem, which asserts that the sum
of a large number of independent random processes will result in a Gaussian random
process. Under the assumption of Gaussian perturbation, all the non-trivial infor-
mation about the initial tensor perturbation is contained in the two-point correlator
(hp (Min, X) hpr (Nin, X')) because any higher-order correlator can be reduced to the sum
of the two-point correlator (see, for example, Section 3.3.4 in [19] for a proof). Any
sign of non-Gaussianity is undoubtedly valuable because it could contain informa-
tion about the specific mechanism for generating primordial perturbations. However,
since present cosmological observations are consistent with the Gaussian initial fluc-
tuations, we will assume a Gaussian initial condition in this section.

In this section, we also assume that the background spacetime is homogeneous
and isotropic, i.e. the FLRW spacetime. It does not have to be so because there are
inflation models that would break this assumption, but for the present discussion, we
would like to maintain this standard assumption. Homogeneous and isotropy means

that the background is invariant under spatial translations and rotations, which im-

3The symbol {(...) represents the ensemble average; see Section 5.4.2 for its meaning in cosmology.
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plies that the two-point correlator of perturbation (h(n,x) h(nw,x’)) * only depends

on a function of |x — x'|, i.e.,

(h(ni, %) h(1in, x')) = f(]x = x]).. (4.4.1)

It is usually more convenient to work with the Fourier modes because, according to
relation (4.3.8), the derivative operation can be simply replaced by the multiplication
of a factor. Therefore, under the convention of (4.3.6) and (4.3.7), the two-point

correlator of equation (4.4.1) becomes to
(hp (N, K) s (i, X)) = (27)% 6P (k — K') Oppr Prjn (k) - (4.4.2)

All non-trivial information about the initial tensor perturbations now is contained
in the function P ,(k), which is called the power spectrum of the primordial tensor
perturbations. Now let us compute this function.

First we write the equation (4.3.30) in Fourier space, then it becomes
/
B (0, k) + 21 (1, %) + k*h(n, k) = 0. (4.4.3)
a

We have dropped the polarisations’ subscript P for clarity. Then define a new variable
h(n, k) as
ah
167

=
Il

(4.4.4)

Q

Under the above definition, equation (4.4.3) is simplified as

1[ !
- [h + <k2 - “—) h] —0, (4.4.5)
a a

and the equation in the bracket has the same form as the equation governing the
motion of a harmonic oscillator with frequency w: # +w?x = 0. Therefore, in analogy

to the procedure of quantizing the harmonic oscillator, we could write down the

4For convenience, we have omit the index of polarization.
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quantum operator for h(n, k) as follows:

h(n, k) = x(n, k) aw + x*(n, k) ., (4.4.6)

where ay and &L are the annihilation and the creation operator correspondingly. The
annihilation operator annihilates the vacuum state |0) (or no-particle state) in a sence
that is: ax |0) = 0 for any mode k. On the other hand, the creation operator acting on
the vacuum state leads to a one-particle state, that is, a, |0) = |1x). As a requirement
of the canonical quantization procedure, the annihilation and creation operators also

should satisfy the following commutation relations:

[dk, di/] = &k&L/ - &Tk/dk = 5kk’ ; (4.4.7)
[axe, Gre] = 05 (4.4.8)
[af,al,] =0. (4.4.9)

The coefficients of the annihilation and creation operators satisfy

"

X (. k) + (k:2 _ %) X(n, k) =0. (4.4.10)

Now we can compute the quantum fluctuations of the operator h in the ground

state |0) (i.e., the vacuum expectation value of h):

([h?) = (0]Ah|0)
(4.4.11)
= (0] (x"a, + xan) (xir + X"} [0) .

According to the communication relation (4.4.7) and the definition of annihilation

operator, the above equation reduces to

() = Ix(n, k)75 (4.4.12)
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Changing the variable back to h, we then find that

(410 1) . ) = g7 (14.13)

When the (conformal) time is taken to be in the inflation, this is just the primordial
power spectrum of the tensor perturbations defined in (4.4.2).

To obtain the solution of (7, k) in equation (4.4.10), we need to determine the
scale factor and its derivative during inflation. Before doing that, let us redefine the

conformal time variable 1 by setting its origin, n = 0, at the end of inflation. That is,

t dt/
n— /t et (4.4.14)

end

where t.,q represents the cosmic time at the end of inflation. Under this convention,
t > tena (or 7 > 0) accounts for the period after inflation, while ¢t < tenq (or n < 0)
represent the period of inflation. The reason we do this is that during inflation, the
conformal time becomes very large and then changes relatively little in the following
radiation- and matter-dominated eras; if we take the lower integral limit in (4.4.14)
to be t = 0, the conformal time would not be an effective time parameter to describe
the period after inflation. Under this convention, the conformal time during inflation

can be calculated as

o qt! @] 1
_ _  da 4.4.15
" / a(t’) Haz™ anH '’ ( )

tend Qend

where we have used the fact that H is nearly constant during inflation; ay, represents
the scale factor at some moment in inflation. Form equation (4.4.15), we obtain
a =da/(dn) & —a/n and a" = 2a/n?, therefore a” /a = 2/n?. Thus the equation for
X(n, k) becomes

X (n, k) + <k:2 — %) x(n,k)=0. (4.4.16)

The initial conditions for the above equation are obtained by considering the

situation at very early times, and the mode is far inside the horizon, i.e., 1/k <
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|1/(aH)|. Using relation (4.4.15), this is equal to

1
k> —  (sub-horizon condition). (4.4.17)

bl

Then the k% term dominates, and the equation (4.4.16) reduces to the equation of
the simple harmonic oscillator which possess a normalized solution e=*"/4/2k. This
initial condition enables us to determine the appropriate solution to equation (4.4.16);

the solution is

x(n, k) = e\;; (1 - %}) : (4.4.18)

However, the perturbation is not always inside the horizon. In comoving coordinates,
the wavelength of perturbation is constant while the Hubble radius decrease during
inflation. Therefore, all the initial perturbations would become super-horizon modes

at the end of inflation, i.c., 1/k > [1/(aH)|, that is
k|n| <1 (super-horizon condition); (4.4.19)

take this limit of equation (4.4.18), we obtain

e—ikn i
li k)=—1|(—). 4.4.20
k|;|r21x(777 ) %( kn) ( )

Finally, the primordial power spectrum of GWs can be calculated from (4.4.13), which

results in

1 817G 8nGH?
R

Py(1in, k) = (1 (1, k) 1 (i, K)) (4.4.21)
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CHAPTER 5

Antipodal Angular Correlations

(AAC) of the Inflationary SGWB

From this chapter, we begin to study a unique and universal property of the infla-
tionary SGWB: the antipodal angular correlations (AAC). Since primordial GWs are
expected to be observed as one kind of stochastic background, in Section 5.1, we
briefly review how to characterize an SGWB in general. In Section 5.2, we examine
the evolution of primordial GWs by comparing their wavelength with the scale of the
universe. In Section 5.3, we derive the AAC of inflationary SGWB as a natural result
when the super-horizon mode re-enters the horizon. In Section 5.4, we discuss the

detectability of the AAC property, both in frequency and time domain analysis.

5.1 Stochastic Gravitational-wave Background

The discovery of CMB is one of the most significant in the history of cosmology.
Just like electromagnetic waves, it is not unreasonable to expect that a stochastic
background of GWs also permeates the universe. Such a SGWB might emerge from
the processes that took place in the early universe, such as the inflation models
[12, 80, 16], cosmic strings [43, 27, 77, 73], pre-Big-Bang models [50, 22, 21] and
many others [13]; we shall call such a gravitational wave background the cosmological
SGWB. An SGWB might also emerge from an incoherence superposition of unresolved
GWs that was generated by a large number of compact objects such as black-hole or

neutron star binaries [69, 30, supernovae [23], and magnetars [24]; we shall call it the
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astrophysical SGWB. In preparation for studying the inflationary SGWB later, in this
section, we introduce how to characterize an SGWB generally. Two main references
of this section are [15] and [47].

We say the gravitational waves are stochastic in the sense that their properties
can be characterized only statistically. The starting point to quantify this type of

GWs is a plane wave expansion for the tensor perturbations in a TT gauge:

[e.@]
hEt(tx) = ) / df | d*nhp(f,n)el (n)e 220 (5.1.1)
P=4,x V> 52
Here 1 is a unit vector specifying the propagation direction of a wave. The frequency
f is defined by the wave vector k through k = 27 fn. Of course, a physical frequency
of a wave is non-negative; here, the negative value of f does not mean negative energy

but represents the wave propagating in the opposite direction of n. The polarization

P

tensors e;; () (with P = +, X representing the polarizations) are defined as

where 1 and v are two unit vectors orthogonal to the propagation direction n and
to each other. The reality of h;;(¢,x) implies that the Fourier amplitudes hp(f,n)
satisfy

hp(f.0) = hp(~f,1), (5.1.4)

where * denotes the complex conjugation.

Then a stochastic gravitational wave is defined by the situation that the am-
plitudes ha(f,n) (and therefore h;;(t,x)) are random wvariables. The properties of
stochastic gravitational waves are characterized by the mean value (hp(f,n)), the
two-point correlator (h}(f1,01) hp (f2,02)), and so on.

We can make some additional statistic assumptions on the SGWB as well. For

example:

e The background is stationary. This means that all statistical quantities do
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not depend on the choice of time origin but only on the time differences. For
instance, a two-point correlator (h(t;,x;) h(tz, %)) ! can only depend on t; —

to. In Fourier space, this means that (A% (f1, 1) hp(f2,N2)) is proportional to

5(f1 - f2)

e The background is a Gaussian random process. This means that the mean
value (hp(f,n)) and the two-point correlator (h}(f1,01) hp(fa, D)) completely
specify the statistical properties of the background.

e The background is unpolarized. This means that statistically speaking, the
background contains equivalent + and X polarization components. In this case,
the two-point correlator (h%(f1,011) hp(f2,012)) is proportional to dppr and the

proportionality coefficient must be independent of the polarization index P.

e The background has no angular correlations. In this case, for instance, the two-
point correlator (h}(f1,01) hp(f2,012)) is proportional to a Dirac delta function

52 (g, Ny) which is defined as
6% (g, Ng) = §(py — d2) d(cos By — cosby), (5.1.5)

where (6, ¢) are the polar angles of n.

e The background is (statistical) isotropic 2. This condition means that all cor-
relation functions have no angular dependence. For instance, the two-point

correlator (h%(f1,101) hp(fo,Ng)) depends on n; and ny only through n; - ns.

To a first approximation, we may assume that a cosmological SGWB is an unpo-
larized, stationary Gaussian random process and does not possess any angular corre-
lation. These assumptions can be justified as follows.

The central limit theorem states that the sum of a large number of statistically

independent events produce a Gaussian random process, independent of the prob-

IFor the sake of brevity, we omit the index.
2Note that statistical isotropy does not forbid angular correlations. For example, the map of
CMB temperature is isotropic but also has angular correlations.
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ability distributions of individual events. For many early universe processes which
happened randomly on each spacetime point, the produced SGWB should be Gaus-
sian. However, for an astrophysical background that is the sum of a few GW events’
signals, the assumption of Gaussian will not be true.

To a first approximation, the CMB does not possess any angular correlations;
therefore, it is reasonable to assume that a gravitational wave background produced
in the early universe would also be like this.

The typical time scale in which a cosmological SGWB would change is the order
of the age of the universe, and it is much longer than the real observation times.
It is unlikely that the cosmological SGWB would change dramatically during an
observational time. Thus the assumption of stationary is reasonable.

Also, there is no solid theoretical reason why a stochastic background should be
polarized.

However, a cosmological SGWB could be anisotropic, either because it has an
intrinsic anisotropy, like the inflationary SGWB we will discuss later, or because of
its propagation in the inhomogeneous universe.

Under the above assumptions, the statistical properties of an SGWB is completely
determined by two quantities: the expectation value (hp(f,n)) and the two-point
correlator (hp(f,n1) hp(f',Ng)). Furthermore, the two-point correlation function

satisfies

(7)o (o)) = 6(F — ) S %00, 00) 5S(F) . (5.1.6)

where the function S, (f) is called the (single-sided) spectral density of the stochastic
background.

It is convenient to characterize an SGWB by a dimensionless quantity {2, which
describes the ratio of the SGWB'’s energy density to the total energy density of the

universe:

_ Pgw
Qo = ) 5.1.7
g Der ( )

Here, p, is called the critical density of the universe, and it is defined by the current
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Hubble constant Hy :
_ 3H;

= —. 1.
e (5.1.8)

Per

Because the universe is observed to be spatially flat with good accuracy [10], the
critical density can be taken as the present energy density. Also, pg, represents the
energy density of gravitational wave; it is related to h;;(t,x) by (see, e.g., Section

35.7 of Ref. [56])
1

- 327G

Paw (hi;h). (5.1.9)

In the literature, one often defines the background energy density as a function

of frequency Qg = Qqw(f) by

dpgw
Qo (f) = pig—;, (5.1.10)

where dp,,, represent the energy density of gravitational wave contained in the fre-
quency range f to f 4 df. Such a definition is convenient in an observational search
for the SGWDB. Still, we should remember that generally, the energy density defined
in equation (5.1.7) may also depend on directions.

Current observational constraints on the isotropic SGWB came from the first
observing run on the Advanced Laser Interferometer Gravitational Wave Observatory
(aLIGO) [4]. The result shows that the energy density of the stochastic background
is constrained to be Qg < 1.7 x 1077 in the frequency band 20 — 86 Hz, assuming a

flat energy density spectrum. Here, €, (where « is a real number) is defined by

_ "
Qg = D <fref) : (5.1.11)

and f,er is the reference frequency.
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5.2 Evolution of the Primordial GWs

5.2.1 Evolution of the Scale of the Universe

To examine the evolution of the primordial GWs, the relation between the tensor
perturbation’s size and the universe’s local scale is essential. In this subsection, we
examine the evolution of the scale of the universe.

The local scale of the universe is described by the (comoving) Hubble radius * H !
which we defined in equation (2.2.5), and it is determined by the Friedmann equation

written in the comoving coordinates

&G
= 3 a2ptot<n) ) (521)

H(n)

where pio; represents the total energy density of all components in the universe, and
it is given by

pron(n) =Y pa(n) - (5.2.2)

Here )\ represents each specie of the component. The conservation of the total energy-
momentum tensor gives a relation between the total energy density and the total
pressure pPiot-

péot + 3H(ptot + ptot) = 07 (523)

where pio; 18 equal to

Prot(1) =Y wa(n) pa(n) - (5.2.4)

The minimal components of the universe are known to be photons, neutrinos,
baryons, cold dark matter, and a cosmological constant. We describe these compo-

nents simply as radiation, matter, and a cosmological constant; therefore

Ptot = PR T PM + PA - (5.2.5)

Furthermore, we assume that the interaction rates in the processes that exchange

3To examine the evolution of the universe, it is often convenient to work in the comoving frame.
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the energy between different components are much smaller than the Hubble rate H.
Under this assumption, the conservation equation for the total energy-momentum

tensor (5.2.3) can be separated into the conservation equations for each component:
P+ 3H(L+wy)pr = 0. (5.2.6)

In terms of the scale factor, the solution of the above equation is
pala) = pro a3+ (5.2.7)

where the integral constant py o represents the energy density of the component A in
the present time. In cosmology, py o is often compared with the critical density today

po = 3HZ/(87G) and written as the energy fractions €, that is

0, = 20 (5.2.8)
Po

Then the energy density for each component are
pr=poQra "t pu=poQua®; pa=poQa. (5.2.9)
Substituting (5.2.9) into (5.2.1), one obtain
4 3 3
H = Hoa [Qra " + Qua > + Qn]* . (5.2.10)

From the current observations, we could determine the energy fraction for each com-
ponent €2,; then equation (5.2.10) tells us the evolution of the scale of the universe.

As we go to the past, the first two terms in the bracket of equation (5.2.10)
dominate, and we may neglect the cosmological constant term when estimating the
scale of the universe in the past. Also, an important moment in the history of the
universe is the transition between radiation dominance and matter dominance. This

moment, called the RD-MD equilibrium, is given by the condition pg = py; from

47



5. ANTIPODAL ANGULAR CORRELATIONS (AAC) OF THE INFLATIONARY SGWB

(5.2.9) this implies aeq = Qr/\. Then using H = a'/a, equation (5.2.10) becomes

NI

da 1 a
— ~HQ2 1+ — . 5.2.11
dn ‘ R( - aeq) ( )

Treating a/aeq as a new variable, one obtains the solution of the above equation:

1 1
2 2
(i i 1) =4 (aend n 1) , (5.2.12)
a’eq 77* aeq
1/2

where 7, = %, and ae,q represents the scale factor at the end of inflation. Since

it is much smaller than the scale factor at RD-MD equilibrium, we can also neglect

the Gena/deq term in (5.2.12) ; thus a(n) can be approximated as

2 (0
iy U T 5.2.13
s (77) ] ) (5:213)

Finally, we obtain an approximate formula of the Hubble radius H ! in the past

a(n) =~

universe:
21,
-l 2n.). (5.2.14)
2( +1.)
Letting a(n) = aeq in equation (5.2.13), we obtain the conformal time at the

RD-MD equilibrium
Teq = <\/§ - 1) . (5.2.15)

Deep in the radiation dominant, n < 7,, equation (5.2.14) gives H~! ~ n, while
deep in the matter dominant, n > 7., equation (5.2.14) then gives H~! ~ /2. On
the other hand, from (4.4.15), we get the comoving Hubble radius during inflation,
H ! = —p. In summary, in comoving coordinates, the scale of the universe evolves
as

—n inflation;

H_l X n deep in :I_:{D7 (5216)

5n deep in MD.
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Inflation Radiation Matter
Dominant Dominant  Dominant

Fig. 5.2.1: Comparing the tensor perturbations’ scales and the universe’s size in
comoving coordinates.

5.2.2 Evolution of Primordial GWs in the Homogeneous Uni-

verse

Knowing how the universe’s scale changes, let us compare this scale with the size of
the tensor perturbations. In the comoving frame, the comoving wavelength of the
perturbation, A = 27 /k (where k = |k|), is invariant. We then sketch these two scales
in Figure 5.2.1.

We see that in Figure 5.2.1 there are regions in which the perturbation size is
much smaller than the local scale of the universe: the beginning of inflation and some
areas in RD and MD. In these regions, we say that the perturbation is in the sub-
horizon regime and the mode of perturbation is a sub-horizon mode. This situation

is equivalent to the condition:

k> H(n), (5.2.17)
or in terms of the physical wavelength A, = a(t)A,

Aot H7Y(1). (5.2.18)
2T
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On the other hand, there are regions in which the perturbation size could be much
larger than the local scale of the universe. We call these regimes the super-horizon
regime and the perturbation in such regime the super-horizon mode. The condition

for the super-horizon mode can be written as

k< H(n). (5.2.19)

We see that in the inflation scenario, the initial perturbations can be generated
in the sub-horizon regime to explain the causal relation of the late-time structure of
the universe. The statistical property of the initial tensor perturbations is given by
the primordial power spectrum (4.4.21) that we introduced in the last chapter. Then
the Hubble radius shrinks as inflation continues; the perturbation size is comparable
to the universe’s local dimension and eventually becomes larger. The primordial
sub-horizon tensor perturbations thus become super-horizon modes. At this time,
these modes lose their quantum nature and become classical. After the inflation has
ended, the (comoving) Hubble radius begins to expand. When the Hubble radius is
comparable and again becomes larger than the perturbation size, the modes in the
super-horizon region cross the horizon and become sub-horizon modes once again.
The moment at which super-horizon modes become sub-horizon modes is called the
horizon re-entry. After re-entering the horizon, the primordial tensor perturbations
propagate to us as gravitational waves.

Now let us consider a classicalized super-horizon mode deep in the RD to set
up the initial conditions for the late-time sub-horizon mode. We make the follow-
ing assumptions about the super-horizon mode h;;(n,x). We assume that it can be

expanded as [85, 71]

hij(n,x) = / (;ZW’;;B 2 (k) h(n, k) el () e (5.2.20)

where h‘l’,ri(k) = hp(Mn, k) represents the primordial stochastic tensor perturbations

and its property is determined by the primordial power spectrum of (4.4.2). The
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evolution of the super-horizon mode is described by the transfer function h(n, k).
The equation of motion for the transfer function is the dynamical equation of tensor
perturbation (4.4.3) that we derived in Chapter 4; we rewrite it here for convenience

in our later discussion:
B (0, k) + 251 (1, k) + K2h(n, k) = 0. (5.2.21)
a

In comoving coordinates, the scale factor in RD evolves as a(n) o n; the factor
2a’ /a in (5.2.21) then becomes 2/n. Also, in the super-horizon regime, k < H, we

can neglect the third term in equation (5.2.21), and the equation becomes
" 2 /
h"(n, k) + ﬁh (n, k) ~0. (5.2.22)

This equation has two independent solutions: a constant mode solution and a decaying
mode solution h(n, k) o< 1/n. We only focus on the constant mode because it is the
mode that would propagate to us. The initial conditions for the later evolution of the

sub-horizon modes, therefore, can be set as

h(nsum k) = hsup(k) ; (5.2.23)
B (Nsup, k) = 0. (5.2.24)

Furthermore, since equation (5.2.21) is linear, different modes with different momen-
tum k& do not influence each other. When focusing on the evolution of a given mode,
we can set the initial value as hg,(k) = 1.

Depending on its (comoving) momentum k, a mode in the super-horizon regime
will re-enter the horizon during RD or MD. When & > H,, where H,q is the Hubble
rate in the RD-MD equilibrium moment, the mode re-enters the horizon during RD;
when k < Heq, the mode re-enters during MD 4 The value of the comoving momentum

keq when a mode enters the horizon at the RD-MD equilibrium can be obtained by

4Even larger modes never enter the horizon, and they are not observables.
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letting keq = H(7eq) in equation (5.2.14); then one obtain

2(2 — V2)

keq =
q neq

(5.2.25)

The numerical value of the conformal time at RD-MD equilibrium is about 7neq =~
109.28 Mpc (see for example, section 17.6.5 in [48]), then ke, ~ 1.53 x 1072 Mpc .
Translating it to the corresponding value of frequency, foq = keq/(27), the result is
about feq ~ 1.66 x 10717 Hz [48].

The ground-based detectors are sensitive to GWs whose frequency is in the range
10 — 10® Hz, while the planned space-based detectors could detect GWs in the range
10~*—10"! Hz. Thus from the point of view of direct observation, all detectors operate
in the regime f > f,, which corresponds to the primordial tensor perturbations that
re-entered the horizon deep in the RD. For this reason, we would consider this kind
of primordial tensor perturbations in this chapter.

In RD, equation (5.2.21) reduces to
2
(0. K) + =1 (1.K) + K*h(n.K) =0, (5.2.26)
which has the following analytic solution

~, sin(kn) cos(kn)
h(n, k) = Ay o + Ay ol (5.2.27)

However, with the initial condition of (5.2.23) and (5.2.24), we need to pick up the
former solution, i.e.,
sin(kn)

h(n, k) = hsup(k:)k—n : (5.2.28)

This is the form of the transfer function for the tensor modes that re-enter the horizon

during RD and then propagate to us.
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5.3 AAC of the Inflationary SGWB

This section shows that inflationary SGWB possesses an angular correlation between
the opposite directional GWs. This angular correlation is not contained in the astro-
physical origin SGWB. This angular correlation results from the horizon re-entering
of the super-horizon tensor mode. For simplicity, we assume that the background
universe in which the primordial GWs propagates is homogeneous (i.e., the FLRW
spacetime).

First, we write the sub-horizon mode of equation (5.2.28) in the form of
eikn _ g—ikn

h(n, k) = ik (5.3.1)

where we have set hg,,(k) = 1. The tensor perturbation of (5.2.20) in comoving

coordinates then becomes

Pk o .
hij(n,%) 2/(—Ap(n,k) el (f) [eltlocthn) _ eillochm)] (5.3.2)

27)3 g
where we have denoted Ap with

nP'(k
Ap(n, k) = 5“577) : (5.3.3)

Then we change the variable of the wavenumber k to the frequency f by k = 27 fn,
with f > 0, therefore d*k = (27)%f2dfd*n. Also, we change the variable of f to
"= —f for the first term in the bracket of (5.3.2) and rewrite the integral variable

in terms of f; (5.3.2) becomes

0
hij (1, %) = / df /S i Ap(i, — f, 1) e () e~ 27 ()
T (5.3.4)

- / df [ d*Ap(n, f,h)el(h) 2>
0 52

Next step is performing a similar change for the variable of n, n = —n’, in the

first term of equation (5.3.4). We also change the convention of polarization basis
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from the “plus-cross” convention (P = +, x), defined in (5.1.2) and (5.1.3), to the

“plus-minus” convention (P = +, —) which is defined by °

D
H
—~
(=3
N~—
Il

e (R) £ e (). (5.3.5)

According to the definitions of “plus-minus” and “plus-cross” polarization basis, we

have the relations:

e;;(—n) = ef(n). (5.3.6)

v

Then, the first term of h;;(n,x) in equation (5.3.4) can be written as:
0 . A
First term = / df | d*nA_p(n,—f,—h)e;" (0) 2> (5.3.7)
—00 S2
The final step is to change the comoving time to the cosmic time by the following

1
~ o+ (t—to)

relation:

where 1y represents the age of the universe. The time interval t, = t—t, represents the
duration of some observations. Because the observation time is far less than the age of
the universe, the scale factor in the second integration can be treated as constant. The
integrand of (5.3.7) now can be written as A_p(t,, — f, —0) e; ;" () e 27/ M0 g2mi/ (Ax=te)
Performing the same change of variables for the second term in (5.3.4) and rewrite it
in the form of plane wave expansion (5.1.1). The sub-horizon tensor mode of (5.3.2)

can be written as

hij(n,%X) = hij(t., x) = Z/ df d2nAp(f,nt) P(h) e (xt) - (5.3.9)

5Note that there is a possible confusing aspect of our notation for the polarization states. Re-
member that we only use the “plus-cross” convention in the following sections. Also, under this
convention, when P = +, —P will be F.
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27 ( 0-x+1,0) el,n'/' (N-X—1 )

s 2f (=) X,~1,)

e~ 2mif (B, —1,) ,2if (x| — 1)

e

Horizon re-entering surface

Inflation

Fig. 5.3.1: An illustration of the AAC of inflationary SGWB. Circles represent the
size of the comoving horizon of the universe. (a) and (b) Tensor perturbations are
generated in inflation and thrown to the super-horizon region. (c¢) The super-horizon
modes re-enter the horizon at some moment 7,, during RD. At each point on the hori-
zon re-entering surface, the plane-wave expansion modes of the tensor perturbation
with opposite directions (the red and blue pair of arrows) have the same amplitude;
each pair thus would form a standing wave. (d) The AAC in the inflationary SGWB
is an angular correlation between the plane-wave expansion modes from the opposite
directions n and —n (two different types of arrows at O).

where Ap(f,n,t,) is defined as
Ap(f, 0, t) = Ap(f, 0, t.) e 27 m (5.3.10)
with the relation of
Ap(f,n,t,) = —A p(—f, —n,t,)e ™m0, (5.3.11)

Relation (5.3.11) means that there is a correlation between plane wave expansion
modes in the opposite directions n and —n. We call this kind of correlation the

antipodal angular correlation (AAC) (see Figure 5.3.1). The two-point correlation
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function then becomes

(AP (e, ) A (10, £2)) = 007 = ) B 6%, ) 551(1)

X (5.3.12)
+0(f + 1) dppry ° (01, —h2) S Au(f),

where Sy, (f) represents the spectral density in (5.1.6) under the assumptions for
normal SGWB; Ay (f) is the spectral density which accounts for the anisotropic con-
tribution of the AAC.

Using relation (5.3.11), one has

(Ap(f, 0y, 1) A" p(—f, =1y, 1)) = = Au(f)
= —(Ap(f, ny, ) Ab(f, g, b)) e 2™/ (5.3.13)

- —%Sh( f)etmiim

Therefore we obtain the following relation between Sy,(f) and A, (f):

An(f) = =Sp(f) e tmm. (5.3.14)

5.4 The Detectability of AAC

In this section, we discuss whether the AAC is observable in practice.
A note on our notations: for convenience, we will come back to use hp(f,n) instead

of Ap(f,n) to denote the plane wave expansion components of the inflationary SGWB.

5.4.1 Strain Correlation Analysis

The basic idea of measuring an SGWB is correlating signals in different GW detectors

operating simultaneously. [14]. For example, the outputs in the two detectors are:
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where hy 5 and n; 5 represent detector’s responses for GW signal and detectors’ noises,
respectively. The responses for the same GW signal in different detectors would
correlate, but the noises usually would not. Therefore one may detect an SGWB by

correlating the outputs s;(t) and sy(t), that is
(s1(t) 52(t)) ~ (ha(t) ha(2)) - (5.4.3)

When we examine the detectability of the AAC in (5.3.12), one thing we should
notice is that the variable hp(f,f) © is not a variable that we directly observe. In
practice, because the observational time is limited, say by an interval T', the ob-
servational quantity for hp(f,n) is actually a quantity related to the observational
time:

T
hpr(f,h) = / dt hp(t,n) ™" (5.4.4)
0

where hp(t,n) is the time domain stochastic background:

hp(t,h) = / h df hp(f,n)e 2t (5.4.5)

Substituting (5.4.5) into (5.4.4), we obtain

o0

B (f.5) = / df b (', 8) Wr(f — ), (5.4.6)

where function Wr(z) is defined by

sin(maT)

W () e, (5.4.7)

™

If the observational time 7' is infinite, then equation (5.4.6) would be the trivial
relation hp(f,n) = ffooo df' hp(f',n)d(f—f"). However, because T' can not be infinite,
we see that rather than the Dirac delta function which picks up the value of hp(f’, 1n)
only with f = f’, in (5.4.6) it is replaced by the function Wr(z) that allows values of

6That is, the variable Ap(f,n,t,) in (5.3.12). Since the correlation relation of (5.3.12) is not
related to the variable t,, we omit it here.
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hp(f',n) in a frequency range of about Az = |f' — f| ~ 1/T. The function Wr(x)
is thus called a window function. The appearance of the window function in the
observational quantity hp.r(f,n) is inevitable due to the limitation of observational
time.

Using (5.4.6) and (5.3.12), we can compute the AAC in the strain correlations:

(g £V pr(—f =) = [ 0 S Wa(f = PE. (545)

According to (5.3.14), we have

(hpg(f,0) B pop(—f, —0)) = / df’%Sh(f’HWT(f— FIRemirm - (5.49)

[ee]

In (5.4.9), the integrand contains a phase term that oscillates with a “period” of
~ 1/(2m0) = 1/(2Tuge), where Thge is the age of the universe and 1/Tyee ~ 107 '®Hz.
Because of this phase term, unless the observational time is comparable to the uni-
verse’s age, equation (5.4.9) approximates to zero. Therefore, the AAC is not mea-

surable in the strain correlation.

5.4.2 Intensity Correlation Analysis

In the last subsection, we see that the contribution of antipodal correlation in the
strain correlation is approximately zero due to the appearance of a fast oscillating
phase factor e #™/m0_ To get rid out of this phase factor, we consider the intensity
correlations. The intensity correlation is considered for mapping an SGWB [57, 68].
Furthermore, because of the phase-decoherence effect during the propagation of GWs
in the perturbed universe, Margalit, Contaldi, and Pieroni [51] have pointed out that
only phase-incoherent methods (like the intensity map) are helpful to recover the
angular dependence of primordial GWs. Indeed, according to (5.3.11), there is no
additional phase factor in the antipodal correlation of the GW intensity:

Ip(f,0) =1 p(—f,—n), (5.4.10)
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where the intensity Ip(f,n) is defined with
Ip(f,0) = |hp(f,0)|*. (5.4.11)

On the other hand, like the "raw” strain of GW hp(f, 1), the intensity Ip(f,n) is

not an observational quantity. The observational intensity Ip.r(f,n) is given by
I (f8) = [hpa(f ). (5.4.12)
Using relations (5.3.3) and (5.3.10), we can explicitly write down Ip.p(f, 1) as follows:

Ipa(fo0) = / af’ / AF" b (f8) W (f, 8) Wil f — F)Walf — 1)

0o ) o) Y hpri f/’ﬂ h*pri f”7ﬁ —omi( f'— "o y N "
:/_xdf /_Oodf P (16w2)ngpf/;// )6 2 =0 Won(f — fYWE(S — f").

(5.4.13)

Because of the limitation of the ability of frequency resolution, the window function
Wy (rather than a Dirac Delta function) appears in (5.4.13). As a result of this, the
“undesired” phase factor e=27(/"=f") remains. Next, we consider the detectability
of antipodal correlation in two categories of inflation models: standard inflation and

anisotropic inflation.
e Standard inflation

As discussed in Section 4.4, primordial GWs are quantum fluctuations of the
FLRW spacetime and are isotropic and homogeneous in the standard single-field
slow-roll inflation model. We now examine whether we can construct an estimator of
the observational intensity to detect the AAC.

First, let us consider the one-point function (i.e. the average) of the statistical
quantity Ip.r(f,n):

Ipor = (Ipor(f,n)); (5.4.14)

where the bracket (...) denotes taking ensemble average, and Figure 5.4.1 explains
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X4

B, X;)

Universe 3

Universe 2

Universe 1

Fig. 5.4.1: The ensemble is an idealization consisting of many copies of a system.
Each copy of the system represents a possible state that the system might be in. The
ensemble average then means the average over these copies of the system. In our
discussion of cosmological perturbations, the system is the whole universe.

its meaning. Under the standard assumptions of (4.4.2) about the primordial tensor

perturbations, the one-point function does not have directional dependence, Zp.; —

IP;T(f>:

Trr(f) = (Tpalf.8)) = 3 / T f](—;f;) Wa(f = )2, (5.4.15)

and therefore, it is not a suitable estimator for revealing the directional dependence
of the antipodal correlation.
Next, let us consider the two-point function, i.e., the co-variance Ar(ny, ny; f1, fa)

of the observational intensities in two directions n; and ns:

Ar(ny, ny; f1, f2) = ((Upr(fi,01) — Zpr(f1)) (Lpir(fooD2) — Zpir(f2))) . (5.4.16)

The co-variance in the antipodal directions is thus obtained with A;(n, —n; f, —f):

Ar(h, —1; f, = f) = ((Ipr(f, ) = Zpr(f)) Upyr(=f, =) = Zpyr(=1f)))
(5.4.17)

and it reduces the correlations of the GW strain by the assumption of Gaussianity of
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hp(f, fl)

Al(ﬂ7 _ﬂv f> _f) = <hP;T(f7 ﬂ) h?—P);T(f? _ﬂ)> <h}’;T<f7 ﬂ) h(*P);T(!ﬂ _ﬂ)>
+ <hP;T(f7 ﬁ) h?—P);T<_f7 _ﬁ)> <h*P;T(f7 ﬂ) h(*PﬁT(_f? _ﬁ)>
o () By (8N + (i () By (— )P
(5.4.18)

where in the above deviation, we also used the reality condition (5.1.4).
In (5.4.18), the first term does not possess correlation; the second term is just the
square of the strain correlation (5.4.9), and it vanishes due to the oscillating phase

factor. Therefore, the co-variance of the observational intensity is approximately zero,
Ar(n, —n; f, —f) =0, (5.4.19)

and thus, it is not a suitable estimator for detecting the AAC. Higher order functions
are also of no use to detect the AAC because the property of Gaussianity reduces
them to the correlation between GW strains. Therefore, we conclude that under the

standard inflation model, there is no suitable intensity estimator to detect AAC.
e Anisotropic inflation

Apart from the standard scenario, some inflation models realized in the supergrav-
ity theory can brake the rotational symmetry [39, 40, 84, 79]. Under these models,
primordial GWs can be statistically anisotropic, and the detectability of AAC is dif-
ferent from the standard inflation case. Here, we do not focus on specific anisotropic
models but only notice that, in this case, the primordial power spectrum has a direc-

tional dependence [79], Py in(k) = Phin(k):
02 (k)0 (K)) = (27)% 6pp 6O (k — K') Pyin(k) . (5.4.20)

Therefore, unlike the standard inflation case, now the one-point function Zp,r has
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directional dependence and is also free from the oscillating phase factor *

Zpx(f,n) = (Ipx(f / df’ th K )|WT(f M7 (5.4.21)

We can describe the anisotropy of Zp.p(f, nn) by its deviation 0Zp.r(f,nn), defined
with
0Zpyr(f, 1) = Ipr(f.0) — Zpa(f) . (5.4.22)

where Zp.r(f) is the averaged intensity over the full sky,

Trrlf) = 4= [ PaTralf). (5.4.23)

™

The antipodal angular correlation of the primordial GW strain (5.3.11) ensures
that the one-point function Zp.r(f,n) also possess an antipodal angular relation:

Ipr(f,n) =Z_pr(—f,—n), and therefore, the deviation satisfies
VTpar(f ) = 0T par(—f, ). (5.4.24)

We thus conclude that under anisotropic inflation models, the inflationary SGWB
can be distinguished from other components of the SGWB if we observe (i) the non-

vanishing anisotropies 0Zp.r(f, ) and (i) their antipodal relation (5.4.24).

5.4.3 Time-domain Analysis

In previous subsections, we discussed the detectability of the AAC by the correlations
of the Fourier amplitude or the intensity and found that the detectability of the AAC
in the standard inflation model is limited by the frequency limitation due to the finite
observation time. In this subsection, we discuss the correlation between time signals
and show that the time-domain analysis with a general assumption on the primordial

GW spectrum can not detect the AAC.

"Notice that statistical homogeneity still holds, and thus 6(f — f’) appears when we change the
variable from wavenumber vector k to frequency f in (5.4.20).
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First, we define the time domain correlation function C(tg, 7,1, Ny) as
C(to, T, ﬁl, flg) = <hp<t0 — 7'/2, fll) hp/ (to -+ T/2, ﬁ2)> s (5425)

where ty and 7 represent the start time and the duration of one observation, re-
spectively. The time domain signal hp(t,n) is the inverse Fourier transform of the

stochastic variable hp(f,n):

hp(t,h) = / h df hp(f,n)e 2™t (5.4.26)

—00

The standard contribution to the correlation function of an SGWB is coming from

the same directions, n; = ny(= n). In this case, the correlation function becomes

Cs(7) = Clto, 7.0, 71) = (hp(to — 7/2, 1) hpr(to + 7/2, 1))

1 [ ,
= 6PP’§/ df Su(f) eI

o

(5.4.27)

We see that C'g(7) is independent of the start time ¢,. Therefore, statistically, we can
use the correlations hp(t — 7/2,0) hp/(t + 7/2,10) for different values of ¢ as samples
to estimate the correlation function Cg(7). The spectral density S, (f) then could be
estimated by taking the short-time Fourier transform of Cg(7).

On the other hand, the antipodal contribution to the correlation function is coming

from n; = —ny(= n). The correlation function then becomes

Ca(to) = Clto, 7.0, —n) = (hp(to — 7/2,0) hp/(to + 7/2, —1))
1 [ |
=0p(-r5 /_ df Ap(f)e ™7 (5.4.28)

o0

1 > —47mi
——drimyy [ A o,

o0

where, in the last line, we have used (5.3.14). This result is independent of the
duration time 7. Therefore, we can use the correlations hp(t —7/2,0) hp (t+7/2,11)

for different values of 7 as samples to estimate the correlation function C4(ty). The
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discussion seems to be parallel to the standard one. However, due to the phase factor
of e=#m/m the antipodal correlation function C4(to) is extremely small compared
with the standard one Cg(7) and therefore makes it almost unmeasurable.

To clarify this point, let us compute the antipodal and the standard correlation
functions for an explicit spectral density S,(f). We consider a power-law spectral
density Sp,(f) o< f~*, where o ~ 3, which is a normal assumption for an inflationary

SGWB. The antipodal correlation function (5.4.28) then becomes

1

Calty) = ) / h df f~*e 1 (5.4.29)

where T, = 4m(ny + o), and we have also assumed that the polarization states are
P = —P’. Notice that in practice, the time domain signals actually do not contain
the Fourier mode whose frequency is less than fu, = 1/7, where 7 is the time for
some observations as defined above. In addition, the spectral density Sy (f) should
have an upper cut-off frequency fiax so that the total GW energy density is finite.
Consequently, (5.4.29) becomes

1 fmax .
Calto) = —3 / df f e T (5.4.30)
fmin

Because T has a large value, the integrand in (5.4.30) highly oscillates. To estimate
this integral, we can use a method called the steepest descent [38]. Based on Cauchy’s
theorem, which states that the value of the integral does not depend on the complex
path taken, we select a new integration path [fuin, fmin + 0] U [fmin + 20, fmax + ip] U
[ fmax + P, fmax), Where p is a real number, instead of the path [fuin, fmax)- Then the

integral of C4(to) can be approximately evaluated by taking the limit of p — oc:

i 0 | -
Cal(to) = — (elfmi“T* / Ap (frnin + ip)~* e PTr — eHmaxT / dp (fmax +ip)”“ e—pﬂ) ’
0 0

(5.4.31)

where the integral along the path [fum + ip, fmax + ip] vanishes for p — oo. Also,

because of the integrand in (5.4.31) is suppressed by the function e ?%*, the main
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contribution to the integration comes from the region around p7, < 1. This is equiv-
alent to p < 1/T, < fiin < fmax. Lherefore, the first integration in (5.4.31) can be

estimated as:

Re/ dp (frin + ip) " e P ~ f;ﬁ/ dpe T = f;ﬁi“ . (5.4.32)
0 0 *

Performing the same estimation for the second integration, we can estimate Ca(to)

as

Sh(fmax) Sin(T*fmax> - Sh(fmin) Sin(T*fmin)
2T, ’

Calto) =~ (5.4.33)

On the other hand, the standard correlation function Cg(7) takes its maximun

value at 7 = 0. Taking this value in (5.4.27), we have:

O) _ 111;; - éu—na o Sh(fmax)fmax - Sh(fmin)fmin ‘

Cs(r = °o1—a) 21— )

(5.4.34)

Comparing (5.4.33) with (5.4.34), we see that the antipodal contribution is sup-
pressed by a factor of ~ 1/(fmTs) = 7/T. = O(1071°) compared with the standard
contribution. Therefore, we conclude that the AAC is almost unmeasurable in the

time-domain correlation analysis.
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CHAPTER 6

Conclusion and Discussion

Searching the inflationary SGWB is one of the main goals in future GW observations.
One of the main challenges in observing this kind of SGWB is isolating the inflationary
component from other components, like those generated by unresolvable astrophysical
sources. In this thesis, we derived a unique and universal angular correlation in the
inflationary SGWB, the antipodal angular correlation, and discussed its detectability
in actual observations.

The uniqueness of the antipodal correlation is that it results from the super- to
sub-horizon transform of the primordial GWs, while the astrophysical GWs are in the
sub-horizon regime all the time. The universal of the antipodal correlation is that it
only depends on whether the exponential expansion (i.e., inflation) happens or not but
not depends on exact inflation mechanisms. Therefore, as a distinguishable feature
between the inflationary and astrophysical SGWB, it is worthwhile to investigate
whether or not the antipodal angular correlation can be detected in observations.

Allen, Flanagan, and Papa [14] argued that the method of GW strain correla-
tion can not detect the antipodal correlation due to the practically limited frequency
resolution-ability. Furthermore, Margalit, Contaldi and Pieroni [51] pointed out that
due to the phase-decoherence effect in the propagation of GWs under the perturbed
universe, the only helpful methods in reconstructing the angular dependence in pri-
mordial GWs are phase-incoherent methods, for example, the intensity correlation.
Concerning the above facts, we then investigated the detectability of the antipodal
angular correlation in intensity correlation and time-domain analysis. The key results

are as follows:
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e Under the standard inflation scenario in which the generated primordial GWs
are statistically isotropic and homogeneous, we can not find an appropriate esti-
mator of intensity sensitive to the antipodal correlations due to the unavoidable

fast oscillating phase factor in the intensity correlations.

e On the other hand, in inflation models with statistical anisotropy, there is a
non-vanishing estimator, i.e., the one-point intensity function Zp.7(f,nn), which
is sensitive to the antipodal angular correlation. The SGWB from anisotropic
inflation can be distinguished from other components by measuring this one-

point function.

e The direct cross-correlation of GW strains in time-domain can not detect the an-
tipodal angular correlation because the antipodal contribution is much smaller
than the contribution that comes from the same directions. The undetectability
of the antipodal correlation by strain correlations is not a result of the limitation

of Fourier analysis.

Therefore, we conclude that it is possible to distinguish the anisotropic inflationary
SGWB from other types of SGWB by the unique antipodal angular correlation in the
observed GW intensity. Nevertheless, several issues still need to be clarified in actual
observations. The first one is the induced angular correlation in the inflationary
SGWRB. In our discussion of the detectability of the antipodal correlation, we assumed
the background universe is homogeneous even in the propagation of primordial GWs.
However, the real universe is not strictly homogeneous but is perturbed by matters
like stars and galaxies. These perturbations will affect the phase and the magnitude
of primordial GWs and therefore induce further angular correlations in the observed
SGWB. We need to consider the proportional effect in actual measurements.

The second one is more subtle, and it concerns the explanation and replacement
of the ensemble average in practice. In this thesis, we used the ensemble average
to define the average of all statistical quantities, like the one-point function Zp.p of
the observational intensity Ip.r(f,n): Zp.p = (Ip,r(f,n)). However, as mentioned in

Subsection 5.4.2, because in the discussion of cosmological perturbations, our system
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is the universe, and we do not have many copies of it. Therefore, in principle, we
cannot measure the ensemble average. Nevertheless, under the ergodic hypothesis,
the ensemble average can be replaced by a temporal average or a volume average,
depending on the specific problem we involve. For example, when observing a pertur-
bation over a given scale A (where A is assumed to be much smaller than the scale of
the universe), we replace the ensemble average with an average over many different
regions of size . If we want to check the AAC, which depends on directions, we
need to replace the ensemble average in intensity with a temporal average over the

GW signal. These issues in actual observations will be left for our future work.
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