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Abstract

We investigate symmetric equilibria of mutual reinforcement learning when both
players alternately learn the optimal memory-two strategies against the oppo-
nent in the repeated prisoners’ dilemma game. We provide a necessary condi-
tion for memory-two deterministic strategies to form symmetric equilibria. We
then provide three examples of memory-two deterministic strategies which form
symmetric mutual reinforcement learning equilibria. We also prove that mu-
tual reinforcement learning equilibria formed by memory-two strategies are also
mutual reinforcement learning equilibria when both players use reinforcement
learning of memory-n strategies with n > 2.
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1. Introduction

The prisoners’ dilemma is one of the simplest situations in which rational
actions of individuals do not maximize social welfare [1]. Although the best
action of each agent is defection, mutual cooperation improves the utility of
both agents. On the other hand, if the prisoners’ dilemma game is infinitely
repeated, the situation changes. In fact, mutual cooperation can be realized by
rational behavior of each agent, and this result is known as folk theorem [2].
The folk theorem was also extended to a stronger version that any individually
rational payoffs can be realized as subgame perfect equilibria [3].

At the same time, it has been pointed out by experiments that the realistic
agents like human beings are not necessarily rational, and theories of bounded
rationality have been needed [4]. One of the mainstream is modeling agents
by finite automata (agents with finite complexity) [5, 6, 7, 8, 9, 10, 11]. Es-
pecially, Abreu and Rubinstein found that the equilibrium payoffs realized by
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finite automaton selection games, where players choose finite automata as their
strategies in repeated games so as to maximize their payoffs and to minimize
the number of states of the finite automata lexicographically, are restricted to
some small region in individually rational payoffs [8]. Kalai and Stanford proved
that every subgame perfect equilibrium of repeated games can be approximated
by a subgame perfect ϵ-equilibrium of finite complexity [7]. A slightly different
approach from finite automata is modeling agents by ones with finite memory,
which recall only a finite number past periods [12]. (Although there is distinc-
tion between memory and recall in computer science, we use these two words
interchangeably.) Deterministic finite-memory strategies are contained in a class
of finite automata. Sabourian and co-workers investigated how the folk theorem
can be extended to finite-memory strategies [13, 14, 15].

Another trend of studies of bounded rationality is modeling agents as adap-
tive ones which gradually acquire favorable strategies. One of the most suc-
cessful approach is evolutionary game theory, where a population of individuals
evolves by natural selection [16]. The concept of evolutionarily stable strategy,
which is interpreted as stability against mutation, succeeded in strengthening
the concept of Nash equilibrium. However, it was also shown that any strategy
in the infinitely repeated prisoners’ dilemma game is not an evolutionarily stable
strategy, and is not stable against neutral drift [17]. There are also studies of
evolutionarily stable strategies with finite complexity [18, 19, 20]. Particularly,
Binmore and Samuelson proposed a modified version of evolutionarily stable
strategy and showed that such strategies must maximize the sum of payoffs of
two players [19]. Furthermore, many evolutionary simulations on finite-memory
strategies have been done for various population sizes, mutation rates, and types
of interaction [21, 22, 23, 24, 25, 26]. Stewart and Plotkin proposed the concept
to evolutionary robust strategies, which is an extension of evolutionarily stable
strategies to systems of finite population size and cannot be selectively replaced
by any mutant strategies [27].

Learning is another way of adaptation of human beings, and has also at-
tracted much attention in theoretical economics [28, 29, 30], computer science
[31], and complex systems theory [32, 33, 34, 35, 36, 37]. Many methods of learn-
ing have been proposed in game theory [38], and compared with experimental
results [39, 40, 41]. One of the most popular learning methods is reinforcement
learning [42]. In reinforcement learning, an agent gradually learns the optimal
policy against a stationary environment. Mutual reinforcement learning in game
theory is a more difficult problem since the existence of multiple agents makes
an environment nonstationary [43, 44, 45, 46, 47]. Several methods have been
proposed for reinforcement learning with multiple agents [48].

Recently, memory-n strategies (n periods memory strategies) with n > 1 at-
tract much attention in computational evolutionary game theory, because longer
memory enables more complicated behavior [49, 50, 51, 52, 53, 54]. Especially,
longer memory enables us to design robust strategies against implementation
errors. Since agents in evolutionary biology are organisms, which are far from
rational, it has been traditionally assumed that the length of memory of such
agents is assumed to be short. This is in contrast to chronology of game theory
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in economics, where behaviors of rational and forward-looking agents were first
studied and then memory length becomes shorter in order to describe agents
with bounded rationality. Because rationality of realistic agents is bounded,
shorter-memory strategies will be preferred if complexity is also considered.

Here, we investigate mutual reinforcement learning in the repeated prisoners’
dilemma game [1]. More explicitly, we investigate properties of equilibria formed
by learning agents when the two agents alternately learn their optimal strategies
against the opponent. In the previous study [55], it was found that, among all
deterministic memory-one strategies, only the Grim trigger strategy, the Win-
Stay Lose-Shift strategy, and the All-D strategy can form symmetric equilibrium
of mutual reinforcement learning. A natural question is “How does the set of
such equilibria grow as the length of memory increases?”. Such direction of
research can be useful when we construct strong strategies based on memory-
one strategies, as in computational evolutionary game theory. Furthermore,
we want to understand mutual reinforcement learning equilibria in terms of
strategies, not equilibrium payoffs. However, even whether the above equilibria
formed by memory-one strategies are still equilibria in memory-n settings or
not has not been known.

In this paper, we extend the analysis of Ref. [55] to memory-two strate-
gies. First, we provide a necessary condition for memory-two deterministic
strategies to form symmetric equilibria. Then we provide three non-trivial ex-
amples of memory-two deterministic strategies which form symmetric mutual
reinforcement learning equilibria. Furthermore, we also prove that mutual re-
inforcement learning equilibria formed by memory-n′ strategies are also mutual
reinforcement learning equilibria when both players use reinforcement learning
of memory-n strategies with n > n′.

This paper is organized as follows. In Section 2, we introduce the repeated
prisoners’ dilemma game with memory-n strategies, and players using reinforce-
ment learning. In Section 3, we show that the structure of the optimal strategies
is constrained by the Bellman optimality equation. In Section 4, we introduce
the concepts of mutual reinforcement learning equilibrium and symmetric equi-
librium. We then provide a necessary condition for memory-two deterministic
strategies to form symmetric equilibria. In Section 5, we provide three ex-
amples of memory-two deterministic strategies which form symmetric mutual
reinforcement learning equilibria. In Section 6, we show that mutual reinforce-
ment learning equilibria formed by memory-n′ strategies are also mutual rein-
forcement learning equilibria when both players use reinforcement learning of
memory-n strategies with n > n′. Section 7 is devoted to conclusion.

2. Model

We introduce the repeated prisoners’ dilemma game [43]. There are two
players (1 and 2) in the game. Each player chooses cooperation (C) or defection
(D) on every round. The action of player a is written as σa ∈ {C,D}. We
collectively write σ := (σ1, σ2), and call σ an action profile. We also write
the space of all possible action profiles as Ω := {C,D}2. The payoff of player
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a ∈ {1, 2} when the action profile is σ is described as ra (σ). The payoffs in the
prisoners’ dilemma game are given by

(r1 (C,C) , r1 (C,D) , r1 (D,C) , r1 (D,D)) = (R,S, T, P ) (1)

(r2 (C,C) , r2 (C,D) , r2 (D,C) , r2 (D,D)) = (R, T, S, P ) (2)

with T > R > P > S and 2R > T + S. The (time-independent) memory-
n strategy (n ≥ 1) of player a is described as the conditional probability

Ta

(
σa|
[
σ(−m)

]n
m=1

)
of taking action σa when the action profiles in the previous

n rounds are
[
σ(−m)

]n
m=1

, together with an initial condition, where we have in-

troduced the notation
[
σ(−m)

]n
m=1

:=
(
σ(−1), · · · ,σ(−n)

)
from newest to oldest

[54]. (As a strategy of bounded rational players, we use finite-memory strate-
gies, not finite automata, because the former allows strategies to be stochastic.
Although stochastic strategies are allowed in our framework, we investigate only
deterministic strategies in this paper.) We write the length of memory of player
a as na and define n := max {n1, n2}. In this paper, we assume that n is finite.

Assumption 1. Both players use time-independent finite-memory strategies.

Below we introduce the notation −a := {1, 2}\a.
We consider the situation that both players learn their optimal strategies

against the strategy of the opponent by reinforcement learning [42]. In rein-
forcement learning, each player learns mapping (called policy) from the action
profiles

[
σ(−m)

]n
m=1

in the previous n rounds to his/her action σ so as to max-
imize his/her expected future reward. We write the action of player a at round
t as σa(t). In addition, we write ra(t) := ra (σ(t)). We define the action-value
function of player a as

Qa

(
σa,
[
σ(−m)

]n
m=1

)
:= E

[ ∞∑
k=0

γkra(t+ k)

∣∣∣∣∣σa(t) = σa, [σ(s)]
t−n
s=t−1 =

[
σ(−m)

]n
m=1

]
,

(3)

where γ is a discounting factor satisfying 0 ≤ γ < 1. The action-value function

Qa

(
σa,
[
σ(−m)

]n
m=1

)
represents the expected future payoffs

∑∞
k=0 γ

kra(t+k) of

player a after round t by taking action σa when action profiles in the previous n
rounds are

[
σ(−m)

]n
m=1

. Therefore, the action-value function suggests the best
action in each action profile. It should be noted that the right-hand side does
not depend on t. Due to the property of memory-n strategies, the action-value
function Qa obeys the Bellman equation against a fixed strategy T−a of the
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opponent:

Qa

(
σa,
[
σ(−m)

]n
m=1

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
+γ
∑
σ′
a

∑
σ−a

Ta

(
σ′
a|σ,

[
σ(−m)

]n−1

m=1

)
T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
Qa

(
σ′
a,σ,

[
σ(−m)

]n−1

m=1

)
.

(4)

See Appendix A for the derivation of Eq. (4). It has been known that the
optimal policy T ∗

a and the optimal action-value function Q∗
a obeys the following

Bellman optimality equation:

Q∗
a

(
σa,
[
σ(−m)

]n
m=1

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
+γ
∑
σ−a

T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
max
σ̂

Q∗
a

(
σ̂,σ,

[
σ(−m)

]n−1

m=1

)
, (5)

with the support

suppT ∗
a

(
·|
[
σ(−m)

]n
m=1

)
= argmax

σ
Q∗

a

(
σ,
[
σ(−m)

]n
m=1

)
. (6)

See Appendix B for the derivation of Eqs. (5) and (6). In other words, in the
optimal policy against T−a, player a takes the action σa which maximizes the

value of Q∗
a

(
·,
[
σ(−m)

]n
m=1

)
when the action profiles at the previous n rounds

are
[
σ(−m)

]n
m=1

. In Q-learning, which is one of the simplest algorithms of
reinforcement learning, it is known that values of action-value functions converge
to the solutions of the Bellman optimality equation if all state-action pairs are
visited an infinite number of times [42].

We investigate the situation that players infinitely repeat the infinitely-
repeated games and players alternately learn their optimal strategies in each
game, as in Ref. [55]. We write the optimal strategy and the corresponding

optimal action-value function of player a at d-th game as T
∗(d)
a and Q

∗(d)
a , re-

spectively. Given an initial strategy T
∗(0)
2 of player 2, in the (2l − 1)-th game

(l ∈ N), player 1 learns T
∗(2l−1)
1 against T

∗(2l−2)
2 by calculating Q

∗(2l−1)
1 . In the

2l-th game, player 2 learns T
∗(2l)
2 against T

∗(2l−1)
1 by calculating Q

∗(2l)
2 . We are

interested in the fixed points of the dynamics, that is, T
∗(∞)
a and Q

∗(∞)
a .

In this paper, we mainly investigate situations that the support (6) contains
only one action, that is, strategies are deterministic. The number of determinis-
tic memory-n strategies in the repeated prisoners’ dilemma game is 22

2n

, which
increases rapidly as n increases.
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3. Structure of optimal strategies

Below we consider only the case n = 2. The Bellman optimality equation
(5) for n = 2 is

Q∗
a

(
σa,σ

(−1),σ(−2)
)

=
∑
σ−a

ra (σ)T−a

(
σ−a|σ(−1),σ(−2)

)
+γ
∑
σ−a

T−a

(
σ−a|σ(−1),σ(−2)

)
max
σ̂

Q∗
a

(
σ̂,σ,σ(−1)

)
(7)

with

suppT ∗
a

(
·|σ(−1),σ(−2)

)
= argmax

σ
Q∗

a

(
σ,σ(−1),σ(−2)

)
. (8)

The number of memory-two deterministic strategies is 216, which is quite large,
and therefore we cannot investigate all memory-two deterministic strategies as in
the case of memory-one deterministic strategies [55]. Instead, we first investigate
general properties of optimal strategies.

We introduce the matrix representation of a strategy:

Ta (σ)

:=


Ta (σ| (C,C), (C,C)) Ta (σ| (C,C), (C,D)) Ta (σ| (C,C), (D,C)) Ta (σ| (C,C), (D,D))
Ta (σ| (C,D), (C,C)) Ta (σ| (C,D), (C,D)) Ta (σ| (C,D), (D,C)) Ta (σ| (C,D), (D,D))
Ta (σ| (D,C), (C,C)) Ta (σ| (D,C), (C,D)) Ta (σ| (D,C), (D,C)) Ta (σ| (D,C), (D,D))
Ta (σ| (D,D), (C,C)) Ta (σ| (D,D), (C,D)) Ta (σ| (D,D), (D,C)) Ta (σ| (D,D), (D,D))

 .

(9)

For deterministic strategies, each component in the matrix is 0 or 1.
We now prove the following proposition:

Proposition 1. For two different action profiles σ(−2) and σ(−2)′, if

T−a

(
σ|σ(−1),σ(−2)

)
= T−a

(
σ|σ(−1),σ(−2)′

)
(∀σ) (10)

holds for some σ(−1), then

T ∗
a

(
σ|σ(−1),σ(−2)

)
= T ∗

a

(
σ|σ(−1),σ(−2)′

)
(∀σ) (11)

also holds.
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Proof. For such σ(−1), because of Eq. (7), we find

Q∗
a

(
σa,σ

(−1),σ(−2)
)

=
∑
σ−a

ra (σ)T−a

(
σ−a|σ(−1),σ(−2)

)
+γ
∑
σ−a

T−a

(
σ−a|σ(−1),σ(−2)

)
max
σ̂

Q∗
a

(
σ̂,σ,σ(−1)

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|σ(−1),σ(−2)′

)
+γ
∑
σ−a

T−a

(
σ−a|σ(−1),σ(−2)′

)
max
σ̂

Q∗
a

(
σ̂,σ,σ(−1)

)
= Q∗

a

(
σa,σ

(−1),σ(−2)′
)

(12)

for all σa. Since T ∗
a is determined by Eq. (8), we obtain Eq. (11).

This proposition implies that the structure of the matrix T ∗
a (σ) is the same

as that of T−a(σ). For deterministic strategies, in order to see this in more
detail, we introduce the following sets for a ∈ {1, 2} and σ(−1) ∈ Ω:

N (a)
x

(
σ(−1)

)
:=

{
σ(−2) ∈ Ω

∣∣∣Ta

(
C|σ(−1),σ(−2)

)
= x

}
, (13)

where x ∈ {0, 1}. That is, N
(a)
1

(
σ(−1)

)
describes the set of σ(−2) such that

player a using strategy Ta cooperates after the history
[
σ(−m)

]2
m=1

. Simi-

larly, N
(a)
0

(
σ(−1)

)
describes the set of σ(−2) such that player a using strat-

egy Ta defects after the history
[
σ(−m)

]2
m=1

. We remark that N
(a)
0

(
σ(−1)

)
∪

N
(a)
1

(
σ(−1)

)
= Ω for all a and σ(−1). Then, Proposition 1 leads the following

corollary:

Corollary 1. For a deterministic strategy T−a of player −a, if the optimal strat-
egy T ∗

a of player a against T−a is also deterministic, then one of the following
four relations holds for each σ(−1) ∈ Ω:

(a) N
(a)
x

(
σ(−1)

)
= N

(−a)
x

(
σ(−1)

)
for all x

(b) N
(a)
x

(
σ(−1)

)
= N

(−a)
1−x

(
σ(−1)

)
for all x

(c) N
(a)
0

(
σ(−1)

)
= N

(−a)
0

(
σ(−1)

)
∪N

(−a)
1

(
σ(−1)

)
= Ω and N

(a)
1

(
σ(−1)

)
= ∅

(d) N
(a)
1

(
σ(−1)

)
= N

(−a)
0

(
σ(−1)

)
∪N

(−a)
1

(
σ(−1)

)
= Ω and N

(a)
0

(
σ(−1)

)
= ∅.

4. Symmetric equilibrium

In this section, we investigate symmetric equilibrium of mutual reinforcement
learning.

First, we introduce the notation C := D, D := C, and π (σ1, σ2) := (σ2, σ1).
We define the word same strategy.
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Definition 1. A strategy Ta of player a is the same strategy as that of player
−a iff

Ta

(
σ|σ(−1),σ(−2)

)
= T−a

(
σ|π

(
σ(−1)

)
, π
(
σ(−2)

))
(14)

for all σ, σ(−1) and, σ(−2).

Next, we introduce equilibria achieved by mutual reinforcement learning.

Definition 2. A pair of strategy T1 and T2 is a mutual reinforcement learning
equilibrium iff Ta is the optimal strategy against T−a for a = 1, 2.

We emphasize that such equilibria are defined only for a time-independent
part of finite-memory strategies Ta, although finite-memory strategies of play-
ers are generally defined as a pair of a time-independent part Ta and an initial
condition. This definition is in contrast to that of Nash equilibrium or sub-
game perfect equilibrium. When some appropriate initial condition is chosen, it
becomes a subgame perfect equilibrium of all time-independent finite-memory
strategies. In addition, because the optimal policy is determined by compar-
ing the action-value functions, which are functions of finite-length histories in-
cluding off-equilibrium path, mutual reinforcement learning equilibrium is quite
different from Nash equilibrium.

We also remark that a mutual reinforcement learning equilibrium can be
achieved by Q-learning if all state-action pairs are visited an infinite number
of times as mentioned above, and if an initial strategy of player 2 is appropri-
ate. Even if not all state-action pairs are visited an infinite number of times,
we can obtain the mutual reinforcement learning equilibrium by introducing
infinitesimal error probability to the opponent’s strategy as in Ref. [55].

For deterministic mutual reinforcement learning equilibria, the following
proposition is the direct consequence of Corollary 1.

Proposition 2. For mutual reinforcement learning equilibria formed by deter-
ministic strategies, one of the following two relations holds for each σ(−1) ∈ Ω:

(a) N
(1)
x

(
σ(−1)

)
= N

(2)
x

(
σ(−1)

)
for all x

(b) N
(1)
x

(
σ(−1)

)
= N

(2)
1−x

(
σ(−1)

)
for all x.

Proof. According to Corollary 1, one of the four situations (a)-(d) holds for the
optimal strategy T1 against T2. However, because T2 is also the optimal strategy
against T1, the cases (c) and (d) are excluded or integrated into the case (a) or
(b).

Furthermore, we introduce symmetric equilibria of mutual reinforcement
learning.

Definition 3. A pair of strategy T1 and T2 is a symmetric mutual reinforcement
learning equilibrium iff Ta is the optimal strategy against T−a and Ta is the same
strategy as T−a for a = 1, 2.
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It should be noted that the deterministic optimal strategies can be written
as

T ∗
a

(
σ|σ(−1),σ(−2)

)
= I

(
Q∗

a

(
σ,σ(−1),σ(−2)

)
> Q∗

a

(
σ,σ(−1),σ(−2)

))
,

(15)

where I(· · · ) is the indicator function that returns 1 when · · · holds and 0
otherwise. We also introduce the following sets for a ∈ {1, 2} and σ(−1) ∈ Ω:

Ñ (a)
x

(
σ(−1)

)
:=

{
σ(−2) ∈ Ω

∣∣∣Ta

(
C|σ(−1), π

(
σ(−2)

))
= x

}
, (16)

where x ∈ {0, 1}. We now prove the first main result of this paper.

Theorem 1. For symmetric mutual reinforcement learning equilibria formed
by deterministic strategies, the following relations must hold:

(a) For σ(−1) ∈ {(C,C), (D,D)},

Ta

(
C|σ(−1), (C,D)

)
= Ta

(
C|σ(−1), (D,C)

)
(17)

for all a.

(b) For σ(−1) ∈ {(C,D), (D,C)},

N (a)
x

(
π
(
σ(−1)

))
= Ñ (a)

x

(
σ(−1)

)
(∀x) (18)

or

N (a)
x

(
π
(
σ(−1)

))
= Ñ

(a)
1−x

(
σ(−1)

)
(∀x) (19)

holds.

Proof. For σ(−1) ∈ {(C,C), (D,D)}, π
(
σ(−1)

)
= σ(−1) holds. Because T1 and

T2 are the same strategies as each other,

T1

(
C|σ(−1),σ(−2)

)
= T2

(
C|σ(−1),σ(−2)

) (
σ(−2) ∈ {(C,C), (D,D)}

)
(20)

holds. This and Proposition 2 imply that N
(1)
x

(
σ(−1)

)
= N

(2)
x

(
σ(−1)

)
(∀x ∈

{0, 1}) must holds. On the other hand, due to Eq. (14),

T1

(
C|σ(−1), (C,D)

)
= T2

(
C|σ(−1), (D,C)

)
(21)

T1

(
C|σ(−1), (D,C)

)
= T2

(
C|σ(−1), (C,D)

)
(22)

also hold. This means that, if (C,D) ∈ N
(1)
x

(
σ(−1)

)
, then (D,C) ∈ N

(2)
x

(
π
(
σ(−1)

))
=

N
(2)
x

(
σ(−1)

)
= N

(1)
x

(
σ(−1)

)
, leading to Eq. (17).

9



For σ(−1) ∈ {(C,D), (D,C)}, because T1 and T2 are the same strategies as
each other,

T2

(
C|π

(
σ(−1)

)
,σ(−2)

)
= T1

(
C|σ(−1), π

(
σ(−2)

))
(23)

holds for ∀σ(−2) ∈ Ω. This means that

N (2)
x

(
π
(
σ(−1)

))
= Ñ (1)

x

(
σ(−1)

)
(∀x ∈ {0, 1}) (24)

holds. On the other hand, Proposition 2 implies that

N (1)
x

(
π
(
σ(−1)

))
= N (2)

x

(
π
(
σ(−1)

))
(∀x ∈ {0, 1}) (25)

or

N (1)
x

(
π
(
σ(−1)

))
= N

(2)
1−x

(
π
(
σ(−1)

))
(∀x ∈ {0, 1}) (26)

must hold. By combining Eq. (24) and Eq. (25) or (26), we obtain Eq. (18) or
(19).

Theorem 1 provides a necessary condition for a deterministic strategy to
form a symmetric mutual reinforcement learning equilibrium. In particular,
Eqs. (18) and (19) imply that the second row and the third row of Ta cannot be
independent of each other. Explicitly, Ta must be one of the following 8 forms:

a1 b1 b1 a2
c1 c1 c1 c1
d1 d1 d1 d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 c1 c1 1− c1
d1 d1 d1 1− d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 c1 1− c1 c1
d1 1− d1 d1 d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 c1 1− c1 1− c1
d1 1− d1 d1 1− d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 1− c1 c1 c1
d1 d1 1− d1 d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 1− c1 c1 1− c1
d1 d1 1− d1 1− d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 1− c1 1− c1 c1
d1 1− d1 1− d1 d1
a3 b2 b2 a4

 ,


a1 b1 b1 a2
c1 1− c1 1− c1 1− c1
d1 1− d1 1− d1 1− d1
a3 b2 b2 a4

 , (27)

where ai, bj , c1, d1 ∈ {0, 1} (i = 1, 2, 3, 4), (j = 1, 2) independently. For example,
the Tit-for-Tat-anti-Tit-for-Tat (TFT-ATFT) strategy [50]

T1 (C) =


1 1 1 1
0 0 0 1
0 1 0 1
1 0 1 0

 , (28)
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does not satisfy the condition of Theorem 1, and therefore it cannot form a
symmetric mutual reinforcement learning equilibrium. However, there are still
many memory-two strategies which satisfy the necessary condition, and further
refinement will be needed.

5. Examples of deterministic strategies forming symmetric equilib-
rium

In this section, we provide three examples of memory-two deterministic
strategies forming symmetric mutual reinforcement learning equilibrium. For
convenience, we define the following sixteen quantities:

q1 := R+ γmax
σ

Q∗
1 (σ, (C,C), (C,C)) (29)

q2 := T + γmax
σ

Q∗
1 (σ, (D,C), (C,C)) (30)

q3 := S + γmax
σ

Q∗
1 (σ, (C,D), (C,C)) (31)

q4 := P + γmax
σ

Q∗
1 (σ, (D,D), (C,C)) (32)

q5 := R+ γmax
σ

Q∗
1 (σ, (C,C), (C,D)) (33)

q6 := T + γmax
σ

Q∗
1 (σ, (D,C), (C,D)) (34)

q7 := S + γmax
σ

Q∗
1 (σ, (C,D), (C,D)) (35)

q8 := P + γmax
σ

Q∗
1 (σ, (D,D), (C,D)) (36)

q9 := R+ γmax
σ

Q∗
1 (σ, (C,C), (D,C)) (37)

q10 := T + γmax
σ

Q∗
1 (σ, (D,C), (D,C)) (38)

q11 := S + γmax
σ

Q∗
1 (σ, (C,D), (D,C)) (39)

q12 := P + γmax
σ

Q∗
1 (σ, (D,D), (D,C)) (40)

q13 := R+ γmax
σ

Q∗
1 (σ, (C,C), (D,D)) (41)

q14 := T + γmax
σ

Q∗
1 (σ, (D,C), (D,D)) (42)

q15 := S + γmax
σ

Q∗
1 (σ, (C,D), (D,D)) (43)

q16 := P + γmax
σ

Q∗
1 (σ, (D,D), (D,D)) (44)

11



The Bellman optimality equation for symmetric equilibrium is

Q∗
1

(
σ1,σ

(−1),σ(−2)
)

=
∑
σ2

{
r1 (σ) + max

σ̂
Q∗

1

(
σ̂,σ,σ(−1)

)}
×I
(
Q∗

1

(
σ2, π

(
σ(−1)

)
, π
(
σ(−2)

))
> Q∗

1

(
σ2, π

(
σ(−1)

)
, π
(
σ(−2)

)))
.

(45)

We want to find solutions of this equation.

5.1. Delayed Grim trigger strategy

The first candidate of the solution of Eq. (45) is

T1 (C) = T2 (C) =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 . (46)

We can easily check that this strategy satisfies the necessary condition for sym-
metric equilibrium in Theorem 1. Because this strategy is a variant of the Grim
trigger strategy [56]

T1 (C) =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 (47)

but uses only information at the second last action profile, the strategy (46) can
be called as delayed Grim strategy.

Theorem 2. A pair of the strategy (46) forms a symmetric mutual reinforce-

ment learning equilibrium if γ >
√

T−R
T−P .

Proof. The Bellman optimality equation against the strategy (46) is

Q∗
1 (C, (C,C), (C,C)) = q1 (48)

Q∗
1 (D, (C,C), (C,C)) = q2 (49)

Q∗
1

(
C, (C,C),σ(−2)

)
= q3

(
σ(−2) ̸= (C,C)

)
(50)

Q∗
1

(
D, (C,C),σ(−2)

)
= q4

(
σ(−2) ̸= (C,C)

)
(51)

Q∗
1 (C, (C,D), (C,C)) = q5 (52)

Q∗
1 (D, (C,D), (C,C)) = q6 (53)

Q∗
1

(
C, (C,D),σ(−2)

)
= q7

(
σ(−2) ̸= (C,C)

)
(54)

Q∗
1

(
D, (C,D),σ(−2)

)
= q8

(
σ(−2) ̸= (C,C)

)
(55)
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Q∗
1 (C, (D,C), (C,C)) = q9 (56)

Q∗
1 (D, (D,C), (C,C)) = q10 (57)

Q∗
1

(
C, (D,C),σ(−2)

)
= q11

(
σ(−2) ̸= (C,C)

)
(58)

Q∗
1

(
D, (D,C),σ(−2)

)
= q12

(
σ(−2) ̸= (C,C)

)
(59)

Q∗
1 (C, (D,D), (C,C)) = q13 (60)

Q∗
1 (D, (D,D), (C,C)) = q14 (61)

Q∗
1

(
C, (D,D),σ(−2)

)
= q15

(
σ(−2) ̸= (C,C)

)
(62)

Q∗
1

(
D, (D,D),σ(−2)

)
= q16

(
σ(−2) ̸= (C,C)

)
(63)

with the self-consistency condition

q1 > q2

q3 < q4

q5 > q6

q7 < q8

q9 > q10

q11 < q12

q13 > q14

q15 < q16. (64)

The solution is

q1 =
1

1− γ
R (65)

q2 = T +
γ

1− γ2
R+

γ2

1− γ2
P (66)

q3 = S +
γ

1− γ2
R+

γ2

1− γ2
P (67)

q4 =
1

1− γ2
P +

γ

1− γ2
R (68)

q5 = q9 = q13 =
1

1− γ2
R+

γ

1− γ2
P (69)

q6 = q10 = q14 = T +
γ

1− γ
P (70)

q7 = q11 = q15 = S +
γ

1− γ
P (71)

q8 = q12 = q16 =
1

1− γ
P. (72)
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For these solution, the inequalities (64) are satisfied if

γ >

√
T −R

T − P
. (73)

We remark that the condition (73) is more strict than the condition that
Grim forms a symmetric equilibrium [55]: γ > T−R

T−P .

5.2. Delayed Win-Stay Lose-Shift strategy

The second candidate of the solution of Eq. (45) is

T1 (C) = T2 (C) =


1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1

 . (74)

We can easily check that this strategy satisfies the necessary condition for sym-
metric equilibrium in Theorem 1. Because this strategy is a variant of the
Win-Stay Lose-Shift (WSLS) strategy [22]

T1 (C) =


1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1

 (75)

but uses only information at the second last action profile, the strategy (74) can
be called as delayed WSLS strategy.

Theorem 3. When 2R > T + P holds, a pair of the strategy (74) forms a

symmetric mutual reinforcement learning equilibrium if γ >
√

T−R
R−P .

Proof. The Bellman optimality equation against the strategy (74) is

Q∗
1

(
C, (C,C),σ(−2)

)
= q1

(
σ(−2) ∈ {(C,C), (D,D)}

)
(76)

Q∗
1

(
D, (C,C),σ(−2)

)
= q2

(
σ(−2) ∈ {(C,C), (D,D)}

)
(77)

Q∗
1

(
C, (C,C),σ(−2)

)
= q3

(
σ(−2) ∈ {(C,D), (D,C)}

)
(78)

Q∗
1

(
D, (C,C),σ(−2)

)
= q4

(
σ(−2) ∈ {(C,D), (D,C)}

)
(79)

Q∗
1

(
C, (C,D),σ(−2)

)
= q5

(
σ(−2) ∈ {(C,C), (D,D)}

)
(80)

Q∗
1

(
D, (C,D),σ(−2)

)
= q6

(
σ(−2) ∈ {(C,C), (D,D)}

)
(81)

Q∗
1

(
C, (C,D),σ(−2)

)
= q7

(
σ(−2) ∈ {(C,D), (D,C)}

)
(82)

Q∗
1

(
D, (C,D),σ(−2)

)
= q8

(
σ(−2) ∈ {(C,D), (D,C)}

)
(83)
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Q∗
1

(
C, (D,C),σ(−2)

)
= q9

(
σ(−2) ∈ {(C,C), (D,D)}

)
(84)

Q∗
1

(
D, (D,C),σ(−2)

)
= q10

(
σ(−2) ∈ {(C,C), (D,D)}

)
(85)

Q∗
1

(
C, (D,C),σ(−2)

)
= q11

(
σ(−2) ∈ {(C,D), (D,C)}

)
(86)

Q∗
1

(
D, (D,C),σ(−2)

)
= q12

(
σ(−2) ∈ {(C,D), (D,C)}

)
(87)

Q∗
1

(
C, (D,D),σ(−2)

)
= q13

(
σ(−2) ∈ {(C,C), (D,D)}

)
(88)

Q∗
1

(
D, (D,D),σ(−2)

)
= q14

(
σ(−2) ∈ {(C,C), (D,D)}

)
(89)

Q∗
1

(
C, (D,D),σ(−2)

)
= q15

(
σ(−2) ∈ {(C,D), (D,C)}

)
(90)

Q∗
1

(
D, (D,D),σ(−2)

)
= q16

(
σ(−2) ∈ {(C,D), (D,C)}

)
(91)

with the self-consistency condition

q1 > q2

q3 < q4

q5 > q6

q7 < q8

q9 > q10

q11 < q12

q13 > q14

q15 < q16. (92)

The solution is

q1 = q13 =
1

1− γ
R (93)

q2 = q14 = T + γR+ γ2P +
γ3

1− γ
R (94)

q3 = q15 = S + γR+ γ2P +
γ3

1− γ
R (95)

q4 = q16 = P +
γ

1− γ
R (96)

q5 = q9 = R+ γP +
γ2

1− γ
R (97)

q6 = q10 = T + γP + γ2P +
γ3

1− γ
R (98)

q7 = q11 = S + γP + γ2P +
γ3

1− γ
R (99)

q8 = q12 = P + γP +
γ2

1− γ
R. (100)
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For these solution, the inequalities (92) are satisfied if

γ >

√
T −R

R− P
. (101)

It should be noted that such γ < 1 exists only if 2R > T + P .

We remark that the condition (101) is more strict than the condition that
WSLS forms a symmetric equilibrium [55]: γ > T−R

R−P .

5.3. All-or-None strategy

The third example of the solution of Eq. (45) is the All-or-None strategy
AON2 [51]:

T1 (C) = T2 (C) =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (102)

We can easily check that this strategy satisfies the necessary condition for sym-
metric equilibrium in Theorem 1. It has been known that AON2 forms subgame
perfect equilibrium [51]. A similar strategy as AON2 was also observed in nu-
merical simulation of evolution of cooperation [57].

Theorem 4. When 3R− 2P − T > 0 and 2R− 3P + S > 0 hold, a pair of the
strategy (102) forms a symmetric mutual reinforcement learning equilibrium if

γ > max

{
1

2

(√
4T − 3R− P

R− P
− 1

)
,
1

2

(√
R+ 3P − 4S

R− P
− 1

)}
.(103)

Proof. The Bellman optimality equation against the strategy (102) is

Q∗
1

(
C, (C,C),σ(−2)

)
= q1

(
σ(−2) ∈ {(C,C), (D,D)}

)
(104)

Q∗
1

(
D, (C,C),σ(−2)

)
= q2

(
σ(−2) ∈ {(C,C), (D,D)}

)
(105)

Q∗
1

(
C, (C,C),σ(−2)

)
= q3

(
σ(−2) ∈ {(C,D), (D,C)}

)
(106)

Q∗
1

(
D, (C,C),σ(−2)

)
= q4

(
σ(−2) ∈ {(C,D), (D,C)}

)
(107)

Q∗
1

(
C, (C,D),σ(−2)

)
= q7

(
σ(−2) ∈ Ω

)
(108)

Q∗
1

(
D, (C,D),σ(−2)

)
= q8

(
σ(−2) ∈ Ω

)
(109)

Q∗
1

(
C, (D,C),σ(−2)

)
= q11

(
σ(−2) ∈ Ω

)
(110)

Q∗
1

(
D, (D,C),σ(−2)

)
= q12

(
σ(−2) ∈ Ω

)
(111)
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Q∗
1

(
C, (D,D),σ(−2)

)
= q13

(
σ(−2) ∈ {(C,C), (D,D)}

)
(112)

Q∗
1

(
D, (D,D),σ(−2)

)
= q14

(
σ(−2) ∈ {(C,C), (D,D)}

)
(113)

Q∗
1

(
C, (D,D),σ(−2)

)
= q15

(
σ(−2) ∈ {(C,D), (D,C)}

)
(114)

Q∗
1

(
D, (D,D),σ(−2)

)
= q16

(
σ(−2) ∈ {(C,D), (D,C)}

)
(115)

with the self-consistency condition

q1 > q2

q3 < q4

q7 < q8

q11 < q12

q13 > q14

q15 < q16. (116)

The solution is

q1 = q13 =
1

1− γ
R (117)

q2 = q14 = T + γP + γ2P +
γ3

1− γ
R (118)

q3 = q7 = q11 = q15 = S + γP + γ2P +
γ3

1− γ
R (119)

q4 = q16 = P +
γ

1− γ
R (120)

q8 = q12 = P + γP +
γ2

1− γ
R. (121)

For these solution, the inequalities (116) are satisfied if

(R− P )γ2 + (R− P )γ − (T −R) > 0 (122)

and

(R− P )γ2 + (R− P )γ − (P − S) > 0, (123)

which are equivalent to Eq. (103) for γ ≥ 0. It should be noted that such γ < 1
exists only if 3R− 2P − T > 0 and 2R− 3P + S > 0.

6. Optimality in longer memory

In previous sections, we investigated symmetric equilibrium of mutual re-
inforcement learning when both players use memory-two strategies, and ob-
tained three examples of deterministic strategies forming symmetric equilib-
rium. A natural question is “Do these strategies forming symmetric equilibrium
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in memory-two reinforcement learning also form symmetric equilibrium of mu-
tual reinforcement learning of longer memory strategies?”. In this section, we
show that the answer to this question is “yes”.

We first prove the following theorem.

Theorem 5. Let T−a be a memory-n′ strategy of player −a. Let T ∗
a be the op-

timal strategy of player a against T−a when player a use reinforcement learning
of memory-n′ strategies. When player a use reinforcement learning of memory-
n strategies with n > n′ to obtain the optimal strategy Ť ∗

a against T−a, then
Ť ∗
a = T ∗

a .

Proof. When player −a use memory-n′ strategy and player a use memory-n re-
inforcement learning with n > n′, the Bellman optimality equation (5) becomes

Q∗
a

(
σa,
[
σ(−m)

]n
m=1

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|

[
σ(−m)

]n′

m=1

)

+γ
∑
σ−a

T−a

(
σ−a|

[
σ(−m)

]n′

m=1

)
max
σ̂

Q∗
a

(
σ̂,σ,

[
σ(−m)

]n−1

m=1

)
.

(124)

Then, we find that the right-hand side does not depend on σ(−n), and therefore

Q∗
a

(
σa,
[
σ(−m)

]n
m=1

)
= Q∗

a

(
σa,
[
σ(−m)

]n−1

m=1

)
(125)

Then, the Bellman optimality equation becomes

Q∗
a

(
σa,
[
σ(−m)

]n−1

m=1

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|

[
σ(−m)

]n′

m=1

)

+γ
∑
σ−a

T−a

(
σ−a|

[
σ(−m)

]n′

m=1

)
max
σ̂

Q∗
a

(
σ̂,σ,

[
σ(−m)

]n−2

m=1

)
.

(126)

By repeating the same argument until the length of memory decreases to n′, we
find that

Q∗
a

(
σa,
[
σ(−m)

]n
m=1

)
= Q∗

a

(
σa,
[
σ(−m)

]n′

m=1

)
, (127)

which implies that Ť ∗
a = T ∗

a .
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That is, when the opponent −a uses a memory-two strategy T−a, and player
a learns the optimal memory-n strategy with n ≥ 2 against T−a, then, such op-
timal strategy is memory-two. Similarly, when the opponent −a uses a memory-
one strategy, and player a learns the optimal memory-n strategy with n ≥ 1,
then, such optimal strategy is memory-one.

This theorem results in the following corollary.

Corollary 2. A mutual reinforcement learning equilibrium obtained by memory-
n′ reinforcement learning is also a mutual reinforcement learning equilibrium
obtained by memory-n reinforcement learning with n > n′.

Therefore, the strategies (46) and (74) in the previous section also form mu-
tual reinforcement learning equilibria even if players use memory-n reinforce-
ment learning with n > 2. Similarly, the (memory-one) Grim strategy and the
(memory-one) WSLS strategy still form mutual reinforcement learning equilib-
ria even if players use memory-two reinforcement learning, since it has been
known that Grim and WSLS form memory-one mutual reinforcement learning
equilibria, respectively [55]. We remark that this property is similar to that
of Nash equilibrium in finite automaton selection game, which claims that two
automata must have an equal number of states in equilibria [8].

7. Conclusion

In this paper, we investigated symmetric equilibrium of mutual reinforce-
ment learning when both players use memory-two deterministic strategies in the
repeated prisoners’ dilemma game. First, we find that the structure of the op-
timal strategies is constrained by the Bellman optimality equation (Proposition
1). Then, we find a necessary condition for deterministic symmetric equilib-
rium of mutual reinforcement learning (Theorem 1). Furthermore, we provided
three examples of memory-two deterministic strategies which form symmetric
mutual reinforcement learning equilibrium, some of which can be regarded as
variants of the Grim strategy and the WSLS strategy (Theorem 2, Theorem 3
and Theorem 4). Finally, we proved that mutual reinforcement learning equilib-
ria achieved by memory-two strategies are also mutual reinforcement learning
equilibria when both players use reinforcement learning of memory-n strategies
with n > 2 (Theorem 5).

We want to investigate whether other symmetric mutual reinforcement learn-
ing equilibria of deterministic memory-two strategies exist or not in future. For
such purpose, novel methods are needed, because the number of strategies is
quite large. Furthermore, extension of our analysis to (i) asymmetric equilib-
rium and (ii) mixed strategies is also a subject of future work. Ultimately, if
we would develop some method to find all equilibria in all length of memory n,
analysis of mutual reinforcement learning equilibria is completed.
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Appendix A. Derivation of Eq. (4)

First we introduce the notation

T
(
σ|
[
σ(−m)

]n
m=1

)
:=

2∏
a=1

Ta

(
σa|
[
σ(−m)

]n
m=1

)
. (A.1)

We remark that the joint probability distribution of the action profiles σ(µ),
· · · , σ(0) given

[
σ(−m)

]n
m=1

is described as

P
(
σ(µ), · · · ,σ(0)

∣∣∣[σ(−m)
]n
m=1

)
=

µ∏
s=0

T
(
σ(s)

∣∣∣ [σ(s−m)
]n
m=1

)
. (A.2)
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The action-value function (3) is rewritten as

Qa

(
σ(0)
a ,
[
σ(−m)

]n
m=1

)
=

∑
[σ(s)]

∞
s=1

∑
σ
(0)
−a

∞∑
k=0

γkra

(
σ(k)

){ ∞∏
s=1

T
(
σ(s)

∣∣∣ [σ(s−m)
]n
m=1

)}

×T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)
=

∑
[σ(s)]

∞
s=1

∑
σ
(0)
−a

[
ra

(
σ(0)

)
+ γ

∞∑
k=0

γkra

(
σ(k+1)

)]

×

{ ∞∏
s=1

T
(
σ(s)

∣∣∣ [σ(s−m)
]n
m=1

)}
T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)
=

∑
σ
(0)
−a

ra

(
σ(0)

)
T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)

+γ
∑

[σ(s)]
∞
s=1

∑
σ
(0)
−a

∞∑
k=0

γkra

(
σ(k+1)

){ ∞∏
s=2

T
(
σ(s)

∣∣∣ [σ(s−m)
]n
m=1

)}

×T−a

(
σ
(1)
−a

∣∣∣ [σ(1−m)
]n
m=1

)
Ta

(
σ(1)
a

∣∣∣ [σ(1−m)
]n
m=1

)
T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)
=

∑
σ
(0)
−a

ra

(
σ(0)

)
T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)
+γ
∑
σ
(1)
a

∑
σ
(0)
−a

Qa

(
σ(1)
a ,
[
σ(1−m)

]n
m=1

)
Ta

(
σ(1)
a

∣∣∣ [σ(1−m)
]n
m=1

)
T−a

(
σ
(0)
−a

∣∣∣ [σ(−m)
]n
m=1

)
,

(A.3)

which is Eq. (4).
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Appendix B. Derivation of Eqs. (5) and (6)

We define Q∗
a as the optimal value of Qa, which is obtained by choosing

optimal policy T ∗
a . Then, Q

∗
a obeys

Q∗
a

(
σa,
[
σ(−m)

]n
m=1

)
=

∑
σ−a

ra (σ)T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
+γ
∑
σ′
a

∑
σ−a

T ∗
a

(
σ′
a|σ,

[
σ(−m)

]n−1

m=1

)
T−a

(
σ−a|

[
σ(−m)

]n
m=1

)
Q∗

a

(
σ′
a,σ,

[
σ(−m)

]n−1
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The equality in the third line holds when

suppT ∗
a

(
·|
[
σ(−m)

]n
m=1

)
= argmax

σ
Q∗

a

(
σ,
[
σ(−m)

]n
m=1

)
, (B.2)

which is Eq. (6).
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