LN DS

Optimization by Metaheuristic Methods: Spy
Algorithm and B-VNS

AR 2= A7 w7 FHECKIBEEL: Sey 7T XA L B-VNS)

=R 4% 9 H

DHIDHI PAMBUDI

1 HRZER BRI SR i 5E R

Optimization by Metaheuristic Methods: Spy Algorithm
and B-VNS

Author:
DHIDHI PAMBUDI

Supervisor:
Masaki Kawamura

Graduate School of Sciences and Technology for Innovation
Yamaguchi University

Summary

The role of optimization can be found in almost all aspects of human life. Optimization is com-
mon in but not limited to the fields of engineering, economics, design, and planning. Although
the optimization problems to be solved change, the optimization goal never changes. That is
to find effective solutions efficiently. In modern optimization studies, the metaheuristic algo-
rithm has been one of the most interesting methods, considering the demands of a reasonable
computational time.

Many metaheuristic algorithms have been introduced. However, based on the number of
tentative solutions used in the search process, metaheuristic algorithms can be categorized
into (1) population-based or (2) single-trajectory-based algorithms. The searching with single-
trajectory-based metaheuristic algorithms manipulates and modifies a single solution point in
every iteration. In contrast, the population-based metaheuristic algorithms combine a set of
solution points to create new solutions in every iteration.

A metaheuristic algorithm usually consists of two components, i.e., exploration and ex-
ploitation. Exploration means searching for solutions in the global space. In contrast, exploita-
tion means searching for a solution by focusing on a small area or an area near an already
known solution. The single-trajectory-based metaheuristic algorithm is exploitation-oriented.
On the other side, the population-based metaheuristic algorithm is exploration-oriented because
of searching by many points distributed on all search spaces. Balance settings between explo-
ration and exploitation are needed to produce good solutions. In fact, most population-based
algorithms will encounter decreasing in exploration and become too exploitation-oriented as
the iteration increase. Any metaheuristic algorithm applies parameters to control the behavior.
However, the parameters usually do not provide a good intuition of the rate of exploration and
exploitation. Hence, reaching a balance between them is hard to predict just by the algorithm
parameters.

This dissertation proposes a conceptual design combining the spy algorithm and B-VNS.
The spy algorithm is a population-based metaheuristic algorithm that mimics the strategy of a
group of spies, the spy ring. The spy algorithm is a new concept with the main idea to ensure the
benefit of exploration and exploitation, and cooperative and non-cooperative searches always
exist. This goal is implemented by utilizing three kinds of dedicated search operators and reg-
ulating them in a fixed portion. The occurrences of exploration and exploitation are controlled
by algorithm parameters. Thus, the spy algorithm parameters provide good before-running in-
tuition to easier reach the balance between exploration and exploitation. The spy algorithm is
first designed to be used in the continuous optimization model.

The spy algorithm was compared to the genetic algorithm, improved harmony search, and
particle swarm optimization on a set of non-convex functions by aiming at accuracy, the abil-
ity to detect many global optimum points, and computation time. The Kruskal-Wallis tests,
followed by Games—Howell post hoc comparison tests, were conducted using @ = 0.05 for the
comparison. The statistical analysis results show that the spy algorithm outperformed the other
algorithms by providing the best accuracy and detecting more global optimum points within less
computation time. Furthermore, those results indicate that the spy algorithm is more robust and
faster than other algorithms tested.

On the other hand, the B-VNS algorithm is a modification of the variable neighborhood
search (VNS) algorithm. The benefit of VNS comes from its thorough search while avoiding
the local optimum trap by moving to the neighboring point called shaking. The local search
after shaking is another benefit of VNS that makes VNS a prominent algorithm. However, the

ii

thorough search has the drawback of long computation time. This dissertation introduces a
modified neighborhood structure to reduce the computation times. The main idea is to apply
the binomial distribution to create the neighboring point. As a result, the neighborhood dis-
tance has a random pattern. However, it follows a binomial distribution instead of a strictly
monotonic increase like in VNS. The B-VNS is a modification of VNS and is classified as a
single solution-based algorithm. The B-VNS is intended to solve combinatorial optimization
problems, particularly the quadratic unconstrained binary optimization (QUBO) problems cat-
egorized as NP-hard problems.

The B-VNS and VNS algorithms were tested on standard QUBO problems from Glover and
Beasley, on standard max-cut problems from Helmberg—Rendl, and those proposed by Burer,
Monteiro, and Zhang. Finally, Mann—Whitney tests were conducted using @ = 0.05 to compare
the performance of the two algorithms statistically. It was shown that the B-VNS and VNS
algorithms are able to provide good solutions, but the B-VNS algorithm runs substantially faster.
Furthermore, the B-VNS algorithm performed better in all of the max-cut problems regardless
of problem size and in QUBO problems with sizes less than 500.

The spy algorithms and B-VNS have different designs in the process and the domain of
the solved problems. However, considering the benefit of the spy algorithm and B-VNS, their
combination has the potential to provide good results. Conceptually, the spy algorithm can be
seen as the first step of B-VNS. Conversely, B-VNS can be considered an additional refinement
for the spy algorithm.

il

Contents

Title i
Summary ii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Metaheuristic Classification. 1
1.2 Main Steps in Metaheuristic oL 2
1.3 Challenge e 3
2 Novel Metaheuristic: Spy Algorithm 4
2.1 Introduction e e 4
2.2 Population-Based Metaheuristic 5
2.2.1 Genetic Algorithm oL o 5
2.2.2 Particle Swarm Optimization 6
2.2.3 Improved Harmony Search Algorithm 6
2.2.4 Common Drawback 0. 6
2.3 SpyAlgorithm L 6
231 Concepts . . . v i e e e 8
2.3.2 Implementationo 10
24 EBvaluation oL 12
2.4.1 TestCondition e 12
242 Experimental Result 13
2.5 Conclusion 18

3 Constructing the Neighborhood Structure of VNS Based on Binomial Distribution
for Solving QUBO Problems 20
3.1 Introduction 20
3.2 VNS Algorithmo e 22
3.3 Proposed Neighborhood Structure 23
3.4 Benchmarking 25
341 TestonQUBOproblems 27
342 Teston Max-Cutproblems 28
343 DiIsCuSSION e e e e e e e 31

iv

3.5 Conclusion
4 A Conceptual Design: Combination of Spy Algorithm and B-VNS
S Concluding Remarks

Bibliography

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

3.1
3.2
33
3.4

4.1

Generating new solutionin GA L oL 7
PSO movement, influenced by personal best and global best 7
Creating new solutioninIHS 7
Agent MmOVEMENTSo e e e e e e e e 9
Pseudocode of the spy algorithm 11
Solution distribution in each category L oL 12
2-dimensional version of the test functions L. 14
Boxplot of error, the red dots show the average values 15

Detecting global optimums on Shubert function having 18 GOPs (red dots are
solutions, diamonds means the solutions lie near a certain GOP while triangles

aremissed GOPS) 18
Boxplots of computationtime 19
VNS algorithm. 23
Distribution of X" relatedtop. 25
Neighborhood structure. L 26
Local search for QUBO [71]. i 28
Conceptual design 34

vi

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
33
3.4

5.1

Testfunctions e 14
Algorithm parameters Lo 15
Average error = Standard deviationo 16
P-values of Games—Howell post hoc error comparison 17
Average MPR 18
P-values of post hoc time comparison 19
Results for Glover [44] problems. 29
Results for Beasley [71] problems. 30
Results for Helmberg—Rendl [73] problems. 31
Results for Burer etal. [75] problems. 32
Common metaheuristic steps apply to spy algorithm and B-VNS 36

vii

Chapter 1

Introduction

Optimization is an essential part of the history of human civilization’s progress, even today.
Fields such as engineering, economics, design and planning are some areas where optimization
is particularly intense. The optimization benefits are so great in almost all aspects of life that
many researchers and practitioners from multidisciplinary fields work on it. However, the chal-
lenges in optimization studies remain the same; getting solutions that are more accurate, faster,
and, if possible, in a more straightforward manner.

So many optimization problems arise according to the nature of the problem. Thus it needs a
suitable method for an appropriate problem while considering demands such as time limitations
and other resource constraints. Therefore, optimization problems are categorized according to
several aspects to make them easier to understand and solve. Based on the variables used in the
model, the optimization is categorized into three models: continuous, discrete, and mixed.

Many methods have been proposed to solve optimization problems, but basically, these
methods can be categorized into two groups. First is the exact method in which the solution is
obtained through a procedure based on a mathematical theorem so that we can prove the opti-
mality of the obtained solution. The second is the approximation method, where the procedure
applies tolerance to mathematical theorems, or even the procedure is often difficult to explain
mathematically. However, many practices show that approximations can obtain reasonable so-
lutions.

In the approximation group, the metaheuristic method is one of the methods that has at-
tracted much attention in the recent optimization world. Apart from the practicality and flexi-
bility of implementation in various problems, the metaheuristic method can provide outstanding
solutions in a relatively short time. Some well-known metaheuristic methods include genetic
algorithm, simulated annealing, tabu search, and variable neighborhood search (VNS).

1.1 Metaheuristic Classification

Many metaheuristic algorithms have been introduced. Metaheuristic methods often use a solution-
finding process that imitates natural phenomena in the real world. Some apply a group search
model, while some apply a single model. Thus, metaheuristic methods are classified into (1)
population-based and (2) single-trajectory-based algorithms [1, 2]. The searching with single-
trajectory-based metaheuristic algorithms manipulates and modifies a single solution point in
every iteration. The well-known simulated annealing (SA) [3] is an example of a successful
single-trajectory-based metaheuristic algorithm. In contrast, the population-based metaheuris-
tic algorithms combine a set of points to create new solutions in every iteration.

A metaheuristic algorithm usually consists of two components, i.e., exploration and ex-
ploitation. Exploration means searching for solutions in the global space, while exploitation
means searching for solutions by focusing on a small area or an area near an already known solu-
tion. The single-trajectory-based metaheuristic algorithm is exploitation-oriented [1]. Population-
based metaheuristic algorithm executes searching by using many points distributed on all search
spaces; therefore, it is exploration-oriented [1]. Some metaheuristic algorithms use both explo-
ration and exploitation orientation. Exploration and exploitation should be balanced by choos-
ing the proper value of algorithm parameters to obtain a good result. However, this is sometimes
time-consuming.

1.2 Main Steps in Metaheuristic

A metaheuristic algorithm may be inspired by a unique phenomenon that results in different
strategies. Some metaheuristic algorithms may have simple processes, while others do not.
Although many metaheuristic algorithms have different processes, regardless of whether it is
population-based or single-trajectory-based, the framework in most consists of the following
five main steps.

1. Initialization. Initialization is commonly started from random positions since there is
no information about the solution space. However, an initialization method, such as the
greedy procedure in GRASP [4, 5], can be used.

2. Solution refinement. Better solutions are generated in this step. Each metaheuristic
algorithm has its refinement strategy inspired by real-world natural phenomena, such as
ant colony optimization [6] and cuckoo search [2]. The new solutions that are expected to
be better than the previous solutions are produced. In exceptional cases, algorithms such
as SA can temporarily result in worse solutions [7]. Based on its strategies, metaheuristic
algorithms, such as the genetic algorithm (GA) and harmony search (HS), may apply
sorting mechanisms [8].

3. Solution update. When a new solution was created from the previous solution by re-
finement strategy, the algorithm should update its solution by selecting a new one or old
one on the basis of a certain rule. The updated solutions will be transferred to the next
iteration.

4. Termination. As the solution needs to be obtained in a reasonable time, the algorithm
should be stopped in a reasonable manner. Usually, the algorithm is terminated when the
solutions are not expected to improve. In addition, a maximum number of iterations is
set to avoid an infinite loop.

5. Finalization. After the algorithm is stopped, one of the possible solutions is reported as
the optimal solution.

The most important steps are the refinement strategy and the updating mechanism since they
make a metaheuristic algorithm unique from others. The other steps are almost similar to any
metaheuristic algorithms. The refinement strategy focuses on the mechanism for obtaining new
solutions. This step can be categorized into two strategies; cooperative and non-cooperative.

The cooperative strategy means that new solutions are obtained by involving and manipulat-
ing two or more previous solutions. An example of cooperative search is the crossover operator
in the GA. The non-cooperative strategy requires only one previous solution for obtaining new

solutions, such as in SA [3] and tabu search [9, 10]. The previous solution is not necessary for
the random search.

1.3 Challenge

Although many metaheuristic algorithms have been introduced, the demand for better and faster
solutions has encouraged researchers to introduce new metaheuristic algorithms to solve opti-
mization problems. This dissertation is written to contribute to the optimization field by intro-
ducing two metaheuristic algorithms and later their conceptual combination design.

The first algorithm design will be described in Chapter 2. It is a population-based meta-
heuristic algorithm called the spy algorithm. There is a well-accepted principle that a meta-
heuristic algorithm can give good results by balancing the exploration and exploitation search.
However, most metaheuristics have an unclear classification of search operator [11]. Indeed, the
rate of exploration and exploitation is hard to predict just by their parameters. The rates can be
known only after running the algorithm. Thus, most algorithm parameters do not give a strong
before-running intuition of the balance between exploration and exploitation. Considering that
many traditional population-based-metaheuristic algorithms encounter decreasing benefits of
exploration search and become too strong in exploitation search as iterations increase [12, 11],
the main idea of the spy algorithm is to maintain the exploitation and exploration by separating
each type of searching and regulate their occurrence by fixed ratio parameters. Hence, the spy
algorithm guarantees the occurrence of exploitation and exploration in each iteration. The spy
algorithm parameters can give a good intuition of exploration/exploitation rate so that a balance
between them can be easier to reach.

The spy algorithm was originally designed to solve the continuous optimization model.
However, as the metaheuristic algorithm is a high-level strategy for finding solutions, the spy
algorithm has the potential for solving discrete models. Regarding the nature design of the
spy algorithm, combining it with a specific algorithm for solving discrete models will improve
the results. Chapter 3 will introduce that specific algorithm which is a single-trajectory-based
algorithm called B-VNS, to solve combinatorial problems, specifically the quadratic uncon-
strained binary optimization (QUBO) problems. B-VNS is a modified variable neighborhood
search (VNS) that is a prominent algorithm for solving QUBO problems. However, the VNS
has a drawback in long computation times. Therefore, the B-VNS introduces the application of
Binomial distribution to construct the neighborhood structure to reduce the computation time.

The spy algorithm and B-VNS come from different designs, but they can be combined into
a single algorithm. The spy algorithm can be seen as the first step of B-VNS. Conversely, the
B=VNS can be seen as an additional refinement of spy algorithm. Chapter 4 will propose a
conceptual design of how to combine the spy algorithm and B-VNS. Finally, the concluding
remarks will be given in Chapter 5.

Chapter 2

Novel Metaheuristic: Spy Algorithm

2.1 Introduction

Humans have long benefited from optimization. Optimization will always be needed in line
with our desire to always obtain the best solutions by considering the constraints. We can find
optimization cases in almost all fields. Optimization is common in the fields of engineering
design, management, economics, physics, and biology. One of the optimization applications is
the very large-scale integration (VLSI) design [13] for creating an integrated circuit (IC) that
supports hardware and technology development. The demand to obtain a high-capability chip
requires increasingly more components to be embedded. This is made even more complicated
by demands that the chip size should be small, consume little power, yet work fast and be able
to handle noise. All processes must be done in a short time if the manufacturer wants to launch
a new chip by adjusting the time-to-market strategy.

Solving optimization cases commonly starts with modeling the problem to make it eas-
ier to understand. Unfortunately, the obtained models often tend to be complicated and hard
to solve. As optimization is equal to decision problems, a large-scale model often takes too
long to solve. Moreover, many problems are intractable and categorized as non-deterministic
polynomial (NP)-complete problems [14]. VLSI design is just one real-world application of the
graph-partitioning problem, which is categorized as NP-complete. One of the basic partitioning
problems is the maximum cut problem which is included in the original Karp’s 21 NP-complete
problems [15] and is equivalent to the Ising model [16], which is very influential in the fields
of physics and mechanical statistics. Another example of an NP-complete problem that exists
is complex job scheduling.

In optimization, it is common to pursue accurate solutions, but it is also practical to find
a solution within a reasonable and acceptable time. We do not want to waste time in a highly
competitive world. The demand for obtaining good solutions in a short time leads us to make
a compromise and accept the solution obtained through an approximation approach. A well-
known approximation method is the metaheuristic algorithm, which usually includes a stochas-
tic search. Compared with deterministic searches, metaheuristics have the advantages that they
do not require any information about the function to be optimized. Many metaheuristics do not
necessarily take into account the gradient of the function. Most are also flexible or problem-
independent, which means they can be applied to various kinds of problems.

Metaheuristic algorithms have an important role in optimization in academic research and
in real-world practice. Many metaheuristic algorithms have been introduced, but the demand
for better, more accurate, and faster algorithms continues. Since there are various goals in the
optimization problems, it is difficult to develop a single algorithm that can solve a wide range of

problems and always outperform other algorithms. On the basis of the ‘no free lunch theorem’
[17], it is challenging to derive a single metaheuristic algorithm that fits any problems since a
certain metaheuristic algorithm may be strong for certain problems but weak for others.

The major challenge in the field of optimization is to develop a robust algorithm that can
solve a wide range of problem types as accurately and efficiently as possible. A robust algorithm
is one that ensures convergence even when starting from an arbitrary initial solution [18, 19].
Even after many runs, the obtained solutions should not be sensitive to parameters [20] and
have low variation [21]. Certain fast algorithms are so focused on speed that they lack robust-
ness [21]. To obtain good results, any metaheuristic algorithm should maintain the exploration
and exploitation search. However, the balance is usually hard to achieve. Even though any
metaheuristic is controlled by a set of parameters, the parameters can not give a before-running
intuition of the occurrence of exploration and exploitation.

In an effort to develop a robust metaheuristic algorithm, we propose an algorithm called the
spy algorithm. The spy algorithm is a population-based metaheuristic algorithm that mimics the
strategy of a group of spies, the spy ring. Within a spy ring, each spy agent considers three types
of movements, which are: (i) movement within a small perimeter, (i) movement by considering
another spy agent, or (iii) just making a random move. The main idea of the spy algorithm is
to set a fixed portion of three dedicated search operators by setting the algorithm parameter.
Hence, the occurrences of exploration or exploitation can be guaranteed in each iteration.

To demonstrate its robustness, it was tested to solve two types of problems; (i) optimization
problems with multi-dimensional function, and (ii) multimodal optimization. The non-convex
functions were used on the test as non-convex optimizations are NP-hard problems [22], so they
are suitable for testing metaheuristic algorithms. A total of 12 standard benchmark functions
were used to demonstrate the performance of the spy algorithm and the results were compared
with the GA, IHS, and PSO.

2.2 Population-Based Metaheuristic

In a population-based algorithm, many tentative solutions involved allow the algorithm to ex-
plore simultaneously many points in the search space in one iteration and combine much of the
information obtained to improve the solutions. Solution combination is one of the advantages
of a population-based metaheuristic algorithm. However, a larger memory capacity is needed
to keep a number of solutions at the same time. Each metaheuristic algorithm will be unique
and has specific characteristics depending on its design.

2.2.1 Genetic Algorithm

The genetic algorithm (GA) was inspired by Darwin’s theory of evolution [23]. It mimics the
natural evolution of a population by the process of solution reproductions, creates new so-
lutions, and competes for survival [24] based on the operators of selection, crossover, muta-
tion, and sometimes elitism [25]. The main operators in GA are crossover and mutation. The
crossover occurrence is controlled by a crossover probability p. and the mutation is controlled
by mutation probability p,,. The implementation first starts from generating random numbers
rl,r2 € (0,1). If r1 < p. then the crossover should be performed and the mutation will be
performed when r2 < p,,. Those two parameters have a substantial role to control the explo-
ration and exploitation search. Figure 2.1 shows the schema for generating new solutions in
real-coded GA using simple arithmetic operators.

2.2.2 Particle Swarm Optimization

Another well-known algorithm is particle swarm optimization (PSO), which was originally in-
tended for simulating social behavior, as it mimics the movement of organisms such as a flock
of birds or a school of fish [26]. PSO is a more recent algorithm than GA and can be an alterna-
tive to GA since it is simpler and converges faster than GA [27, 28]. In the solution refinement,
the new solution is created by considering the global best solution and personal best solution.
Considering the personal best is called cognitive movement and is controlled by a parameter
c1. The global best consideration is called social movement and is controlled by parameter c2.
Figure 2.2 shows the movement applies in PSO.

2.2.3 Improved Harmony Search Algorithm

Another more recent metaheuristic algorithm that has attracted much attention is improved har-
mony search (IHS). IHS is a modification of HS, the process of which is inspired by a jazz
musician finding a good harmony of musical notes [29, 30, 31]. A new solution is generated
by considering the previous solution kept in harmony memory. This process is controlled by
the harmony memory consideration rate (HMCR) parameter. A random number r1 € (0, 1) is
generated at first. The solution is taken from harmony memory when r1 < HM CR. Otherwise,
the new solution is randomly generated. After creating new solutions from harmony memory,
the next step is to decide whether it needs an adjustment. This process is controlled by the pitch
adjustment rate (PAR) parameter. Whenever a generated random number r2 € (0, 1) is less
than PAR, then an adjustment will be made at some portion of the bandwith (BW) parameter.
The process for creating a new solution is shown in Fig. 2.3.

2.2.4 Common Drawback

A balance between the exploration and exploitation search is the key principle to obtaining good
results. However, most metaheuristics have an unclear classification of search operator [11].
Any metaheuristic controls its operators using some parameters. In fact, the rate of exploration
and exploitation is hard to predict just by their parameters. The rates can be known only after
running the algorithm. In GA, setting the parameters p. and p,, will give a weak clue of the
occurrence of exploration and exploitation searches. The weakness comes from the fact that it
depends on the generated random number r1 and r2. Moreover, the selection operator will have
a great impact because it determines which solutions will be taken to create new solutions. IHS
and PSO also suffer from the same thing as in GA.

Most algorithm parameters do not give a strong before-running intuition of the balance be-
tween exploration and exploitation. The exploration and exploitation rate can be known just after
running the algorithm. In fact, many traditional population-based-metaheuristic algorithms en-
counter decreasing benefits of exploration search and become too strong in exploitation search
as iterations increase [12, 11]. As the occurrence of exploration and exploitation searches is
hard to predict, achieving a balance between them is tough. As a result, certain algorithms may
lack robustness.

2.3 Spy Algorithm

The spy algorithm was inspired by the strategy used by a spy ring to locate an enemy base. A
spy ring is a group of spies cooperating with each other by sharing intelligence. It should be
noted that the strategy adopted in the spy algorithm is not the same as real-life espionage since a

Parent 2

Crossover :

Pitch adjustment:

new, new,

new; =n +rand(0,1)*BW

Figure 2.3: Creating new solution in IHS

real spy agent, alone or in a ring, will make many considerations to determine movements. The
spy algorithm maintains the exploitation and exploration by separating each type of searching
and regulating their occurrence by fixed ratio parameters. Hence, the spy algorithm guarantees
the occurrence of exploitation and exploration in each iteration. A set of algorithm parameters
is designed to provide a good intuition of exploration/exploitation rate so that a balance between

them can be easier to reach.

2.3.1 Concepts

The spy algorithm is based on a scenario in which a country has been infiltrated by an enemy,
but its base is unknown, so the spy agency tries to find the enemy base. The information quality
of the enemy base is evaluated by a given objective function. We consider the minimization
problems. Therefore, the smaller the value of the function, the better the quality. The spy
agents should follow the following steps to find the enemy base.

1. Initialization. The agents are sent to random locations and then evaluate the information
quality of the locations by using the objective function.

2. Refinement

» Agent classification. On the basis of information quality, the agents are classified
into three classes: high-rank, mid-rank, and low-rank. The agent which gives the
smaller value of the function is the criteria for the high-rank agent in the context of
minimization. In the case of maximization, this selection can be easily switched or
adjusted.

* Movement. On the basis of agent class, each agent searches for a new location on
the basis of the following rules.

(a) High-rank agents perform SwingMove, i.e., they move within a small perimeter
on the basis of their own location.

(b) Mid-rank agents perform MoveToward, i.e., they move toward another agent
location.

(c) Low-rank agents perform the random search.

After performing these movements, each agent evaluates the information quality of
the new locations.

3. Update. 1f the new location has better information quality, the agent adopts the location;
otherwise goes back to the previous location.

4. Termination. Repeat main steps 2 to 3 until the stop command is issued.

5. Finalization. The location and the information obtained in the last iteration are reported
as the final solution. The best agent provides the best solution achieved while the rest
serve as the alternative solutions.

In the context of optimization, a spy agent can be seen as a solution, and the unknown enemy
base is the optimum point. The location or position of an agent forms a solution vector, and the
information regarding its location is evaluated by the objective function. In this scenario, the
cooperative strategy is implemented in MoveToward, and a non-cooperative strategy is imple-
mented into two movements, i.e., SwingMove and random search. To increase the convergence
speed, the agent with higher rank can be chosen in the MoveToward movement. The movement
for each agent is illustrated in Fig. 2.4. The updating mechanism is a one-to-one comparison
between the newly generated solutions and previous ones.

The concept of the spy algorithm is based on that rational thinking that, on the high-rank
agents, we should make a slight refinement to avoid the risk of a significant decrease in the
quality of information. However, we need to make a progressive movement as well as take

Figure 2.4: Agent movements

advantage of the benefit of the already known solutions. Implementing this movement for mid-
rank agents is the right choice so that they can improve the solution obtained by considering
other agents. However, the movements carried out by high and mid-rank agents may lead to
the local optimum. Therefore, we need a mechanism that does not require taking into account
the already obtained solutions so as not to be trapped at the local optimum. This is where the
low-rank agents play the role of performing random searches so they can explore new locations.
Since the random search sometimes leads to uncertain results, assigning this search to low-rank
agents is appropriate. This design enables us to never lose the advantage of exploratory search
even when other solutions start converging at certain points. While many traditional population-
based-metaheuristic algorithms encounter decreasing benefits of exploration search as iterations
increase and solutions tend to converge to certain points [12, 11], the spy algorithm is able to
maintain and improve the solutions that have been obtained while maintaining exploration.

The whole design of the spy algorithm is to provide assurance that each type of movement
will always exist in every iteration. Each solution is only allowed to perform one type of move-
ment and the consideration is determined on the basis of its solution quality that is converted
into a ranking system. Although the spy algorithm applies a ranking system, its application dif-
fers from rank selection applied in other metaheuristics, e.g., the GA [32]. To fit the problem to
be solved, the balance of occurrence of the three types of movements is set with the parameters
used to determine which solution is categorized as high, medium, or low quality.

Exploitation is implemented by SwingMove while random movement is for exploration. The
MoveToward tends to be exploratory at the beginning but gradually turns into exploitation as the
iteration increases and the solutions get closer to each other. The ability of the spy algorithm to
converge relies on SwingMove and MoveToward. This concept enables the spy algorithm to take
advantage of exploration and exploitation as well as use cooperative and non-cooperative strate-
gies for solution refinement. The spy algorithm organizes all these aspects to occur separately
while guaranteeing its presence in each iteration.

The spy algorithm can be simply implemented using sorting to arrange the solutions. There
are four main parameters that affect the performance, i.e., the number of solutions (NSol) that
represents the number of spy agents, the maximum index for high-rank (HM 1), the maximum
index for mid-rank (M M I), and the swing factor (SF’) to bound the perimeter. The HM I, MM I
is the key parameter that can give before-running intuition of the occurrence of exploration and
exploitation. As the result, a balance between exploration and exploitation is easy to reach just
by setting those parameters. Another parameter is the number of iterations (N/) as a stopping
criterion commonly used in metaheuristic algorithms.

Based on the design, the occurrence of exploration and exploitation searches is easy to
predict. As the spy algorithm applies fixed portions, it is clear that the exploration search will
always exist with the rate of 1 — MM at minimum, which is implemented by random moves
by low-rank agents. Further, the exploitation will always occur at the rate of HM [at minimum,
which is implemented by SwingMove by high-rank agents. The MoveToward will add a large
amount of exploration in the early iterations and tends to turn into exploitation as iterations
increase. However, the lack of exploration power will not occur as the algorithm maintain the
random moves performed by low-rank agents.

2.3.2 Implementation

The objective function f should be defined by using the variable X. We assume the dimension
of variable X is D € N so that X = (x1,x2,...,xp). This variable represents the location of
an agent in D dimensional space. Since there are NSol agents, NSol values of the objective
function are obtained from NSol locations. We denote each location and its value by X# and
f(XH), respectively, where u = 1,2, ..., NSol. The main concepts of the spy algorithm are very
simple and can be implemented in many various ways. One of its implementations can be seen
on the pseudocode in Fig. 2.5. The ascending sorting can be used to simply determine the rank
of each agent. The best agent that gives the smallest value should be placed at the first position
and the largest at the last position. It should be noted that refinements can be carried out starting
from the agent with the lowest to the highest rank. This strategy is to maintain the position of
the higher rank agent to ensure that the rank, as well as its location, does not change before it is
used as a reference by other lower rank agents. For clarity, we propose simple movements for
SwingMove and MoveToward on the basis of the assumption that the algorithm works in discrete
time ¢ related to the iteration. We denote the location of the u-th agent X# = (x’ll, x";, .., Xp) at
time t by X (1), fort = 1,2,.., (NI - 1).

* SwingMove

X+ 1) .= XH*(t) + rand(-1,1)(SF/t) 2.1)
* MoveToward (assume that agent X* move toward X")

v :=randint(1,u —1) 2.2)
XH(t+1) := XH*(1) + rand (-1, 1)(X” (r) — X* (1)) (2.3)

The function rand(—1, 1) is for generating a vector of real random numbers within [—1, 1]
that allows movement in any directions. In MoveToward, the considered agent is a randomly
selected better agent X”. The function randint(1, u — 1) is used for generating an integer
random number v within [1, u—1] where p is the index of the agent that performs MoveToward
movement. Based on the pseudocode in Fig. 2.5, the process of selecting agent X can be done
before going to the MoveToward function.

Considering that the new solutions must be within the search space, there needs to be an
additional simple mechanism to control the SwingMove and MoveToward. This mechanism
returns the value of each element of the solution vector that is outside the search space to the
nearest bound of the search space.

Unlike most metaheuristic algorithms, the spy algorithm implements a concept that each so-
lution is only allowed to perform one type of movement at the refinement step, which is (Swing-
Move), (MoveToward), or random search. Nevertheless, the spy algorithm assures all these

10

Figure 2.5: Pseudocode of the spy algorithm

movements will always occur in each iteration. Therefore, a proper arrangement is needed to
guarantee the occurrence of each movement. One of the strengths of population-based meta-
heuristic algorithms is the cooperative search which combines previously obtained solutions
to create better new solutions. Considering this benefits, it is necessary to set that there is
an adequate number of agents in the category of mid-rank agent to perform MoveToward. As
SwingMove and random search are non-cooperative searches that do not take benefit from other
solutions, it is reasonable to set the number of high-rank and low-rank agents small. Figure 2.6
shows how the parameters affect the number of agents in each category.

It is common that, in all population-based algorithms, cooperative search dominates the
search processes. In the case of GA, new solutions are created more through crossover than
through mutation. The spy algorithm accommodates the cooperative search by MoveToward
performed by mid-rank agents. To get the benefits of population-based algorithms, it is neces-
sary to arrange for the spy algorithm to have a sufficient number of mid-rank agents. From our
experiments, it is suggested that the number of the mid-rank agent is around 75%-95% of the
total solution (NSol), with the rest being for either high or low-rank agents.

The value of HM I parameter that regulates the number of high-rank agents will affect the
performance of the spy algorithm. A small HM I value will make the spy algorithm run longer
than using a large HM 1. A large HM I value will reduce the number of cooperative searches
so that the algorithm can run faster but also risks reducing accuracy. In the tuning process, the
accuracy decreases quite a lot when the HM I value is more than 0.15 which means the number
of high-quality agents is 15% of the total solution (NSol). Note that in order to still get the

11

Mid-rank ., Low-rank ’
(MoveToward) ' Y7 (Random search)

Sol;

Figure 2.6: Solution distribution in each category

benefits of exploratory search, the spy algorithm needs to maintain the presence of the low-rank
agents.

We propose two variants of the spy algorithm. The first variant uses only a single agent in
the high-rank category. Since the GA variant may use elitism, where the algorithm preserves
the best individual and pass it over to the new generation, this idea became a motivation to be
loosely adapted into the spy algorithm. However, GA and the spy algorithm apply a different
strategy. The best solution in GA may not be modified as the changes only apply to the selected
solutions, but the spy algorithm always tries to improve each solution including the best one.
Another inspiration came from PSO where the swarm move by considering the global-best
location. This situation also inspired the global-best HS, which is a variant of IHS [31]. As the
best solution should be only a single solution, we designed the first variant of the spy algorithm,
where the high-rank category consists of a single solution only. This case is also common in spy
agencies where each agent competes to be the best one. Applying a single high-rank agent will
result in increasing the progressive search implemented by MoveToward on mid-rank agents.
This design will increase the occurrence of referrals to the best agent in the solution refinement
step. The first variant can be obtained by setting parameter HMI = 1/NSol or by setting it
in the code, so the number of the high-rank agent is directly set to 1. To make it simple, the
first variant is referred to as Spyl. The second variant is the case where the high-rank category
consists of more than one agent, and it is referred to as Spy2.

The Spy2 allows the algorithm to have several distinct solutions that are considered high
quality. In the case of a problem having many solutions, it is advantageous to have many agents
to exploit many basins. In the context of the spy algorithm, exploitation is accommodated by
SwingMove, which is performed by high-rank agents. When some agents have more information
than others, they have a greater chance of finding the best solution. Therefore, a slight movement
is recommended for those agents rather than always moving progressively and exploring large
areas. Considering the whole process of the spy algorithm, increasing the number of high-rank
agents will reduce the number of mid-rank agents assuming that the low-rank agents are con-
stant. The result is an increase in the occurrence of SwingMove and a decrease in MoveToward.
Since the SwingMove process is simpler than MoveToward, the algorithm may run faster.

Spyl and Spy2 will have different portions of exploration and exploitation searches. As
Spy2 has more high-rank agents, the exploitation power will be stronger than Spyl. However,
both will have an equal minimum exploration rate. Using two versions, we can investigate how
to achieve a balance between exploration and exploitation.

2.4 Evaluation

2.4.1 Test Condition

Two tests were conducted for investigating the performance of the spy algorithm, i.e., (i) opti-
mization on multi-dimensional function, and (ii) multimodal optimization. Test (i) also involved
multimodal functions, but the focus was on finding the global optimum. Test (ii) focused on
finding all global optimums, which means how many global optimum points can be detected

12

with a certain algorithm. For comparison, Spy1 and Spy?2 were tested with the three population-
based metaheuristic algorithms of the GA [33], THS [30], and PSO [34]. A real-coded GA with
simple arithmetic operators was used to give an equal condition, as the other tested algorithms
used simple arithmetic operators as well. Tournament selection was used in the GA because of
its stability compared with roulette wheel selection. The elitism was applied to GA. All tested
algorithms were in their basic version and did not use any specific approach enabling us to
investigate the original potential of each algorithm.

The optimum points for each test function were known so that the performance of each
algorithm could be properly measured. We made all tested functions have an optimum value of
0 by normalizing several functions. On test (i), we set the dimension size to 30 to gain adequate
insight into how the algorithm works on large dimensional problems. The dimension size was
set to 2 for the test (ii) so we could get visual results for better understanding. All test functions
are non-convex functions and listed in Table 2.1. The plots of the 2-dimensional version of the
test functions are shown in Fig. 2.7. Unlike optimizations on convex functions, which can be
solved in polynomial time, optimizations on non-convex functions are more difficult to solve
since there are many local optimums, valleys, or plateaus that can trap the algorithm so that it
fails to find a global optimum. The optimization of the non-convex function is categorized as
NP-hard [22], so it is suitable for testing metaheuristic algorithms.

To adjust to the test and the characteristics of the problem, a different set of algorithm pa-
rameter values was tuned. The solution (population) size was set to be equal for each algorithm.
The NI was set at 50 times the size of the problem dimension. Since IHS only generates one
new solution per iteration, the NI for IHS was set at 50 times the dimension size times the
harmony memory size (HM S) to make it equal. Other algorithm parameter values are listed
in Table 2.2. These values were tuned to obtain an equal condition that takes into account the
number of function evaluations and the search balance. All algorithms were implemented in
Python code. The code was run using Python 3.9.4 on a Windows 10 PC powered by Intel
i7-9750H and 16-GB of RAM.

Each algorithm was run in 100 independent repetitions to obtain sufficient data to observe
its behavior. The performance criteria were mainly based on the average error and its stan-
dard deviation, but because test (ii) is also for investigating the potential for finding all global
optimum points (GOPs), it has an additional criterion, which is the maximum peak ratio (MPR).

Number of detected GOPs

MPR = .
Number of all actual GOPs

2.4)

‘When a solution falls near a certain GOP location, which means the error £ is less than &, that
is,

E=|Xop: — X|| <&, &€R", (2.5)

and falls within the same narrow basin of the GOP, we count it as able to detect the GOP even
though the obtained solution might differ from the exact one. We used ¢ = 0.1 for test (ii)
considering that all tested algorithms were set to use a small number of solutions and iterations.
The main purpose of test (ii) is to investigate the ability of the tested algorithms to distribute their
set of solutions to reach many distinct GOPs. The last criterion for each test is the computation
time taken by the algorithm.

2.4.2 Experimental Result

We tested the spy algorithm, GA, THS, and PSO on various problems having various charac-
teristics to investigate their accuracy, speed, and robustness. The descriptive statistical results

13

Table 2.1: Test functions

Test | Name Test function Dim| Interval |GOP
(D) I;
7
Michalewicz* | fi = — X1, sin(x;)sin®*(=L) 30 [0,7] 1
Rosenbrock | f2 = X7 (100(xj41 — x7)° + (1 — x;)?) 30 [0, 10] 1
Alpine01 f3 = 2 T sin(x;) + 0.1 30 | [-10, 10] 1
-02,/Lyn, xl?) (}1 > cos(an,—))

(i) |Ackley fa= —206(—e +20+e | 30 | [-30,30] 1
Salomon Jfs =1—cos (277,/21'.‘_1 xlz) +0.12", xl? 30 |[-100, 100] 1
Griewank fo =1+ 1005 2y x2 — [17 cos (x;/Vi) 30 [[-600, 600] 1
Bird* fi= sin)cle(l_c"SXZ)2 + cosxze(l_smxl)2 +(x; —)cz)2 2 | [—2nm, 2nm] 2

100__\')(%”% 0.1

Cross in Tray* | fg = —0.0001(sin xq Sinxpe + 1) 2 [-10, 10] 4

X2+X2 ‘

-2
(i1) |Holder Table* | fg = —|sinx; cosxze 2 | [-9.7,9.7] 4

7 7

Himmelblau | fio = (7 +x2 = 1) + [x1 +:3 - 7) 2 | [-6,6] 4
Shubert* fin =TI, (Zf~:1 jcos ((j+ 1)x; +j)) [-10, 10] 18
Inv. Vincent | fiz = + 2" sin (101log x;) [0.2, 10] 36

*: normalized by subtracting it with the optimum value

(a) f1, Michalewicz

(b) f5, Salomon

(¢) f9, Holder Table

Figure 2.7: 2-dimensional version of the test functions

are listed in Table 2.3. The spy algorithm provided the most accurate results in most test func-
tions. Even though the spy algorithm performed poorly in two test functions (f; and fs), Spy1
and Spy2 did not perform the worst. The boxplot of error and the average error are shown
in Fig. 2.8. From these results, the spy algorithm tended to have small errors and small stan-
dard deviations. These results differed from GA, IHS, and PSO, whose results tended to vary
markedly at different test functions. The results indicate that the spy algorithm was more robust
than the other tested algorithms.

Of all tests, the spy algorithm performed worse in accuracy for the Michalewicz (f) func-
tion. This algorithm was worse than the GA, although it was better than IHS and PSO. As the
representation of the characteristic, the 2-dimensional Michalewicz function has a contour in

14

Table 2.2: Algorithm parameters

GA IHS PSO Spyl Spy2
Pop=40 |HMS=40 NSwarm=40 | NSol=40 NSol=40
Tourn= 10 |[HMCR=0.85 |c1=0.9 HMI= 1/NSol*) |HMI= 0.1
Parent= 10 | minPAR=0.7 |c2=1 MMI=0.9 MMI= 0.9
pc=0.9 maxPAR= 0.85 SF=1 SF=1
pm=0.2 minBW= 0.5

StepSize=1 | maxBW= 1.5

NI=50D |NI=50D*HMS |NI= 50D NI= 50D NI= 50D

(i) f9, Holder Table

PR

(e) f5, Salomon

(f) fo, Griewank

(j) fi0, Himmelblau

rank agent can also directly be set fix at 1

() f7. Bird

Algorithm

(k) fi1, Shubert

(d) fa, Ackley

(h) fg, Cross in Tray

(M) fi2, Inv. Vincent

Figure 2.8: Boxplot of error, the red dots show the average values

15

the form of valleys as well as plateaus which can trap the algorithm so that it fails to approach
the global optimum point. Such a characteristic did not exist in other tested functions. On the
Michalewicz function, GA showed its superiority over the others. For functions similar to the
Michalewicz function, the spy algorithm may perform worse than the GA. Considering that the
spy algorithm was better than IHS and PSO in this case, it is possible to improve the performance
of the spy algorithm by adjusting the parameters.

To provide a more in-depth investigation of the differences between each algorithm, we
conducted a Kruskal-Wallis H test using @ = 0.05 on each test function. Our test results on

Table 2.3: Average error + Standard deviation

f GA IHS PSO Spyl Spy2
/1, Michalewicz 3.501 | 18.556 18.181 9.311 12.387
+0.564 | +0.423 +0.776 +3.378 +1.461

>, Rosenbrock 21.674 | 98.344 477.124 17.157 22.856
+10.316 | £60.779 | £1429.226 | +£29.856 | +28.084

f3, Alpine01 0.284 1.922 1.229 0.019 0.250
+0.141 | +0.267 +1.681 0.079 0.999

J4, Ackley 0.431 2.396 1.434 | 7.617e-6 | 4.213c-4
+1.742 | +0.115 +0.776 | +£.972e-6 | £1.504e-4

/5, Salomon 10.909 0.285 0.856 0.426 0.62
+2.170 | +0.031 +0.336 +0.056 +0.077

J6, Griewank 24.640 0.203 1.013 0.004 0.002
+20.167 | +0.115 +0.195 +0.011 +0.008

f7, Bird 1.559 3.595 0.053 | 1.041c-6 | 1.415e-7

+7.155 | +7.521 +0.140 | £5.553e-6 | +1.045e-6
/3, Crossin Tray | 2.855¢-7 | 3.973¢-4 | 5.553e¢-5| 3.592¢-9 | 5.826e-10
+4.595e-7 | +0.003 | +£7.386e-5 | £2.251e-8 | £3.681e-9

o, Holder Table 1368 0.199 0.011| 2.186c-6| 2.983e-7
+3318 | +1.364 | +0.004 | +6.678¢-6 | +1.442e-6

fi0, Himmelblau | 2.286e-4 | 0.014 0.007 | 8502¢-7| 6.126e-7
+4.968¢-4 | +0.014| +0.008 | +4.269-6 | +2.536¢-6

fi1, Shubert 3207 1.083 0.961 0.003 | 7.885e-4
+13.836 | +1.057| +2216| +0.004 | +0.001

fi2, Inv. Vincent 0.001 | 0.002 0.007 | 7.759¢-7| 4.342¢-7

+0.010 | +0.007 +0.021 | £2.800e-6 | £2.139e-6
*in bold: smallest among others

each test function indicate that there were significant differences among these algorithms. To
know the detail, we conducted the Gomes-Howell post hoc comparison. The P-values of this
comparison are listed in Table 2.4. Considering the average error values and these P-values, the
spy algorithm significantly gave the best results or was always in the best group. These results
also showed that the two variants of the spy algorithm had significant differences in several test
functions. Table 2.3 shows that Spy1 tended to be better than Spy2 on the high-dimensional test
functions while Spy2 was slightly better than Spy1 on the 2-dimensional test functions.

Without changing the algorithm parameter values, on test (ii), we tested all algorithms to
detect as many GOPs as possible. Combined with test (i), test (ii) will provide a more deep
investigation of the robustness of the algorithm. The visual results of detecting GOPs on fi;
are shown in Fig. 2.9. The diamonds denote that there are solutions that fall near the location of
the global optimum, and triangles indicate that no solution lies near the considered location of
the global optimum. The averages of all maximum peak ratios (MPRs) are listed in Table 2.5.
In this test, the GA and THS performed poorly with low MPR results. These results indicate
that the GA and IHS were weak in detecting many GOPs and tended to converge to a few. PSO
provided a good enough MPR so that it was suitable to use to find many GOPs. From these
results, the spy algorithm outperformed PSO, as seen from the MPR, which was greater than
that of PSO. Both Spy1 and Spy2 had similar accuracy in detecting many GOPs.

In terms of time performance, we computed the aggregate computation times regardless
of the test function. Although the complexity of the test function affected computation time,
the differences were not very large. As the time difference is more affected by the dimensions
of the problem, we separated test (i), which applied the dimension size of 30, and test (ii),
which applied the dimension size of 2. The computation times are shown in the boxplot chart in
Fig. 2.10. We again performed Kruskal-Wallis H test using @ = 0.05 to compare computation

16

Table 2.4: P-values of Games—Howell post hoc error comparison

Comparison fj f f f4 fs fe f7 13 o fio S fi2

GA-IHS <.001 <.001 <.001 <.001 <.001 <.001 0.780 <.001 <.001 <.001 0.534 0.958
GA-PSO <.001 0.017 <.001 <.001 <.001 <.001 0.063 <.001 <.001 <.001 0.167 0.013
GA -Spyl <.001 0.609 <.001 0.106 <.001 <.001 0.003 <.001 <.001 <.001 0.095 0.851
GA-Spy2 <.001 0.995 0997 0.106 <.001 <.001 0.003 <.001 <.001 <.001 0.095 0.851
[HS-PSO <.001 0.071 <.001 <.001 <.001 <.001 0.002 0.009 0.669 <.001 0.303 0.016
IHS - Spyl <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.609 <.001 0.055 <.001
IHS - Spy2 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.609 <.001 0.055 <.001
PSO - Spyl <.001 0.015 <.001 <.001 <.001 <.001 0.398 <.001 <.001 <.001 <.001 0.002
PSO - Spy2 <.001 0.017 <.001 <.001 <.001 <.001 0.398 <.001 <.001 <.001 <.001 0.002
Spyl - Spy2 <.001 0.634 0.154 <.001 <.001 0.471 0.613 0.383 0.058 1.000 0.012 0.951

The difference is significant if P — value < a, (@ = 0.05)

times. As the output of Kruskal-Wallis H test showed that there were significant differences,
we followed it up with a post hoc comparison. The results are listed in Table 2.6. From these
P-values, the only insignificant difference was between IHS and Spy! for the dimension size
of 2. From the results in Fig. 2.10 and Table 2.6, the spy algorithm was the fastest among
the algorithms. Another important result was that Spy2 was faster than Spyl. The shortest
computation time of Spy2 could be easily understood because Spy2 used more SwingMove and
less MoveToward than Spyl. SwingMove took less computation time because the SwingMove
has simpler operation than MoveToward.

The spy algorithm, GA, IHS, and PSO were tested on two tests without changing the al-
gorithm parameters. The tests applied an equal condition for all tested algorithms, and all al-
gorithm parameters were tuned up to suit the set of test functions as a whole. Based on the
descriptive results and statistical analysis, the overall spy algorithm showed the best perfor-
mances in accuracy, MPR, and computation time. These results indicate that the spy algorithm
was more robust than the GA, THS, and PSO. Changes in parameter values in the spy algorithm
have a direct effect on the number of occurrences of SwingMove, MoveToward, and random
search. These changes may have an impact on the performance. Spy2 was substantially faster
than Spy1, but Spy! tended to have better accuracy on high-dimensional test functions. Both
Spy1 and Spy2 showed almost equally good ability for detecting many GOPs.

The spy algorithm performed well because its rule and all processes are very simple, so
it can achieve a low computational cost. The spy algorithm is accurate because it uses two
types of solution refinements. SwingMove is a slight refinement to avoid a sudden drop in
solution quality. However, the SF has an important role in managing its change. A small SF
tends to provide a new solution that is not much different from the previous solution. While
the SwingMove preserves solution quality, the MoveToward performs a progressive search by
benefiting the previously obtained location. These two strategies are well managed so that the
spy algorithm can achieve high accuracy while reducing computational costs.

The similar good results between Spy1 and Spy2 show that different parameter settings did
not have a significant impact. Based on this fact, it is shown that the algorithm has a consistent
behavior. Spy1 and Spy2 have different settings for HMI, where Spy2 has stronger exploitation
power. However, the exploitation searches in both Spy1 and Spy2 will increase as the iteration
increase. Based on this common phenomenon, it is reasonable that they have similar results.
Moreover, they have equal minimum exploration rates preserved from the first to the last itera-
tion. So, itis easy to reach a balance state as the parameters HMI and MMI are fixed so that they
can provide before-running intuition of the occurrence of exploration and exploitation searches.

17

'
(a) GA, detected=1 (b) IHS, detected=5 (c) PSO, detected=6 (d) Spy1, detected=13 (e) Spy2, detected=13

Figure 2.9: Detecting global optimums on Shubert function having 18 GOPs (red dots are so-
lutions, diamonds means the solutions lie near a certain GOP while triangles are missed GOPs)

As the balance can be reached, the spy algorithm became the most robust algorithm compared
to GA, IHS, and PSO. The robustness can be seen that Spyl and Spy?2 are the most successful
algorithm for tackling two types of problems without changing algorithm parameters.

2.5 Conclusion

We proposed the spy algorithm, which is a population-based metaheuristic algorithm that en-
sures the benefit of exploration and exploitation as well as cooperative and non-cooperative
searches in each iteration. Unlike many traditional population-based metaheuristic algorithms
that loses exploration as the iteration increase, the spy algorithm is able to maintain exploitation
as well as exploration search to improve the solutions. As the spy algorithm applies a fixed por-
tion on three dedicated search operators, it provide a before-running-intuition of the occurrences
of exploration and exploitation to achieve a balance state between them.

We tested the GA, IHS, PSO, and spy algorithm on a set of non-convex functions that fo-
cus on accuracy, the ability to detect many global optimum points, and computation time. We
conducted a statistical analysis to gain insight into accuracy and computational cost. As a re-
sult, the spy algorithm outperformed GA, IHS, and PSO. It resulted in fewer errors and higher
maximum peak ratios within less computation time, indicating that the spy algorithm was more
robust than other tested algorithms.

Table 2.5: Average MPR

f GA IHS PSO Spyl | Spy2
f7, Bird 0.47 0.49 0.495 |0.99 0.96
/3, Cross in Tray | 0.25 0.2575 | 0.5675 | 0.925 | 0.9075
f9, Holder Table | 0.1425 | 0.2375 | 0.2525 | 0.9875 | 1
f10, Himmelblau | 0.25 0.255 |0.305 [0.7525|0.78
f11, Shubert 0.054 | 0.0961 | 0.18 0.4556 | 0.4828
f12, Inv. Vincent | 0.0272 | 0.0464 | 0.1228 | 0.2925 | 0.2903
*larger is better, maximum is 1

18

(a)D=2

(by D =30

Figure 2.10: Boxplots of computation time

Table 2.6: P-values of post hoc time comparison

Comparison D =2 D =30
GA - IHS <.001 <.001
GA - PSO <.001 <.001
GA - Spy| <.001 <.001
GA - Spy2 <.001 <.001
IHS - PSO <.001 <.001
IHS - Spyl 0.891 <.001
THS - Spy2 <.001 <.001
PSO - Spyl <.001 <.001
PSO - Spy2 <.001 <.001
Spyl - Spy2 <.001 <.001

The difference is significant if P — value < a, (a = 0.05)

19

Chapter 3

Constructing the Neighborhood
Structure of VNS Based on Binomial

Distribution for Solving QUBO
Problems

3.1 Introduction

Combinatorial optimization has attracted a good deal of attention, as it has many applications in
various fields [35]. However, it is not always easy to solve combinatorial optimization problems,
especially in some cases classified as NP-hard problems. In this kind of situation, the use of
the approximation method is a reasonable option [36]. One of the approximation methods that
has attracted a great deal of attention in modern optimization is the metaheuristic method [37],
which is designed to obtain good solutions within a reasonable time frame [38]. Even though it
is not easy to prove that a solution obtained using the metaheuristic method is a global optimum
[39], the results are often very close to the global optimum.

Depending on the case, a combinatorial problem can be formulated in various ways so that
it can be be easily solved. One method is the use of a Boolean or binary vector, which, despite
its simplicity, is a compelling method of solving many combinatorial problems. A specific bi-
nary formulation forms a major optimization problem category called ’quadratic unconstrained
binary optimization (QUBO)”, or "Ising model optimization” in some of the literature [40].
In the QUBO problem, given Q@ = (g;;) is a symmetric n -square matrix of coefficients, the
objective is to maximize the function:

n n

f(X) = XTQX = Z qijXiXj (31)
1

i=1 j=

where X = (x;) is an n-dimensional vector of binary variables, i.e., x; € {0,1} fori = 1,2, ..., n.
QUBO problems are categorized as NP-hard problems [41], and their decision form is NP-
complete [40]. The implementation of the QUBO formulation can be found in many combina-
torial problems, e.g., graph coloring, partition, and maximum cut (max-cut) [40], which were
included in Karp’s original 21 NP-complete problems [15]. More applications of QUBO were
described by Glover and Kochenberger [42].

It is as difficult to solve QUBO problems as it is to solve other NP-hard problems. Many
metaheuristic algorithms have been devised to solve them, based on the requirement that they are

20

solved within a reasonable amount of time. For the example, the simulated annealing applying
1-opt local search showed good performances for solving QUBO problems[43]. Another hybrid
form build from genetic algorithm and 1-opt local search also provided good results [45]. The
adaptive memory tabu search that select particular variable that give best improvement, so that
the concepts is similar to local search, is also can be used for solving QUBO problem [44]. It
can be seen that the local search has been a substantial role for enhancing other metaheuristic
algorithm. However, the pure local search algorithm itself show a great performance [46].

One particular metaheuristic algorithm that uses local search is the variable neighborhood
search (VNS) algorithm [47]. The VNS algorithm can solve various problems, including QUBO
problems. As a single-trajectory-based algorithm, the VNS algorithm has the advantage that it
is resource-efficient. Furthermore, its memory requirements are relatively low compared to
population-based metaheuristic algorithms. Therefore, the VNS algorithm is suitable for use
in solving large-scale problems and does not need large memory allocations. It is a simple
concept, and the VNS algorithm is often used in its original or a modified form or is hybridized
with another algorithm [48][49]. Moreover, there is an algorithm similar to VNS called greedy
adaptive search procedure (GRASP) for solving QUBO problem. Unlike the VNS that start
from random initial point and shifting to its neighboring point before local search, GRASP start
from a greedy initial point and directly perform local search based on that point.

The VNS algorithm has been shown to perform well in various problems. Its applications in-
clude the max-cut combinatorial problem [50, 511, the scheduling problem [52, 53], the layout-
ing problem [54], the vehicle routing problem [55], and the multiprocessor scheduling problem
with communication delays [56]. It has also been used to tune proportional—integral-derivative
controllers in cyber—physical systems [57]. Not only has the VNS algorithm been applied in
numerous ways, but it has also been often used in combination with other algorithms to obtain
combined performance. It is possible to hybridize the VNS algorithm with other metaheuristic
algorithms, such as with the genetic algorithm [58], the particle swarm optimization algorithm
[59], the migrating birds optimization algorithm [60], and the simulated annealing algorithm
[61]. The VNS algorithm can also be implemented in parallel programming by using a graphical
processing unit [62] to leverage its performance.

Many factors determine the performance of the VNS algorithm, i.e., the initialization method,
neighborhood structure construction, local search procedures, and update mechanisms. Al-
though there are many determining factors, neighborhood structure is the central concept of
the VNS algorithm that significantly influences its performance. One version of the VNS algo-
rithm is based on the dynamic neighborhood model proposed by Mladenovié¢ and Hansen [47].
Changing the neighborhood structure during a search enables the algorithm to escape the local
optimum trap [63], as it allows the algorithm to move from one basin of search to another. The
construction of a neighborhood is thus crucial to the performance of the VNS algorithm. How-
ever, in terms of solving the QUBO problem, previous research reports regarding neighborhood
construction are difficult to find. The Hamming distance is commonly used in the basic VNS
algorithm to construct the neighborhood when solving a QUBO problem [64, 65, 50].

The VNS algorithm uses a strictly monotonic increasing neighborhood structure when the
local search does not yield a better solution. As a result, the basic VNS algorithm takes quite a
long time to yield a good solution. A new version called ”Jump VNS” was introduced to speed
up the neighborhood construction process. It enables the neighborhood structure to leap ahead
in accordance with parameter k., € N [66]. The basic VNS algorithm that does not have the
jump ability is obtained by setting ks, = 1. The performance of the Jump VNS algorithm
does not appear to have been previously reported.

The VNS algorithm is simple, and the ability to slowly change the neighborhood structure is

21

an advantage of its use. However, this is also a weakness of the VNS algorithm. This gradual but
slow change may impact the length of computation time. Although it may be sped up with Jump
VNS, the thorough search behavior may be lost. For example, setting the maximum distance on
a VNS algorithm to 100 results in 100 times neighborhood structure change at most, but setting
kstep =2 on Jump VNS results in only 50 times neighborhood structure change. This value is
even less if a larger ky¢p is used. So, the VNS and Jump VNS algorithms are not flexible.

This paper elaborates on the basic VNS algorithm and introduces a new method of improv-
ing it by focusing on the neighborhood structure by implementing binomial distribution. Instead
of a strictly monotonic increase in neighborhood structure, the neighborhood distance follows a
binomial distribution. Although the binomial distribution will cause a non-monotonic increase,
the trend of a widening structure will remain the same. We investigated the potential of our
proposed algorithm to be used in some QUBO and max-cut problems.

3.2 VNS Algorithm

The VNS algorithm is a well-known metaheuristic algorithm that utilizes dynamic neighbor-
hood structure changes. The simple implementation of the VNS algorithm starts from a non-
deterministic guest initial point and then attempts refinements using a local search. The algo-
rithm shifts from its initial point to a neighboring point before a local search is carried out. The
algorithm should move to another neighborhood structure when the local search does not yield
a better solution. The algorithm systematically exploits the following observations [67]:

Observation 1: A local minimum for one neighborhood structure is not necessarily so for
another;

Observation 2: A global minimum is a local minimum for all of the possible neighbor-
hood structures;

Observation 3: For many problems, local minimums for one or several neighborhoods
are relatively similar to each other.

In other words, according to observation 1, a local minimum for a specific neighborhood
structure is not necessarily a local minimum for other neighborhood structures. Other neighbor-
hoods may have other local optimums. The second observation means that the global minimum
will only be found after examining all of the possible local optimums, which requires the exami-
nation of all of the possible neighborhood structures. Other neighborhoods should be examined
if a local minimum is not the global minimum. The last observation is an empirical observation
that suggests a local optimum usually provides information that helps determine the global op-
timum [67]. For example, in the case of a multi-variable function, several variables often have
the same value in the local optimum as in the global optimum [67].

There are several versions of the VNS algorithm; the most prominent is the dynamic neigh-
borhood model proposed by Mladenovi¢ and Hansen [47]. They proposed a random shift to a
neighboring point X’ which would be used instead of the initial point X as the base point of a
local search. They called this shifting ”shaking.” In this model, if the local search does not yield
an improvement, the neighborhood structure is expanded. This change enables the algorithm
to move to another basin to be exploited. To retain efficiency, the change must be limited by a
parameter that defines the maximum number of neighborhood structures examined. If the local
search yields an improvement, the structure is suddenly shrunk back to the first structure. The
use of this clever expand-and-shrink neighborhood structure during a search enables the VNS

22

while K

if f(X") better

else:

ret Solution
end procedure

(a) Searching process. [66] (b) Pseudocode.

Figure 3.1: VNS algorithm.

algorithm to avoid the local optimum trap [63] because the algorithm moves from one basin to
another. Figure 3.1(a) shows the searching process [66] in the context of minimization. The
pseudocode of the VNS algorithm is shown in Fig. 3.1(b).

A change in neighborhood structure can be illustrated as an expanded disc with point X
at the center. The neighborhood structure expands following variable k € N. As proposed
elsewhere [50, 68, 65], neighborhood structure N is associated with variable k, which is limited
by parameter k4, € N. Thus, Hamming distance d increases following k when solving QUBO
problems. Accordingly, a point X’ € N (X) means that the Hamming distance d(X’, X) =
| X’ — X| is exactly k. This neighborhood structure is the standard that is used in solving QUBO
problems. The neighborhood structure of the basic VNS algorithm for use in solving QUBO
problems is formulated as

Ne(X)={Y: Y = X| =k}, (3.2)

fork =1,2, ..., kmax-

3.3 Proposed Neighborhood Structure

The strictly monotonic expanding neighborhood structure used in the VNS algorithm is tenable.
However, there is no guarantee that this expansion type will always result in a better solution.
To exploit this technique to solve any QUBO problem, we propose the use of binomial dis-
tribution to create a neighborhood structure. As the proposed algorithm is based on the VNS
algorithm, it takes advantage of the characteristics of the VNS algorithm while aiming to reduce
the computation time required.

Our proposed structure enables the algorithm to expand the neighborhood by following a
random schema. However, it is good to maintain a gradual expansion trend. In the basic VNS
algorithm, the neighboring point X’ € Ny (X) is obtained by flipping k numbers of the element
of X. The flipped elements are chosen randomly. As a result, some elements are changed, from
1 to O or vice versa, and some remain. Instead of applying this basic neighborhood structure,
we propose a mechanism of determining whether each element should be flipped or not. Each
element will be flipped by considering a flip probability. The proposed neighborhood structure
is as follows: We define a trial T to flip each element of a vector X = (x1, x2, ..., X;;) to obtain
X’ = (x},x},...,x,) € N(X) in accordance with the following rule:

: (3.3)

, flip(x;) , with probability p € [0, 1]
X: =
! X; , with probability (1 — p)

23

where

1-x; ,for{0,1} encode

(3.4)
X , for £1 encode

flip(x;) = {

This trial satisfies binomial requirements as it is repeated n times, where n corresponds to the
vector length and sets a fixed probability p. Suppose a random variable A represents the number
of flipped elements, and let a random variable D represent the obtained Hamming distance d.
Then, there is a clear correspondence between random variable A and D. Take any vector X
and generate a vector Y by following Equation 3.3, and suppose that m random elements of X
were flipped based on this process; from this supposition, we have d(X,Y) = |X = Y| = m. As
the flip is controlled by probability p, by following binomial distribution, we have

HUp =np, (3.5)

op =+np(l-p). (3.6)

Based on binomial distribution, the distance at approximately np has a high probability of oc-
curring.

In the VNS algorithm, the distance is equal to variable k£ and is limited by the parame-
ter kpqx. Therefore, kj,qx is the maximum distance that can be reached when constructing
a neighborhood structure. To replace this concept, our proposed method uses a parameter
Pmax € [0,1] as a limitation. To apply the gradual expansion mechanism, we divide the
Pmax into several equal chunks. Then, we ensure that the flip probability p corresponds to
these chunks.

Pc = Cpmax/c, (3.7)

forc =1,2,..,C,where C € Nis a parameter for chunk size. This construction is applied every
time a neighboring point X’ needs to be generated. Thus, this binomial neighborhood structure
does not depend on variable k& but instead on flip probability p. which corresponds to chunk c.

Ne(X) ={Y : D(y x) ~ Binom(p¢,n)}, (3.8)

forc =1,2,...,C considering (3.7), Dy x) is the Hamming distance between Y and X, where
Y is generated by applying Equation 3.3.

The distribution of obtained neighboring point X’ corresponds to the probability density
function of the binomial distribution, as shown in Fig. 3.2. The concept is advantageous because
the distance of neighboring points X’ can be estimated even though they are random. The
proposed neighborhood structure is illustrated in Fig. 3.3(a). Note that the illustration is a simple
version, as X’ can be obtained in any direction. The neighborhood expansion corresponds to
flip probability p. following the variable chunk c. The distance between neighboring point X’
and X will be random, even though it will follow the characteristic of binomial distribution.
In contrast, in the basic VNS algorithm, the neighborhood structure can be illustrated as an
expanded disc, as shown in Fig. 3.3(b). In the basic VNS algorithm, the expansion corresponds
to variable k and results in d(X’, X) being exactly k.

The complete implementation of our proposed method for solving QUBO problems is simi-
lar to that of the VNS algorithm, except for differences in the neighborhood construction. Unlike
the basic VNS algorithm, we use parameter p,,. to control the distance. However, just like
VNS, neighborhood structure change should be limited. Therefore, we use parameter chunk

24

B
>
=
5
©
Ke]
o
S
a.

Up = npc dX', X) =n
X' = =X
Neighboring point X’

Figure 3.2: Distribution of X’ related to p.

size C. Thus, we only change the construction of the neighborhood structure. For simplic-
ity, we call our proposed algorithm ”B-VNS”, while "VNS” refers to the basic VNS algorithm
[47, 50, 68, 65].

Changing the construction of the neighborhood structure will change the behavior. The
B-VNS algorithm is more flexible than the VNS algorithm. In terms of k4 in the VNS
algorithm, the B-VNS algorithm can reach almost the same neighborhood structure by setting
up the parameter p,,, that

HUD = NPmax = Kmax- (3.9)

However, the B-VNS algorithm is more flexible than the VNS algorithm. The chunk size C can
be set as equal to k4 to give an almost equal condition. However, the chunk size C can be
set as either larger or less than k,,,. Setting the chunk size C to less than k,,,, may have the
potential to speed up the computation time.

In addition to the potential advantages of B-VNS, there are also potential weaknesses. Like
the Jump VNS algorithm, in the B-VNS algorithm, thorough search behavior may be lost. The
VNS algorithm, as described by Hansen and Mladenovi¢ [64, 65] and Festa et al. [50], performs
a thorough search by starting with the nearby neighborhood structure and slowly expanding it
when the local search fails to improve the solution. In contrast, in the proposed algorithm, a
random pattern of the distance of the neighborhood structures is seen. This random charac-
teristic can be advantageous as it can increase the exploration search. However, a drawback
is that it causes B-VNS to miss basins that the global optimum may be in. Consequently, this
random characteristic has a possibility of incurring a longer searching time than the basic VNS
algorithm.

3.4 Benchmarking

Considering that the B-VNS algorithm is a modification of the basic VNS algorithm, it is fair
and appropriate to investigate the performance of our proposed B-VNS algorithm alongside the
VNS algorithm [50, 63] alone. The investigation did not involve any other algorithms. There-
fore, the impact of our modification can be evaluated by using VNS algorithm performances as
the bases.

The investigation was conducted by running simulations on some standard QUBO prob-
lems. The QUBO problems were taken from OR-Library [69] available at [70]. The best-

25

(a) B-VNS. (b) Basic VNS [66].

Figure 3.3: Neighborhood structure.

known objective functions for those problems were compiled from [43, 45, 44, 71, 72]. We
also tested the B-VNS algorithm to solve some standard max-cut problems. We used problems
from Helmberg—Rend]l [73] that can be downloaded from [74]. Those problems were generated
using a machine-independent graph generator called rudy, which Giovanni Rinaldi developed.
We also tested the B-VNS algorithm on problems proposed by Burer, Monteiro, and Zhang
[75], as they have different problem constructions. Helmberg—Rendl problems consist of ran-
dom, planar, and toroidal graphs, while those from Burer et al. are cubic lattice graphs that
represent Ising spin glass models [68]. Problems by Burer et al. can be downloaded from [76].
The best-known max-cut values were summarized from [68, 77, 78, 79, 80]. It is worth noting
that all of those best-known values for QUBO and max-cut problems are open for improvement
and may change in the future.

The simulation program used practically the same program code written in Fortran for both
the VNS and B-VNS algorithms. The only difference was in the neighborhood construction
section, and the remaining sections were the same. Therefore, we could accurately measure the
performance difference between our proposed neighborhood structure and the standard VNS
algorithm structure.

The simulation was compiled and run on a CentOS 8 system powered by an Intel Core i7-
8700 processor with 16 GB RAM. The simulation was independently run 30 times for each
problem (NSim = 30). Therefore, the sample size for both the VNS and B-VNS algorithms
on each test item was 30, which was sufficient for the conduction of statistical tests. The best
objective value and computation time obtained for each iteration and simulation were recorded.
We used three criteria to evaluate the performance. After obtaining the best-known values, we
calculated the difference (BestDi f) between the best-known and the best value obtained from
30 simulations. If BestDi f = 0, then the algorithm obtained the best-known value. A value of
BestDif > 0 means the algorithm failed to obtained the best-known value. On the other hand,
BestDif < 0 means the algorithm exceeded the best-known value.

BestSim = max({fsim; :1=1,2,..., NSim}), (3.10)
BestDif = BestKnown — BestSim. (3.11)

We calculated the average differences (AvgDi f) between the best-known and obtained objective
values involving all 30 simulations.
NSim

Y im: — BestKnown
Al)ngf _ i=1 (fSlm,) ‘

NSim

(3.12)

26

Lastly, we calculated the average computation time (AvgT’). Regarding all of the criteria, the
algorithm that gives the lowest results is the best one. However, as the direct comparison of
samples by their average values may have led to a biased conclusion, we conducted statistical
analysis to precisely compare the results using JASP [81].

3.4.1 Test on QUBO problems

The local search as described in [71] was used in tested algorithms. Figure 3.4 shows the pseu-
docode of the local search used for QUBO problems. We applied equal conditions for the VNS
and B-VNS algorithms. We aimed to reduce the values of all of the parameters to reduce the
computation time while obtaining high-quality solutions.

In the preliminary step, we used four problems for parameter tuning: two problems each
from Glover and Beasley, with sizes of 100. We started from larger parameter values and grad-
ually reduced them. We found that &, = 0.02n was adequate for the VNS algorithm to obtain
good solutions within short computation times. Hence, we set p,qx = 0.002 on the B-VNS
algorithm to make it equal. The number of iterations was set at 0.2n for both the VNS and
B-VNS algorithms. The variable n was the problem size that was equal to the length of the
solution vector. For the B-VNS algorithm, parameter chunk size C was set at 0.02n so that it
was equal to k. in the VNS algorithm. All of these settings made an equal condition for the
VNS and B-VNS algorithms. Table 3.1 shows the test results for Glover problems [44], while
Table 3.2 shows test results for Beasley problems [71].

Tests regarding Glover problems show that the B-VNS algorithm was able to give the same
good results as the VNS algorithm in terms of objective function values. Both algorithms ob-
tained the best-known value in almost all of the problems and only failed in the 65 problem.
The statistical analysis shows that the differences between the B-VNS and VNS algorithms
were insignificant in all of the Glover test cases, as seen from the p-value greater than 0.05. The
Mann—Whitney test (¢ = 0.05) was used because most samples did not satisfy the normality
and homoscedasticity assumption. In terms of computation time for tests on Glover problems,
statistical analyses show that the B-VNS algorithm was faster than the VNS algorithm, specif-
ically in problems with sizes up to 200. In problems with sizes of 500, the B-VNS algorithm
was comparable to the VNS algorithm.

The test results regarding the Beasley problems also show a similar trend to the tests on the
Glover problems. However, the B-VNS algorithm could obtain all of the best-known values,
while the VNS algorithm failed on problems bgp50_1, bgp100_1, and bgp250_8 1. Like
the test on the Glover problem, as the differences were insignificant, both B-VNS and VNS
algorithms were shown to be good algorithms for use in solving Beasley problems.

Statistical analyses for computation time regarding Beasley problems with n < 500 show
that the B-VNS algorithm was significantly faster than the VNS algorithm. The computation
times of the two algorithms were only statistically the same in problems bgp50_1, bgp50_5,
bqp50_6, bqp100_8, and bgp250_7. For problems where n > 500, the computation speeds
for the B-VNS and VNS algorithms were comparable.

All of the tests regarding QUBO problems under equal conditions show that the the B-VNS
and VNS algorithms are good, as they reached most of the best-known values, with some excep-
tions for the VNS algorithm due to its failures. Moreover, the B-VNS algorithm ran substantially
faster than the VNS algorithm, particularly on problems with sizes less than 500. Therefore,
the B-VNS algorithm suit for problems with sizes less than 500 and is comparable to the VNS
algorithm for larger problems.

The notation bg pn_m refers to the Beasley problem, which has size n and number m.

27

/lupdate solution

15 return X
end procedure loc

Figure 3.4: Local search for QUBO [71].

3.4.2 Test on Max-Cut problems

The representation of the max-cut problem in the QUBO problem can be found in [42]. Instead
of using the QUBO form, we used the common formula for max-cut. Given undirected graph
G = (V,E) with node set V = {v1,02,...,0,} and non-negative weight w;; = wj; on edge
(i, J) € E, apartition of G into two disjoint node subsets S and S¢ that maximized the cut value
was found.

cut(S,S) = Z Wap- (3.13)
a€eS,B¢S

This definition corresponds to the following forms:

1
max cut(S,S8°) = Ezwij(l - XiX;), (3.14)
i<j
s.t. xp,xj € {=1,1}, (3.15)
or
max cut(S,S°) = Z w; j (x; —x_,~)2, (3.16)
i<j
s.t. x;,xj €{0,1}. (3.17)

The =1 encoding was used on this test. We applied the local search process reported else-
where [63][48] on both the VNS and B-VNS algorithms. The local search process was carried
out as follows: With X as the current solution that corresponds to partition (S, S¢), a new par-
tition was defined (S, S¢).

(8',5) =

{(s \ {i}, S U{i}) ifnodeie€ S (3.18)

(SU{i}, S\ {i}) ifnodei € S°

For each node i € V, a function § associated with solution X was defined as

6(i)=zwij_ Z Wij. (319)

jes jese

In order to improve the objective value, a node i made a movement from a subset of V to another
subset regarding these situations:

28

Table 3.1: Results for Glover [44] problems.

Problem N Best VNS B-VNS test (p-value)*
number Known | BestDif AvgDif Time** | BestDif AvgDif Time**| Dif Time
la 50 3414 0 1.667 0.003 0 1 0.003|0.459 wHE
2a 60 6063 0 0 0012 0 0 0011 - 0.006
3a 70 6037 0 89 0.017 0 11467 0.016]0.773 ok
4a 80 8598 0 0 0.035 0 0 0.030 - 0.009
5a 50 5737 0 0 0.004 0 3.867 0.003 - 0.041
6a 30 3980 0 0 HokE 0 0 ok - ok
Ta 30 4541 0 0 ok 0 0 ok - ok
8a 100 11109 0 1467 0.128 0 0 0.121 - Ak
1b 40 133 0 18.033 wEE 0 21 %1512 -
2b 50 121 0 0.733 HEE 0 2.667 *#%10.096 ok
3b 60 118 0 4.667 0.001 0 8.533 0.001[0.065 0.401
4b 70 129 0 13.867 0.004 0 18.733 0.003]0.112 0.005
5b 80 150 0 0 0012 0 0 0.011 - Ak
6b 90 146 13 35933 0.021 13 37.833 0.016]0.277 HEE
7b 80 160 0 0 0.027 0 2.533 0.025 - wEE
8b 90 145 0 6.633 0.062 0 5433 0.053|0.307 ok
9b 100 137 0 2 0.156 0 2433 0.141 1 HEE
10b 125 154 0 0.233 0.467 0 0.233 0.414 1 ok
1lc 40 5058 0 0 0.001 0 0 0.001 - 0507
2c 50 6213 0 0 0.003 0 0 0.003 - 0.107
3c 60 6665 0 0 0015 0 0 0013 - 0.003
4c 70 7398 0 0 0.020 0 0 0.017 - HEE
5S¢ 80 7362 0 0.867 0.035 0 0 0.028 - ok
6¢ 90 5824 0 27.467 0.048 0 21.167 0.047]0.186 0.043
Tc 100 7225 0 0 0134 0 0 0123 - HEE
1d 100 6333 0 169 0.135 0 13.733 0.129(0.583 0.006
2d 100 6579 0 31.967 0.152 0 19.633 0.145]0.214 0.022
3d 100 9261 0 14567 0.157 0 16.067 0.144|0.658 wEE
4d 100 10727 0 5367 0.166 0 9.067 0.151]0.056 ok
5d 100 11626 0 11.633 0.179 0 147 0.166[0.471 0.001
6d 100 14207 0 5 0171 0 1.667 0.155[0.313 wEE
7d 100 14476 0 89 0.194 0 7733 0.173]0.763 ok
8d 100 16352 0 0 0176 0 0 0.162 - HEE
9d 100 15656 0 .13 0.180 0 0.3 0.164|0.305 ok
10d 100 19102 0 0 0.184 0 0 0.170 - ok
le 200 16464 0 12.833 4.689 0 11.767 4.237(0.576 ok
2e 200 23395 0 8 5.635 0 7.067 5.232]0.579 0.001
3e 200 25243 0 0 6172 0 0 5731 - HoEE
4e 200 35594 0 0.533 5.071 0 0.533 4.697 1 ok
Se 200 35154 0 2033 5.995 0 31.233 5.924]0.127 0.264
1f 500 61194 0 2 578.194 0 1.2 559.64410.679 0.004
2f 500 100161 0 0.1 545.884 0 0.2 521.028]0.570 ok
3f 500 138035 0 38.967 521.415 0 37.9 521.502(0.594 0971
4f 500 172771 0 33.6 440.721 0 18 450.550(0.354 0.050
Sf 500 190507 0 2.833 499.021 0 33 511.853]0.513 0.04

*: Mann—Whitney test; the difference is significant if p — value < «, (@ = 0.05).
*%: average computation time (second).
#kE: <0.001.

1. ifi € SAS() > 0,then S =S\ {i}, S = 8¢ U {i};
2. ifi € S’ A 8(i) <0, then S’ = 8¢/ \ {i}, S =S U {i}.

This local search examined all of the possible movements starting from the first node.
For Burer et al. problems, parameter k,,,, was set at 0.1n, while p,,,, was set at 0.1. The

29

Table 3.2: Results for Beasley [71] problems.

Problem Best VNS B-VNS test (p-value)*
number Known | BestDif AvgDif Time** | BestDif AvgDif Time** | Dif Time

50 1 2098 | 68 127.3 0.003 0 93.867 0.003]0.062 0.305
2 3702 0 15 0.003 0 22967 0.003(0.497 0.006

3 4626 0 11.367 0.003 0 19 0.003]0.248 0.025

4 3544 0 21.533 0.003 0 19.733 0.003]0.863 0.006

5 4012 0 10.667 0.003 0 2933 0.003]0.170 0.677

6 3693 0 1.933 0.003 0 29 0.003[0.654 0.190

7 4520 0 4.6 0.003 0 4.867 0.003]0.288 0.031

8 4216 0 18 0.003 0 7333 0.003]0.117 -

9 3780 0 19.367 0.005 0 20.267 0.003]0.887 FEE

10 3507 0 27.733 0.005 0 32.867 0.003]0.602 ok

100 1 7970 42 150.867 0.080 0 173.133 0.076|0.163 0.034
2 11036 0 15333 0.083 0 19.333 0.078(0.732 0.001

3 12723 0 0 0.071 0 0 0.068 - 0.039

4 10368 0 8.333 0.078 0 11.533 0.072]0.984 FEE

5 9083 0 44.467 0.085 0 49.167 0.079|0.682 0.006

6 10210 0 2.067 0.088 0 4767 0.080(0.910 0.006

7 10125 0 24.467 0.082 0 26.533 0.072]0.770 FEE

8 11435 0 8.867 0.079 0 9 0.077(0.820 0.139

9 11455 0 0.6 0.081 0 0.6 0.075 1 0.004

10 12565 0 18.667 0.078 0 12.933 0.0690.247 FEE

250 1 45607 0 8 11.873 0 10.133 10.890 | 0.458 o
2 44810 0 59.267 12.123 0 45.033 11.429|0.147 0.005

3 49037 0 0 899 0 0 8.662 - 0.045

4 41274 0 20.6 10.539 0 33.133 9.743|0.067 ok

5 47961 0 15.933 9.672 0 10.933 8.808|0.611 o

6 41014 0 8.6 11.766 0 11.5 10.973(0.876 o

7 46757 0 0 10.624 0 0 10.191 - 0.050

8 35726 52 214.200 13.311 0 177 12.196|0.297 ok

9 48916 0 23.100 11.330 0 27.233 10.341]0.433 ok

10 40442 0 3.533 12.526 0 22 11.211[0.688 ok

500 1 116586 0 5.333 586.406 0 6.267 592.79810.677 0.398
2 128339 0 2.5 459.926 0 44 455.013(0.402 0.374

3 130812 0 0 501.773 0 0 496.806 - 0432

4 130097 0 28.933 518.133 0 26.733 523.351(0.486 0.321

5 125487 0 10.4 521.381 0 2.6 516.252]0.380 0.300

*: Mann—Whitney test, the difference is significant if p — value < a, (@ = 0.05).
*%: average computation time (second).
##%: <0.001.

number of iterations was set at 0.5n for both the VNS and B-VNS algorithms. We designed
different test conditions for Helmberg—Rendl problems. Parameter &, in the VNS algorithm
was set at 100 for all of the Helmberg—Rendl problems used in the test regardless of problem
size, as suggested in [68]. Therefore, the parameter p,,,, in the B-VNS algorithm was set at
100/n, which enabled the B-VNS algorithm to reach an equal maximum neighborhood structure
as in the VNS algorithm. We found that setting the iterations to 0.2n was adequate to obtain
good solutions while reducing computation times.

Unlike the tests for QUBO problems, we applied a non-equal condition by setting the chunk
size C = 0.9k,,4x for Helmberg—Rendl as well as for Burer et al. problems. This non-equal
condition was used to investigate the impact of setting the chunk size to less than k4. This
setting has a risk that the B-VNS algorithm will be much less thorough than the VNS algorithm,
but it was used with the aim to be faster. Table 3.3 shows the test results for Helmberg—Rendl
problems, while Table 3.4 shows results for those from Burer et al. The Mann—Whitney test with

30

a = 0.05 was conducted, as most samples did not satisfy the normality and homoscedasticity
assumption.

Although the B-VNS algorithm is much less thorough, the results show that the B-VNS
algorithm was still able to provide solutions as satisfactorily as the VNS algorithm. Setting
the chunk size C to smaller than k,,,, had an insignificant effect on the ability of the B-VNS
algorithm to achieve the objective values. Moreover, the B-VNS algorithm was shown to be
substantially faster than the VNS algorithm in all of the tested problems, regardless of the size.
Therefore, the B-VNS algorithm was shown to clearly perform better than the VNS algorithm
on max-cut problems.

Table 3.3: Results for Helmberg—Rendl [73] problems.

Graph Problem n Best VNS B-VNS test (p-value)*
Known | BestDif AvgDif Time** | BestDif AvgDif Time**| Dif Time

Random Gl 800 11624 0 0.033 180.13 0 2.533 158.702| #** woEE
G2 800 11620 0 7.133 185.804 0 6.8 162.85410.830 ok

G3 800 11622 0 1.733 195.169 0 2.833 172.003]0.222 o

G4 800 11646 0 0.567 193.595 0 0.633 175.664|0.507 woEE

G5 800 11631 0 5.133 191.32 0 4.433 169.104 | 0.654 ok

Random (+1) G6 800 2178 0 1.867 203.065 0 2.2 136.156|0.299 wEE
G7 800 2006 0 4.533 195.770 0 5.2 169.933]0.286 ok

G8 800 2005 0 3.4 154.650 0 2.733 164.133|0.845 *EE

G9 800 2054 0 4.3 195.341 1 4.6 169.7400.622 ok

G10 800 2000 0 3.2 160.173 0 2.333 141.5890.191 ok

Toroidal Gll1 800 564| 14 25267 66.274| 20 27.733 44.726|0.001 ok
GI12 800 556 18 244 66.716 16 24.133 57.920(0.916 R

G13 800 582 16 22.8 68.079| 18 24.067 62.023]0.127 FEE

Planar Gl14 800 3064 29 37.733 78.656| 32 39.6 69.9830.087 o
G15 800 3050 31 38.633 77.195| 32 39.867 67.35010.179 FEE

Random G43 1000 6660 1 8.967 431.314 1 9.733 381.0730.323 ok
G44 1000 6650 3 8.467 428.178 2 9.533 375.822|0.114 FEE

G45 1000 6654 0 12.067 425.304 1 11.033 374.124]0.445 ok

G46 1000 6654 9 16.1 410.047 5 16.633 373.864|0.494 ok

G47 1000 6654 9 20.433 415.607| 13 20.267 370.332]0.472 FEE

Planar G51 1000 3846| 39 47.433 194.891 39 49.533 192.633(0.070 0.007
G52 1000 3849| 41 49.1 126.208| 42 50.033 110.035]0.265 FEE

*: Mann—Whitney test; the difference is significant if p — value < @, (@ = 0.05).
**: average computation time (second).
wHk: <0.001.

3.4.3 Discussion

We tested the basic VNS and B-VNS algorithms using simulations on several QUBO and
max-cut problems. QUBO problems from Glover and Beasley and max-cut problems from
Helmberg—Rendl and Burer et al. were chosen for the test, because they are benchmarking stan-
dards. Thus, our simulations gave a good overview of the performance of the two algorithms.
When solving the QUBO problems, the parameters of the two algorithms were set to be
equivalent. Compared to the problem size n, the parameters of both algorithms were set to
very small values. We used k4 = 0.0212 and pqx = 0.02. As a result, the k4, in the VNS
algorithm and the maximum up in the B-VNS algorithm only ranged from 1 to 10, and n ranged
from 30 to 500. As the number of iterations was set at 0.2n, the number of iterations was in the
range of 6 to 100. However, both the VNS and B-VNS algorithms were able to obtain the best-
known values. The failure on just a few problems that was observed is understandable because

31

Table 3.4: Results for Burer et al. [75] problems.

Problem N Best VNS B-VNS test (p-value)*
Known | BestDif AvgDif Time** | BestDif AvgDif Time**| Dif Time

sg3dl052000 125 112 0 1.2 0.042 0 1.8 0.039]0.058 wEE
sg3dl054000 125 114 0 1.333 0.043 0 2,133 0.039]0.158 ok
sg3dl0sS6000 125 110 0 1.333 0.041 0 1.467 0.038]0.803 ok
sg3dl058000 125 108 0 1.333 0.043 0 1.6 0.039]0.312 wEE
sg3dl0510000 125 112 0 3267 0.042 0 24 0.039]0.030 ok
sg3d1102000 1000 90| 20 28.867 402.421 18 30.200 350.9430.237 wEE
sg3dl104000 1000 896 18 28.667 431.393| 20 28.733 351.443|0.928 K
sg3d1106000 1000 886 24 31.267 359.999| 28 34.467 322.743]0.004 ok
sg3d1108000 1000 880 16 26.867 380.613| 20 28.600 311.638|0.058 wEE
sg3dI1010000 1000 890 18 28.800 390.797| 20 29.733 354.691|0.397 ok

*: Mann—Whitney test, the difference is significant if p — value < a, (a = 0.05).
*%: average computation time (second).
*xkr <0.001.

of the small values used for the parameters. The result would be improved by enlarging the
parameter values, i.e., by increasing k,,,4 in the VNS algorithm, p,,4 in the B-VNS algorithm,
and the number of iterations. However, increasing the parameter values may result in a longer
computation time.

For QUBO problems that apply equal conditions, the B-VNS algorithm was shown to be
substantially faster than the VNS algorithm for problems with sizes of less than 500. Moreover,
the B-VNS algorithm was able to provide good solutions to all of the tested problems. Solving
the standard QUBO problem under equal conditions showed that the B-VNS algorithm is able
to match the VNS algorithm even better and faster. This trend also occurred in the tests for max-
cut problems, even though the parameter settings were under non-equal conditions that risked
the B-VNS algorithm being less thorough. However, the experiments show that reducing the
thorough search behavior by setting the chunk size C = 0.9%,,,4x in the B-VNS algorithm did
not lessen the solution quality, and it even ran substantially faster in all of the max-cut problems
tested.

Setting the parameter chunk size C to less than k45 has the risk of lowering the accuracy
of the B-VNS algorithm. The characteristic of binomial distribution, which results in a pattern
of randomly increasing distances, also may reduce accuracy. Small chunk size and binomial
distribution can cause the algorithm to jump too far and miss some basins. However, our exper-
iments and statistical analysis show that the B-VNS algorithm was still able to provide solutions
as satisfactorily as the VNS algorithm. Therefore, setting the chunk size parameter to slightly
less than k4 is advantageous for solution quality and efficiency.

The flexible design implemented by parameter chunk size C gives the B-VNS algorithm the
potential to be faster than the VNS algorithm. Even though it is known that there is a risk of the
B-VNS algorithm losing its thorough search characteristic, which may result in longer compu-
tation times, our experiments showed that this was not the case. The experiment results indicate
that setting the B-VNS algorithm’s parameters as equal to the VNS algorithm’s parameters can
avoid this risk.

All of the tests involving standard QUBO and standard max-cut problems show that the
B-VNS and VNS algorithms are good. The VNS and B-VNS algorithms achieved most of the
best-known values or were very close to them. It should be noted that the referenced best-known
values were obtained using specific modified algorithms or by setting larger parameter values.
The tests show that the B-VNS algorithm performed better in all of the max-cut problems re-
gardless of problem size, and it was shown to be suited to QUBO problems with sizes less than

32

500.

We tested the B-VNS and VNS algorithm to investigate their performances. However, there
are limitations to this study. First, we used the most basic form of VNS algorithm. We did not
use the advanced or hybrid form because we focused on the construction mechanism of the
neighborhood structure. Many studies regarding the VNS algorithm have been carried out pre-
viously, but reports on the use of alternative neighborhood structures to solve QUBO problems
are very rare. Therefore, our study is useful for fundamentally developing the VNS algorithm.
Even though we used small parameter settings, this was sufficient to observe the potential of
both the B-VNS and VNS algorithms. Festa reported that the VNS algorithm is sensitive to
problem characteristics, so early iterations can be used to predict the potential of the algorithm
[68]. The results in this paper were also inseparable from the simulation we used. One of the
crucial factors in metaheuristic simulation is the random number generator. We used the For-
tran language and applied a dynamic random seed. Random seeds change over time. Each time
arandom number function is called, it will use a different seed to avoid generating specific pat-
terns of random numbers. It is worth considering that the programming approach applied in
simulation codes may also impact the results. Our tests only involved small- to medium-sized
problems. However, our experiments show that using binomial distribution can potentially en-
hance the VNS algorithm. Thus, experimenting on much larger cases becomes a challenge.
Considering that hybrid models tend to be more powerful, the hybrid form of the B-VNS algo-
rithm is worth studying. Considering the successful implementation of parallel programming
of the VNS algorithm [82], the potential of the B-VNS algorithm can be further developed by
applying a suitable hybrid model.

3.5 Conclusion

The B-VNS algorithm is a VNS algorithm that is modified by applying binomial distribution
to construct the neighborhood. As a result, the expansion of the neighborhood structure is no
longer strictly monotonous but random, following the characteristics of binomial distribution.
Our experiments used QUBO problems from Glover [44] and Beasley [71] and max-cut prob-
lems from Helmberg—Rendl [73] and Burer et al. [75]. We confirmed that the B-VNS and
VNS algorithms are suitable for use in solving QUBO and max-cut problems. The experiment
results show that both algorithms can provide good solutions, but the B-VNS algorithm runs
faster. Furthermore, the B-VNS algorithm performed better in all of the max-cut problems re-
gardless of problem size, and it performed better in QUBO problems with sizes less than 500.
Although we did not test large-sized problems, our results suggest that the use of binomial dis-
tribution to construct neighborhood structures can improve the performance by reducing the
speed.

33

Chapter 4

A Conceptual Design: Combination of
Spy Algorithm and B-VNS

The spy algorithm ensures the benefit of exploration and exploitation as well as cooperative
and non-cooperative searches in each iteration, as described in Chapter 2. Although the spy
algorithm’s original design has the nature of continuous optimization, the spy algorithm design
can be expanded for solving discrete optimization models. Regarding the nature of the spy
algorithm, combining it with B-VNS, as described in Chapter 3, will improve the performance.

For combining the spy algorithm and B-VNS, we should consider their processes. The spy
algorithm is population-based, while B-VNS is a single-trajectory-based metaheuristic. Hence,
using the spy algorithm as the main framework is more appropriate. As aresult, the combination
is a population-based metaheuristic. The high-level concept is shown in Fig. 4.1.

4
A

» Local Search

]
-
]
]

» Local Search

Figure 4.1: Conceptual design
The spy algorithm has a role in providing initial points for B-VNS. Based on this design,

some part is exactly the same as B-VNS, where the low-rank solutions provide random points as
initial points for B-VNS. In the other part, B-VNS will start from pretty good points generated

34

by the SwingMove and MoveToward operators. The spy algorithm gets an advantage because
the B-VNS act to refine solutions created by the spy algorithm. On the other hand, this design
enables the spy algorithm to feed various points for B-VNS. The spy algorithm is the primary
framework while providing initial points for B-VNS. B-VNS acts as an additional refinement
for the spy algorithm.

35

Chapter 5

Concluding Remarks

We have introduced two metaheuristic algorithms; the spy algorithm and B-VNS. The spy al-
gorithm is a population-based metaheuristic algorithm that ensures the benefit of exploration
and exploitation as well as cooperative and non-cooperative searches in each iteration. The
spy algorithm can maintain exploitation and exploration search by applying proper algorithm
settings to improve the solutions. The Spy algorithm is first designed to solve the continuous
optimization models.

The B-VNS algorithm is a VNS algorithm that is modified by applying binomial distribu-
tion to construct the neighborhood. As a result, the expansion of the neighborhood structure
is no longer strictly monotonous but random, following the characteristics of the binomial dis-
tribution. Based on the encoding, the B-VNS is intended to solve combinatorial optimization
problems, particularly in the form of the QUBO problem.

Even though the spy algorithm and B-VNS have different designs in detail, they follow the
same global framework of metaheuristics. They consist of the same five steps. Table 5.1 shows
that the spy algorithm and B-VNS follow common steps. However, the original design of each
of them targeted a different model. Another common thing is that the main idea of each of them
applies to the refinement step, in line with the explanation in Chapter 1 that the refinement step
plays a significant role in metaheuristics.

Table 5.1: Common metaheuristic steps apply to spy algorithm and B-VNS

Spy B-VNS
Class population single-trajectory
Step
1. Initialization | random points random point
2. Refinement | SwingMove, MoveToward, and random move | shaking and local search
3. Update take the better one take the better one
4. Termination |number of iteration number of iteration
5. Finalization | propose the best one taken from the last solu- | propose the last solution
tions
Domain continuous model discrete model (QUBO)
Main idea apply fixed portion of SwingMove, MoveTo- | apply Binomial distribution to
ward, and random move to control the explo- | construct neighborhood structure
ration and exploitation searches

We tested the GA, IHS, PSO, and spy algorithm on non-convex functions by aiming at
accuracy, the ability to detect many global optimum points, and computation time. Statistical
analyses were conducted to draw conclusions regarding the accuracy and computational cost.
As a result, the spy algorithm outperformed GA, IHS, and PSO by providing more accurate

36

solutions. Furthermore, the Spy algorithm provided higher maximum peak ratios. All those
results were achieved by the Spy algorithm within less computation time. The spy algorithm
is the most successful algorithm for solving two types of problems. This performance was
obtained without changing the algorithm parameters. These results indicate that the design
of the spy algorithm enables it to reach a balance state between exploration and exploitation
searches. As a result, empirical experiments proved the spy algorithm more robust than other
tested algorithms.

We tested the B-VNS and VNS on QUBO problems from Glover [44] and Beasley [71],
and max-cut problems from Helmberg—Rendl [73] and Burer et al. [75]. We confirmed that
the B-VNS and VNS algorithms are suitable for solving QUBO and max-cut problems. The
experiment results show that both algorithms can provide good solutions, but the B-VNS al-
gorithm runs faster. Furthermore, the B-VNS algorithm performed better in all of the max-cut
problems regardless of problem size, and it performed better in QUBO problems with sizes less
than 500. Although we did not test large-sized problems, our results suggest that the use of bi-
nomial distribution to construct neighborhood structures can improve performance by reducing
speed.

The spy algorithms and B-VNS have different designs in the process and the domain of
the solved problems. However, their combination has the potential to provide good results by
considering their benefits. The spy algorithm can be seen as the first step of B-VNS. Conversely,
B-VNS can be considered an additional refinement for the spy algorithm.

37

Bibliography

[1]

(2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

El-Ghazali Talbi. Metaheuristics From Design to Implementation. John Wiley & Sons,
New Jersey, USA, 2009.

Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2nd edition,
2010.

C Koulamas, SR Antony, and R Jaen. A survey of simulated annealing applications to
operations research problems. Omega, 22(1):41 — 56, January 1994,

Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6:109 — 134, March 1995.

Mauricio G.C. Resende and Celso C. Ribeiro. Greedy randomized adaptive search proce-
dures. In Fred Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics,
International Series in Operations Research & Management Science, chapter 8, pages 219—
249. Kluwer Academic, Dordrecht, 2003.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. [EEE
Computational Intelligence Magazine, 1(4):28-39, November 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, May 1983.

Rassoul Khosravanian, Vahid Mansouri, David A. Wood, and Masood Reza Alipour. A
comparative study of several metaheuristic algorithms for optimizing complex 3-d well-
path designs. Journal of Petroleum Exploration and Production Technology, 8:1487 —
1503, December 2018.

Fred Glover. Tabu search - Part I. ORSA Journal on Computing, 1(3):190-206, August
1989.

Fred Glover. Tabu search - Part II. ORSA Journal on Computing, 2(1):4-32, February
1990.

Bernardo Morales-Castafieda, Daniel Zaldivar, Erik Cuevas, Fernando Fausto, and Alma
Rodriguez. A better balance in metaheuristic algorithms: Does it exist? Swarm and
Evolutionary Computation, 54:100671, 2020.

Kashif Hussain, Mohd Najib Mohd Saleh, Shi Cheng, and Yuhui Shi. On the exploration
and exploitation in popular swarm-based metaheuristic algorithms. Neural Computing
and Applications, 31:7665-7683, 2019.

38

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

Francisco Barahona, Martin Grotschel, Michael Jiinger, and Gerhard Reinel. An applica-
tion of combinatorial optimization to statistical physics and circuit layout design. Opera-
tions Research, 36(3):493-513, June 1988.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, New York, 1979.

Richard M. Karp. Reducibility Among Combinatorial Problems, pages 219-241. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

J. C. Anglés d’Auriac, M. Preissmann, and A. Sebd. Optimal cuts in graphs and statistical
mechanics. Mathematical and Computer Modelling, 26(8-10):1 — 11, 1997.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, April 1997.

Jasbir S. Arora. Chapter 14 - practical applications of optimization. In Jasbir S. Arora,
editor, Introduction to Optimum Design (Third Edition), pages 575 —617. Academic Press,
Boston, 2012.

P. B. Thanedar, J. S. Arora, G. Y. Li, and T. C. Lin. Robustness, generality and efficiency
of optimization algorithms for practical applications. Structural optimization, 2(4):203 —
212, December 1990.

Michat Komorowski, Maria J. Costa, David A. Rand, and Michael P. H. Stumpf. Sensi-
tivity, robustness, and identifiability in stochastic chemical kinetics models. Proceedings
of the National Academy of Sciences, 108(21):8645-8650, May 2011.

Nikos D. Lagaros and Dimos C. Charmpis. Efficiency and robustness of three metaheuris-
tics in the framework of structural optimization. In Harris Papadopoulos, Andreas S.
Andreou, and Max Bramer, editors, Artificial Intelligence Applications and Innovations,
pages 104—111, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39:117 — 129, June 1987.

Paul C. Jennings, Steen Lysgaard, Jens Strabo Hummelshgj, Tejs Vegge, and Thomas Bli-
gaard. Genetic algorithms for computational materials discovery accelerated by machine
learning. npj Computational Materials, 5, April 2019.

Sangit Chatterjee, Matthew Laudato, and Lucy A. Lynch. Genetic algorithms and their sta-
tistical applications: an introduction. Computational Statistics & Data Analysis, 22(6):633
— 651, October 1996.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1996.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942—1948,
1995.

Shahid Shabir and Ruchi Singla. A comparative study of genetic algorithm and the particle
swarm optimization. International Journal of Electrical Engineering, 9(2):215 — 223,
2016.

39

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Navid Reza Tayebi, Fereidoon Moghadas Nejad, and Mahmood Mola. Comparison be-
tween GA and PSO in analyzing pavement management activities. Journal of Transporta-
tion Engineering, 140(1):99-104, 2014.

Zong Woo Geem, Joong Hoon Kim, and G.V. Loganathan. A new heuristic optimization
algorithm: Harmony search. SIMULATION, 76(2):60—68, February 2001.

M. Mahdavi, M. Fesanghary, and E. Damangir. An improved harmony search algorithm
for solving optimization problems. Applied Mathematics and Computation, 188(2):1567
— 1579, May 2007.

Mahamed G.H. Omran and Mehrdad Mahdavi. Global-best harmony search. Applied
Mathematics and Computation, 198(2):643—-656, 2008.

James Edward Baker. Adaptive selection methods for genetic algorithms. In Proceedings
of an International Conference on Genetic Algorithms and their applications, volume 101,
page 111. Hillsdale, New Jersey, 1985.

F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic algorithms: Op-
erators and tools for behavioural analysis. Artificial Intelligence Review, 12(4):265-319,
August 1998.

Bruno Seixas Gomes de Almeida and Victor Coppo Leite. Particle swarm optimization:
A powerful technique for solving engineering problems. In Javier Del Ser, Esther Villar,
and Eneko Osaba, editors, Swarm Intelligence, chapter 3. IntechOpen, Rijeka, 2019.

Vangelis Th. Paschos. Applications of Combinatorial Optimizations. John Wiley & Sons,
Ltd, 2014.

El-Ghazali TalbiTalbi. Metaheuristics. John Wiley & Sons, Ltd, 2009.

Xin-She Yang. Metaheuristic optimization: Algorithm analysis and open problems. In
Panos M. Pardalos and Steffen Rebennack, editors, Experimental Algorithms, pages 21—
32, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Kenneth Sorensen and Fred W. Glover. Metaheuristics, pages 960-970. Springer US,
Boston, MA, 2013.

Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics. Springer,
2003.

Christos Papalitsas, Theodore Andronikos, Konstantinos Giannakis, Georgia
Theocharopoulou, and Sofia Fanarioti. A QUBO model for the traveling salesman
problem with time windows. Algorithms, 12(11), 2019.

Prasanna Date, Davis Arthur, and Lauren Pusey-Nazzaro. QUBO formulations for training
machine learning models. Scientific reports, 11(1):10029-10029, May 2021.

Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating and using QUBO
models. CoRR, abs/1811.11538, 2018.

Kengo Katayama and Hiroyuki Narihisa. Performance of simulated annealing-based
heuristic for the unconstrained binary quadratic programming problem. European Journal
of Operational Research, 134(1):103-119, 2001.

40

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Fred Glover, Gary A. Kochenberger, and Bahram Alidaee. Adaptive memory tabu search
for binary quadratic programs. Management Science, 44(3):336-345, 1998.

Peter Merz and Bernd Freisleben. Genetic algorithms for binary quadratic programming.
GECCO’99, page 417-424, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

Endre Boros, Peter L. Hammer, and Gabriel Tavares. Local search heuristics for quadratic
unconstrained binary optimization (QUBO). Journal of Heuristics, 13(2):99-132, Apr
2007.

N. Mladenovi¢ and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097-1100, 1997.

Abraham Duarte, Angel Sanchez, Felipe Fernandez, and Rail Cabido. A low-level hy-
bridization between memetic algorithm and VNS for the max-cut problem. In Proceed-
ings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO
’05, page 999-1006, New York, NY, USA, 2005. Association for Computing Machinery.

Su-Hyang Kim, Yong-Hyuk Kim, and Byung-Ro Moon. A hybrid genetic algorithm for
the max cut problem. In Proceedings of the 3rd Annual Conference on Genetic and Evolu-
tionary Computation, GECCO’01, page 416-423, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

Paola Festa, P Pardalos, M Resende, and C Ribeiro. GRASP and VNS for max-cut. In
Extended Abstracts of the Fourth Metaheuristics International Conference, pages 371—
376, 2001.

MG Resende. GRASP with path re-linking and VNS for maxcut. In Proceedings of 4th
MIC, Porto, 2001.

Makbul A. M. Ramli and Houssem R. E. H. Bouchekara. Solving the problem of large-
scale optimal scheduling of distributed energy resources in smart grids using an improved
variable neighborhood search. IEEE Access, 8:77321-77335, 2020.

Fucai Wang, Guanlong Deng, Tianhua Jiang, and Shuning Zhang. Multi-objective parallel
variable neighborhood search for energy consumption scheduling in blocking flow shops.
IEEE Access, 6:68686—68700, 2018.

L. Garcia-Hernandez, L. Salas-Morera, C. Carmona-Mufoz, A. Abraham, and S. Salcedo-
Sanz. A hybrid coral reefs optimization—variable neighborhood search approach for the
unequal area facility layout problem. IEEE Access, 8:134042—-134050, 2020.

Meiling He, Zhixiu Wei, Xiaohui Wu, and Yongtao Peng. An adaptive variable neigh-
borhood search ant colony algorithm for vehicle routing problem with soft time windows.
IEEE Access, 9:21258-21266, 2021.

Abdessamad Ait El Cadi, Rabie Ben Atitallah, Nenad Mladenovi¢, and Abdelhakim Art-
iba. A variable neighborhood search (VNS) metaheuristic for multiprocessor scheduling
problem with communication delays. In 2015 International Conference on Industrial En-
gineering and Systems Management (IESM), pages 1091-1095, 2015.

41

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Guilherme Silva, Pedro Silva, Valéria Santos, Alan Segundo, Eduardo Luz, and Gladston
Moreira. A VNS algorithm for PID controller: Hardware-in-the-loop approach. IEEE
Latin America Transactions, 19(9):1502—-1510, 2021.

R. K. Phanden, H. I. Demir, and R. D. Gupta. Application of genetic algorithm and variable
neighborhood search to solve the facility layout planning problem in job shop production
system. In 2018 7th International Conference on Industrial Technology and Management
(ICITM), pages 270-274, 2018.

Dharmesh Dabhi and Kartik Pandya. Uncertain scenario based microgrid optimization via
hybrid levy particle swarm variable neighborhood search optimization (HL_PS_VNSO).
IEEE Access, 8:108782—-108797, 2020.

Sujun Zhang, Xingsheng Gu, and Funa Zhou. An improved discrete migrating birds opti-
mization algorithm for the no-wait flow shop scheduling problem. IEEE Access, 8:99380—
99392, 2020.

Chaoyong Zhang, Zhanpeng Xie, Xinyu Shao, and Guangtong Tian. An effective VNSSA
algorithm for the blocking flowshop scheduling problem with makespan minimization.
In 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), pages
86-89, 2015.

Antonio S Montemayor, Abraham Duarte, Juan José Pantrigo, Raul Cabido, and J Carlos.
High-performance VNS for the max-cut problem using commodity graphics hardware. In
Mini-Euro Conference on VNS (MECVNS 05), Tenerife (Spain), pages 1-11, 2005.

Ai-fan Ling, Cheng-xian Xu, and Le Tang. A modified VNS metaheuristic for max-
bisection problems. Journal of Computational and Applied Mathematics, 220(1):413—
421, 2008.

Pierre Hansen and Nenad Mladenovié. Variable neighborhood search. In Fred Glover and
Gary A. Kochenberger, editors, Handbook of Metaheuristics, International Series in Op-
erations Research & Management Science, chapter 6, pages 145—184. Kluwer Academic,
Dordrecht, 2003.

Pierre Hansen, Nenad Mladenovié, Jack Brimberg, and José A. Moreno Pérez. Variable
neighborhood search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuris-
tics, International Series in Operations Research & Management Science, chapter 3, pages
61-184. Springer, 2010.

Pierre Hansen, Nenad Mladenovié, and José A. Moreno Pérez. Variable neighbourhood
search: methods and applications. 40R, 6(4):319-360, Dec 2008.

Pierre Hansen and Nenad Mladenovié. A tutorial on variable neighborhood search. Tech-
nical report, LES CAHIERS DU GERAD, HEC MONTREAL AND GERAD, 2003.

P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for
the max-cut problem. Optimization Methods and Software, 17(6):1033—-1058, 2002.

J. E. Beasley. OR-Library: Distributing test problems by electronic mail. The Journal of
the Operational Research Society, 41(11):1069-1072, 1990.

J. E. Beasley. OR-Library, 2004. http://people.brunel.ac.uk/~mastjjb/jeb/
orlib/files.

42

[71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

John E. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming
problem. Technical report, The Management School, Imperial College, LLondon, UK, Dec
1998.

Angelika Wiegele. Biq Mac library -a collection of max-cut and quadratic 0-1 program-
ming instances of medium size. Technical report, Alpen-Adria-Universitit Klagenfurt,
Institut fiir Mathematik, Universitétsstr, Klagenfurt, Austria, 2007.

Christoph Helmberg and Franz Rendl. A spectral bundle method for semidefinite pro-
gramming. SIAM J. Optim., 10:673-696, 2000.

Yinyu Ye. Gset, 2003. https://web.stanford.edu/~yyye/yyye/Gset.

Samuel Burer, Renato D. C. Monteiro, and Yin Zhang. Rank-two relaxation heuristics
for MAX-CUT and other binary quadratic programs. SIAM Journal on Optimization,
12(2):503-521, 2002.

Marti, Duarte, and Laguna. Maxcut problem, 2009. http://grafo.etsii.urjc.es/
optsicom/maxcut/set2.zip.

Gary A. Kochenberger, Jin-Kao Hao, Zhipeng Lii, Haibo Wang, and Fred W. Glover.
Solving large scale max cut problems via tabu search. Journal of Heuristics, 19:565-571,
2013.

Yang Wang, Zhipeng Lii, Fred Glover, and Jin-Kao Hao. Probabilistic GRASP-tabu search
algorithms for the UBQP problem. Computers & Operations Research, 40(12):3100—
3107, 2013.

Gintaras Palubeckis and Vita Krivickiené. Application of multistart tabu search to the
max-cut problem. Information Technology and Control, 31, 2004.

Endre Boros, Peter L. Hammer, Richard Sun, and Gabriel Tavares. A max-flow approach
to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Dis-
crete Optimization, 5(2):501-529, 2008. In Memory of George B. Dantzig.

JASP Team. JASP (Version 0.16)[Computer software], 2021.

Panos Kalatzantonakis, Angelo Sifaleras, and Nikolaos Samaras. Cooperative versus non-
cooperative parallel variable neighborhood search strategies: a case study on the capaci-
tated vehicle routing problem. Journal of Global Optimization, 78:327-348, 10 2020.

43

