Metabolic flow at high temperatures and laboratory adaptation in thermotolerant yeast *Kluyveromyces marxianus* DMKU 3-1042

(耐熱性酵母 Kluyveromyces marxianus DMKU 3-1042 の高温代謝フローと実験室適応)

PhD Thesis

Pattanakittivorakul Sornsiri

A thesis submitted in partial fulfilment of the requirement for the degree of doctor of life science

Graduate School of Sciences and Technology for Innovation Yamaguchi University

June 2022

CONTENTS

	Pages
LIST OF TABLES	iv
LIST OF FIGURES	V
CHAPTER 1	
General Introduction	1
CHAPTER 2	
Distinct metabolic flow in response to temperature in thermotolerant	
Kluyveromyces marxianus	4
2.1Abstract	4
2.2 Introduction	4
2.3 Materials and Methods	6
2.3.1 Strain, medium and cultivation	6
2.3.2 Analytical methods	7
2.3.3 Determination of cellular and mitochondrial levels of ROS	7
2.3.4 Determination of levels of GSH and gluthathione disulfide	8
2.3.5 Determination of NADPH and NADP ⁺ levels	8
2.3.6 Observation of mitochondrial morphology	9
2.3.7 RNA-Seq analysis	9
2.3.8 Enzyme assay	10
2.3.9 Quantification and statistical analyses	11
2.3.10 Data availability	11
2.4 Results	11
2.4.1 HTF and effect of acetic acid on <i>K. marxianus</i>	11
2.4.2 Levels of ROS, GSH, and NADPH under a high-temperature	
condition	14
2.4.3 Effects of exogenous GSH on acetate accumulation and cell	
viability under a high-temperature condition	15

CONTENTS

(Continued)

	Pages
2.4.4 Analysis of fermentation at the early phase and	
mitochondrial morphology	16
2.4.5 Effects of temperature upshift on cell growth and	
metabolism	19
2.4.6 Transcriptome analysis at the transition phase from a low	
temperature to a high temperature	20
2.4.7 Activity of several enzymes at the transition phase from a	
low temperature to a high temperature	26
2.5 Discussion	27
2.6 Conclusion	32

CHAPTER 3

Evolutionary adaptation by repetitive long-term cultivation with	
gradual increase in temperature for acquiring multi-stress tolerance and high ethanol productivity in <i>Kluyveromyces marxianus</i> DMKU 3-	
3.1 Abstract	34
3.2 Introduction	34
3.3 Materials and Methods	37
3.3.1 Yeast strains	37
3.3.2 Determination of cell growth and viability	37
3.3.3 Determination of fermentation parameters	37
3.3.4 Evolutionary adaptation by RLCGT	37
3.3.5 Characterization of adapted strains	38
3.3.6 Preparation of genomic DNA, genomic sequencing, and	
genome mapping analysis	39
3.3.7 RNA-Seq analysis	39

CONTENTS

(Continued)

	Pages
3.4 Results	40
3.4.1 Effects of long-term cultivation on K. marxianus DMKU 3-	
1042	40
3.4.2 Adaptive laboratory evolution of K. marxianus DMKU 3-	
1042 by RLCGT	42
3.4.3 Fermentation ability of adapted strains at high	
temperatures	43
3.4.4 Characterization of the adapted strains	46
3.4.5 Mutation points of adapted strains	49
3.4.6 Transcriptome analysis	50
3.5 Discussion	53
3.6 Conclusion	57
REFERENCES	58
ACKNOWLAGEMENT	73
LIST OF PUBLICATION	74
APPENDIX	75

LIST OF TABLES

Pages

CHAPTER 3

Tables

3.1	Comparison of growth and fermentation parameters among various	
	adapted strains and previously reported strains	45
3.2	Summary of mutations of adapted strains	51
3.3	Up-regulated genes ($\log_2 > 1$) and down-regulated in ACT001	
	strain	52

APPENDIX

S1. Up-regulated genes ((> $4 \log_2$) at 30 min after temperature upshift.	83
S2. GO enrichment analysis in biological process for upregulated	
genes (> 2 log ₂) at 30 min after temperature upshift	85
S3. KEGG pathway analysis for upregulated genes (> 2 log ₂) at 30 min	
after temperature upshift	87
S4. Downregulated genes (< -4 log_2) at 30 min after temperature	
upshift	88
S5. GO enrichment analysis in biological process for downregulated	
genes (< -2 log ₂) at 30 min after temperature upshift	90
S6. KEGG pathway analysis for downregulated genes ($< -2 \log_2$) at 30	
min after temperature upshift	93
S7. Upregulated genes (> 4 log₂) at 2 h after temperature upshiftS8. GO enrichment analysis in biological process for upregulated	95
genes (> 2 log ₂) at 2 h after temperature upshift	97
S9. KEGG pathway analysis for upregulated genes (> 2 log ₂) at 2 h	
after temperature upshift	99
S10. Downregulated genes (< -4 log_2) at 2 h after temperature	
upshift	100

LIST OF TABLES

(Continued)

Tables	Pages
S11. GO enrichment analysis in biological process for downregulated	
genes (< -2 log ₂) at 2 h after temperature upshift	101
S12. KEGG pathway analysis for downregulated genes (< -2 log2) at 2	
h after temperature upshift	104
S13. Significantly upregulated genes that are related to mitophagy	105
S14. Significantly downregulated genes that are related to mitophagy	
or autophagy	106
S15. Primers used in this study	107
S16. Comparison of evolutionary adaptation in this study with	
evolutionary adaptations reported previously	108

LIST OF FIGURES

Pages

CHAPTER 2

Figures

2.1 Ethanol fermentation of <i>K. marxianus</i> in long-term cultivation at	
30°C and 45°C	1
2.2 Effects of acetic acid on cell viability and cellular level of ROS of	
K. marxianus at 45°C	1
2.3 Cellular and mitochondrial levels of ROS and levels of glutathione	
and NADPH of <i>K. marxianus</i> at 30°C and 45°C	1
2.4 Distinct characteristics of <i>K. marxianus</i> at 30°C and 45°C	1
2.5 Ethanol fermentation of K. marxianus during short-term cultivation	
at 30°C and 45°C and effects of temperature upshift on K .	
marxianus	1
2.6 Effects of temperature upshift on cellular levels of ROS and	
mitochondrial morphology	2
2.7 Transcriptome analysis of the effect of temperature upshift in K .	
marxianus	2
2.8 Enzyme activity analysis of the effect of temperature upshift on <i>K</i> .	
marxianus	2
2.9 Models of metabolic flow at a high temperature (HT) in K. marxianus	2

CHAPTER 3

3.1 Growth, CFU, and fermentation parameters of K. marxianus	
DMKU 3-1042 in YPD medium at 30°C and 45°C	42
3.2 Fermentation of adapted strains in YP medium containing 16%	
glucose at high temperatures	44
3.3 Characterization of adapted strains	47
3.4 Effects of acetic acid on growth and fermentation parameters of	
adapted strains at 40°C	48

APPENDIX

S1. Effects of exogenous GSH on ethanol consumption, acetate	
accumulation and cell viability of <i>K. marxianus</i> at 45°C	75
S2. Mitochondrial morphology of <i>K. marxianus</i> at 30°C and 45°C	76
S3. Effects of temperature upshift on mitochondrial morphology	76
S4. Volcano plots of differentially expressed genes (DEGs) for 45°C	
for 30 min (4H30-30M45) (A) and 45°C for 2 h (4H30-2H45) (B)	
vs 30°C (6H30)	77
S5. The number of shared and non-shared genes between 4H30-	
30M45 and 4H30-2H45 conditions in downregulated (A) and	
upregulated (B) DEGs	77
S6. Transcriptome analysis of the effect of temperature upshift in <i>K</i> .	
marxianus	78
S7. Schematic diagram of RLCGT for K. marxianus DMKU 3-1042	79
S8. Effects of furfural on growth and fermentation parameters of	
adapted strains at 45°C	80
S9. Effects of multiple inhibitors on growth and fermentation	
parameters of adapted strains at 45°C	81
S.10 Characterization of adapted strains	82

CHAPTER 1

General Introduction

Bioethanol is widely considered as an alternative to fossil fuels as it is one of clean renewable energy sources. Nowadays, lignocellulosic materials is one of the most interesting substrates because it is abundant without competing with food supplies and cheap cost (Hemansi *et al.* 2021). For economically bioethanol production, it is still costly than fossil fuels (Rozakis *et al.* 2013). High temperature fermentation (HTF) is one of technology that many industrial uses. It has several advantages including reduction of cooling cost, reduction the risk of contamination, reduction of enzymatic hydrolysis cost in saccharification and fermentation (SSF) and effective ethanol fermentation in tropical countries (Limtong *et al.* 2007; Murata *et al.* 2015).

Saccharomyces cerevisiae is widely used for industrial ethanol production due to this strain have capacity ethanol production, various stresses tolerance and utilize various sugar except five carbons (Lau *et al.* 2010; Lertwattanasakul *et al.* 2015). However, the temperature inside fermenters increases during the fermentation causes problem to this strain and cooling system that help to reduce temperature and cell survival increases production costs (Kosaka *et al.* 2018; Taweecheep *et al.* 2019). In recently, many researchers have been isolated thermotolerant ethanol fermenting yeast. *Kluyveromyces marxianus* is one of thermotolerant yeast that that has received interest. It has a good characteristic including high efficiency ethanol fermentation at high temperature, short doubling time, weak glucose repression, and ability to assimilate various sugar especially xylose that mostly found in lignocellulosic biomass (Limtong *et al.* 2007; Nitiyon *et al.* 2016; Techaparin *et al.* 2017).

K. marxianus DMKU 3-1042 is one the thermotolerant strain that have been widely study on phenotype, genotype, and complete genome sequence (Lertwattanasakul *et al.* 2015; Nitiyon *et al.* 2016; Nurcholis *et al.* 2019). This strain may have some mechanism for surviving at high temperature. Much evidence has been reported on thermotolerance. Inducing of heat shock proteins (HSPs) genes and

trehalose metabolism-related genes may support on thermotolerance (Satomura *et al.* 2013; Auesukaree 2017). Increasing nitric oxide (NO) levels provide tolerance to high temperature stress (Nasuno *et al.* 2014). High accumulation of glycogen and trehalose in mut 7 tolerated high temperature and ethanol concentration (Kumari *et al.* 2012).

During ethanol fermentation, yeast cells are exposed and respond to various stresses such as ethanol, acetic acid, osmotic stress, and oxidative stress from high concentrations of substrate sugar, all of which have effects on cell viability and ethanol production (Gibson *et al.* 2007; Auesukaree 2017; Zhang *et al.* 2015). Nowadays, ethanol production from lignocellulosic biomass become trendy because it is a renewable, abundant, inexpensive raw material and appropriate to use for the economic production (Sun and Cheng 2002; Cunha *et al.* 2019). However, conversion of biomass to sugar via pretreatment and hydolysi is released various by-products such as furfural, hydroxymethylfurfural (HMF) and phenolic compounds (Ibraheem and Ndimba 2013; Jönsson and Martín 2016). These compounds extend lag-phase, reduce cell growth, and reduce efficacy of ethanol production.

Improvement of ethanol production and characteristic of yeast strain can be achieved by strain development. Many strategies have been used to improve yeast strain (Bro *et al.* 2006; Hughes *et al.* 2012; Mobini-Dehkordi *et al.* 2008; Hemansi *et al.* 2021). Each strategies have different benefits and disadvantages. For example, sexual breeding and genetic engineering are difficult, take a time and high in cost while mutagenesis is a simple, take a short time and low in cost. In this study, adaptation was selected because it is a process that living cells adjusted their intracellular physiological conditions or some mechanisms to the surrounding environment for survival and growth (Dinh *et al.* 2008). This method seems to offer multiple advantages as an efficient way to select yeast populations, resistant to different stress conditions, and to expand their tolerance range (Zhang *et al.* 2014; Gurdo *et al.* 2018). In addition, this process is a simple, low in cost and giving a stable strain, but this process may take a time to perform.

In this study, there are two main objectives: 1) understanding strategy of thermotolerant yeast for survival at high temperature by growth and metabolic profiles,

determination of ROS, NADPH and GSH, observation of mitochondria morphology and transcriptome analysis and 2) improvement of ethanol production and stress resistance of thermotolerant yeast via adaption and study on adapted strain by characterization and genome analysis.

CHAPTER 2

Distinct metabolic flow in response to temperature in thermotolerant *Kluyveromyces marxianus*

2.1 Abstract

The intrinsic mechanism of the thermotolerance of *Kluyveromyces marxianus* was investigated by comparison of its physiological and metabolic properties at high and low temperatures. After glucose consumption, the conversion of ethanol to acetic acid became gradually prominent only at a high temperature (45°C) and eventually caused a decline in viability, which was prevented by exogenous glutathione. Distinct levels of reactive oxygen species (ROS), glutathione, and NADPH suggest a greater accumulation of ROS and enhanced ROS-scavenging activity at a high temperature. Fusion and fission forms of mitochondria were dominantly observed at 30°C and 45°C, respectively. Consistent results were obtained by temperature upshift experiments, including transcriptomic and enzymatic analyses, suggesting a change of metabolic flow from glycolysis to the pentose phosphate pathway. The results of this study suggest that *K. marxianus* survives at a high temperature by scavenging ROS via metabolic change for a period until a critical concentration of acetate is reached.

2.2 Introduction

Kluyveromyces marxianus, a thermotolerant yeast, can grow well at temperatures over 45°C, unlike *Kluyveromyces lactis*, which belongs to the same genus, or *Saccharomyces cerevisiae*, which is a closely related yeast in hemiascomycetous yeasts. *K. marxianus* may thus have an intrinsic mechanism to survive at high temperatures in addition to its efficient fermentation ability with various sugars and its short doubling time (Lertwattanasakul *et al.* 2011; Rodrussamee *et al.* 2011; Nurcholis *et al.* 2020). The thermotolerance of *K. marxianus* enables high-temperature fermentation (HTF), which can provide benefits, including reductions of cooling costs and the prevention of contamination by other microbes (Banat *et al. al*

1998; Murata *et al.* 2015; Nitiyon *et al.* 2016), and attention has therefore been given to *K. marxianus* for industrial applications (Nurcholis *et al.* 2020).

Reactive oxygen species (ROS), which can induce oxidative stress, are mainly generated by the leakage of electrons from the respiratory chain in mitochondria (Pan 2011). In S. cerevisiae, electron leakage is enhanced at high temperatures due to the structural instability of the mitochondrial membrane (Tarrío et al. 2008) or by an increase in the respiration rate (Abbott et al. 2009). Low levels of ROS are scavenged by nonenzymatic and enzymatic antioxidizing agents such as glutathione (GSH), thioredoxin (TRX), superoxide dismutase, catalase, and peroxidases, but high levels of ROS cause the oxidation of intracellular components such as DNA, protein, and lipid and induce apoptosis (Madeo et al. 1999; Scherz-Shouval et al. 2007). Oxidative stress is a trigger of mitophagy (Frank et al. 2012; Kanki et al. 2015) and is also involved in heat-induced cell death (Davidson et al. 1996). Under oxidative stress conditions, cells activate the production of nicotinamide adenine dinucleotide phosphate (NADPH) that is required for the regeneration of GSH or a reduced form of TRX (López-Mirabal and Winther 2008), which is mainly produced by the pentose phosphate pathway (PPP) (Kruger and von Schaewen 2003). NADP1/NADPH is thus used as an indicator of oxidative stress and cell death (Xia et al. 2009; Itsumi et al. 2015).

The mitochondrion, which is an organelle that is responsible for various important tasks, including oxidative phosphorylation in eukaryotes, exhibits two types of morphology, fusion and fission, which are regulated by several vital genes (Shaw and Nunnari 2002) in response to nutrient depletion or stress (Youle and van der Bliek 2012). Damaged mitochondria are segregated in fission and degraded by mitophagy, by which mitochondrial homeostasis is maintained (Youle and van der Bliek 2012; Kotiadis *et al.* 2014; Palikaras and Tavernarakis 2014).

In *S. cerevisiae*, high temperature causes the accumulation of acetic acid and trehalose (Thevelein 1984; Woo *et al.* 2014). The former induces mitochondrion-dependent apoptosis (Ludovico *et al.* 2001; Ludovico *et al.* 2002), and the latter contributes to protein stabilization and inhibits apoptosis (Singer and Lindquist 1998; Petitjean *et al.* 2017). In *K. marxianus*, several genes for enzymes in the tricarboxylic

acid (TCA) cycle are downregulated and oxidative stress response genes are upregulated at a high temperature (Lertwattanasakul *et al.* 2015), indicating the possibility that mitochondrial metabolism is adapted to high-temperature conditions to avoid suffering from oxidative stress. However, the physiological and metabolic differences between low and high temperatures remain to be elucidated.

To understand the strategy of *K. marxianus* for survival at high temperatures, we first investigated cell growth, metabolites, and intracellular antioxidants in detail under long-term and short-term cultivation conditions. Under the former conditions, acetate that accumulated above a critical concentration caused a decline in cell survival, and the trigger of the drastic event was investigated by focusing on ROS, GSH, and NADPH levels. Under the latter conditions, changes in the dissolved oxygen (DO) concentration (DOC) and mitochondrial morphology were focused on. Temperature upshift experiments were also carried out, and the results revealed that the accumulation of ROS within a short time after the temperature shift caused a remarkable increase in the ratio of the fission form to the fusion form of mitochondria. On the basis of these findings and transcriptomic and enzymatic data, the metabolic change after a temperature upshift is discussed.

2.3 Materials and Methods

2.3.1 Strain, medium and cultivation

The yeast strain used in this study was *K. marxianus* DMKU 3-1042 (Limtong *et al.* 2007), which has been deposited in the NITE Biological Resource Center (NBRC) under deposit numbers NITE BP-283 and NBRC 104275. Cells were precultured in YP (1% yeast extract and 2% peptone) medium containing 2% glucose (YPD) at 30°C for about 12 h under reciprocally shaking conditions at 160 rpm. The preculture was inoculated at 1% into YPD medium, and culture was carried out under reciprocally shaking conditions at 160 rpm.

2.3.2 Analytical methods

Cells were pre-cultured in YPD at 30°C for about 12 h, and 1% of the preculture was inoculated into YPD medium for cultivation at 30°C or 45°C. Cell growth and pH were determined by measuring the optical density at $660 \text{ nm} (OD_{660})$ using a UV-visible (UV-VIS) spectrophotometer (Shimazu, Japan) and a pH meter (Horiba, Japan), respectively. Cell viability was determined as CFU by counting the number of colonies on YPD agar plates. During cultivation, samples were taken, diluted, spread onto plates, and subjected to incubation at 30°C, and the colonies that formed on the plates were enumerated after 48 h. Concentrations of glucose, ethanol, and acetate in the culture were determined on a high-performance liquid chromatography (HPLC) system (Hitachi, Japan) consisting of a Hitachi model D-2000 Elite HPLC system manager, column oven L-2130, pump L-2130, autosampler L-2200, and refractive index (RI) detector L-2490 equipped with a GL-C610H-S Gelpack column (Hitachi Chemical, Japan) or UV detector L-2400 equipped with a GL-C610-H Gelpack column (Hitachi Chemical, Japan). The dissolved oxygen concentration (DOC) was measured by using a DO sensor of Fibox 3 (PreSens Precision Sensing GmbH), and its sensor chip was set up at the center of the bottom of a 100-mL flask. NADH oxidase activity was measured as described previously (Sootsuwan et al. 2008; Lertwattanasakul et al. 2009).

2.3.3 Determination of cellular and mitochondrial levels of ROS

Cellular and mitochondrial levels of ROS were determined with the cellpermeant fluorescent probe 29,79-dichlorodihydrofluorescein diacetate (H₂DCFDA) (Funakoshi, Japan) and dihydrorhodamine 123 (Wako, Japan), respectively (Pérez-Gallardo *et al.* 2013). During cultivation, samples were taken and incubated with 10 μ M H₂DCFDA or 10 μ M dihydrorhodamine 123/1 × 10⁷ cells for 1 h before collecting cells. The collected cells were washed twice with phosphate-buffered saline (PBS) and resuspended in 4 mL of the same buffer containing protease inhibitor cocktail set IV (Wako, Japan). The cells were then disrupted by passage through a French pressure cell press (16,000 lb/in²) and centrifuged at 6,000 × *g* for 10 min, and the fluorescence of the supernatant was measured by a Powerscan HT microplate reader (BioTek Instruments Inc., Winooski, VT, USA). The protein concentration was determined by the Lowry method (Dulley and Grieve 1975).

2.3.4 Determination of levels of GSH and glutathione disulfide

Glutathione levels were determined by a modified method described previously (Gajendra et al. 2014). During cultivation, cells were harvested, washed twice with PBS, and resuspended in 4 mL of 1% 5-sulfosalicylic acid containing protease inhibitor cocktail set IV. The cells were disrupted by a French pressure cell press (16,000 lb/in²) and centrifuged at 6,000 \times g for 10 min. The supernatant was used for the determination of glutathione levels. Total glutathione was determined by the addition of 30 µL of the lysate to 450mL of the assay mixture [0.1 M potassium phosphate (pH 7.0), 1 mM EDTA, 0.03 mg/ml 5, 5'-dithiobis (2-nitrobenzoic acid), and 0.12 U of glutathione reductase]. The samples were mixed and incubated for 5 min at room temperature, and 150 µL of NADPH (0.16 mg/mL) was added to the mixture. The formation of thiobis(2 - nitrobenzoic acid) was measured spectrophotometrically at 420 nm over a 5-min period. A standard curve was generated for each experiment using 0 to 0.5 nmol of GSH in 1% 5-sulfosalicylic acid. To measure glutathione disulfide (GSSG) levels, 200 µL of a lysate sample was derivatized by the addition of 4 µL of 97% 2-vinylpyridine, and the pH was adjusted by the addition of 4 µL of 25% triethanolamine. The samples were incubated at room temperature for 1 h. After incubation, the treated lysate was added to 300 µL of the assay mixture and incubated for 5 min at room temperature. Next, 100 µL of NADPH (0.16 mg/mL) was added, and the amount of thiobis formed was measured. GSSG standards (0 to 0.5 nmol) were also treated with 2-vinylpyridine in a manner identical to that for the samples. The amount of GSH in each sample was determined by subtracting the amount of GSSG in the lysate from the total amount of glutathione.

2.3.5 Determination of NADPH and NADP⁺ levels

NADPH and NADP⁺ levels were determined by an EnzyChromTM NADP⁺/NADPH assay Kit (BioAssay Systems). During cultivation, cells were harvested, washed twice with PBS, and resuspended in a NADPH or NADP⁺ extraction buffer included in the kit. The sample was then incubated at 65 °C for 30

min. The amounts of NADPH and NADP⁺ were determined by following the manufacturer's protocol.

2.3.6 Observation of mitochondrial morphology

The shape of the mitochondrial network in live cells was observed by microscopy. One hundred microliters of culture was collected and mixed with MitoTracker Red CMXRos (Molecular Probes) at the final concentration of 0.4 μ M. The mixture was incubated at 30°C for 10 min to 20 min and subjected to observation by the fluorescence microscope BX53 (OLYMPUS, Japan) with its green excitation light. Approximately 250 cells were observed to determine the ratio of fusion to fission forms of mitochondria. The fission or fusion form as a mitochondrial form was decided by the number of mitochondria; mitochondria in a cell that contains more than 4 mitochondria are of the fusion form.

2.3.7 RNA-Seq analysis

For RNA preparation, cell growth was performed under three different conditions. Cells were grown in YPD medium at 30°C for 4 h, the temperature was then increased to 45°C, and the cells were further incubated for 30 min or 2 h or continuously incubated at 30°C for 6 h. Total RNA was then isolated as described previously (Nurcholis et al. 2019) and purified by using the RNeasy mini plus kit (Qiagen) according to the instructions supplied by the company. All conditions were duplicated. The purified RNA was subjected to RNA-Seq analysis by Illumina NextSeq system. For RNA-Seq analysis, the K. marxianus genome sequence (GenBank accession numbers AP012213-AP012221) was used. Reads per kilobase of exon per million (RPKM) values were estimated using the CLC genomic workbench (Qiagen). Extraction of DEGs was based on unique exon read values from CLC genomics workbench outputs using the DESeq2 R package. The resulting P values were adjusted using Benjamin-Hochberg's method for controlling the false discovery rate. Genes with adjusted P values of less than 0.01 ($P_{adj} < 0.05$) and log_2 fold change values of greater than 1 or lower than -1 were assigned as significant DEGs. Gene ontology (GO) enrichment analysis of significant DEGs was performed

using the topGO R package. GO terms with *P* values less than 0.01 were considered significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping with these significant DEGs was performed by KEGG web tools (http://www.genome.jp/keg/tool/map_pathway1.html).

2.3.8 Enzyme assay

Cells were grown in YPD medium at 30°C for 4 h, the temperature was then increased to 45°C, and the cells were further incubated for 30 min and 2 h or continuously incubated at 30°C for 6 h or at 45°C for 6 h. Cells were then harvested by centrifugation at 9,000 x g and 4°C, washed with saline and resuspended in 10 mM potassium phosphate buffer (KPB) (pH 7.0). The resuspended cells were subjected to French pressure cell press (catalog number IL61801; SLM Aminco SLM Instruments, Inc.) at 24,000 lb/in² four times, followed by centrifugation at 9,000 x gand 4°C for 10 min. The resultant supernatant was further subjected to centrifugation at 100,000 x g and 4°C for 1 h. The supernatant was used as an ultracentrifugation supernatant for enzyme assay. Activities of glucose-6-phosphate dehydrogenase, 6phosphogluconate dehydrogenase, phosphoglucose isomerase, glyceraldehyde-3phosphate dehydrogenase and fructose-1,6-diphosphatase were determined spectrophotometrically (U-2000A spectrophotometer; Hitachi) by the methods reported previously (Amelunxen and Carr 1975; Kuby and Noltmann 1966; Noltmann 1966; Rosen 1975; Scott and Abramsky 1975). Glucose 6-phosphate, 6phosphogluconate, fructose-6-phosphate, glyceraldehyde 3-phosphate, sodium arsenate, fructose 1,6-diphosphate, NADP and NAD were purchased from Oriental yeast co., LTD (Japan), Oriental yeast co., LTD, Nacalai tesque (Japan), CAYMAN (Japan), Nacalai tesque, CAYMAN, Oriental yeast co., LTD and Oriental yeast co., LTD, respectively. For the assay of phosphoglucose isomerase, glucose-6-phosphate dehydrogenase from Oriental yeast co., LTD was used. For the assay of fructose-1,6diphosphatase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase from Nacalai tesque and Oriental yeast co., LTD, respectively, were used.

2.3.9 Quantification and statistical analyses

All experiments were performed independently at least three times, except for fluorescence microscopy and RNA-Seq analysis. For morphology observation by a fluorescence microscope, we chose a typical image from at least 10 random images. RNA-Seq analysis and its data analysis are described above. All of the data obtained by determination of ROS, GSH, GSSG, NADPH, NADP⁺, NADH oxidase activity, and fission and fusion mitochondria were used to conduct an *F* test together with Turkey's honestly significant difference (HSD) test. All statistical analyses were performed using SPSS statistics software version 19.0 (IBM, New York, USA). A *P* value of <0.05 was considered statistically significant.

2.3.10 Data availability

All of the data were deposited in the DDBJ Sequence Read Archive (https://www.ddbj.nig.ac.jp/dra/index-e.html) under accession number DRA010932.

2.4 Results

2.4.1 HTF and effect of acetic acid on K. marxianus

K. marxianus bears capabilities for growth and fermentation at a high temperature as well as at a low temperature. To understand the fermentation ability of *K. marxianus* under different temperature conditions, the cell growth and metabolites of *K. marxianus* DMKU 3-1042 were compared in yeast extract-peptone-dextrose (YPD) medium at 30°C and 45°C for 72 h as a long-term cultivation (Fig. 2.1A to D). The cell turbidity, consumption of glucose, and ethanol production at 45 °C were less than those at 30°C. The concentration of ethanol peaked at 10 to12 h and then gradually decreased under both temperature conditions, and the decrease was faster at 45°C until 36 h and then slowed down. Concomitantly, the concentration of acetate increased at 45°C until 48 h, and the concentration was then maintained at 0.5% (w/v). In agreement with the accumulation of acetate, the pH of the culture medium greatly dropped (Fig. 2.1E). At 30°C, the level of ethanol continuously decreased, but the level of acetate

was not as high as that at 45°C. Notably, the number of CFU sharply decreased at 45°C after the accumulation of acetate became about 0.4% (w/v) but did not decrease at 30°C (Fig. 2.1F).

Fig. 2.1 Ethanol fermentation of *K. marxianus* in long-term cultivation at 30°C and 45°C. Cells were cultivated in 2% YPD medium at 30°C (open circles) and 45°C (open triangles) under shaking conditions. (A) The cell density was estimated by measuring the turbidity at OD₆₆₀. (B to D) Concentrations of glucose (B), ethanol (C), and acetate (D) were determined by HPLC. (E and F) pH (E) and CFU (F) were also determined as described in Materials and Methods. Error bars represent standard deviations (SD) for triplicate experiments.

The decrease in the number of CFU suggested that the accumulation of acetate over a critical concentration caused cell death. To investigate this possibility, acetic acid and HCl were exogenously added to the culture medium at 45°C (Fig. 2.2). The number of CFU was greatly decreased and the level of ROS was increased by the addition of 0.2% or 0.4% (w/v) of acetic acid but was not changed by the addition of HCl, which decreased pH to 4.2, being pH equivalent to 0.4% (w/v) of acetic acid. Therefore, the results suggested that exogenous acetic acid enhances the elevation of the level of ROS and the decrease in the number of CFU and that cell death is caused by the accumulation of acetate but not by pH reduction of the culture medium.

Fig. 2.2 Effects of acetic acid on cell viability and cellular level of ROS of *K. marxianus* at 45°C. Cells were cultivated in 2% YPD medium supplemented with acids at 45°C under shaking conditions at 160 rpm. Six hours after inoculation, acids, including 0.118% (w/v) HCl (open circles), 0.2% (w/v) acetic acid (closed squares), and 0.4% (w/v) acetic acid (open squares) were added or not added (closed circles). (A and B) CFU (A) and pH (B) were determined as described in the legend of Fig. 2.1. (C) Relative cellular level of ROS was measured at a log phase (6 h) as described in Materials and Methods. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

2.4.2 Levels of ROS, GSH, and NADPH under a high-temperature condition

Since it was previously shown that levels of ROS remarkably increase under high-temperature conditions in S. cerevisiae (Zhang et al. 2015), cellular and mitochondrial levels of ROS were determined in the log phase (6 h) and in the acetateaccumulation phase (36 h) at 30°C and 45°C (Fig. 2.3A and B). At 6 h, cellular and mitochondrial levels of ROS at 45°C were 4.0-fold and 10.9-fold higher than those at 30°C, respectively. At 36 h, the cellular and mitochondrial levels of ROS at 45°C were 5.9-fold and 3.1-fold higher than those at 30°C, respectively. The levels of ROS were significantly higher in the acetate accumulation phase, during which the number of CFU was decreasing. These results suggest that heat stress increases cellular and mitochondrial levels of ROS. On the other hand, the cellular GSH and GSSG levels in the log phase at 45°C were lower than those at 30°C and the levels in the acetate accumulation phase at 45°C were much lower (Fig. 2.3C to E), athough the ratios of GSH to GSSG at 45°C in both phases were almost the same as those at 30°C, indicating that the sum of GSH and GSSG values at 45°C is low compared to that at 30°C. Therefore, it is likely that either low synthesis or high degradation of GSH occurs at a high temperature in comparison to that at a low temperature, though the ratio of GSH/GSSG is maintained.

Since the enzymatic conversion of ethanol to acetic acid generates NADPH as a source of reducing equivalents for regeneration of GSH, it is assumed that acetic acid is produced to generate NADPH for the removal of ROS. To examine this assumption, NADPH and NADP⁺ levels of the cells were determined in the log and acetate accumulation phases at 30°C and 45°C (Fig. 2.3F to H). In both phases, the NADPH levels at 45°C were higher than those at 30°C. Notably, at 45°C, the ratio of NADPH/NADP⁺ in the acetate accumulation phase was lower than that in the log phase, presumably indicating the requirement of a larger amount of NADPH in the acetate accumulation phase for removal of ROS. However, considering the report by Zhang *et al.* (2015), the ratio of NADPH/NADP could be low, so it cannot be denied that the method used in this study underestimated the amount of NADPH.

Fig. 2.3 Cellular and mitochondrial levels of ROS and levels of glutathione and NADPH of *K. marxianus* at 30°C and 45°C. Cells were cultivated in 2% YPD medium at 30°C and 45°C under shaking conditions for 6 h or 36 h. (A and B) Cellular (A) and mitochondrial (B) levels of ROS at 6 h or 36 h were estimated as described in the legend of Fig. 2.2. White and grey columns represent levels of ROS at 30°C and 45°C, respectively. (C to H) GSH (C), GSSG (D), the GSH/GSSG ratio (E), NADP⁺ (F), NADPH (G), and the NADPH/NADP⁺ ratio (H) were determined as described in Materials and Methods. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

2.4.3 Effects of exogenous GSH on acetate accumulation and cell viability under a high-temperature condition

To reduce the oxidative stress level in cells, GSH was added to the culture medium, and ethanol consumption, acetate accumulation, and cell viability were examined (see Fig. S1 in appendix). The maximum concentration of acetate in the presence of 4 mM GSH was 0.16% (w/v), which was much lower than that in the presence of 0 or 1 mM GSH. The addition of 4 mM GSH kept CFU at a high level and reduced the ethanol consumption speed compared to those with the addition of 0 or 1 mM GSH. These results indicate that exogenous GSH slows ethanol consumption, limits acetate accumulation, and prevents cell death at 45°C. Taken together, the results of the experiments with long-term cultivation suggest that the high temperature of 45°C causes the accumulation of ROS, which leads to the oxidation of ethanol to provide NADPH, resulting in the accumulation of acetate, which in turn leads to damage and death of cells. The provision of NADPH via ethanol oxidation may contribute to the prevention of ROS-induced cell death until the concentration of acetate reaches a critical level.

2.4.4 Analysis of fermentation at the early phase and mitochondrial morphology

To further understand metabolic differences at high and low temperatures, short-term cultivation was also performed (Fig. 2.4, Fig. 2.5 and Fig. S2). At 30°C, the dissolved oxygen concentration (DOC) decreased to the minimum level within 4 h, with almost no consumption of glucose added, followed by an increasing and decreasing waves with a peak at around 17 h (Fig. 2.4A). The DOC goes to zero before glucose starts to be consumed, which could be due to respiration of intracellular reserves, including glycogen or trehalose. Glucose consumption continued until 10 h with the maximum ethanol concentration at 10 h (Fig. 2.5B and C). The increase in the DOC at 30°C at about 14 h presumably represents the diauxic lag when the cells have ceased respirofermentative catabolism of glucose (at 10 h) but do not start to respire ethanol until after 12 h and then only slowly. At 45°C, the decrease in the DOC was much slower than that at 30°C, and no wave was observed (Fig. 2.4A and Fig. 2.5E). Ethanol fermentation appeared to be different at low and high temperatures in response to DOCs (Fig. 2.5C and E). Obvious glucose consumption and ethanol accumulation were observed after the DOC decreased to a minimum level at 30°C, while glucose was fermented at a relatively high DOC at 45°C (Fig 2.5B, C and E). The former could be due to respiration of intracellular glycogen or trehalose.

Fig. 2.4 Distinct characteristics of *K. marxianus* at 30°C and 45°C. Cells were cultivated in 2% YPD medium at 30°C and 45°C under shaking conditions. (A) The DOC was measured by a DO sensor (open circles, 30°C; open triangles, 45°C). (B) NADH oxidase activity was determined with samples taken at 6 h and 24 h. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

Surprisingly, the distinct mitochondrial morphologies at 30°C and 45°C were observed at 3 h, 6 h, and 24 h (Fig. S2), but mitochondria were not clearly visible at 48 h under the condition at 45°C (data not shown), at which time the number of CFU declined. NADH oxidase activities at 6 h and 24 h at 45 °C were found to be higher than those at 30°C (Fig. 2.4, B), possibly being related to morphological change of mitochondoria and/or a greater accumulation of ROS at 45°C. Notably, there was almost no difference in the concentrations of acetate until 8 h at 30°C and 45°C, athough the glucose and ethanol levels were different (Fig. 2.5), indicating the possibility that the acetate level in the culture media may not be responsible for the accumulation of ROS or for the generation of the mitochondrial fission form.

Fig. 2.5 Ethanol fermentation of *K. marxianus* during short-term cultivation at 30° C and 45°C and effects of temperature upshift on *K. marxianus*. Cells were cultivated in 2% YPD medium at 30°C (open circles), 45°C (open triangles), or 30°C to 45°C (temperature upshift) (open squares) under shaking conditions. The temperature upshift was performed by transferring flasks from a 30°C incubator to a 45°C incubator 4 h after incubation at 30°C. Cell density (A) and concentrations of glucose (B), ethanol (C), and acetate (D) (%, w/v) were determined as described in the legend of Fig. 2.1. (E) The DOC was measured by a DO sensor. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

2.4.5 Effects of temperature upshift on cell growth and metabolism

To further understand the metabolic differences at 30°C and 45°C, cell growth and metabolites were examined when the cultivation temperature was increased to 45°C after 4-h cultivation at 30°C and compared with those under constant temperature conditions at 30°C and 45°C (Fig. 2.5). This temperature upshift or the transfer of cells pre-grown at 30°C to medium at 45°C may cause a heat shock response, which triggers changes in transcription and metabolism. Oxygen consumption was delayed almost immediately after the temperature upshift, and the profile was closer to that under the 45°C constant conditions, but the profiles of cell turbidity, glucose consumption and ethanol accumulation were almost the same as those under the 30°C constant conditions. Therefore, the temperature upshift may affect oxygen consumption without having negative effects on cell growth, glucose uptake, and ethanol production. The high DOC immediately after the temperature upshift may be due to a brief pause in shaking during the transfer of flasks from a 30°C incubator to a 45°C incubator.

On the other hand, no significant effect of temperature upshift on acetate accumulation was observed until 4 h after the upshift and its profile was similar to the profiles under the 30°C and 45°C constant conditions, but an increase in ROS occurred until 2 h after the upshift, and the level of ROS at 2 h was 11-fold higher than that under the 45°C constant conditions (Fig. 2.6A). Therefore, it is assumed that ROS generated by the upshift are removed by means other than the process of conversion ethanol to acetic acid.

Observation of mitochondrial morphology in addition to the measurements of ROS were carried out at 2 h or 3 h after the temperature up-shift following a 4-h cultivation at 30°C (Fig. 2.6B and Fig. S3). Surprisingly, the temperature upshift caused an increase in fission mitochondria, and fusion and fission forms of mitochondria in cells were 47% and 53%, respectively. The ratio of fission to fusion forms remarkably increased compared to that under the 30°C constant conditions and was close to that under the 45°C constant conditions (Fig. 2.6B).

Fig. 2.6 Effects of temperature upshift on cellular levels of ROS and mitochondrial morphology. Cells were cultivated in 2 % YPD medium at 30°C, 45°C or 30°C to 45°C under shaking conditions. The temperature upshift was performed as described in the legend of Fig. 2.5. (A) Relative levels of ROS were determined 30 min (30-45°C, 30 min) or 2 h (30-45°C, 2 h) after the temperature up-shift. (B) Mitochondrial morphology was observed 2 h (30-45°C, 2 h) after the temperature upshift, and the ratios were determined by observation of 250 cells. White and gray columns represent fusion and fission forms of mitochondria, respectively. Determination of the cellular levels of ROS and observation of mitochondrial morphology were performed as described in Materials and Methods. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

2.4.6 Transcriptome analysis at the transition phase from a low temperature to a high temperature

The greatly altered profiles of ROS and DOCs and the change in mitochondrial morphology at the transition phase of temperature (Figs. 2.5 and 2.6) motivated us to perform genome-wide gene expression analysis (RNA sequencing [RNA-Seq]) under two different conditions. Under one condition, cells were grown in YPD medium at 30 °C for 4 h and further grown at 45°C for 30 min (4H30-30M45) or 2 h (4H30-2H45). In the other condition, cells were grown in YPD medium at 30 °C for 6 h (6H30). The RPKM (reads per kilobase of exon per million) value of each gene was estimated as

transcript abundance. The difference in the expression of each gene in 4H30-30M45 or 4H30-2H45 from that in 6H30 was reflected as the ratio of the RPKM value in 4H30-30M45 or 4H30-2H45 to that in 6H30. To further explore the transcriptional changes, analysis of differentially expressed genes (DEGs) was conducted on the basis of the RNA-Seq data. DEGs showed significant changes at the transcription level with a log₂ fold change of greater than 1 and a log₂ fold change of less than -1 and an adjusted *P* value (P_{adj}) of less than 0.05 (Fig. S4). DEGs in 4H30-30M45 consisted of 2,069 genes, including 1,076 up-regulated and 993 down-regulated genes. DEGs in 4H30-2H45 consisted of 2,119 genes, including 1,054 up-regulated and 1,065 down-regulated genes. In the up- and downregulated DEGs, 817 genes and 773 genes, respectively, were shared between the 4H30-30M45 and 4H30-2H45 conditions (Fig. S5). These data for DEGs were used for gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (Tables S1 to S12).

In 4H30-30M45, 62 DEGs were highly significantly upregulated (> $4 \log_2$). They included genes for heat shock proteins, cochaperone proteins, and many hypothetical or uncharacterized proteins (Table S1). GO enrichment analysis of DEGs (> 2 log₂) showed that genes for ribonucleoprotein complex biogenesis, ribosome biogenesis, rRNA processing, the rRNA metabolic process, and maturation of singlesubunit (SSU) rRNA as the top five were significantly enriched in the biological process (Table S2). KEGG pathway analysis revealed that pathways for protein processing in the endoplasmic reticulum, the spliceosome, the biosynthesis of secondary metabolism, the biosynthesis of antibiotics, the meiosis and MAPK signaling pathway, and the peroxisome were in the top ranks (Table S3). Moreover, pathways for lipid metabolism (glycerolipid, sphingolipid, glycerophospholipid, and fatty acid), GSH metabolism, and mitophagy were also listed. On the other hand, 89 DEGs were highly significantly downregulated (less than -4 log₂), including genes for ribosomal proteins and transporters (Table S4). GO enrichment analysis revealed that many terms were related to biosynthetic processes and metabolic processes (Table S5). In KEGG pathway analysis, pathways for ribosome, the biosynthesis of secondary metabolites, the biosynthesis of antibiotics, the biosynthesis of amino acids, and

carbon metabolism were highlighted (Table S6). In addition, pathways for glycolysis/gluconeogenesis, steroid biosynthesis, the cell cycle, oxidative phosphorylation, fatty acid metabolism, and autophagy were listed.

In 4H30-2H45, 60 DEGs were highly significantly upregulated (>4 log₂). They included genes for heat shock proteins, cochaperone proteins, and many hypothetical proteins (Table S7), and 47 of these genes were included in the list of 4H30-30M45 (Table S1). Seven out of eight genes for heat shock proteins and cochaperone proteins in 4H30-30M45 were shared with those in 4H30-2H45. GO enrichment analysis showed that the top 20 terms were nearly the same as those of upregulated DEGs in 4H30-30M45 (Table S8). In KEGG pathway analysis, all pathways except for one pathway (one-carbon pool by folate) were listed in those of upregulated DEGs in 4H30-30M45 (Table S9). On the other hand, 31 DEGs were highly significantly downregulated (less than -4 log₂). They included genes for carbon metabolism (Table S10), and 15 of these genes were also listed as downregulated DEGs in 4H30-30M45 (Table S4). Only 1 of the 50 genes for ribosomal proteins that were listed as downregulated DEGs in 4H30-30M45 (Table S4) was found in the list of 4H30-2H45. GO enrichment analysis showed that the top 18 terms except for 1 term were included in the top 34 of downregulated DEGs in 4H30-30M45 (Table S11). In the KEGG pathway analysis (Table S12), 32 pathways in the table were also listed as downregulated DEGs in 4H30-30M45 (Table S6). Therefore, upregulated and downregulated DEGs in 4H30-30M45 overlapped those of 4H30-2H45 well, except for many downregulated genes for ribosomal proteins in 4H30-30M45.

To understand the metabolic change around the central metabolic pathway caused by a temperature upshift, transcriptomic data related to glycolysis, the PPP, the TCA cycle, and cellular and mitochondrial oxidative stress responses were focused on (Fig. 2.7A and B and Fig. S6A and B). *RAG2*, *RAG5*, *PFK1*, *PFK2*, *FBA1*, *TPI1*, *GAP1*, *GAP3*, *PGK*, *GPM1*, *ENO*, and *PYK1* for glycolysis and *CIT1*, *ACO2b*, *LSC1*, *LSC2*, *FUM1*, and *MDH1* for the TCA cycle were downregulated in 4H30-30M45 and/or 4H30-2H45. In contrast, *GLK1*, *FBP1*, and *GPM3* for glycolysis; *SOL1* and *RKI1* for the PPP; *ADH1*, *KLMA_40624* (*ADH*), and *ADH6* for catalysis between ethanol and acetaldehyde in the cytosol; *ADH4a*, *ALD4*, and *ACS1* for catalysis

between ethanol and acetyl-CoA in mitochondria; and *CIT3*, *IDP1*, and *SDH4* for the TCA cycle were upregulated in 4H30-30M45 and/or 4H30-2H45. On the other hand, genes for oxidative stress response were upregulated (Fig. S6A and B) as expected, probably reflecting the accumulation of ROS under the conditions tested.

Fig. 2.7 Transcriptome analysis of the effect of temperature upshift in *K. marxianus*. Cells were cultivated in YPD medium at 30°C for 4 h under shaking conditions, and flasks were transferred from a 30°C incubator to a 45°C incubator for further culture for 30 min (4H30-30M45, orange) or 2 h (4H30-2H45, red). The control was the culture at 30°C for 6 h under shaking conditions (6H30, yellow). Total RNA was then isolated, purified, and subjected to RNA-Seq analysis. The Y axis of each graph represents the reads per kilobase of exon per million (RPKM) of each gene under the conditions. Data for central metabolism (A) and TCA cycle (B) are shown. The

RPKM value of each gene represents the average value of two independent experiments. G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FDP, fructose 1,6 bisphosphate; DHAP, dihydroxyacetone phosphate; DHA, dihydroxyacetone; GAP, glyceraldehyde-3-phosphate; 1,3-DPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; 6P1,5R, 6-phospho-D-glucono-1,5-lactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, xylulose-5-phosphate; E4P, erythrose-4-phosphate; S7P, sedoheptulose-7-phosphate; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; Q, quinone; ATP, adenosine triphosphate; ADP, adenosine diphosphate.

Since mitochondrial morphological change that is crucial for maintenance of functional mitochondria under stress conditions (Youle and van der Bliek 2012) was observed following the temperature upshift, genes for mitophagy and autophagy were focused on. As mitophagy-related genes, ATG32 and FIS1 were upregulated in both 4H30-30M45 and 4H30-2H45, and SSK1, WSC3, and SLG1 were downregulated in 4H30-2H45 (Tables S13, S14). As autophagy-related genes, RAS2, GCN4, and PCL5 were downregulated in 4H30-30M45 (Table S14). Gcn4 regulates nonselective autophagy activity through ATG transcription; for example, Gcn4 activates the expression of ATG1, ATG13, and ATG14 during amino acid starvation (Delorme-Axford and Klionsky 2018; Natarajan et al. 2001). Such uncoordinated expression of genes for mitophagy and downregulation of genes for autophagy may contribute to the endurance of K. marxianus at a high temperature, which is discussed below. In addition, the longevity-regulating pathway in both 4H30-30M45 and 4H30-2H45 (Tables S3, S9) was listed. This pathway commonly consists of 5 genes, SSA3, HSP78, and HSP104 for heat shock proteins and SOD1 and SOD2 for superoxide dismutase, reflecting the requirement of protection from heat shock and oxidative stress at high temperatures.

2.4.7 Activity of several enzymes at the transition from a low temperature to a high temperature

As several lines of evidence described above have shown, higher NADPH levels at 45°C than those at 30°C, the downregulation of most genes for glycolysis by a temperature upshift, and the upregulation of some genes for gluconeogenesis and the PPP imply metabolic changes. To confirm these metabolic changes, the activity of several enzymes in glycolysis and the PPP was determined using supernatants after the ultracentrifugation of cell extracts (Fig. 2.8). The change in activity of glyceraldehyde-3-phosphate dehydrogenase after the temperature upshift was almost consistent with the change in transcription of its gene, although the decrease in activity was delayed compared to that of transcription. The activity patterns of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also in good agreement with their transcription patterns. Notably, the activities of fructose-1,6-diphosphatase in 4H30-2H45 and 6H45 were higher than that in 6H30, and the activity level of glucose-6-phosphate dehydrogenase was constant even after the temperature upshift. These findings suggest a metabolic flow to the PPP under elevated-temperature conditions. On the other hand, the activity of phosphoglucose isomerase was slightly decreased after the temperature upshift or at 45°C, although its transcription sharply declined, indicating the possibility that the enzyme is relatively stable, which may contribute gluconeogenesis.

Fig. 2.8 Enzyme activity analysis of the effect of temperature upshift on *K. marxianus*. Cells were cultivated in YPD medium at 30°C for 4 h under shaking conditions, and flasks were transferred from a 30°C incubator to a 45°C incubator for further culture for 30 min (4H30-30M45) or 2 h (4H30-2H45). Cells were also cultivated in YPD medium at 30°C for 6 h (6H30) or at 45°C for 6 h (6H45) under shaking conditions. Cells were then harvested, and ultracentrifugation supernatants were prepared for enzyme assay as described in Materials and Methods. The activities of glucose-6-phosphate dehydrogenase (A) and 6-phosphogluconate dehydrogenase (B) in the PPP, of phosphoglucose isomerase (C) and glyceraldehyde-3-phosphate dehydrogenase (D) in glycolysis and of fructose-1,6-diphosphatase in gluconeogenesis (E) were determined spectrophotometrically. Error bars represent SD for triplicate experiments. *, *P* value of <0.05.

2.5 Discussion

In contrast to the physiological properties at 30°C, the acetate concentration at 45°C increased in long-term cultivation and exceeded a critical concentration of around

0.4% (w/v), which eventually resulted in a large reduction in the number of CFU (Fig. 2.1). Acetic acid, which is permeable to the cytoplasmic membrane as an undissociated acid, dissociates to protons and acetate anions inside cells, and the accumulation of protons lowers the intracellular pH, thereby leading to a great reduction of metabolic activity and, eventually, cell death (Russell 1991; Axe and Bailey 1995). The finding that exogenous GSH prevented the emergence of distinct properties of acetate accumulation and the reduction in the number of CFU (see Fig. S1 in appendix) suggests that the accumulation of ROS is the cause of the properties. Considering the evidence that acetic acid induces programmed cell death depending on ROS (Guaragnella et al. 2010), acetate accumulation may be a crucial factor responsible for the CFU reduction (Fig. 2.1). On the other hand, acetic acid production from ethanol by enzymatic reactions provides NADPH, which is involved in protection against the toxicity of ROS (López-Mirabal and Winther 2008). Therefore, it is assumed that K. *marxianus* produces acetic acid from ethanol after glucose depletion in response to the accumulation of ROS at high temperatures, keeping the levels of ROS below toxic levels (Fig. 2.9A and B).

Fig. 2.9 Models of metabolic flow at a high temperature (HT) in *K. marxianus*. (A) Log phase, in which glucose is present in the culture. (B) Acetate-accumulation phase, in which there is no glucose in the culture.

In *S. cerevisiae*, intracellular formation of ROS increases when the temperature rises to 42° (Zhang *et al.* 2015) and GSH decreases with exposure to H₂O₂ (Manfredini *et al.* 2004). Similarly, in *K. marxianus*, cellular and mitochondrial levels of ROS in the log phase at 45°C were higher than those at 30°C (Fig. 2.3A and B), and GSH concentrations in both the log and acetate accumulation phases were lower at 45°C than at 30°C, and the difference between GSH concentrations at 45°C and 30°C in the acetate accumulation phase was much larger than that in the log phase (Fig. 2.3C). The low level of GSH at 45°C appeared to be related to the increase in ROS because GSH is required for the repair of oxidative damage. These results suggest that the high temperature is responsible for the increase in the cellular and mitochondrial levels of ROS and the decrease in GSH in *K. marxianus*. Probably to compensate for the decrease in GSH, NADPH levels in both the log and acetate accumulation phases at 45° C were higher than those at 30° C (Fig. 2.3G).

In the temperature upshift experiments, a delay in oxygen consumption similar to that under the 45°C constant conditions was observed immediately after the upshift, but the patterns of cell proliferation, glucose consumption, and ethanol production were hardly changed from those under the 30°C constant conditions (Fig. 2.5B and C). The temperature transition resulted in a change of mitochondrial morphology with an increase in the fission form ratio and in an elevation of the level of ROS to a level about 11-fold higher than that under the 30°C constant conditions (Fig. 2.6). Given the results of studies showing that mitochondria tend to change their morphology with several stresses (Youle and van der Bliek 2012) and ROS induce mitochondrial fission (Wai and Langer 2016), it is assumed that the accumulation of ROS is the cause of mitochondrial morphological change in K. marxianus. Moreover, the fission form ratio was close to that under the 45°C constant conditions, athough the levels of ROS were very different (Fig. 2.6A and B). Another candidate for triggering the mitochondrial morphological change is acetic acid, but for about 4 h after the temperature upshift, there was almost no difference in the acetate concentration in the culture medium from that under the 30°C constant condition (Fig. 2.5D). Therefore, these findings imply that the mitochondrial morphological change is caused not by acetate accumulation but by exposure to ROS. Notably, given that respiratory-active fusion mitochondria may generate more ROS than fission mitochondria (Youle and van der Bliek 2012), fission mitochondria could be a beneficial form for the yeast at high temperatures in terms of keeping ROS levels low.

K. marxianus was able to ferment with glucose at 45°C to an extent close to that at 30°C despite a high level of ROS and the mitochondrial morphological change. These facts led us to conduct transcriptome analysis with samples obtained under temperature upshift conditions to further understand the mechanism of survival at high temperatures and the differences between low- and high-temperature metabolisms. The highly significant response to the temperature upshift appeared to be a general heat shock, that is, the upregulation of genes for heat shock proteins and chaperones and the downregulation of genes for ribosomal proteins and rRNA processing-related metabolism (Tables S1, S4, S7, S10). Such downregulation of genes for ribosomal proteins has been reported for *Escherichia coli* at a critical high temperature (Murata

et al. 2011), which may be for saving energy. As a significant response, genes for the pathways of GSH biosynthesis and lipid metabolism were upregulated, and genes for the pathways of amino acid synthesis, glycolysis, the TCA cycle, oxidative phosphorylation, and the PPP were downregulated (Tables S3, S6, S9, S12). Considering the fact that the cells are able to grow and survive at 45°C after inoculation of cells precultured at 30°C and the fact that the tendency for the upregulation and downregulation of genes for the central metabolic pathway is in close agreement with that of a 6-h culture at 45°C (Lertwattanasakul *et al.* 2015), such an alteration in transcription in response to a temperature upshift may reflect metabolic changes that are presumably required for the growth and survival of *K. marxianus* at 45°C.

In mitochondrial metabolism, ADH4a, ALD4, and ACS1 for catalysis between ethanol and acetyl-CoA and CIT3 and IDP1 for the TCA cycle, some of which encode enzymes to generate NADPH, were upregulated at the temperature upshift (Fig. 2.7B) or under a 6-h 45°C constant condition (Lertwattanasakul et al. 2015). In the cytosol, downregulation of RAG2, PFK1, and PFK2 and upregulation of GLK1, FBP1, and SOL1, most of which were significantly changed 2 h after the temperature upshift, were found (Fig. 2.7A). Especially, the strong negative and positive regulations of RAG2 for glucose-6-phosphate isomerase and FBP1 for fructose-1,6-diphosphatase, respectively, might have an impact on metabolic flow, nearly equivalent to that of a RAG2 (PGI1)-disrupted mutant (Zhang et al. 2020), and lead to a reduction in the flow of glycolysis and, consequently, an increase in the flow of the PPP despite the moderately decreased expression of many genes for PPP under the temperature upshift condition. These expression changes of genes for glycolysis, the PPP, and gluconeogenesis roughly agreed with the activity changes of the corresponding enzymes tested in these pathways. In particular, the activity of fructose-1,6diphosphatase in gluconeogenesis was increased, the activity of glucose-6-phosphate dehydrogenase in the PPP was maintained, and the activity of glyceraldehyde-3phosphate dehydrogenase was reduced, suggesting enhanced metabolic flow to the PPP and a pentose phosphate cycle consisting of the PPP and a reverse reaction in glycolysis from glyceraldehyde-3-phosphate to glucose-6-phosphate. The switch of metabolic flow allows cells to produce NADPH as a reducing power for the removal

of ROS. On the other hand, *ALD4* in mitochondria, but not *ALD* in the cytosol, was upregulated in the temperature upshift experiments, while *ALD2* and *ALD6* in the cytosol, but not *ALD* in mitochondria, were upregulated under the 5°C constant condition, implying that mitochondrial Ald(s) and cytosolic Ald(s) are involved in the production of NADPH immediately after and shortly after a temperature rise, respectively.

K. marxianus, which is a Crabtree-negative species, produces a low level of ethanol in the presence of sufficient glucose under aerobic conditions in contrast to *S. cerevisiae*, which is a Crabtree-positive species (Fonseca *et al.* 2008). However, at 45°C, glucose consumption and ethanol accumulation started with a relatively high DOC, and the ethanol level became nearly equivalent to that at 30°C (Fig. 2.5). Such a Crabtree-positive-like fermentation at 45°C, at least at the beginning of fermentation (Later, DOC became very low.), may be due to the regulation of the expression of specific genes. *S. cerevisiae* produces a high level of ethanol even under aerobic conditions via the reduction of the acetyl-CoA synthetic pathway and the inhibition of pyruvate dehydrogenase (Sakihama *et al.* 2019). Similarly, *ADH2* and *ALD2* for the acetyl-CoA synthetic pathway and *PDA1* and *PDB1* for pyruvate dehydrogenase were downregulated at 45°C (Fig. 2.7A and B). This downregulation and the reduced expression of *FUM1*, *MDH1*, and *CIT2* for the TCA cycle contribute to the accumulation of pyruvate, thereby increasing ethanol production at a high temperature.

2.6 Conclusions

This study was conducted to understand the mechanism of thermotolerance that is distinct from that at a low temperature in *K. marxianus*. The yeast was exposed to relatively high levels of ROS at a high temperature but maintained levels of CFU for about 36 h. The accumulation of ROS up to a level that threatens cell survival may be prevented by the ROS-scavenging pathway with NADPH, which is generated mainly by the PPP in the presence of glucose and subsidiarily by the catalytic reactions of Adhs-Alds. Relatively high NADH oxidase activity and an increase in the fission form of mitochondria, which may allow dispersal inside cells, might reduce the intracellular oxygen concentration to suppress the generation of ROS. On the other hand, maintenance of the DOC at the lowest level was observed after about 9 h at 45°C. When glucose is consumed and the production of NADPH by the PPP ceases, catalytic reactions of Adhs-Alds may become the main NADPH supplier because of the presence of a sufficient amount of ethanol. However, insufficient oxygen and downregulation of vital genes for the TCA cycle may reduce the oxidation of acetic acid, so that acetic acid accumulation to more than a critical level. At 45°C, ethanol consumption started when glucose was almost consumed, and concomitantly, acetate accumulation was promoted (Fig. 2.1), suggesting that glucose is a crucial factor for avoiding acetic acid accumulation and CFU reduction in addition to ethanol consumption. Therefore, ethanol production by HTF for industrial applications may require maintaining at least low levels of glucose (sugar) in the medium.

CHAPTER 3

Evolutionary adaptation by repetitive long-term cultivation with gradual increase in temperature for acquiring multi-stress tolerance and high ethanol productivity in *Kluyveromyces marxianus* DMKU 3-1042

3.1 Abstract

During ethanol fermentation, yeast cells are exposed to various stresses that have negative effects on cell growth, cell survival, and fermentation ability. This study, therefore, aimed to develop Kluyveromyces marxianus-adapted strains that are multistress tolerant and to increase ethanol production at high temperatures through a novel evolutionary adaptation procedure. K. marxianus DMKU 3-1042 was subjected to repetitive long-term cultivation with gradual increases of temperature (RLCGT), which exposed cells to various stresses, including high temperatures. In each cultivation step, 1% of the previous culture was inoculated into a medium containing 1% yeast extract, 2% peptone, and 2% glucose, and cultivation was performed under a shaking condition. Four adapted strains showed increased tolerance to ethanol, furfural, hydroxymethylfurfural, and vanillin, and they also showed higher production of ethanol in a medium containing 16% glucose at high temperatures. One showed stronger ethanol tolerance. Others had similar phenotypes, including acetic acid tolerance, though genome analysis revealed that they had different mutations. Based on genome and transcriptome analyses, we discuss possible mechanisms of stress tolerance in adapted strains. All adapted strains gained a useful capacity for ethanol fermentation at high temperatures and improved tolerance to multi-stress. This suggests that RLCGT is a simple and efficient procedure for the development of robust strains.

3.2 Introduction

Kluyveromyces marxianus is a thermotolerant yeast that has beneficial properties for industrial ethanol fermentation, including efficient production of ethanol at high temperatures, high growth rate, short doubling times, weak glucose repression,

and the ability to assimilate various sugars, such as glucose, xylose, and sucrose, that are present in various raw materials (Limtong *et al.* 2007; Goshima *et al.* 2013; Kosaka *et al.* 2018; Nitiyon *et al.* 2016; Saini *et al.* 2017; Kosaka *et al.* 2018). Studies on *K. marxianus* have been increasing rapidly, and the high potential of *K. marxianus* for industrial applications has been reviewed (Lertwattanasakul *et al.* 2015; Nachaiwieng *et al.* 2015; Nurcholis *et al.* 2019; Kılmanoğlu *et al.* 2021; Tinôco *et al.* 2021). Among the *K. marxianus* strains studied, DMKU 3-1042, one of the most thermotolerant strains that was isolated in Thailand, has been extensively analyzed (Limtong *et al.* 2007; Rodrussamee *et al.* 2011; Nurcholis *et al.* 2019), and its complete genome sequence has been determined by transcriptomic analysis under four different growth conditions (Lertwattanasakul *et al.* 2015).

Attention has been given to bioethanol worldwide as an alternative to fossil fuels, as it is one of the cleanest and most renewable energy sources (Auesukaree 2017; Zhang et al. 2019). In the ethanol industry, the temperature inside fermenters rises during the fermentation process, and the increase in temperature suppresses cell growth, cell viability and ethanol production, thus increasing production costs (Auesukaree 2017; Taweecheep et al. 2019). Accordingly, fermenting microbes that can withstand high temperatures, such as K. marxianus, are beneficial and also allow high-temperature fermentation (HTF). HTF has several advantages, including reduced cooling costs, reduced risk of contamination, and reduced amounts of hydrolysis enzymes for simultaneous saccharification and fermentation (Abdel-Banat et al. 2010; Murata et al. 2015; Nuanpeng et al. 2016; Kosaka et al. 2018). It is also beneficial for fermentation in tropical countries and under global warming conditions. In addition to temperature tolerance, fermenting microbes are required to be resistant to various stressors present during fermentation, such as ethanol, acetic acid, osmotic stress, and oxidative stress (Gibson et al. 2007; Auesukaree 2017; Zhang et al. 2015). Therefore, HTF that uses stress-tolerant microbes can reduce the total cost of ethanol production, bring cheaper ethanol compared to commercial materials, and provide benefits for industrial application (Lertwattanasakul et al. 2015, Nurcholis et al. 2020).

Various strategies such as adaptation, mutagenesis, sexual breeding, and genetic engineering have been reported for the amelioration of yeast properties such as enhanced stress tolerance and ethanol production (Bro *et al.* 2006; Watanabe *et al.*

2011; Chen and Xu 2014; Pattanakittivorakul et al. 2019). Of these, the use of various stress adaptation techniques has resulted in improvement of the properties of several yeast strains (Nigam 2001; Cakar et al. 2012; Chen and Xu 2014; Zhang et al. 2014; Gurdo et al. 2017; Saini et al. 2017; Zhang et al. 2019). For example, Saini et al. (2017) adapted a K. marxianus strain to a whey permeate medium containing a high concentration of lactose for 65 days and acquired one adapted strain with an ethanol yield of 17.5%. Zhang et al. (2014) obtained an S. cerevisiae strain via a 266 nm laser radiation treatment followed by repeated cultures in the presence of ethanol, and the strain produced a larger amount of ethanol than that produced by the parental strain. In most cases, yeast cells were repeatedly subjected to short-term cultures at fixed temperatures under certain stress conditions; therefore, most adapted strains acquired predominantly a single enhanced property (see Table S15). However, since cells are exposed to various types of stress during fermentation, improvements of multiple properties are desired. Repetitive long-term cultivation with gradual increases in temperature (RLCGT) was performed by repeatedly cultivating yeast at a low temperature and then by transferring it to a higher temperature and cultivating repeatedly in the same temperature. Yeast cells can adapt to high temperatures during exposure with stepwise increased temperatures.

In this study, in order to develop a simple and effective adaptation procedure for cells to be exposed to various stressors, we examined RLCGT close to the critical high temperature for growth, which is expected to provide various stresses such as those from metabolites including ethanol or organic acids, by-products formed by chemical reactions, nutrient starvation, high temperatures, and oxidative stress in addition to large changes in substrate sugar concentration. Therefore, each cultivation step may optimize resistance to not only temperature but also to other various stresses. The adapted *K. marxianus* strains obtained by RLCGT exhibited increased tolerance to several stresses and enhanced ethanol production compared to the parental strain. Genomic and transcriptomic analyses of the strains were performed.

3.3 Materials and Methods

3.3.1 Yeast strains

K. marxianus DMKU 3-1042, which is a thermotolerant ethanol-fermenting yeast that was isolated in Thailand (Limtong *et al.* 2007), and its derivatives were used in this study. The yeast strains were preserved in YPD medium (10 g L⁻¹ yeast extract, 20 g L⁻¹ peptone and 20 g L⁻¹ glucose) supplemented with 100 g L⁻¹ glycerol at -80° C.

3.3.2 Determination of cell growth and viability

The pre-culture was prepared by transferring a single colony of 18 h culture on a YPD agar plate into 30 mL of YPD medium in a 100 mL Erlenmeyer flask, followed by incubation in a rotary shaker at 160 rpm for 18 h at 30°C. The pre-culture was inoculated into YPD medium or YP medium containing 160 g L⁻¹ glucose at the initial optical density at 660 nm (OD₆₆₀) of 0.1, and the culture was carried out at 30-47°C under a shaking condition at 100 or 160 rpm. Cell growth was determined by measuring the OD₆₆₀ on a UV-VIS spectrophotometer (Shimadzu, Japan). Cell viability was determined as colony-forming units (CFU) by counting the number of colonies on YPD agar plates. Samples were diluted with sterile distilled water and were spread on plates, and colonies were counted after 48-h of incubation at 30°C. Experiments were performed in triplicate.

3.3.3 Determination of fermentation parameters

During cultivation, samples were taken and subjected to an analysis of fermenta-tion parameters. Glucose, acetate, and ethanol were analyzed by using a high-performance liquid chromatography (HPLC) system (Hitachi, Japan) consisting of a Hitachi Model D-2000 Elite HPLC system Manager, column oven L-2130, pump L-2130, auto-sampler L-2200, and RI detector L-2490, equipped with a GL-C610H-S gel pack column at 60°C with 0.5 mL min⁻¹ eluent of 0.1% phosphoric acid. pH was measured by using a twin pH meter (Horiba, Japan).

3.3.4 Evolutionary adaptation by RLCGT

For improvement of the stress tolerance of *K. marxianus* DMKU 3-1042, RLCGT was carried out. The pre-culture was inoculated into ten test tubes including

3 mL of YPD medium and was incubated at 40°C and 160 rpm for 7 days. The adaption started at 40°C because *K. marxianus* DMKU 3-1042 was found to be unable to survive under long-term cultivation at 41°C. After that, 1% of the culture was transferred into a fresh medium (other inoculation sizes were not tested), and cultivation was repeated under the same conditions. After two cultivations at 40°C, 1% of the culture at the second time was transferred into a fresh medium and cultivated at 41°C and 160 rpm for 7 days. Cultivation was repeated with a gradual increase in temperature from 40°C to 45°C (Fig. S7). Cultivation was performed twice at each temperature. Finally, the RLCGT cultures that survived at 45°C were streaked on YPD plates, and a single colony from each tube was isolated as an adapted strain. This method introduces random mutations and cannot reproduce the same characteristics as the improved strains.

3.3.5 Characterization of adapted strains

The tolerance of the adapted strains to various stresses found during the fermentation process was investigated. To prepare an inoculum, cells were grown in YPD medium at 30°C for 18 h and recovered by low-speed centrifugation. The cells were suspended with sterile distilled water, adjusted to OD₆₆₀ of 1.0, and ten-fold sequentially diluted. Five microliters of cell suspension was spotted onto the surface of YPD agar plates supplemented with various stress materials; the agar plates were adjusted to pH 3 or supplemented with 0.3% (v/v) (52.45 mM) acetic acid, 0.1% (v/v) (26.50 mM) formic acid, 8% (1.37 M) (v/v) ethanol, 15 mM furfural, 15 mM hydroxymethylfurfural (HMF), 0.1% (w/v) (0., 70 mM) vanillin, multiple inhibitors (0.3% (v/v) acetic acid, 15 mM furfural and 0.15% (w/v) (1.05 mM) vanillin or 0.15% (v/v) (26.23 mM) acetic acid, 7.5 mM furfural and 0.075% (w/v) (0.52 mM) vanillin), 35% (w/v) (0.30 M) glucose, or 5 mM hydrogen peroxide (H₂O₂). YP agar plates supplemented with 10% (w/v) (0.10 M) xylose were also used. The plates after spotting were incubated at 30°C, 37°C, 40°C, and 45°C for 48 h. Moreover, growth and fermentation ability of the adapted strains were examined in YPD medium supplemented with 0.2% or 0.3% acetic acid, 10 mM or 15 mM furfural, or multiple inhibitors (0.15% acetic acid, 7.5 mM furfural and 0.075% vanillin) and/or a high

concentration of glucose (8% (0.07 M), 12% (0.10 M) or 16% (0.14 M)) at high temperatures for 6 h to 48 h. All experiments were performed in triplicate.

3.3.6 Preparation of genomic DNA, genomic sequencing, and genome mapping analysis

The genomic DNA of adapted strains was extracted as described previously (Sambrook and Russell 2001) from cells grown in YPD medium for 18 h under a shaking condition at 30°C and was further purified using a Genomic-tip 20 kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Genome sequencing was carried out by a massively parallel sequencer (MiSeq; Illumina KK, Tokyo, Japan) as reported previously (Akuzawa *et al.* 2016). The sequenced reads were screened by a quality score higher than the Phred score of 30 and were trimmed 12 bases from the 5' end and 20 bases from the 3'end. Truncated reads less than 150 bases or with mbiguous nucleotides were excluded from further analysis. Accession numbers of all sequence data are DRR305124-DRR305128.

For genome mapping analysis, the reference genome sequence of *K. marxianus* DMKU 3-1042 (GenBank acc. No: AP012213-AP012221) was downloaded from NCBI ftp site, https://ftp.ncbi.nlm.nih.gov/ (accessed on 5 March 2022). Mutation sites were searched for by read mapping using CLC Genomics Workbench version 7.5 (Qiagen, Venlo, Netherland) with the following parameters: match score: 1, mismatch cost: 2, insertion/deletion cost: 3, length fraction: 0.7, and similarity fraction: 0.9. The filter settings for SNP and Indel calling were the same as those use in a previous study (Hirokawa *et al.* 2018). All mutations in coding and non-coding regions in all adapted mutants were confirmed by the Sanger method (Sanger *et al.* 1997) after amplification of individual regions by PCR using primers listed in Table S15. Physiological functions of mutated genes were analyzed by a BLAST search at NCBI (https://www.ncbi.nlm.nih.gov (accessed on 5 March 2022)).

3.3.7 RNA-Seq analysis

RNA for RNA-Seq analysis was prepared as described previously (Nurcholis *et al.* 2019). The parental and ACT001 strains were inoculated into YPD medium, and

pre-culture was carried out with a rotary shaker at 30°C and 160 rpm for 18 h. The preculture was inoculated into 30 mL of YPD medium in a 100 mL Erlenmeyer flask at OD₆₆₀ of 0.1, and culture was carried out at 45°C for 8 h under a shaking condition at 160 rpm. The cells were harvested by centrifugation at 5000 rpm for 5 min at 4°C and subjected to an RNA preparation process. RNA was prepared by a modified procedure on the basis of the procedure reported previously (Lertwattanasakul *et al.* 2015). The RNA samples then were subjected to RNase-free DNase treatment. All RNA samples were purified by using an RNeasy plus mini kit (Qiagen, Hilden, Germany) according to the protocol provided by supplier.

The purified RNA samples were analyzed on an Illumina MiniSeq at the Research Center of Yamaguchi University. The detailed procedure for RNA-Seq has been described previously (Kim *et al.* 2013). All of the data were deposited under accession numbers DRR305122 and DRR305124. The sequencing results were analyzed using CLC genomic workbench version 10.1.1. All mapped reads at exons were counted, and the numbers were converted to unique exon reads. The unique exon reads from two biological replicates of ACT001 were compared to those of the parental strain.

Gene expression profiles of ACT001 and the parental strain were compared to find differentially expressed genes (DEGs) based on unique exon read values from CLC genomic workbench outputs using DESeq2 R package (Ander and Huber 2010). The resulting p values were adjusted using Benjamin–Hochberg's method for controlling the false discovery rate. Genes with adjusted p values less than 0.05 and \log_2 fold change values greater than 1 or lower than -1 were assigned as significant DEGs.

3.4 Results

3.4.1 Effects of long-term cultivation on K. marxianus DMKU 3-1042

In general, adaptive laboratory evolution depends on selection pressure for accumulating adapted strains in the designed cultivation. In this study, as selection pressure, we used long-term cultivation at high temperatures, which provides various stressors that prevent cell growth or cause cell damage, such as organic acids excreted into the culture medium, limitation of nutrients, and high temperatures. Before the

adaptation experiments, several parameters of K. marxianus DMKU 3-1042 during long-term cultivation in YPD medium including 2% glucose were compared between two different temperatures for 1 week (Fig. 3.1). The results showed that cell growth and cell viability at 45° C were lower than those at 30° C. Glucose was almost completely utilized within 12 h at both temperatures (Fig. 3.1d). The maximum ethanol concentrations were 7.53 g L^{-1} and 6.46 g L^{-1} at 30°C and 45°C, respectively (Fig. 3.1e). During fermentation, ethanol was converted to acetic acid, and its accumulation was significantly high at 45°C compared to that at 30°C (Fig. 3.1f). The concentration of acetate continued to rise, reaching 5.44 g L^{-1} at 168 h, consistently lowering the pH of the medium (Fig. 3.1c). The viability at 45°C approached zero at 120 h, whereas that at 30°C was maintained, though the level decreased after 120 h (Fig. 3.1b). The decline in viability at 45°C began when the pH fell below the pKa of acetic acid, a condition under which acetic acid enters cells in a non-dissociated form by facilitated diffusion, causing cytotoxicity. The production of acetic acid that causes low pH may be a major cause of reduced viability, but other factors such as high temperature, limitation of nutrients, and/or other by-product accumulation could be directly or indirectly associated with the earlier decline in cell viability at 45°C. These findings suggest that various stressors that cause a decline in viability by long-term cultivation at high temperatures are useful selection pressures for this yeast.

Fig. 3.1 Growth, CFU, and fermentation parameters of *K. marxianus* DMKU 3-1042 in YPD medium at 30°C and 45°C. Cells were cultivated in YPD medium at 30°C (\bullet) and 45°C (\blacktriangle) under a shaking condition at 160 rpm for 7 days. Growth (a) was determined by measuring OD₆₆₀. CFUs (b) were determined by counting colonies on YPD plates incubated at 30 °C. pH (c) was measured by using a twin pH meter. Glucose (d), ethanol (e), and acetate (f) were determined by HPLC. Error bars represent SD for triplicate experiments.

3.4.2 Adaptive laboratory evolution of K. marxianus DMKU 3-1042 by RLCGT

In order to obtain strains with multi-stress tolerance, *K. marxianus* DMKU 3-1042 was subjected to RLCGT while gradually increasing the temperature from 40°C to 45°C. Cells were inoculated into 10 tubes containing 3 mL YPD and cultivated at 40°C for 7 days, and a portion of the culture in each tube was inoculated into a tube containing fresh YPD medium, cultivated at 40°C for 7 days, and so on (Fig. S7). For 7 days, cells were exposed to several stresses such as ethanol, acetate, other by-products, and nutrient starvation in addition to high temperature. These combinations may significantly reduce survival. The temperature was increased by 1°C every 2 weeks. No growth was observed in 6 tubes at 44°C, and no growth was observed in the remaining 4 tubes above 45°C. After repetitive cultivation for 12 weeks, a portion of each culture in the remaining 4 tubes was spread on YPD agar plates to obtain

ACT001, ACT002, ACT003, and TML001, which were used in the following experiments.

3.4.3 Fermentation ability of adapted strains at high temperatures

In industrial ethanol production, heat generated by fermentation is one of the most serious problems for achieving stable and efficient fermentation. The effects of temperature on growth and fermentation parameters of the four adapted strains were thus examined in YP medium containing 160 g L⁻¹ glucose at 40°C, 42°C, 45°C, and 47°C (Fig. 3.2). At 40°C and 42°C, three adapted strains, ACT001, ACT002, and ACT003, utilized glucose almost completely within 24 h, whereas glucose remained in the culture of TML001 and the parental strain. Maximal ethanol concentrations of ACT001, ACT002, and ACT003 at 40°C were 69.7 g L⁻¹, 68.5 g L⁻¹, and 70.3 g L⁻¹, respectively, whereas maximal ethanol concentrations of TML001 and the parental strain were 46.9 g L^{-1} and 49.6 g L^{-1} , respectively. As a result of the evaporation of ethanol increasing with increasing temperature (Abdel-Banat et al. 2010), the amount of ethanol produced at high temperatures may be underestimated. At higher temperatures of 45°C, and 47°C, glucose in the medium remained even in ACT strains after 48 h of fermentation, and the four adapted strains produced higher ethanol concentrations than that produced by the parental strain. Maximal ethanol concentrations produced by these strains were in the range of $41.5-56.2 \text{ g L}^{-1}$ (Table 3.1). At 42°C, and 45°C, higher ethanol concentrations and lower acetate accumulation were achieved by the four adapted strains in comparison to the parental strain. The ethanol productivities and ethanol yields of ACT001, ACT002, and ACT003 were almost the same at each temperature and were higher than or equal to those of TML001 (Table 3.1).

Fig. 3.2 Fermentation of adapted strains in YP medium containing 16% glucose at high temperatures. Wild-type (×), ACT001 (\bullet), ACT002 (\blacktriangle), ACT003 (\blacksquare), and TML001 (O) strains were cultivated in YP medium containing 16% glucose at 40-47 °C under a shaking condition at 100 rpm, and samples were taken every 8 h until 48 h. Growth was determined by measuring OD₆₆₀. Glucose, ethanol, and acetate were determined by HPLC. Error bars represent SD for triplicate experiments.

Strains	Temp. (°C)	Medium	Cultivation Time (h)	Growth (OD ₆₆₀)	Remaining Sugar (g L⁻¹)	Acetic Acid	Ethanol Production	Increased Ethanol	Ethanol Productivity	Ethanol Vield	Rof
Strams						$(g L^{-1})$	$(g L^{-1})$	(%)	$(g L^{-1} h^{-1})$	$(g g^{-1})$	Ku
K. marxianus DMKU	J 3-1042					(52)	(5 -)	(,,,)	(52)		
Wild-type	40	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	19.0 ± 0.8	50.1 ± 1.2	1.7 ± 0.1	49.6 ± 0.7	-	2.1 ± 0.0	0.3 ± 0.0	This study
ACT001	40	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	19.4 ± 0.7	7.3 ± 2.4	1.5 ± 0.1	69.7 ± 0.7	40	2.9 ± 0.0	0.4 ± 0.0	This study
ACT002	40	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	20.3 ± 1.2	5.8 ± 2.0	1.5 ± 0.0	68.5 ± 0.7	38	2.9 ± 0.0	0.4 ± 0.0	This study
ACT003	40	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	20.7 ± 1.0	8.1 ± 0.4	1.5 ± 0.0	70.3 ± 0.7	42	2.9 ± 0.0	0.4 ± 0.0	This study
TML001	40	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	20.7 ± 0.9	61.5 ± 0.4	1.3 ± 0.1	46.9 ± 0.7	0	2.0 ± 0.1	0.3 ± 0.0	This study
Wild-type	42	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	19.6 ± 1.1	31.2 ± 2.2	1.7 ± 0.1	56.1 ± 1.1	-	2.3 ± 0.1	0.4 ± 0.0	This study
ACT001	42	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	17.5 ± 1.3	11.3 ± 1.1	1.4 ± 0.0	67.6 ± 0.3	20	2.8 ± 0.0	0.4 ± 0.0	This study
ACT002	42	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	17.5 ± 0.9	8.7 ± 1.4	1.5 ± 0.0	67.9 ± 1.2	21	2.8 ± 0.0	0.4 ± 0.0	This study
ACT003	42	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	17.0 ± 0.8	8.8 ± 1.4	1.5 ± 0.0	66.2 ± 1.0	18	2.8 ± 0.0	0.4 ± 0.0	This study
TML001	42	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	17.9 ± 1.2	29.0 ± 0.8	1.3 ± 0.0	58.1 ± 0.4	3	2.4 ± 0.0	0.4 ± 0.0	This study
Wild-type	45	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	12.1 ± 0.6	59.5 ± 4.0	1.6 ± 0.0	45.5 ± 1.8	-	1.9 ± 0.1	0.3 ± 0.0	This study
ACT001	45	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	11.3 ± 0.5	44.5 ± 2.0	1.4 ± 0.0	54.5 ± 3.0	20	2.3 ± 0.1	0.3 ± 0.0	This study
ACT002	45	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	11.9 ± 1.0	42.8 ± 1.6	1.4 ± 0.0	56.2 ± 1.8	23	2.3 ± 0.1	0.4 ± 0.0	This study
ACT003	45	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	11.6 ± 0.6	41.4 ± 1.6	1.4 ± 0.1	55.4 ± 2.0	22	2.3 ± 0.1	0.4 ± 0.0	This study
TML001	45	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	24	12.2 ± 0.7	52.9 ± 2.3	1.4 ± 0.0	50.3 ± 1.7	11	2.1 ± 0.1	0.3 ± 0.0	This study
Wild-type	47	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	32	9.3 ± 1.1	78.9 ± 1.6	1.9 ± 0.1	39.5 ± 2.8	-	1.2 ± 0.1	0.3 ± 0.0	This study
ACT001	47	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	32	8.9 ± 0.9	57.8 ± 1.4	1.8 ± 0.2	52.6 ± 2.5	33	1.7 ± 0.1	0.3 ± 0.0	This study
ACT002	47	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	32	9.0 ± 0.7	60.2 ± 3.2	1.8 ± 0.1	49.0 ± 3.8	24	1.5 ± 0.1	0.3 ± 0.0	This study
ACT003	47	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	32	8.5 ± 0.5	63.5 ± 1.3	1.7 ± 0.1	50.2 ± 1.8	27	1.6 ± 0.1	0.3 ± 0.0	This study
TML001	47	$YP + 160 \text{ g } \text{L}^{-1} \text{ glucose}$	32	10.0 ± 0.8	71.4 ± 2.0	1.8 ± 0.1	41.5 ± 1.7	5	1.3 ± 0.1	0.3 ± 0.0	This study
S. cerevisiae G85	28	Sugar juice (207.25 g L ⁻¹ sugar)	480	NR	10.4 ± 0.8	NR	126.6 ± 5.6	-	0.3	0.6	Chen and Xu 2014
S. cerevisiae G85X-8	3 28	Sugar juice (207.25 g L ⁻¹ sugar)	480	NR	7.0 ± 1.0	NR	130.0 ± 4.5	3	0.3	0.6	Chen and Xu 2014
S. cerevisiae YE0	34	$YP + 300 \text{ g } \text{L}^{-1} \text{ glucose} + 50 \text{ g } \text{L}^{-1}$ ethanol	72	NR	31.5	NR	106.8	-	1.5	0.4	Zhang et al. 2014
S. cerevisiae SM4	34	$\begin{array}{c} \text{YP} + 300 \text{ g } \text{L}^{-1} \text{ glucose} + 50 \text{ g } \text{L}^{-1} \\ \text{ethanol} \end{array}$	72	NR	2.1	NR	138.1	29	1.9	0.5	Zhang et al. 2014
K. marxianus MTCC1389 (Wild-type)	37	Whey permeate (200 g L^{-1} lactose)	50	NR	0.7 ± 0.0	NR	66.8 ± 0.9	-	1.3 ± 0.0	0.3 ± 0.0	Saini <i>et al</i> . 2017
K. marxianus MTCC1389 (Adapted strain)	37	Whey permeate (200 g L^{-1} lactose)	42	NR	0.8 ± 0.0	NR	79.3 ± 0.8	19	1.7 ± 0.1	0.4 ± 0.1	Saini <i>et al</i> . 2017
S. cerevisiae Y-1	30	Fermentation medium (350 g L ⁻¹ glucose)	60	NR	75.7	NR	125.0	-	2.1 ± 0.0	0.3	Zhang et al. 2019
S. cerevisiae YF10-5	30	Fermentation medium (350 g L ⁻¹ glucose)	60	NR	5.5	NR	145.8	16.6	2.43 ± 0.1	0.4	Zhang <i>et al</i> . 2019

Table 3.1 Comparison of growth and fermentation parameters among various adapted strains and previously reported strains

3.4.4 Characterization of the adapted strains

During the fermentation process, yeast cells are exposed to various stresses that have negative effects on cell viability and ethanol production (Gibson et al. 2007; Auesukaree 2017; Pattanakittivorakul et al. 2019), and it is desirable that yeast cells are resistant to these stresses. We thus compared the stress tolerance of the four adapted strains that had experienced stressful conditions during the adaptation process with that of the parental strain (Fig. 3.3). Their growth was examined on YPD agar plates supplemented with 0.3% (v/v) acetic acid, 0.1% (v/v) formic acid, or an adjusted pH of 3 at different temperatures up to 45°C. ACT001, ACT002, and ACT003 grew well except for in 0.3% (v/v) acetic acid at 45°C, but TML001 and the pa-rental strain did not grow (Fig. 3.3a). When examined on YPD agar plates supplemented with 8% (v/v) ethanol, which also inhibits cell growth (Chen and Xu 2014), all of the adapted strains grew better than did the parental strain at 40°C, and TML001 showed much stronger growth (Fig. 3.3b). When examined on YPD agar plates supplemented with 15 mM furfural or 15 mM HMF, which are inhibitors found in lignocellulosic hydrolysate and browning reaction products (Modig et al. 2002; Gurdo et al. 2018), all of the adapted strains grew better than did the parental strain at 40°C and 45°C (Fig. 3.3b). The tolerance to vanillin as a phenolic compound (Hemansi et al. 2022) was also examined, showing that all adapted strains were more resistant to 0.1% (w/v) vanillin than the parental strain (Fig. 3.3c).

Further experiments were carried out with a YPD liquid medium supplemented with 0.2% (v/v) and 0.3% (v/v) acetic acid under a shaking condition at 40°C. In the case of 0.2% (v/v) acetic acid, ACT001, ACT002, and ACT003 showed much better growth than that of TML001 and the parental strain, and they completely utilized glucose and produced the highest concentration of ethanol within 12 h, whereas TML001 and the parental strain completely utilized glucose and produced the highest concentration of ethanol at 48 h. In the case of 0.3% (v/v) acetic acid, only ACT strains grew and utilized glucose and produced ethanol (Fig. 3.4). These results are consistent with the results of the above-described experiments using agar plates, indicating that ACT strains are resistant to acetic acid. Moreover, all adapted strains except ACT002 showed better growth and ethanol production than the parental strain in a YPD medium supplemented with 10 mM furfural at 45 °C (Fig. S8). These results combined with

the results obtained from experiments with formic acid, furfural, and HMF suggest that the adapted strains have acquired abilities to withstand multiple stressors.

Fig. 3.3 Characterization of adapted strains. Growth of adapted strains on YPD agar plates with pH adjusted to 3 or supplemented with 0.3% acetic acid, 0.1% formic acid (a), 8% ethanol, 15 mM furfural, 15 mM HMF (b), 0.1% vanillin or multiple inhibitors (0.15% acetate, 7.5 mM furfural and 0.075% vanillin or 0.3% acetate, 15 mM furfural and 0.15% vanillin) (c) were compared. The plates were incubated at 30-45°C for 48 h.

Fig. 3.4 Effects of acetic acid on growth and fermentation parameters of adapted strains at 40° C. Adapted strains were cultivated in YPD medium supplemented with 0.2% or 0.3% acetic acid at 40° C under a shaking condition at 160 rpm for 48 h. Growth (a) was determined by measuring OD₆₆₀. Glucose (b), ethanol (c), and acetate (d) were determined by HPLC. Error bars represent SD for triplicate experiments.

Considering that the stresses in biofuel production from lignocellulosic biomass are synergistic, the effects of multiple inhibitors including acetate, furfural, and vanillin were examined (Fig. 3.3c). The synergistic effects of inhibitors were seen when each inhibitor in the experiments with multiple inhibitors was added at the same concentration as used in the experiments with a single inhibitor (Fig. 3.3a and b). Under these conditions, all the adapted strains did not grow. However, when the concentrations of inhibitors were reduced, all adapted strains except for TML001 grew, but the parental strain did not grow at 30°C and 45°C. These findings suggest that ACTs have acquired resistance to multiple stresses. Furthermore, ACT003, which was most tolerant to acetic acid (Fig. 3.4) and furfural (Fig. S8), was subjected to

fermentation experiments in a YPD medium containing 0.15% acetate, 7.5 mM furfural, and 0.075% vanillin in the presence of 8-16% glucose at 40°C (Fig. S9). ACT003 showed much better growth and ethanol production than the parental strain.

To examine the effects of osmotic stress and oxidative stress, which are known to accumulate in cells at high temperatures (Zhang *et al.* 2015), growth experiments were carried out on YP agar plates supplemented with 10% (w/v) xylose or 35% (w/v) glucose and supplemented with 5 mM H₂O₂. In the former experiments, the growth of all the adapted strains was almost the same as that of the parental strain, except that the growth of TML001 was weaker in the presence of 35% glucose at 45°C (Fig. S10). Additionally, in the latter experiments, ACT strains exhibited a level of growth similar to that of the parental strain, but the growth of TML001 was slightly weaker at 45°C (Fig. S10).

3.4.5 Mutation points of adapted strains

Next-generation sequencing was performed to find mutations in the four adapted strains, and candidate mutations were further confirmed by direct sequencing. The results showed that ACT001, ACT002, ACT003, and TML001 strains have two, four, one, and seven mutation points, respectively (Table 3.2). There were no shared mutations in ACT strains, though they exhibited a similar tolerance phenotype against several stresses tested. The two mutations in ACT001 are the following: the insertion of one nucleotide in the coding region of *KLMA_10738* for a PH domain-containing protein as an orthologue of YHR131C in *S. cerevisiae*, causing a frame shift mutation, and the deletion of one nucleotide polymorphisms (SNPs) either in the coding or non-coding regions, causing one missense and two synonymous mutations in the case of ACT002. The missense mutation occurs in *GAL1* for galactokinase, and the synonymous mutations occur in *ALY2* for UPF0675 protein as an orthologue of YJL084C in *S. cerevisiae* and in *KLMA_40563* for ATP-dependent protease La. YHR131C contains a PH domain that occurs in a wide range of proteins involved in

intracellular signaling or as constituents of the cytoskeleton (Ingley and Hemmings 1994; Saraste *et al.* 1995; Breslow *et al.* 2008; Ren *et al.* 2016). There are six SNPs and one triple-nucleotide insertion in TML001. Of these, four are missense or nonsense mutations in coding regions, and one causes a single amino acid insertion. The missense mutations occur in *FSH3* for the family of serine hydrolase 3 and in *TNA1* for a high-affinity nicotinic acid transporter; the nonsense mutations occur in *KLMA_40326* for an orthologue of YPL014W in *S. cerevisiae* and in *SVL3* for styryl dye vacuolar localization protein 3; and the amino acid insertion mutation occurs in *PMA1* for plasma membrane ATPase. YPL014W (Cip1) is a novel negative regulator of cyclin-dependent kinase (Ren *et al.* 2016).

3.4.6 Transcriptome analysis

The three strains ACT001, ACT002, and ACT003 had similar phenotypes of multi-stress tolerance and higher ethanol production but had obtained distinct mutations, indicating that it is difficult to understand the mechanism of expression of similar phenotypes only by genome mutation analysis. We thus carried out transcriptome analysis of ACT001 as a representative strain and of the parental strain as a control by RNA-Seq using total RNAs prepared from cells grown in a YPD medium at 45°C for 8 h. Reads per kilobase of exon per million (RPKM) of each gene were estimated as a transcript abundance. The difference of each gene in ACT001 strain from that in the parental strain. To further explore the transcriptional changes, analysis of differentially expressed genes (DEGs) based on the RNA-Seq data was conducted. DEGs showed significant changes at the transcription level with log_2 fold change > 1 and log_2 fold change < -1. A total of 7 genes were significantly down-regulated in ACT001 strain (Table 3.3), and 10 genes were significantly down-regulated (Table 3.3).

Table 3.2	Summary	of mutations	of adapted	strains

Adapted Strain	Gene/Locus_Tag	Product	Region	Ref	Allele	Туре	Amino Acid Change
ACT001	KLMA_10738	PH domain-containing protein Orthologue of YHR131C	1552906^1552907	-	G	Insertion	Lle812fs
		-	47658	Т	-	Deletion	Non-coding region
ACT002			1161817	G	А	SNP	Non-coding region
	GAL1	Galactokinase	712698	G	Т	SNP	Lue391Phe
	ALY2	UPF0675 protein Orthologue of YJL084C	385614	G	А	SNP	synonymous
	KLMA_40563	ATP-dependent protease La	1269738	Т	С	SNP	synonymous
ACT003	_		1107715	Т	С	SNP	Non-coding region
TML001	FSH3	Family of serine hydrolase 3	613476	С	G	SNP	Lle253Met
	PMA1	Plasma membrane ATPase	968552^968553	-	GCT	Insertion	Ala255_Leu256insAla
	TNA1	High-affinity nicotinic acid transporter	1010140	С	G	SNP	Phe467Leu
		-	1714543	G	А	SNP	Non-coding region
	KLMA_40326	Hypothetical protein Orthologue of YPL014W	767036	G	Т	SNP	Glu106 *
		2	724738	Т	G	SNP	Non-coding region
	SVL3	Styryl dye vacuolar localization protein 3	815396	С	А	SNP	Ser629 *

SNPs: Single nucleotide polymorphisms; fs: frame-shift mutation; * stop codon.

Locus_Tag	Gene	Log2 Fold Change	Product
Up-regulated			
KLMA_70179	ICL1	1.90	Isocitrate lyase
KLMA_70444	CIT3	1.43	Citrate synthase 3
KLMA_30101	SPG4	1.24	stationary phase protein 4
KLMA_20819	KLMA_20819	1.20	hypothetical protein
KLMA_60471	RRT12	1.12	putative subtilase-type proteinase YCR045C
KLMA_60452	FBP1	1.08	fructose-1,6-bisphosphatase
KLMA_20009	ADY2_1	1.04	acetate transporter
Down-regulate	d		
KLMA_50379	HAK1	-1.99	high-affinity potassium transporter
KLMA_50489	ZRT2	-1.39	zinc-regulated transporter 2
KLMA_10655	CDR4	-1.37	ATPase-coupled transporter
KLMA_50332	SEO1	-1.33	probable transporter SEO1
KLMA_10677	MET17	-1.18	protein MET17
KLMA_30339	KLMA_30339	-1.17	ATP synthase subunit b
KLMA_30724	SNZ3	-1.17	pyridoxal-5'-phosphate synthase
KLMA_30338	KLMA_30338	-1.08	protein ICY2
KLMA_60029	ACAD11	-1.01	acyl-CoA dehydrogenase family member 11
KLMA_30726	SNO3	-1.00	probable pyridoxal-5'-phosphate synthase subunit

Table 3.3 Up-regulated ($\log_2 > 1$) and down-regulated ($\log_2 < -1$) genes in ACT001 strain

Each strain was performed in duplicate.

Of the significantly up-regulated genes (Table 3.3), *ICL1*, *CIT3*, and *ADY2* may be related to acetic acid tolerance by maintaining a low level of intracellular acetate. The former two genes enhance the TCA cycle or glyoxylate cycle to assimilate acetic acid, and the latter exports acetate. Consistent with the assimilation enhancement, the acetate accumulation level in ACT001 was lower than that in the parental strain at high temperatures (Fig. 3.2). *ICL1* encodes isocitrate lyase, which catalyzes the cleavage of isocitrate to succinate and glyoxylate and which is a key enzyme for the glyoxylate cycle to utilize two carbon compounds, such as acetate (Paik *et al.* 2019). *CIT3* encodes the dual specificity mitochondrial citrate and methylcitrate synthase, which catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate, and which catalyzes that of propionyl-CoA and oxaloacetate to form 2-methylcitrate, respectively, in *S. cerevisiae* (Graybill *et al.* 2007). *ADY2* is an acetate transporter that has a key role in acetic acid sensitivity, and disruption of *ADY2* abolishes the active transport of acetate in *S. cerevisiae* (Paiva *et al.* 2004). The up-

regulation of *ADY2* may reduce the intracellular acetate level. Therefore, it is possible that the enhanced expression of these three genes is responsible for acid tolerance in ACT001. Given that three ACT mutants exhibited similar levels of acetic acid tolerance and similar glucose utilization patterns at high temperatures, ACT002 and ACT003 can enhance the TCA cycle or glyoxylate cycle as well as export the activity of acetate.

Four genes, *HAK1*, *ZRT2*, *CDR4*, and, for transporters including a high-affinity potassium transporter, a low-affinity zinc transporter, an ATPase-coupled transporter, and a putative allantoate transporter were down-regulated. Two genes, *SNZ3* and *SNO3*, for probable pyridoxal 5'-phosphatae biosynthesis were also down-regulated. The relationship between these negative regulations and stress resistance is not clear.

3.5 Discussion

There are many reports showing improvement of yeasts via evolutionary adaptation (Nigam 2001; Chen and Xu 2014; Zhang *et al.* 2014; Gurdo *et al.* 2017; Saini *et al.* 2017; Sharma *et al.* 2017; Kim *et al.* 2019; Zhang *et al.* 2019). In most of them, cells were exposed to a single stress, for example, a high concentration of ethanol, by repetitive cultivation in a short cycle, such as 1 to 2 days at a fixed temperature (Table S16). The procedure applied in this study is relatively simple and not laborious because of the transfer to a fresh medium once a week, which gives a chance to enrich multi-stress-resistant mutants and to obtain characteristically different mutants if cultivated in multiple test tubes. We successfully acquired 4 different mutants from cultivation with 10 test tubes in this study.

Long-term cultivation causes nutrient starvation and toxic compounds to accumulate in the medium. *K. marxianus* DMKU 3-1042 was found to accumulate acetate at high temperatures (Fig. 3.1), which may be responsible for a marked decrease in cell viability after 36 h. It suggests that this yeast tends to convert ethanol to acetic acid and/or has a weak metabolism with acetic acid at high temperatures. High temperatures may be not a primary factor affecting cell viability because it can

grow even at 48°C (Abdel-Banat et al. 2010), but high temperatures may lead to the accumulation of acetate. On the other hand, the accumulation of acetic acid is relatively low at low temperatures, and the decline of cell viability after 120 h could be due to limitation of nutrients. Therefore, the acquisition of acetic acid resistant mutants of ACTs at high temperatures is reasonable. Notably, the accumulation levels of acetate were lower than that of the parental strain in the medium containing 160 g L^{-1} of glucose at 40°C to 45°C. Given the high ethanol production in ACT mutants, their ethanol-to-acetic acid conversion activity may be relatively low, or acetic acid metabolic activity may be high as expected from the results of the transcriptome analysis. TML001, which is sensitive to acetic acid like the parental strain, may have a distinct strategy for survival in the presence of acetic acid. The mutant somehow kept a lower level of acetate compared to the other adapted mutants as seen in the medium containing 160 g L⁻¹ of glucose at 40°C to 45°C. Notably, K. marxianus DMKU 3-1042 as well as adapted strains exhibited a stronger resistance to high temperatures (up to 48°C) on agar plates (Abdel-Banat et al. 2010). It is assumed that only the surface cells of colonies on agar plates are exposed to oxidative stress, which increases with rising temperature (Cuny et al. 2007), and individual cells in liquid media are directly exposed to the stress. The thermal stability of K. marxianus DMKU 3-1042 is one of the most important application criteria for different applications, and this property is crucial for the preparation strategy of the strain or its stabilization. The stability of K. marxianus DMKU 3-1042 is beneficial for a wide range of applications in synthesis processes, which currently are in great demand from the industrial point of view (Lertwattanasakul et al. 2022; Nurcholis et al. 2020).

By RLCGT, adapted mutants were acquired at a relatively high frequency (4 mutants/10 tubes). One of the reasons may be a significant reduction in viability at each 7-day cultivation step. Gradual rising temperatures may reduce survival because, in addition to temperature stress, higher temperatures tend to accumulate more reactive oxygen species (ROS) that damage cells (Kosaka *et al.* 2018; Nurcholis *et al.* 2020). The combinations of various stresses including acetic acid, high temperatures, ROS, ethanol, and other by-products are thought to influence viability, resulting in enrichment of adapted mutants. The other may be due to the gradual accumulation of

ethanol, acetic acid, and other by-products at each long-term cultivation step. The high acquisition frequency of adapted mutants and their enhanced capacity of ethanol fermentation at high temperatures demonstrate the usefulness of RLCGT for evolutionary adaptation. This procedure can be applied to improve other microbes once the initial temperature for RLCGT is properly determined. Recently, *Candida tropicalis* X-17 was subjected to RLCGT in the presence of a high concentration of glucose, and the resultant adapted strain increased ethanol production and improved multi-stress tolerance (Phommachan *et al.* 2022).

Spontaneous mutations occur during cultivation, and some of the mutations contribute to adaptation to environmental conditions. Such adaptations are also accompanied by phenotypic alterations (Saini et al. 2017; Pereira et al. 2018). In this study, all of the adapted strains exhibited phenotypes of resistance to furfural, HMF, and vanillin in addition to ethanol or acetic acid. The phenotypes were stable rather than transient, which may be conferred by underlying mutations, unlike an adaptive response and tolerance to stress encountered during ethanol fermentation (Kim et al. 2013; Auesukaree 2017). ACT strains were clearly tolerant to acetic acid, formic acid, and low pH compared to TML001 and the parental strain (Fig. 3.3). Acetic acid resistance may have promoted glucose assimilation and ethanol production more than the parental strain (Fig. 3.2). One to seven mutations in coding or non-coding regions were found in the adapted strains, some of which may be responsible for altered phenotypes. Unfortunately, the mutations in the adapted strains were different, and mutations responsible for the common phenotypes were therefore not identified. Mutations causing drastic alterations in protein structure could be related to adaptations under stress conditions, including the frame-shift mutation of KLMA 10738 in ACT001 and the nonsense mutations of KLMA 40326 and SVL3 in TML001. Null mutants of their orthologue genes, YHR131C, YPL014W, and SVL3, in S. cerevisiae exhibited an increase in competitive fitness in minimum medium (Breslow et al. 2018), and a resistance to oxidative stress (Helsen et al. 2020), respectively. Therefore, it is assumed that the accumulation of some mutations except for ACT003, not only in coding regions but also non-coding regions, is responsible for

a phenotype such as acetic acid resistance. In the future, it is necessary to confirm stress tolerance by constructing individual mutations in the wild-type background.

Nonetheless, transcriptome analysis suggests possible mechanisms of acetic acid tolerance in ACT001 as mentioned above, though the relationship between its genomic mutations and acetic acid tolerance is unclear. Like these adapted strains, adapted strains with multi-stress tolerance were previously isolated in *S. cerevisiae* (Chen and Xu 2014; Zhang *et al.* 2019). The mechanism of multi-stress tolerance may be complicated, given previous evidence which suggests that many genes are involved in certain stress resistances (Dhar *et al.* 2011), that genes required for specific stress tolerance contribute to other stress resistances (Berry *et al.* 2011), and that the integration of selected genes can improve tolerance to multiple inhibitors in lignocellulose fermentations (Brandt *et al.* 2021).

No direct association between up-regulation of those three genes and mutations in ACT001 can be found in the literature or databases. ACT001 was suggested to have two mutations: a frame-shift mutation in KLMA 10738 for the Pleckstrin homology (PH) domain-containing protein and an SNP in the non-coding region (Table 3.2). PH domains are small protein modules known for their ability to bind to phosphoinositides, and they are involved in intracellular signaling or in being constituents of the cytoskeleton (Ingley and Hemmings 1994; Saraste and Hyvönen 1995; Yu et al. 2004; Breslow et al. 2008). The STRING database indicates that YHR131C in S. cerevisiae, which is the orthologue of KIMA 10738 in K. marxianus, interacts with 10 proteins, including a putative transcription factor required for growth of superficial pseudohyphae. Therefore, it is speculated that the defective mutation of KLMA 10738 is directly or indirectly related to stress resistance and/or the upregulation of ICL1, CIT3, and ADY2 in ACT001. Further works are needed in the future, including the disruption of KLMA 10738 and its effects on the expression of these genes, and including the overexpression of these genes and their effects on acetic acid and other stress tolerances.

The four mutants obtained in this study produced higher ethanol concentration than the parental strain in a YP medium containing 160 g L^{-1} at high temperatures

under a shaking condition, which provided oxygen and avoided aggregations of cells. Ethanol concentrations in ACT mutants increased by about 20-40% of that of the parental strain (Table 3.1). The increment was consistent with greater consumption of glucose compared to that of the parental strain. The ratios of increase in ethanol production are higher than or equivalent to those of adapted mutants in several reports. The ratios of increase in ethanol concentration in *S. cerevisiae* SM4 adapted in a YP medium containing 300 g L⁻¹ glucose and 50 g L⁻¹ ethanol at 34°C, an adapted strain from *K. marxianus* MTCC1389 in whey permeate containing 200 g L⁻¹ lactose at 37°C, and *S. cerevisiae* YF10-5 adapted in a fermentation medium containing 350 g L⁻¹ glucose at 30°C, were in the range of 16.6% to 29.3% (Zhang *et al.* 2014; Saini *et al.* 2017; Zhang *et al.* 2019) Therefore, the adaptation procedure used in this study may allow efficient improvement of ethanol productivity at high temperatures.

3.6 Conclusions

This study showed that (1) RLCGT is an effective evolutionary adaptation procedure and provided evidence that (2) adapted strains have the ability to achieve high ethanol concentrations at high temperatures and are (3) capable of tolerating multiple stresses, especially ACT strains, which are strongly resistant to acetic acid and formic acid. These beneficial properties are useful for industrial ethanol fermentation using lignocellulosic biomass as a substrate.

REFERENCES

- Abbott DA, Zelle RM, Pronk JT, van Maris AJ. 2009. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res. 9:1123-1136. https://doi.org/10.1111/j.1567-1364.2009.00537.x.
- Abdel-Banat BA, Hoshida H, Ano A, Nongklang S, Akada R. 2010. Hightemperature fermentation: how can processes for ethanol production at high temperatures become superior to traditional process using mesophilic yeast?.
 Appl. Microbiol. Biotechnol. 85:861-867. https://doi.org/10.1007/s00253-009-2248-5.
- Akuzawa S, Nagaoka J, Kanekatsu M, Kanesaki Y, Suzuki T. 2016. Draft genome sequence of *Oceanobacillus picturae* Heshi-B3, isolated from fermented rice bran in a traditional Japanese seafood dish. Genome Announc. 4:e01621-15. https://doi.org/10.1128/genomeA.01621-15.
- Amelunxen RE, Carr DO. 1975. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. Meth. Enzymol. 41:264-267. https://doi.org/10.1016/s0076-6879(75)41060-6.
- Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106.
- Auesukaree C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124:133-142. https://doi.org/10.1016/j.jbiosc.2017.03.009.
- Axe DD, Bailey JE. 1995. Transport of lactate and acetate through the energized cytoplasmic membrane of *Escherichia coli*. Biotechnol. Bioeng. 47:8-19. https://doi.org/10.1002/bit.260470103.
- Banat IM, Nigam P, Singh D, Marchantand R, McHale AP. 1998. Ethanol production at elevated temperatures and alcohol concentrations, I. Yeasts in

general. World J. Microbiol. Biotechnol. 14:809-821. https://doi.org/10.1023/A:1008802704374.

- Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP. 2011. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet. 7:e1002353. https://doi.org/10.1371/journal.pgen.1002353.
- Brandt BA, García-Aparicio MD, Görgens JF, Zyl WHV. 2021. Rational engineering of *Saccharomyces cerevisiae* towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnol. Biofuels. 14:173. https://doi.org/10.1186/s13068-021-02021-w.
- Breslow D, Cameron D, Collins S, Schuldiner M, Stewart-Ornstein J, Newman H, Madhani H, Krogan N, Weiss-man JA. 2008. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods. 5:711-718. https://doi.org/10.1038/nmeth.1234.
- Bro C, Regenberg B, Forster J, Nielsen J. 2006. In silico aided metabolic engineering of *Saccharomyces cerevisiae* for improved bioethanol production. Metab. Eng. 8:102-111. https://doi.org/10.1016/j.ymben.2005.09.007.
- Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü. 2012. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 12:171-182. https://doi.org/10.1111/j.1567-1364.2011.00775.x.
- Chen S, Xu Y. 2014. Adaptive evolution of *Saccharomyces cerevisiae* with enhanced ethanol tolerance for Chinese rice wine fermentation. Biotechnol. Appl. Biochem. 173:1940-1954. https://doi.org/10.1007/s12010-014-0978-z.
- Cunha JT, Romaní A, Costa CE, Sá-correia I, Domingues L. 2019. Molecular and physiological basis of *Saccharomyces cerevisiae* tolerance to adverse lignocellulose-based process conditions. Appl. Microbiol. Biotechnol. 103:159-175. https://doi.org/10.1007/s00253-018-9478-3.

- Cuny C, Lesbats M, Dukan S. 2007. Induction of a global stress response during the first step of *Escherichia coli* plate growth. Appl. Environ. Microbiol. 73:885-999. https://doi.org/10.1128/AEM.01874-06.
- Davidson JF, Whyte B, Bissinger PH, Schiestl RH. 1996. Oxidative stress is involved in heat-induced cell death in *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. U.S.A. 93:5116-5121. https://doi.org/10.1073/pnas.93.10.5116.
- Delorme-Axford E, Klionsky DJ. 2018. Transcriptional and post-transcriptional regulation of autophagy in the yeast *Saccharomyces cerevisiae*. J. Biol. Chem. 293:5396-5403. https://doi.org/10.1074/jbc.R117.804641.
- Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A. 2011. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24:1135-1153. https://doi.org/10.1111/j.1420-9101.2011.02249.x.
- Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H. 2008. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS One. 3:e2623. https://doi.org/10.1371/journal.pone.0002623.
- Dulley JR, Grieve PA. 1975. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal. Biochem. 64:136-141. https://doi.org/10.1016/0003-2697(75)90415-7.
- Fonseca GG, Heinzle E, Wittmann C, Gombert AK. 2008. The yeast *Kluyveromyces marxianus* and its biotechnological potential. Appl. Microbiol. Biotechnol. 79:339-354. https://doi.org/10.1007/s00253-008-1458-6.
- Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS. 2012. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta. 1823:2297-2310. https://doi.org/10.1016/j.bbamcr.2012.08.007.
- Gajendra KA, Singh V, Mandal P, Singh P, Golla U, Baranwal S, Chauhan S, Tomar RS. 2014. Ebselen induces reactive oxygen species (ROS)-mediated

cytotoxicity in *Saccharomyces cerevisiae* with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio. 4:77-89. https://doi.org/10.1016.j.fob.2014.01.002.

- Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31:535-569. https://doi.org/10.1111/j.1574-6976.2007.00076.x.
- Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. 2013. Bioethanol production from lignocellulosic biomass by a novel *Kluyveromyces marxianus* strain. Biosci. Biotechnol. Biochem. 77:1505-1510. https://doi.org/10.1271/bbb.130173.
- Graybill ER, Rouhier MF, Kirby CE, Hawes JW. 2007. Functional comparison of citrate synthase isoforms from *S. cerevisiae*. Arch. Biochem. Biophys. 465:26-37. https://doi.org/10.1016/j.abb.2007.04.039.
- Guaragnella N, Passarella S, Marra E, Giannattasio S. 2010. Knock-out of metacaspase and/or cytochrome *c* results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Lett. 584:3655-3660. https://doi.org/10.1016/j.febslet.2010.07.044.
- Gurdo N, Novelli Poisson GF, Juárez ÁB, Rios de Molina MC, Galvagno MA. 2018.
 Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. J. Appl. Microbiol. 125:766-776. https://doi.org/10.1111/jam.13917.
- Helsen J, Voordeckers K, Vanderwaeren L, Santermans T, Tsontaki M, Verstrepen,
 KJ, Jelier R. 2020. Gene loss predictably drives evolutionary adaptation. Mol.
 Biol. Evol. 37:2989-3002. https://doi.org/10.1093/molbev/msaa172.
- Hemansi, Himanshu, Patel AK, Saini JK, Singhania RR. 2021. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresour. Technol. 344:126247. https://doi.org/10.1016/j.biortech.2021.126247.

- Hirokawa Y, Kanesaki Y, Arai S, Saruta F, Hayashihara K, Murakami A, Shimizu K, Honda H, Yoshikawa H, Hanai T. 2018. Mutations responsible for alcohol tolerance in the mutant of *Synechococcus elongatus* PCC 7942 (SY1043) obtained by single-cell screening system. J. Biosci. Bioeng. 125:572-577. https://doi.org/10.1016/j.jbiosc.2017.11.012.
- Hughes DB, Tuoroszen NJ, Moye CJ. 1984. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain *Kluyveromyces marxianus*. Biotechnol. Lett. 6:1-6. https://doi.org/10.1128/AEM.01854-08.
- Ibraheem O, Ndimba BK. 2013. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int. J. Biol. Sci. 9:598-612. https://doi.org/10.7150/ijbs.6091.
- Ingley E, Hemmings BA. 1994. Pleckstrin homology (PH) domains in signal transduction. J. Cell. Biochem. 56:436-443. https://doi.org/10.1002/jcb.240560403.
- Itsumi M, Inoue S, Elia AJ, Murakami K, Sasaki M, Lind EF, Brenner D, Harris IS, Chio II, Afzal S, Cairns RA, Cescon DW, Elford AR, Ye J, Lang PA, Li WY, Wakeham A, Duncan GS, Haight J, You-Ten A, Snow B, Yamamoto K, Ohashi PS, Mak TW. 2015. Idh1 protects murine hepatocytes from endotoxin induced oxidative stress by regulating the intracellular NADP⁺/NADPH ratio. Cell Death Differ. 22:1837-1845. https://doi.org/10.1038/cdd.2015.38.
- Jönsson LJ, Martín C. 2016. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199:103-112. https://doi.org/10.1016/j.biortech.2015.10.009.
- Kanki T, Furukawa K, Yamashita S. 2015. Mitophagy in yeast: Molecular mechanisms and physiological role. Biochim Biophys Acta. 1853:2756-2765. https://doi.org/10.1016/j.bbamcr.2015.01.005.
- Kılmanoğlu H, Hoşoğlu Mİ, Güneşer O, Yüceer YK. 2020. Optimization of pretreatment and enzymatic hydrolysis conditions of tomato pomace for production of alcohols and esters by *Kluyveromyces marxianus*. LWT. 138:110728. https://doi.org/10.1016/j.lwt.2020.110728.

- Kim IS, Kim YS, Kim H, Jin I, Yoon HS. 2013. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol. Cells. 35:210-218. https://doi.org/10.1007/s10059-013-2258-0.
- Kim SB, Kwon DH, Park JB, Ha SJ. 2019. Alleviation of catabolite repression in *Kluyveromyces marxianus*: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose. Biotechnol. Biofuels. 12:90. https://doi.org/10.1186/s13068-019-1431-x.
- Kosaka T, Lertwattanasakul N, Rodrussamee N, Nurcholis M, Dung NTP, Keo-Oudone C, Murata M, Götz P, Theodoropoulos C, Suprayogi, Maligan JM, Limtong S, Yamada M. 2018. Potential of thermotolerant ethanologenic yeasts isolated from ASEAN countries and their application in hightemperature fermentation. In *Fuel Ethanol Production from Sugarcane*. IntechOpen: London. UK. pp. 121-154.
- Kotiadis VN, Duchen MR, Osellame LD. 2014. Mitochondrial quality control and communications with the nucleus are important in maintaining function and cell death. Biochim Biophs Acta. 1840:1254-1265. https://doi.org/10.1016/j.bbagen.2013.10.041.
- Kruger NJ, von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organization. Curr. Opin. Plant. Biol. 6:236-246. https://doi.org/10.1016/S1369-5266(03)00039-6.
- Kuby SA, Noltmann EA. 1966. Glucose 6-phosphate dehydrogenase (crystalline) from brewers' yeast. Meth. Enzymol. 9:116-125. https://doi.org/10.1016/0076-6879(66)09029-3.
- Kumari R, Pramanik K. 2012. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J. Biosci. Bioeng. 114: 622-629. https://doi.org/10.1016/j.jbiosc.2012.07.007.
- Lau MW, Gunawan C, Balan V, Dale BE. 2010. Comparing the fermentation performance of *Escherichia coli* KO11, *Saccharomyces cerevisiae* 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol

production. Biotechnol. Biofuels. 3:11. https://doi.org/10.1186/1754-6834-3-11.

- Lertwattanasakul N, Shigemoto E, Rodrussamee N, Limtong S, Thanonkeo P, Yamada M. 2009. The crucial role of alcohol dehydrogenase Adh3 in *Kluyveromyces marxianus* mitochondrial metabolism. Biosci. Biotechnol. Biochem. 73:2720-2726. https://doi.org/10.1271/bbb.90609.
- Lertwattanasakul N, Rodrussamee N, Suprayogi, Limtong S, Thanonkeo P, Kosaka T, Yamada M. 2011. Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast *Kluyveromyces marxianus* DMKU 3-1042. AMB Express. 1:20. https://doi.org/10.1186/2191-0855-1-20.
- Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Suprayogi, Tsuchikane K, Limtong S, Fujita N, Yamada M. 2015. Genetic basis of the highly efficient yeast *Kluyveromyces marxianus*: complete genome sequence and transcriptome analyses.
 Biotechnol. Biofuels. 8:47. https://doi.org/10.1186/s13068-015-0227-x.
- Lertwattanasakul N, Nurcholis M, Rodrussamee N, Kosaka T, Murata M, Yamada M. 2022. *Kluyveromyces marxianus* as a platform in synthetic biology for the production of useful materials. In Synthetic Biology of Yeasts. Darvishi Harzevili F. Ed. Springer International Publishing. Cham. Switzerland. pp. 293–335.
- Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated *Kluyveromyces marxianus*. Bioresour. Technol. 98:3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044.
- López-Mirabal HR, Winther JR. 2008. Redox characteristics of the eukaryotic cytosol. Biochem Biophys Acta. 1783:629-640. https://doi.org/10.1016/j.bbamcr.2007.10.013.
- Ludovico P, Sousa MJ, Silva MT, Leão CL, Côrte-Real M. 2001. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 147:2409-2415. https://doi.org/10.1099/00221287-147-9-2409.
- Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M. 2002. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in *Saccharomyces cerevisiae*. Mol. Biol. Cell. 13:2598-2606. https://doi.org/10.1091/mbc.e01-12-0161.
- Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. 1999.
 Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol 145:757–767.
 https://doi.org/10.1083/jcb.145.4.757.
- Manfredini V, Roehrs R, Peralba MC, Henriques JA, Saffi J, Ramos AL, Benfato MS. 2004. Glutathione peroxidase induction protects *Saccharomyces cerevisiae sod1D sod2D* double mutants against oxidative damage. Braz. J. Med. Biol. Res. 37:159-165. https://doi.org/10.1590/S0100-879X2004000200001.
- Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R.
 2008. Isolation of a novel mutant strain of *Saccharomyces cerevisiae* by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J. Biosci. Bioeng. 105:403-408.
 https://doi.org/10.1263/jbb.105.403.
- Modig T, Lidén G, Taherzadeh MJ. 2002. Inhibition effects of furfural and alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.
 Biochem. J. 363: 769-776. https://doi.org/10.1042/bj3630769.
- Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T, Oshima T, Ogasawara N, Yamada M. 2011. Molecular strategy for survival at a critical high temperature in *Eschierichia coli*. PLoS ONE. 6:e20063. https://doi.org/10.1371/journal.pone.0020063.

- Murata M, Nitiyon S, Lertwattanasakul N, Sootsuwan K, Kosaka T, Thanonkeo P, Limtomg S, Yamada M. 2015. High-temperature fermentation technology for low-cost bioethanol. J Jpn Inst Energy. 94:1154-1162. https://doi.org/10.3775/jie.94.1154.
- Nachaiwieng W, Lumyong S, Yoshioka K, Watanabe T, Khanongnuch C. 2015.
 Bioethanol production from rice husk under elevated temperature simultaneous saccharification and fermentation using *Kluyveromyces marxianus* CK8. Biocatal. Agric. Biotechnol. 4:543-549.
 https://doi.org/10.1016/j.bcab.2015.10.003.
- Nasuno R, Aitoku M, Manago Y, Nishimura A, Sasano Y, Takagi H. 2014. Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One. 9:e113788. https://doi.org/10.1371/journal.pone.0113788.
- Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21:4347-4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001.
- Nigam JN. 2001. Development of xylose-fermenting yeast *Pichia stipites* for ethanol zproduction through adaptation on hardwood hemicellulose acid prehydrolysate. J. Appl. Microbiol. 90:208-215. https://doi.org/10.1046/j.1365-2672.2001.01234.x.
- Nitiyon S, Keo-Oudone C, Murata M, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M. 2016. Efficient conversion of xylose to ethanol by stress-tolerant *Kluyveromyces marxianus* BUNL-21. Springerplus. 5:185. https://doi.org/10.1186/s40064-016-1881-6.
- Noltmann EA. 1966. Phosphoglucose isomerase. Meth. Enzymol. 9:557-565.
- Nuanpeng S, Thanonkeo S, Yamada M, Thanonkeo P. 2016. Ethanol production from sweet sorghum juice at high temperatures using a newly isolated

thermotolerant yeast *Saccharomyces cerevisiae* DBKKU Y-53. Energies. 9:253. https://doi.org/10.3390/en9040253

- Nurcholis M, Murata M, Limtong S, Kosaka T, Yamada M. 2019. *MIG1* as a positive regulator for the histidine biosynthesis pathway and as a global regulator in thermotolerant yeast *Kluyveromyces marxianus*. Sci. Rep. 9:9926. https://doi.org/10.1038/s41598-019-46411-5.
- Nurcholis M, Nitiyon S, Suprayogi, Rodrussamee N, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M. 2019. Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast *Kluyveromyces marxianus*. Appl. Microbiol. Biotechnol. 103:395-410. https://doi.org/10.1007/s00253-018-9462-y.
- Nurcholis M, Lertwattanasakul N, Rodrussamee N, Kosaka T, Murata M, Yamada M. 2020. Integration of comprehensive data and biotechnological tools for industrial applications of *Kluyveromyces marxianus*. Appl. Microbiol. Biotechnol. 104:475-488. https://doi.org/10.1007/s00253-019-10224-3.
- Paik SM, Kim J, Jin E, Jeon NL. 2019. Overproduction of recombinant *E. coli* malate synthase enhances *Chlamydomonas reinhardtii* biomass by upregulating heterotrophic metabolism. Bioresour. Technol. 272:594-598. https://doi.org/10.1016/j.biortech.2018.10.029.
- Paiva S, Devaux F, Barbosa S, Jacq C, Casal M. 2004. Ady2p is essential for the acetate permease activity in the yeast *Saccharomyces cerevisiae*. Yeast. 21:201-210. https://doi.org/10.1002/yea.1056.
- Palikaras K, Tavernarakis N. 2014. Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56:182-188. https://doi.org/10.1016/j.exger.2014.01.021.
- Pan Y. 2011. Mitochondria, reactive oxygen species, and chronological aging: A message from yeast. Exp. Gerontol. 46:847-852. https://doi.org/10.1016/j.exger.2011.08.007.

- Pattanakittivorakul S, Lertwattanasakul N, Yamada M, Limtong, S. 2019. Selection of thermotolerant *Saccharomyces cerevisiae* for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie van Leeuwenhoek. 112:975-990. https://doi.org/10.1007/s10482-019-01230-6.
- Pereira T, Vilaprinyo E, Belli G, Sorribas A, Alte G, Pereira T, Vilaprinyo E, Belli G, Herrero E, Salvado B, Sorribas A. 2018. Quantitative operating principles of yeast metabolism during adaptation to heat stress. Cell Rep. 22:2421-2430. https://doi.org/10.1016/j.celrep.2018.02.020.
- Pérez-Gallardo RV, Briones LS, Díaz-Pérez AL, Gutiérrez S, Rodríguez-Zavala JS, Campos-García J. 2013. Reactive oxygen species production induced by ethanol in *Saccharomyces cerevisiae* increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13:804-819. https://doi.org/10.1111/1567-1364.12090.
- Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. 2017. RETRACTED: A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech. Ageing Dev. 161:234-246. https://doi.org/10.1016/j.mad.2016.07.01.
- Phommachan K, Keo-oudone C, Nurcholis M, Vongvilaisak N, Chanhming M, Savanhnaly V, Bounphanmy S, Matsutani M, Kosaka T, Limtong S, Yamada M. 2022. Adaptive laboratory evolution for multistress tolerance, including fermentability at high glucose concentrations in thermotolerant *Candida tropicalis*. Energies. 15:561. https://doi.org/10.3390/en15020561.
- Ren P, Malik A, Zeng F. 2016. Identification of YPL014W (Cip1) as a novel negative regulator of cyclin-dependent kinase in *Saccharomyces cerevisiae*. Genes Cells. 21:543–552. https://doi.org/10.1111/gtc.12361.
- Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and

pentose sugars and glucose effect under various conditions in thermotolerant yeast *Kluyveromyces marxianus*. Appl. Microbiol. Biotechnol. 90:1573-1586. https://doi.org/10.1007/s00253-011-3218-2.

- Rosen OM. 1975. Purification of fructose-1,6-diphosphatase from *Polysphondylium palidum*. Meth. Enzymol. 42:360-363. https://doi.org/10.1016/0076-6879(75)42141-3.
- Rozakis S, Haque MI, Natsis A, Borzecka-Walker M, Mizak K. 2013. Costeffectiveness of bioethanol policies to reduce carbon dioxide emissions in Greece. Int J Life Cycle Assess. 18:306-318. https://doi.org/10.1007/s11367-012-0471-2.
- Russell JB. 1991. Resistance of *Streptococcus bovis* to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl. Environ. Microbiol. 57:255-259. https://doi.org/10.1128/AEM.57.1.255-259.1991.
- Saini P, Beniwal A, Kokkiligadda A, Vij S. 2017. Evolutionary adaptation of *Kluyveromyces marxianus* strain for efficient conversion of whey lactose to bioethanol. Process Biochem. 62:69-79. https://doi.org/10.1016/j.procbio.2017.07.013
- Sakihama Y, Hidese R, Hasunuma T, Kondo A. 2019. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of *Kluyveromyces marxianus* under respiratory conditions. Sci. Rep. 9:5319. https://doi.org/10.1038/s41598-019-41863-1.
- Sambrook J, Russell DW. 2001. Molecular cloning a laboratory manual, Third edition. Volume 3. Cold Spring Harbor Laboratory Press, New York.
- Sanger F, Nicklen S, Coulson AR. 1997. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467. https://doi.org/10.1073/pnas.74.12.5463.
- Saraste M, Hyvönen M. 1995. Pleckstrin homology domains: A fact file. Curr. Opin. Struct. Biol. 5:403-408. https://doi.org/10.1016/0959-440x(95)80104-9.

- Satomura A, Katsuyama Y, Miura N, Kuroda K, Tomio A, Bamba T, Fukusaki E, Ueda M. 2013. Acquisition of thermotolerant yeast *Saccharomyces cerevisiae* by breeding via stepwise adaptation. Biotechnol. Prog. 29:1116-1123. https://doi.org/10.1002/btpr.1754.
- Scherz-Shouval R, Elazar Z. 2007. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17:422-427. https://doi.org/10.1016/j.tcb.2007.07.009.
- Scott WA, Abramsky T. 1975. 6-Phosphogluconate dehydrogenase from *Neurospora crassa*. Meth. Enzymol. 41:227-231. https://doi.org/10.1016/s0076-6879(75)41052-7.
- Sharma NK, Behera S, Arora R, Kumar S. 2017. Evolutionary adaptation of *Kluyveromyces marxianus* NIRE-K3 for enhanced xylose utilization. Front. Energy Res. 5. https://doi.org/10.3389/fenrg.2017.00032.
- Shaw JM, Nunnari J. 2002. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 12:178-184. https://doi.org/10.1016/s0962-8924(01)02246-2.
- Singer MA, Lindquist S. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16:460-468. https://doi.org/10.1016/S0167-7799(98)01251-7.
- Sootsuwan K, Lertwattanasakul N, Thanonkeo P, Matsushita K, Yamada M. 2008. Analysis of the respiratory chain in ethanologenic *Zymomonas mobilis* with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. J. Mol. Microbiol. Biotechnol. 14:163-175. https://doi.org/10.1159/000112598.
- Sun Y, Cheng Z. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83:1-11. https://doi.org/10.1016/S0960-8524(01)00212-7.
- Tarrío N, García-Leiro A, Cerdán ME, González-Siso MI. 2008. The role of glutathione reductase in the interplay between oxidative stress response and

turnover of cytosolic NADPH in *Kluyveromyces lactic*. FEMS Yeast Res. 8:597-606. https://doi.org/10.1111/j.1567-1364.2008.00366.x.

- Taweecheep P, Naloka K, Matsutani M, Yakushi T, Matsushita K, Theeragool G.
 2019. In vitro thermal and ethanol adaptations to improve vinegar fermentation at high temperature of *Komagataeibacter oboediens* MSKU 3.
 Biotechnol. Appl. Biochem. 189:144-159. https://doi.org/10.1007/s12010-019-03003-3.
- Techaparin A, Thanonkeo P, Klanrit P. 2017. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz. J. Microbiol. 48:461-475. https://doi.org/10.1016/j.bjm.2017.01.006.
- Tinôco D, Genier HLA, da Silveira WB. 2021. Technology valuation of cellulosic ethanol production by *Kluyveromyces marxianus* CCT 7735 from sweet sorghum bagasse at elevated temperatures. Renew. Energy. 173:188-196. https://doi.org/10.1016/j.renene.2021.03.132.
- Thevelein JM. 1984. Regulation of trehalose mobilization in fungi. Microbio. Rev. 48:42-59. https://doi.org/10.1128/mr.48.1.42-59.1984.
- Yu JW, Mendrola JM, Audhya A, Singh S, Keleti D, DeWald DB, Murray D, Emr SD. Lemmon MA. 2004. Genome-wide analysis of membrane targeting by S. *cerevisiae* pleckstrin homology domains. Mol. Cell. 13:677-688. https://doi.org/10.1016/S1097-2765(04)00083-8.
- Youle RJ, van der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science. 337:1062-1065. https://doi.org/10.1126/science.1219855.
- Wai T, Langer T. 2016. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27:105-117. https://doi.org/10.1016/j.tem.2015.12.001.
- Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T. 2011. A UV-induced mutant of *Pichia stipitis* with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance.
 Bioresour. Technol. 102:1844-1848.
 https://doi.org/10.1016/j.biortech.2010.09.087.

- Woo JM, Yang KM, Kim SU, Blank LM, Park JB. 2014. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by *Saccharomyces cerevisiae* under fermenting conditions. Appl. Microbiol. Biotechnol. 98:6085-6094. https://doi.org/10.1007/s00253-014-5691-x.
- Xia W, Wang Z, Wang Q, Han J, Zhao C, Hong Y, Zeng L, Tang L, Ying W. 2009. Roles of NAD⁺/NADH and NADP⁺/NADPH in cell death. Curr. Pharm. Des. 15:12-19. https://doi.org/10.2174/138161209787185832.
- Zhang J, ten Pierick A, van Rossum HM, Seifar RM, Ras C, Daran JM, Heijnen JJ, Wahl SA. 2015. Determination of the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction. Sci. Rep. 5:12846. https://doi.org/10.1038/srep12846.
- Zhang M, Zhu R, Zhang M, Wang S. 2014. Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation. J. Biosci. Bioeng. 118:508-513. https://doi.org/10.1016/j.jbiosc.2014.04.016.
- Zhang M, Shi J, Jiang L. 2015. Modulation of mitochondrial membrane integrity and ROS formation by high temperature in *Saccharomyces cerevisiae*. Electron.
 J. Biotechnol. 18:202-209. https://doi.org/10.1016/j.ejbt.2015.03.008.
- Zhang Q, Lin YL, Fang Y, Zhao H. 2019. Adaptive evolution and selection of stress resistant *Saccharomyces cerevisiae* for very high-gravity bioethanol fermentation. Electron. J. Biotechnol. 41:88-94. https://doi.org/10.1016/j.ejbt.2019.06.003.
- Zhang B, Ren L, Zeng S, Zhang S, Xu D, Zeng X, Li F. 2020. Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-020-10808-4.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors, Prof. Dr. Mamoru Yamada and Assoc. Prof. Dr. Tomoyuki Kosaka, for excellent guidance, attentive supervision and encouragement throughout this research. Besides, they also provide good opportunities and good suggestions, which are benefit to my future career.

Beside my supervisors, I would like to thank Prof. Dr. Kazunobu Matsushita, Prof. Dr. Toshiharu Yakushi, and Assistant Prof. Dr. Naoya Kataoka for their helpful and valuable advice.

I am particularly grateful to Dr. Masayuki Murata, Dr. Noppon Lertwattanasakul, Dr. Mochamad Nurcholis, Sakuda Anggarini, Koudkeo Phommachan, all members of Josei laboratory and International students who study in Yamaguchi University for their value comments, discussion, suggestions and friendship during my study.

I am thankful to the Japanese Government through Monbukagakusho (MEXT) Scholarship for financial support during my study and Department of Biological Chemistry, Yamaguchi University for providing laboratory facilities.

Finally, I greatly appreciate and grateful to my parents, my family and my friends for their understanding, encouragement and powerful support during my study.

Sornsiri Pattanakittivorakul

PhD Student of Graduate School of Science and Technology for Innovation Yamaguchi University

LIST OF PUBLICATION

1. Distinct metabolic flow in response to temperature in thermotolerant *Kluyveromyces marxianus*

Tomoyuki Kosaka, Tatsuya Tsuzuno, Seiki Nishida, <u>Sornsiri Pattanakittivorakul</u>, Masayuki Murata, Isamu Miyakawa, Noppon Lertwattanasakul, Savitree Limtong, Mamoru Yamada

Applied and Environmental Microbiology, 2022, 88:e02006-21, DOI: https://doi.org/10.1128/aem.02006-21

2. Evolutionary adaptation by repetitive long-term cultivation with gradual increase in temperature for acquiring multi-stress tolerance and high ethanol productivity in *Kluyveromyces marxianus* DMKU 3-1042

Sornsiri Pattanakittivorakul, Tatsuya Tsuzuno, Tomoyuki Kosaka, Masayuki Murata, Yu Kanesaki, Hirofumi Yoshikawa, Savitree Limtong and Mamoru Yamada

Microorganisms, 10:798, DOI: https://doi.org/10.3390/microorganisms10040798

APPENDIX

Fig. S1 Effects of exogenous GSH on ethanol consumption, acetate accumulation and cell viability of *K. marxianus* at 45°C. Cells were cultivated in 2% YPD medium containing 1 mM (open circles) or 4 mM (close squares) GSH or not containing GSH (close circles) at 45°C under shaking conditions at 160 rpm. The cell density (A), concentrations of ethanol (B) and acetate (C), and CFU (D) were determined as described in the legend of Fig. 2.1. Error bars represent standard deviations (SD) for triplicate experiments.

Fig. S2 Mitochondrial morphology of K. marxianus at 30°C and 45°C. Cells were cultivated in 2% YPD medium at 30°C and 45°C under shaking conditions. Mitochondrial morphology was observed with samples taken at 3 h, 6 h, and 24 h.

Fig. S3 Effects of temperature upshift on mitochondrial morphology. Cells were cultivated in 2 % YPD medium at 30°C, 45°C or 30°C to 45°C under a shaking condition. The temperature upshift was performed as described in the legend of Fig. 2.5. Photos of mitochondrial morphology were taken 3 h (30-45°C, 3 h) after the temperature upshift or 7 h under the condition of continuous cultivation at 30°C or 45°C.

Fig. S4 Volcano plots of differentially expressed genes (DEGs) for 45°C for 30 min (4H30-30M45) (A) and 45°C for 2 h (4H30-2H45) (B) vs 30°C (6H30). Genes with adjusted *P* values less than 0.01 and \log_2 fold change values greater than 1 and less than -1, respectively, were assigned as differential expression. Red symbols, significantly upregulated genes; blue symbols. significantly downregulated genes.

Fig. S5 The number of shared and non-shared genes between 4H30-30M45 and 4H30-2H45 conditions in downregulated (A) and upregulated (B) DEGs.

Fig. S6 Transcriptome analysis of the effect of temperature upshift in *K. marxianus*. Cells were cultivated in YPD medium at 30°C for 4 h under shaking conditions and flasks were transferred from a 30°C incubator to a 45°C incubator for further culture for 30 min (4H30-30M45, orange) or for 2 h (4H30-2H45, red). The control was the culture at 30°C for 6 h under a shaking condition (6H30, yellow). Total RNA was then isolated, purified, and subjected to RNA-Seq analysis. The Y axis of each graph represents the reads per kilobase of exon per million (RPKM) of each gene under the conditions. Data for cytosolic (A) and mitochondrial (B) oxidative stress responses are shown. The RPKM value of each gene represents the average value of two independent experiments.

Fig. S7 Schematic diagram of RLCGT for *K. marxianus* DMKU 3-1042. *K. marxianus* DMKU 3-1042 was subjected to RLCGT in YPD medium at temperatures from 40°C to 45°C, and finally 4 adapted strains were obtained. Cultivation for 7 days at each temperature was performed twice. Details are given in Materials and Methods.

Fig. S8 Effects of furfural on growth and fermentation parameters of adapted strains at 45°C. Adapted strains were cultivated in YPD medium supplemented with 10 mM or 15 mM furfural at 45°C under a shaking condition at 160 rpm for 48 h. Growth (a) was determined by measuring OD₆₆₀. Glucose (b) and ethanol (c) were determined by HPLC. Error bars represent SD for triplicate experiments.

Fig. S9 Effects of multiple inhibitors on growth and fermentation parameters of adapted strains at 45°C. Adapted strains were cultivated in YPD medium supplemented with three inhibitors of 0.15% acetate, 7.5 mM furfural and 0.075% vanillin and with 8%, 12% or 16% glucose at 40°C under a shaking condition at 160 rpm for 48 h. Growth (a) was determined by measuring OD₆₆₀. Glucose (b) and ethanol (c) were determined by HPLC. Error bars represent SD for triplicate experiments.

Figure S10. Characterization of adapted strains. Growth of adapted strains on YP agar plates supplemented with 10% xylose and YPD agar plates supplemented with 35% glucose or 5 mM H_2O_2 were compared. The plates were incubated at 30°C-45 °C for 48 h.

Locus_tag	Log ₂ Fold Change	Product
KLMA 40128	12.5	heat shock protein 26
KLMA 60124	10.7	RCR super family protein
KLMA 20427	8.4	hypothetical protein
KLMA 20547	8.1	protein BTN2
KLMA 80019	7.8	probable chaperone protein HSP31
KLMA 30555	7.5	conserved hypothetical transmembrane protein
KLMA 60356	7.1	mating factor alpha-1
KLMA 50268	6.8	hypothetical protein
KLMA 80226	6.5	mitochondrial carnitine carrier
KLMA 10830	6.4	ribosyldihydronicotinamide dehydrogenase [quinone]
KLMA 60268	6.4	uncharacterized protein YNL134C
KLMA 40532	6.4	cell membrane protein YLR414C
KLMA 10782	6.3	alkaline ceramidase YDC1
KLMA 40247	6.3	SDO1-like protein YHR087W
KLMA 80004	6.1	putative uncharacterized oxidoreductase YGL039W
KLMA 70103	6.1	protein vippee-like MOH1
KLMA 20612	6.0	sporulation-specific chitinase 2
KLMA 80307	5.9	hypothetical protein
KLMA 80367	5.8	heat shock protein SSA3
KLMA 70458	5.7	uncharacterized protein vwnB
KLMA 50124	5.6	hsp90 co-chaperone AHA1
KLMA 40564	5.5	hypothetical protein
KLMA 50589	5.5	probable diacylglycerol pyrophosphate phosphatase 1
KLMA 30561	5.3	co-chaperone protein SBA1
KLMA 70425	5.3	uncharacterized protein MBB1
KLMA 60409	5.0	protein ZIP2
KLMA 30331	5.0	hypothetical protein
KLMA 40062	4.8	meiotic recombination protein
KLMA 20771	4.8	12 kDa heat shock protein
KLMA 60511	4.7	peptidyl-prolyl cis-trans isomerase D
KLMA 40061	4.7	cell wall protein YLR040C
KLMA 80339	4.7	NADP-dependent alcohol dehvdrogenase 6
KLMA 40250	4.6	hypothetical protein
KLMA 10637	4.6	hypothetical protein
KLMA 70050	4.6	probable metabolite transport protein YFL040W
KLMA 60101	4.5	heat shock protein 78
KLMA 50236	4.5	factor-induced gene 1 protein
KLMA 20442	4.4	Ubiquitin
KLMA 20819	4.4	hypothetical protein
KLMA 10806	4.4	hypothetical protein
KLMA 40099	4.4	heat shock protein 104
KLMA 10754	4.3	uncharacterized protein YPL071C
KLMA 30729	4.3	putative uncharacterized oxidoreductase YGL039W
KLMA 70087	4.3	superoxide dismutase [Cu-Zn]
KLMA 40102		
	4.2	alcohol dehvdrogenase 1
KLMA 80094	4.2 4.2	uncharacterized oxidoreductase SSP0419

 Table S1 Upregulated genes (> 4 log₂) at 30 min after temperature upshift

KLMA_40420	4.2	conserved hypothetical protein
KLMA_10044	4.2	cell wall mannoprotein PST1
KLMA 60369	4.2	ribosome assembly 1 protein
KLMA 60029	4.2	acyl-CoA dehydrogenase family member 11
KLMA_80192	4.2	conserved hypothetical membrane protien
KLMA_10814	4.1	oxidored-like super family
KLMA_30691	4.1	conserved hypothetical protein
KLMA 50024	4.1	Arginase
KLMA_20807	4.1	protein TBF1
KLMA_20010	4.1	protein crtK
KLMA_10012	4.1	uncharacterized protein C11D3.14c
KLMA_70074	4.0	DNA repair protein RAD59
KLMA 40308	4.0	hypothetical protein
KLMA_20352	4.0	protein OPI10
KLMA_10783	4.0	sorbose reductase SOU1

GO.ID	Term	classic
GO:0022613	ribonucleoprotein complex biogenesis	4.3E-08
GO:0042254	ribosome biogenesis	9.1E-08
GO:0006364	rRNA processing	1.5E-07
GO:0016072	rRNA metabolic process	2E-07
GO:0000462	maturation of SSU-rRNA from tricistronic	2.2E-07
GO:0034470	ncRNA processing	2.4E-07
GO:0000460	maturation of 5.8S rRNA	2.8E-07
GO:0000466	maturation of 5.8S rRNA from tricistroni	2.8E-07
GO:0006396	RNA processing	3E-07
GO:0042274	ribosomal small subunit biogenesis	5.8E-07
GO:0030490	maturation of SSU-rRNA	1.1E-06
GO:0000447	endonucleolytic cleavage in ITS1 to sepa	1.6E-06
GO:0034660	ncRNA metabolic process	2E-06
GO:0000478	endonucleolytic cleavage involved in rRN	1.2E-05
GO:0000479	endonucleolytic cleavage of tricistronic	1.2E-05
GO:0090502	RNA phosphodiester bond hydrolysis, endo	1.2E-05
GO:0044085	cellular component biogenesis	2E-05
GO:0000469	cleavage involved in rRNA processing	0.0001
GO:0000472	endonucleolytic cleavage to generate mat	0.00013
GO:0000480	endonucleolytic cleavage in 5'-ETS of tr	0.00017
GO:0072353	cellular age-dependent response to react	0.00017
GO:0006457	protein folding	0.00018
GO:0000967	rRNA 5'-end processing	0.00021
GO:0090304	nucleic acid metabolic process	0.00034
GO:0000966	RNA 5'-end processing	0.00043
GO:0034471	ncRNA 5'-end processing	0.00043
GO:0034605	cellular response to heat	0.00065
GO:0001315	age-dependent response to reactive oxyge	0.00066
GO:0042273	ribosomal large subunit biogenesis	0.00087
GO:0071840	cellular component organization or bioge	0.00109
GO:0090501	RNA phosphodiester bond hydrolysis	0.00123
GO:0006077	(1->6)-beta-D-glucan metabolic process	0.00159
GO:0006078	(1->6)-beta-D-glucan biosynthetic proces	0.00159
GO:0042026	protein refolding	0.0023
GO:0000463	maturation of LSU-rRNA from tricistronic	0.00271
GO:0001306	age-dependent response to oxidative stre	0.00304
GO:0007571	age-dependent general metabolic decline	0.00304
GO:0001320	age-dependent response to reactive oxyge	0.00312
GO:0032220	plasma membrane fusion involved in cytog	0.00312
GO:0045026	plasma membrane fusion	0.00312
GO:0051274	beta-glucan biosynthetic process	0.0033
GO:0009408	response to heat	0.00344
GO:0000470	maturation of LSU-rRNA	0.00377
GO:0009266	response to temperature stimulus	0.00395
GO:0033692	cellular polysaccharide biosynthetic pro	0.00507
GO:0070590	spore wall biogenesis	0.00507

Table S2 GO enrichment analysis in biological process for upregulated genes $(> 2 \log_2)$ at 30 min after temperature up-shift

GO:0070591	ascospore wall biogenesis	0.00507
GO:0016925	protein sumoylation	0.00511
GO:0048869	cellular developmental process	0.00529
GO:0044264	cellular polysaccharide metabolic proces	0.00544
GO:0034614	cellular response to reactive oxygen spe	0.0061
GO:0051273	beta-glucan metabolic process	0.0061
GO:0000271	polysaccharide biosynthetic process	0.00627
GO:0016070	RNA metabolic process	0.00742
GO:0016559	peroxisome fission	0.00783
GO:0032502	developmental process	0.00803
GO:0071852	fungal-type cell wall organization or bi	0.00812
GO:0000715	nucleotide-excision repair, DNA damage r	0.009
GO:0090305	nucleic acid phosphodiester bond hydroly	0.00902

Table S3 KEGG pathway analysis for upregulated genes (> 2 log₂) at 30 min after temperature upshift

kmx04141	Protein processing in endoplasmic reticulum (8)
kmx03040	Spliceosome (8)
kmx01110	Biosynthesis of secondary metabolites (8)
kmx01130	Biosynthesis of antibiotics (6)
kmx04113	Meiosis - yeast (6)
kmx04011	MAPK signaling pathway - yeast (6)
kmx04146	Peroxisome (6)
kmx00240	Pyrimidine metabolism (5)
kmx04213	Longevity regulating pathway - multiple species (5)
kmx00561	Glycerolipid metabolism (4)
kmx03008	Ribosome biogenesis in eukaryotes (4)
kmx00071	Fatty acid degradation (4)
kmx00230	Purine metabolism (4)
kmx03440	Homologous recombination (3)
kmx00480	Glutathione metabolism (3)
kmx01212	Fatty acid metabolism (3)
kmx04144	Endocytosis (3)
kmx00010	Glycolysis / Gluconeogenesis (3)
kmx00600	Sphingolipid metabolism (3)
kmx04139	Mitophagy - yeast (2)
kmx04111	Cell cycle - yeast (2)
kmx01200	Carbon metabolism (2)
kmx03030	DNA replication (2)
kmx00051	Fructose and mannose metabolism (2)
kmx00620	Pyruvate metabolism (2)
kmx00564	Glycerophospholipid metabolism (2)
kmx03013	RNA transport (2)
kmx00500	Starch and sucrose metabolism (2)
kmx03020	RNA polymerase (2)
kmx02010	ABC transporters (2)
kmx03410	Base excision repair (2)
kmx00590	Arachidonic acid metabolism (2)
kmx00520	Amino sugar and nucleotide sugar metabolism (2)
kmx03018	RNA degradation (2)

_

Locus_tag	Log ₂ Fold Change	Product
KLMA 20184	-7.52	endo-1,3-beta-glucanase
KLMA 10079	-6.19	S-adenosylmethionine synthetase 2
KLMA 10829	-6.03	hypothetical protein
KLMA 50200	-6.00	60S acidic ribosomal protein P0
KLMA 20355	-5.98	60S acidic ribosomal protein P2-alpha
KLMA 60222	-5.85	uncharacterized aminotransferase C660.12c
KLMA 20495	-5.84	60S ribosomal protein L22-A
KLMA 60069	-5.71	40S ribosomal protein S0
KLMA 20625	-5.69	hypothetical protein
KLMA 50473	-5.62	60S ribosomal protein L2
KLMA 30115	-5.61	guanine nucleotide-binding protein subunit beta-like
KLMA 20054	-5.47	60S ribosomal protein L24
KLMA 60438	-5.39	40S ribosomal protein S5
KLMA 30664	-5.35	60S ribosomal protein L12
KLMA 50363	-5.28	low-affinity glucose transporter
KLMA 50529	-5.28	HYALURONIC ACID-BINDING PROTEIN 4
KLMA 20403	-5.16	ribosomal L18e super family
KLMA 80348	-5.13	5-methyltetrahydropteroyltriglutamate homocysteine
—		methyltransferase
KLMA_10826	-5.13	hypothetical protein
KLMA_70068	-5.13	40S ribosomal protein S29
KLMA_20742	-5.12	40S ribosomal protein S3
KLMA_10180	-5.11	argininosuccinate synthase
KLMA_80096	-5.10	60S ribosomal protein L9-B
KLMA_80222	-5.06	40S ribosomal protein S7-A
KLMA_50194	-5.06	60S ribosomal protein L26-B
KLMA_10652	-4.94	hypothetical protein
KLMA_50474	-4.92	60S ribosomal protein L29
KLMA_10700	-4.92	40S ribosomal protein S16
KLMA_60491	-4.87	60S acidic ribosomal protein P1-beta
KLMA_20268	-4.87	40S ribosomal protein S2
KLMA_20762	-4.84	conserved hypothetical protein
KLMA_40482	-4.83	40S ribosomal protein S4
KLMA_80413	-4.79	60S ribosomal protein L8-B
KLMA_40436	-4.77	delta(24(24(1)))-sterol reductase
KLMA_20492	-4.76	40S ribosomal protein S26-A
KLMA_20356	-4.75	40S ribosomal protein S15
KLMA_60532	-4.70	60S ribosomal protein L16-A
KLMA_20318	-4.69	60S ribosomal protein L20
KLMA_40405	-4.69	40S ribosomal protein S24
KLMA_70190	-4.66	60S ribosomal protein L34-B
KLMA_60313	-4.63	40S ribosomal protein S20
KLMA_20053	-4.62	60S ribosomal protein L30
KLMA_50361	-4.60	hexose transporter 2
KLMA_10347	-4.57	GT8_Glycogenin
KLMA_40443	-4.56	60S ribosomal protein L6-B
KLMA_10518	-4.53	inulinase

Table S4 Downregulated genes (< -4 log₂) at 30 min after temperature upshift

KLMA 10786	-4.48	40S ribosomal protein S5
KLMA 50264	-4.48	40S ribosomal protein S14
KLMA 50288	-4.45	40S ribosomal protein S10-A
KLMA 10701	-4.45	ribosomal L13e super family
KLMA 80198	-4.44	probable family 17 glucosidase SCW4
KLMA 30066	-4.43	60S ribosomal protein L14-B
KLMA 80365	-4.41	40S ribosomal protein S8
KLMA 40393	-4.41	ribosomal protein L23
KLMA 20105	-4.39	citrate synthase
KLMA 10560	-4.38	glutathione transferase 3
KLMA 10376	-4.36	ribosomal L22
KLMA 40558	-4.34	60S ribosomal protein L10a
KLMA 60504	-4.34	60S ribosomal protein L35
KLMA 50402	-4.32	2-isopropylmalate synthase
KLMA 10702	-4.32	60S acidic ribosomal protein P1-alpha
KLMA_30148	-4.31	acetolactate synthase small subunit
KLMA 70398	-4.30	PHO85 cyclin-1
KLMA 50170	-4.28	40S ribosomal protein S1
KLMA_80064	-4.28	alpha-1,3-mannosyltransferase
KLMA_50223	-4.28	peroxisomal ATPase PEX1
KLMA_50210	-4.26	40S ribosomal protein S25
KLMA_40419	-4.24	probable mitochondrial transport protein FSF1
KLMA_80119	-4.23	histone H3
KLMA_80177	-4.22	succinate/fumarate mitochondrial transporter
KLMA_70383	-4.22	peptide transporter PTR2
KLMA_80163	-4.21	mitochondrial outer membrane protein porin 1
KLMA_10828	-4.20	hypothetical protein
KLMA_10769	-4.20	60S ribosomal protein L21-A
KLMA_50453	-4.18	3-oxoacyl-(acyl-carrier-protein) reductase
KLMA 70155	-4.17	60S ribosomal protein L23
KLMA_30035	-4.14	methylene-fatty-acyl-phospholipid synthase
KLMA_10621	-4.12	cytochrome b2
KLMA_60118	-4.11	histone H2B.2
KLMA_70358	-4.11	60S ribosomal protein L19
KLMA_20590	-4.08	60S acidic ribosomal protein P2-B
KLMA_10770	-4.07	hypothetical protein
KLMA_30712	-4.07	ubiquitin-60S ribosomal protein L40
KLMA_50008	-4.06	40S ribosomal protein S12
KLMA_20800	-4.05	60S ribosomal protein L5
KLMA_70178	-4.04	uncharacterized protein YIL057C
KLMA_20339	-4.03	60S ribosomal protein L11
KLMA_30671	-4.02	sterol 24-C-methyltransferase

GO.ID	Term	classic
GO:1901566	organonitrogen compound biosynthetic pro	<1e-30
GO:0006412	translation	6.8E-27
GO:0043043	peptide biosynthetic process	2.7E-26
GO:0043604	amide biosynthetic process	4E-25
GO:0006518	peptide metabolic process	8.3E-25
GO:0043603	cellular amide metabolic process	6.2E-23
GO:1901576	organic substance biosynthetic process	1.2E-18
GO:0009058	biosynthetic process	3.8E-18
GO:0044283	small molecule biosynthetic process	3.2E-17
GO:0044249	cellular biosynthetic process	1.2E-16
GO:0019752	carboxylic acid metabolic process	1E-15
GO:0043436	oxoacid metabolic process	1.3E-15
GO:0006082	organic acid metabolic process	1.9E-15
GO:0044281	small molecule metabolic process	4E-15
GO:1901564	organonitrogen compound metabolic proces	1.2E-14
GO:0016053	organic acid biosynthetic process	3.9E-13
GO:0046394	carboxylic acid biosynthetic process	3.9E-13
GO:0008652	cellular amino acid biosynthetic process	1.5E-11
GO:1901607	alpha-amino acid biosynthetic process	2E-10
GO:1902652	secondary alcohol metabolic process	6.4E-10
GO:1902653	secondary alcohol biosynthetic process	6.4E-10
GO:0006520	cellular amino acid metabolic process	7.7E-10
GO:0006696	ergosterol biosynthetic process	4.7E-09
GO:0008204	ergosterol metabolic process	4.7E-09
GO:0016128	phytosteroid metabolic process	4.7E-09
GO:0016129	phytosteroid biosynthetic process	4.7E-09
GO:0044108	cellular alcohol biosynthetic process	4.7E-09
GO:0097384	cellular lipid biosynthetic process	4.7E-09
GO:1901605	alpha-amino acid metabolic process	6.2E-09
GO:0046165	alcohol biosynthetic process	1.3E-08
GO:0044107	cellular alcohol metabolic process	1.7E-08
GO:0006694	steroid biosynthetic process	8.9E-08
GO:0016126	sterol biosynthetic process	8.9E-08
GO:0016125	sterol metabolic process	2.3E-07
GO:0044267	cellular protein metabolic process	2.6E-07
GO:0008202	steroid metabolic process	3.6E-07
GO:1901617	organic hydroxy compound biosynthetic pr	7.5E-07
GO:0006066	alcohol metabolic process	1.4E-06
GO:0019538	protein metabolic process	1.4E-06
GO:0044271	cellular nitrogen compound biosynthetic	3.8E-06
GO:0008610	lipid biosynthetic process	7.5E-06
GO:0009082	branched-chain amino acid biosynthetic p	1.1E-05
GO:1901615	organic hydroxy compound metabolic proce	2.2E-05
GO:0017144	drug metabolic process	2.4E-05
GO:0016999	antibiotic metabolic process	4E-05
GO:0009097	isoleucine biosynthetic process	4E-05
GO:0006407	rRNA export from nucleus	5.8E-05
GO:0051029	rRNA transport	5.8E-05
GO:0006637	acyl-CoA metabolic process	0.00012

Table S5 GO enrichment analysis in biological process for downregulatedgenes (< -2 log2) at 30 min after temperature upshift</td>

GO:0035383	thioester metabolic process	0.00012
GO:0009059	macromolecule biosynthetic process	0.00015
GO:0009066	aspartate family amino acid metabolic pr	0.00016
GO:0032787	monocarboxylic acid metabolic process	0.00018
GO:0006099	tricarboxylic acid cycle	0.00018
GO:0006101	citrate metabolic process	0.00018
GO:0072350	tricarboxylic acid metabolic process	0.00018
GO:0006549	isoleucine metabolic process	0.00019
GO:0009081	branched-chain amino acid metabolic proc	0.00019
GO:0034645	cellular macromolecule biosynthetic proc	0.00021
GO:0071704	organic substance metabolic process	0.00022
GO:0009084	glutamine family amino acid biosynthetic	0.00029
GO:0006526	arginine biosynthetic process	0.00031
GO:0008152	metabolic process	0.00046
GO:0006732	coenzyme metabolic process	0.00056
GO:0072330	monocarboxylic acid biosynthetic process	0.00059
GO:0044255	cellular lipid metabolic process	0.00067
GO:0044238	primary metabolic process	0.00079
GO:0009067	aspartate family amino acid biosynthetic	0.00088
GO:0006629	lipid metabolic process	0.00105
GO:0009185	ribonucleoside diphosphate metabolic pro	0.00157
GO:0046500	S-adenosylmethionine metabolic process	0.00191
GO:0009064	glutamine family amino acid metabolic pr	0.00199
GO:0000105	histidine biosynthetic process	0.00218
GO:0006547	histidine metabolic process	0.00218
GO:0052803	imidazole-containing compound metabolic	0.00218
GO:0006084	acetyl-CoA metabolic process	0.00239
GO:0006525	arginine metabolic process	0.00239
GO:0006090	pyruvate metabolic process	0.00267
GO:0009132	nucleoside diphosphate metabolic process	0.00267
GO:0044237	cellular metabolic process	0.00285
GO:0015850	organic hydroxy compound transport	0.00367
GO:0046031	ADP metabolic process	0.0037
GO:2000601	positive regulation of Arp2/3 complex-me	0.0045
GO:0009135	purine nucleoside diphosphate metabolic	0.00484
GO:0009179	purine ribonucleoside diphosphate metabo	0.00484
GO:0006104	succinyl-CoA metabolic process	0.0064
GO:0009099	valine biosynthetic process	0.0064
GO:0019284	L-methionine salvage from S-adenosylmeth	0.0064
GO:0033212	iron assimilation	0.0064
GO:0033215	iron assimilation by reduction and trans	0.0064
GO:0033353	S-adenosylmethionine cycle	0.0064
GO:0046439	L-cysteine metabolic process	0.0064
GO:1901684	arsenate ion transmembrane transport	0.0064
GO:0006555	methionine metabolic process	0.00665
GO:0097064	ncRNA export from nucleus	0.00665
GO:0006091	generation of precursor metabolites and	0.00697
GO:0051186	cofactor metabolic process	0.00727
GO:0061013	regulation of mRNA catabolic process	0.00846
GO:0006568	tryptophan metabolic process	0.00848
GO:0006586	indolalkylamine metabolic process	0.00848
GO:0042430	indole-containing compound metabolic pro	0.00848
GO:0051127	positive regulation of actin nucleation	0.00848

GO:0006757ATP generation from ADP0.00881GO:0042866pyruvate biosynthetic process0.00881CO:0042211Difference of Difference of Diffe	GO:0006096	glycolytic process	0.00881
GO:0042866 pyruvate biosynthetic process 0.00881	GO:0006757	ATP generation from ADP	0.00881
	GO:0042866	pyruvate biosynthetic process	0.00881
GO:1903311 regulation of mRNA metabolic process 0.00881	GO:1903311	regulation of mRNA metabolic process	0.00881
GO:0006414 translational elongation 0.00979	GO:0006414	translational elongation	0.00979

Table S6 KEGG pathway analysis for down-regulated genes (< -2 log₂) at 30 min after temperature up-shift

kmx03010	Ribosome (71)
kmx01110	Biosynthesis of secondary metabolites (67)
kmx01130	Biosynthesis of antibiotics (58)
kmx01230	Biosynthesis of amino acids (38)
kmx01200	Carbon metabolism (20)
kmx00620	Pyruvate metabolism (12)
kmx00010	Glycolysis / Gluconeogenesis (12)
kmx01210	2-Oxocarboxylic acid metabolism (11)
kmx00100	Steroid biosynthesis (10)
kmx00270	Cysteine and methionine metabolism (10)
kmx04111	Cell cycle - yeast (9)
kmx00630	Glyoxylate and dicarboxylate metabolism (9)
kmx00020	Citrate cycle (TCA cycle) (8)
kmx00340	Histidine metabolism (7)
kmx00190	Oxidative phosphorylation (7)
kmx00260	Glycine, serine and threonine metabolism (7)
kmx00220	Arginine biosynthesis (6)
kmx01212	Fatty acid metabolism (6)
kmx00970	Aminoacyl-tRNA biosynthesis (6)
kmx00290	Valine, leucine and isoleucine biosynthesis (6)
kmx04011	MAPK signaling pathway - yeast (6)
kmx00400	Phenylalanine, tyrosine and tryptophan biosynthesis (6)
kmx00230	Purine metabolism (5)
kmx04144	Endocytosis (5)
kmx00520	Amino sugar and nucleotide sugar metabolism (5)
kmx00650	Butanoate metabolism (5)
kmx04113	Meiosis - yeast (5)
kmx00250	Alanine, aspartate and glutamate metabolism (5)
kmx00350	Tyrosine metabolism (5)
kmx03013	RNA transport (5)
kmx00330	Arginine and proline metabolism (4)
kmx00770	Pantothenate and CoA biosynthesis (4)
kmx00071	Fatty acid degradation (4)
kmx00900	Terpenoid backbone biosynthesis (4)
kmx00052	Galactose metabolism (4)
kmx00380	Tryptophan metabolism (4)
kmx00500	Starch and sucrose metabolism (4)
kmx00300	Lysine biosynthesis (4)
kmx04145	Phagosome (4)
kmx00561	Glycerolipid metabolism (4)
kmx00640	Propanoate metabolism (4)
kmx00730	Thiamine metabolism (3)
kmx00280	Valine, leucine and isoleucine degradation (3)
kmx01040	Biosynthesis of unsaturated fatty acids (3)
kmx03018	RNA degradation (3)
kmx00310	Lysine degradation (3)
kmx00360	Phenylalanine metabolism (3)
kmx00030	Pentose phosphate pathway (3)
kmx00410	beta-Alanine metabolism (3)
kmx00450	Selenocompound metabolism (3)

kmx04138Autophagy - yeast (3)kmx00680Methane metabolism (3)

Locus_tag	Log ₂ Fold Change	Product
KLMA_40128	11.87	heat shock protein 26
KLMA_60356	8.13	mating factor alpha-1
KLMA 20547	8.06	protein BTN2
KLMA 60124	8.01	RCR super family protein
KLMA 20427	7.77	hypothetical protein
KLMA 40247	7.20	SDO1-like protein YHR087W
KLMA 50268	7.05	hypothetical protein
KLMA 20771	6.78	12 kDa heat shock protein
KLMA 10239	6.70	hypothetical protein
KLMA 30555	6.56	conserved hypothetical transmembrane protein
KLMA 80374	6.51	conserved hypothetical protein
KLMA 80307	6.29	hypothetical protein
KLMA 20027	6.29	hypothetical protein
KLMA 80019	6.24	probable chaperone protein HSP31
KLMA 80226	6.18	mitochondrial carnitine carrier
KLMA 70103	6.14	protein vippee-like MOH1
KLMA 10830	6.03	ribosyldihydronicotinamide dehydrogenase [quinone]
KLMA 40564	5.84	hypothetical protein
KLMA 60409	5.83	protein ZIP2
KLMA 20612	5.83	sporulation-specific chitinase 2
KLMA 40062	5.82	meiotic recombination protein
KLMA 10782	5.82	alkaline ceramidase YDC1
KLMA 70458	5.73	uncharacterized protein ywnB
KLMA 60268	5.54	uncharacterized protein YNL134C
KLMA 70425	5.43	uncharacterized protein MBB1
KLMA 80004	5.42	putative uncharacterized oxidoreductase YGL039W
KLMA 50589	5.41	probable diacylglycerol pyrophosphate phosphatase 1
KLMA 20819	5.16	hypothetical protein
KLMA 10806	5.13	hypothetical protein
KLMA 40250	5.09	hypothetical protein
KLMA 30476	5.06	sporulation-specific protein 22
KLMA 10355	4.88	hypothetical protein
KLMA 50335	4.84	transposon Tv1-H Gag-Pol polyprotein
KLMA 30729	4.83	putative uncharacterized oxidoreductase YGL039W
KLMA 70050	4.81	probable metabolite transport protein YFL040W
KLMA 40532	4.77	cell membrane protein YLR414C
KLMA 50124	4.69	hsp90 co-chaperone AHA1
KLMA 20203	4.65	sporulation-specific protein 2
KLMA 50236	4.62	factor-induced gene 1 protein
KLMA 80192	4.62	conserved hypothetical membrane brotien
KLMA 30672	4.49	probable metabolite transport protein C1271.09
KLMA 80367	4.49	heat shock protein SSA3
KLMA 10637	4.45	hypothetical protein
KLMA 60029	4.40	acyl-CoA dehydrogenase family member 11
KLMA 40061	4.37	cell wall protein YLR040C
KLMA 80191	4.34	meiotically up-regulated gene 70 protein
KLMA_40420	4.34	conserved hypothetical protein

Table S7 Upregulated genes ($log_2 > 4$) at 2 h after temperature upshift

KLMA_40621	4.30	hypothetical protein
KLMA_20010	4.26	protein crtK
KLMA_80275	4.25	non-disjunction protein 1
KLMA_10044	4.24	cell wall mannoprotein PST1
KLMA_10521	4.22	protein FMP23
KLMA_20807	4.15	protein TBF1
KLMA_80339	4.14	NADP-dependent alcohol dehydrogenase 6
KLMA_30561	4.13	co-chaperone protein SBA1
KLMA_10814	4.02	oxidored-like super family
KLMA_30013	4.01	cytochrome b2
KLMA_50594	4.01	conserved hypothetical protein
KLMA_60101	4.00	heat shock protein 78
KLMA_30691	4.00	conserved hypothetical protein

GO.ID	Term	classic
GO:0006364	rRNA processing	2.4E-15
GO:0034470	ncRNA processing	8.3E-15
GO:0016072	rRNA metabolic process	8.4E-15
GO:0042254	ribosome biogenesis	1.2E-14
GO:0022613	ribonucleoprotein complex biogenesis	2.8E-13
GO:0034660	ncRNA metabolic process	9.2E-13
GO:0006396	RNA processing	6E-12
GO:0042274	ribosomal small subunit biogenesis	9.8E-10
GO:0000462	maturation of SSU-rRNA from tricistronic	1.2E-09
GO:0000460	maturation of 5.8S rRNA	1.5E-09
GO:0000466	maturation of 5.8S rRNA from tricistroni	1.5E-09
GO:0030490	maturation of SSU-rRNA	8.9E-09
GO:0042273	ribosomal large subunit biogenesis	1.3E-07
GO:0000447	endonucleolytic cleavage in ITS1 to sepa	2.3E-07
GO:0000470	maturation of LSU-rRNA	4.5E-07
GO:0000463	maturation of LSU-rRNA from tricistronic	2E-06
GO:0000478	endonucleolytic cleavage involved in rRN	2.1E-06
GO:0000479	endonucleolytic cleavage of tricistronic	2.1E-06
GO:0090502	RNA phosphodiester bond hydrolysis, endo	2.1E-06
GO:0044085	cellular component biogenesis	2.4E-06
GO:0000469	cleavage involved in rRNA processing	5.1E-06
GO:0071840	cellular component organization or bioge	1.7E-05
GO:0090304	nucleic acid metabolic process	2.1E-05
GO:0090501	RNA phosphodiester bond hydrolysis	2.8E-05
GO:0022414	reproductive process	8.8E-05
GO:0051321	meiotic cell cycle	8.8E-05
GO:0000472	endonucleolytic cleavage to generate mat	0.00015
GO:000003	reproduction	0.00016
GO:0072353	cellular age-dependent response to react	0.00018
GO:0000480	endonucleolytic cleavage in 5'-ETS of tr	0.00019
GO:0000967	rRNA 5'-end processing	0.00025
GO:0000054	ribosomal subunit export from nucleus	0.00038
GO:0033750	ribosome localization	0.00038
GO:0090305	nucleic acid phosphodiester bond hydroly	0.00044
GO:0000966	RNA 5'-end processing	0.00049
GO:0034471	ncRNA 5'-end processing	0.00049
GO:0001315	age-dependent response to reactive oxyge	0.00071
GO:0048285	organelle fission	0.00078
GO:0071428	rRNA-containing ribonucleoprotein comple	0.00079
GO:1903046	meiotic cell cycle process	0.00124
GO:0140013	meiotic nuclear division	0.00138
GO:0006725	cellular aromatic compound metabolic pro	0.00158
GO:0006077	(1->6)-beta-D-glucan metabolic process	0.00169
GO:0006078	(1->6)-beta-D-glucan biosynthetic proces 0.00169	
GO:0006139	nucleobase-containing compound metabolic 0.00173	
GO:0007127	meiosis I	0.00175

Table S8 GO enrichment analysis in biological process for upregulated genes (> 2 log_2) at 2 h after temperature upshift

GO:0000055	ribosomal large subunit export from nucl	0.00183
GO:0007129	synapsis	0.00249
GO:0044242	cellular lipid catabolic process	0.00284
GO:0016070	RNA metabolic process	0.00313
GO:0001306	age-dependent response to oxidative stre	0.00324
GO:0007571	age-dependent general metabolic decline	0.00324
GO:0001320	age-dependent response to reactive oxyge	0.00325
GO:0046483	heterocycle metabolic process	0.00336
GO:0045132	meiotic chromosome segregation	0.00348
GO:0030476	ascospore wall assembly	0.00444
GO:0042244	spore wall assembly	0.00444
GO:0070590	spore wall biogenesis	0.00557
GO:0070591	ascospore wall biogenesis	0.00557
GO:0070726	cell wall assembly	0.00557
GO:0071940	fungal-type cell wall assembly	0.00557
GO:0031505	fungal-type cell wall organization	0.00562
GO:0000280	nuclear division	0.00626
GO:0045229	external encapsulating structure organiz	0.0063
GO:0071555	cell wall organization	0.0063
GO:0034614	cellular response to reactive oxygen spe	0.00659
GO:1901360	organic cyclic compound metabolic proces	0.0068
GO:0016042	lipid catabolic process	0.00715
GO:0007130	synaptonemal complex assembly	0.00832
GO:0016559	peroxisome fission	0.00832
GO:0031167	rRNA methylation	0.00832
GO:0033313	meiotic cell cycle checkpoint	0.00832
GO:0001510	RNA methylation	0.00859
GO:0071852	fungal-type cell wall organization or bi	0.00941

kmx04146	Peroxisome (8)
kmx04113	Meiosis - yeast (8)
kmx01130	Biosynthesis of antibiotics (6)
kmx03040	Spliceosome (6)
kmx04213	Longevity regulating pathway - multiple species (5)
kmx04141	Protein processing in endoplasmic reticulum (5)
kmx04011	MAPK signaling pathway - yeast (4)
kmx00240	Pyrimidine metabolism (4)
kmx03008	Ribosome biogenesis in eukaryotes (4)
kmx00230	Purine metabolism (4)
kmx03440	Homologous recombination (3)
kmx04144	Endocytosis (3)
kmx00600	Sphingolipid metabolism (3)
kmx01200	Carbon metabolism (3)
kmx01212	Fatty acid metabolism (3)
kmx00561	Glycerolipid metabolism (3)
kmx00071	Fatty acid degradation (3)
kmx04139	Mitophagy - yeast (2)
kmx00670	One carbon pool by folate (2)
kmx00564	Glycerophospholipid metabolism (2)
kmx00010	Glycolysis / Gluconeogenesis (2)
kmx00480	Glutathione metabolism (2)
kmx00051	Fructose and mannose metabolism (2)
kmx03013	RNA transport (2)
kmx03020	RNA polymerase (2)
kmx03410	Base excision repair (2)
kmx00620	Pyruvate metabolism (2)

Table S9 KEGG pathway analysis for upregulated genes (> $2 \log_2$) at 2 h after temperature upshift

Locus_tag	log ₂ FoldChange	Product
KLMA_40220	-6.38	alcohol dehydrogenase 2
KLMA_50360	-6.35	hexose transporter 2
KLMA_50363	-6.23	low-affinity glucose transporter
KLMA 50361	-5.41	hexose transporter 2
KLMA_10079	-5.20	S-adenosylmethionine synthetase 2
KLMA_20587	-5.11	ammonia transport outward protein 3
KLMA_50284	-5.00	c-4 methylsterol oxidase
KLMA 30263	-5.00	uncharacterized protein YKR075C
KLMA 60075	-4.98	pyruvate decarboxylase
KLMA_10518	-4.83	inulinase
KLMA_60219	-4.83	pyruvate kinase
KLMA 40115	-4.82	coproporphyrinogen-III oxidase
KLMA_10347	-4.82	GT8_Glycogenin
KLMA_20105	-4.75	citrate synthase
KLMA 70383	-4.73	peptide transporter PTR2
KLMA 60412	-4.47	hexokinase
KLMA 80064	-4.47	alpha-1,3-mannosyltransferase
KLMA 20829	-4.46	repressible acid phosphatase
KLMA 30671	-4.41	sterol 24-C-methyltransferase
KLMA ¹⁰⁵⁴⁰	-4.32	phosphoglycerate kinase
KLMA 80198	-4.24	probable family 17 glucosidase SCW4
KLMA 30204	-4.23	squalene monooxygenase
KLMA ¹⁰⁴⁶²	-4.22	enolase
KLMA ¹⁰⁸³²	-4.20	dihydroorotate dehydrogenase
KLMA 40388	-4.17	fructose-bisphosphate aldolase
KLMA ¹⁰⁰⁵⁷	-4.16	hypothetical protein
KLMA ¹⁰⁵⁶⁰	-4.13	glutathione transferase 3
KLMA 70178	-4.10	uncharacterized protein YIL057C
KLMA 20184	-4.10	endo-1,3-beta-glucanase
KLMA ¹⁰¹⁸⁰	-4.06	argininosuccinate synthase
KLMA 50200	-4.05	60S acidic ribosomal protein P0

Table S10 Downregulated genes (< -4 log_2) at 2 h after temperature upshift
GO.ID	Term	classic
GO:0044283	small molecule biosynthetic process	3.50E-17
GO:0044281	small molecule metabolic process	5.40E-17
GO:0043436	oxoacid metabolic process	5.20E-13
GO:0006082	organic acid metabolic process	6.90E-13
GO:1902652	secondary alcohol metabolic process	1.70E-12
GO:1902653	secondary alcohol biosynthetic process	1.70E-12
GO:0019752	carboxylic acid metabolic process	2.20E-12
GO:0046165	alcohol biosynthetic process	3.70E-12
GO:0006696	ergosterol biosynthetic process	1.70E-11
GO:0008204	ergosterol metabolic process	1.70E-11
GO:0016128	phytosteroid metabolic process	1.70E-11
GO:0016129	phytosteroid biosynthetic process	1.70E-11
GO:0044108	cellular alcohol biosynthetic process	1.70E-11
GO:0097384	cellular lipid biosynthetic process	1.70E-11
GO:0044107	cellular alcohol metabolic process	7.40E-11
GO:0016125	sterol metabolic process	1.10E-10
GO:0032787	monocarboxylic acid metabolic process	1.70E-10
GO:0008202	steroid metabolic process	2.00E-10
GO:0006694	steroid biosynthetic process	5.00E-10
GO:0016126	sterol biosynthetic process	5.00E-10
GO:1901617	organic hydroxy compound biosynthetic pr	5.70E-10
GO:1901615	organic hydroxy compound metabolic proce	9.60E-10
GO:0005975	carbohydrate metabolic process	1.10E-09
GO:0006066	alcohol metabolic process	1.20E-09
GO:0008610	lipid biosynthetic process	5.90E-09
GO:0006090	pyruvate metabolic process	1.00E-08
GO:0006096	glycolytic process	1.40E-08
GO:0006757	ATP generation from ADP	1.40E-08
GO:0042866	pyruvate biosynthetic process	1.40E-08
GO:0019362	pyridine nucleotide metabolic process	2.80E-08
GO:0046496	nicotinamide nucleotide metabolic proces	2.80E-08
GO:0006165	nucleoside diphosphate phosphorylation	3.00E-08
GO:0046939	nucleotide phosphorylation	3.00E-08
GO:0016053	organic acid biosynthetic process	5.10E-08
GO:0046394	carboxylic acid biosynthetic process	5.10E-08
GO:0006091	generation of precursor metabolites and	7.70E-08
GO:0072330	monocarboxylic acid biosynthetic process	8.10E-08
GO:0006629	lipid metabolic process	8.40E-08
GO:0046031	ADP metabolic process	1.10E-07
GO:0006732	coenzyme metabolic process	1.30E-07
GO:0019359	nicotinamide nucleotide biosynthetic pro	1.30E-07
GO:0019363	pyridine nucleotide biosynthetic process	1.30E-07
GO:0044255	cellular lipid metabolic process	1.50E-07
GO:0034404	nucleobase-containing small molecule bio	1.50E-07
GO:1901566	organonitrogen compound biosynthetic pro	1.50E-07
GO:0009135	purine nucleoside diphosphate metabolic	2.00E-07
GO:0009166	nucleotide catabolic process	2.00E-07
GO:0006629 GO:0046031 GO:0006732 GO:0019359 GO:0019363 GO:0044255 GO:0034404 GO:1901566 GO:0009135 GO:0009166	lipid metabolic process ADP metabolic process coenzyme metabolic process nicotinamide nucleotide biosynthetic pro pyridine nucleotide biosynthetic process cellular lipid metabolic process nucleobase-containing small molecule bio organonitrogen compound biosynthetic pro purine nucleoside diphosphate metabolic nucleotide catabolic process	8.40E-08 1.10E-07 1.30E-07 1.30E-07 1.30E-07 1.50E-07 1.50E-07 2.00E-07 2.00E-07

Table S11 GO enrichment analysis in biological process for downregulated genes $(< -2 \log_2)$ at 2 h after temperature upshift

GO:0009179	purine ribonucleoside diphosphate metabo	2.00E-07
GO:0072524	pyridine-containing compound metabolic p	2.00E-07
GO:0006006	glucose metabolic process	2.90E-07
GO:1901292	nucleoside phosphate catabolic process	3.50E-07
GO:0009185	ribonucleoside diphosphate metabolic pro	5.80E-07
GO:1901576	organic substance biosynthetic process	5.90E-07
GO:0005996	monosaccharide metabolic process	7.60E-07
GO:0017144	drug metabolic process	7.80E-07
GO:0009058	biosynthetic process	1.00E-06
GO:0009132	nucleoside diphosphate metabolic process	1.50E-06
GO:0019318	hexose metabolic process	1.60E-06
GO:0006733	oxidoreduction coenzyme metabolic proces	1.80E-06
GO:0051186	cofactor metabolic process	2.20E-06
GO:0016052	carbohydrate catabolic process	2.40E-06
GO:0072525	pyridine-containing compound biosyntheti	2.50E-06
GO:0006754	ATP biosynthetic process	5.00E-06
GO:1901135	carbohydrate derivative metabolic proces	5.10E-06
GO:0009145	purine nucleoside triphosphate biosynthe	6.90E-06
GO:0009206	purine ribonucleoside triphosphate biosy	6.90E-06
GO:0046434	organophosphate catabolic process	7.20E-06
GO:0009201	ribonucleoside triphosphate biosynthetic	1.30E-05
GO:0044249	cellular biosynthetic process	2.00E-05
GO:0006793	phosphorus metabolic process	2.60E-05
GO:0009142	nucleoside triphosphate biosynthetic pro	2.90E-05
GO:0006637	acyl-CoA metabolic process	3.00E-05
GO:0035383	thioester metabolic process	3.00E-05
GO:1901137	carbohydrate derivative biosynthetic pro	3.20E-05
GO:0006094	gluconeogenesis	5.70E-05
GO:0019319	hexose biosynthetic process	5.70E-05
GO:0046364	monosaccharide biosynthetic process	5.70E-05
GO:0051188	cofactor biosynthetic process	6.00E-05
GO:0072522	purine-containing compound biosynthetic	9.60E-05
GO:0016999	antibiotic metabolic process	0.00016
GO:0009108	coenzyme biosynthetic process	0.00016
GO:0009127	purine nucleoside monophosphate biosynth	0.00026
GO:0009168	purine ribonucleoside monophosphate bios	0.00026
GO:0009156	ribonucleoside monophosphate biosyntheti	0.0003
GO:0006099	tricarboxylic acid cycle	0.00032
GO:0006101	citrate metabolic process	0.00032
GO:0072350	tricarboxylic acid metabolic process	0.00032
GO:0055086	nucleobase-containing small molecule met	0.00036
GO:0009124	nucleoside monophosphate biosynthetic pr	0.00041
GO:0009260	ribonucleotide biosynthetic process	0.00065
GO:0009084	glutamine family amino acid biosynthetic	0.00066
GO:0072521	purine-containing compound metabolic pro	0.00088
GO:0006084	acetyl-CoA metabolic process	0.00092
GO:0019693	ribose phosphate metabolic process	0.00092
GO:0006164	purine nucleotide biosynthetic process	0.00099
GO:0009152	purine ribonucleotide biosynthetic process	0.00099
GO:0046390	ribose phosphate biosynthetic process	0.00115
GO:0019637	organophosphate metabolic process	0.00119
22.001/00/	Demophere process	0.00117

GO:0046034	ATP metabolic process	0.00133
GO:0006526	arginine biosynthetic process	0.00167
GO:0009205	purine ribonucleoside triphosphate metab	0.00176
GO:0009144	purine nucleoside triphosphate metabolic	0.00202
GO:0016310	phosphorylation	0.00226
GO:0009199	ribonucleoside triphosphate metabolic pr	0.0023
GO:0006796	phosphate-containing compound metabolic	0.00237
GO:0055114	oxidation-reduction process	0.00299
GO:0009117	nucleotide metabolic process	0.00322
GO:0009165	nucleotide biosynthetic process	0.00347
GO:0006753	nucleoside phosphate metabolic process	0.00349
GO:0016051	carbohydrate biosynthetic process	0.00414
GO:0006104	succinyl-CoA metabolic process	0.00418
GO:0072364	regulation of cellular ketone metabolic	0.00418
GO:0009141	nucleoside triphosphate metabolic proces	0.00424
GO:1901293	nucleoside phosphate biosynthetic proces	0.00425
GO:0006081	cellular aldehyde metabolic process	0.00466
GO:0043242	negative regulation of protein complex d	0.00562
GO:0006633	fatty acid biosynthetic process	0.006
GO:0019439	aromatic compound catabolic process	0.00601
GO:0009259	ribonucleotide metabolic process	0.00622
GO:0006865	amino acid transport	0.00647
GO:0034655	nucleobase-containing compound catabolic	0.00707
GO:0009161	ribonucleoside monophosphate metabolic p	0.00712
GO:0015980	energy derivation by oxidation of organi	0.00712
GO:0044270	cellular nitrogen compound catabolic pro	0.00749
GO:0046700	heterocycle catabolic process	0.00749
GO:0006525	arginine metabolic process	0.00771
GO:0006098	pentose-phosphate shunt	0.00774
GO:0006407	rRNA export from nucleus	0.00774
GO:0019682	glyceraldehyde-3-phosphate metabolic pro	0.00774
GO:0051029	rRNA transport	0.00774
GO:0051051	negative regulation of transport	0.00774
GO:0051156	glucose 6-phosphate metabolic process	0.00774
GO:0009150	purine ribonucleotide metabolic process	0.00782
GO:0009126	purine nucleoside monophosphate metaboli	0.00807
GO:0009167	purine ribonucleoside monophosphate meta	0.00807
GO:0006163	purine nucleotide metabolic process	0.00858
GO:0009123	nucleoside monophosphate metabolic proce	0.00858
GO:1901564	organonitrogen compound metabolic proces	0.00978
GO:0015849	organic acid transport	0.00979
GO:0046942	carboxylic acid transport	0.00979
GO:1901361	organic cyclic compound catabolic proces	0.0099

Table S12 KEGG pathway analysis for downregulated genes (< -2 log2) at 2 h after</th>temperature upshift

kmx00010	Glycolysis / Gluconeogenesis (18)
kmx03010	Ribosome (13)
kmx00620	Pyruvate metabolism (11)
kmx00100	Steroid biosynthesis (11)
kmx00030	Pentose phosphate pathway (10)
kmx00630	Glyoxylate and dicarboxylate metabolism (8)
kmx04011	MAPK signaling pathway - yeast (8)
kmx00520	Amino sugar and nucleotide sugar metabolism (8)
kmx00500	Starch and sucrose metabolism (7)
kmx00020	Citrate cycle (TCA cycle) (7)
kmx00052	Galactose metabolism (7)
kmx00680	Methane metabolism (6)
kmx01210	2-Oxocarboxylic acid metabolism (6)
kmx00270	Cysteine and methionine metabolism (6)
kmx00190	Oxidative phosphorylation (6)
kmx04113	Meiosis - yeast (6)
kmx04111	Cell cycle - yeast (5)
kmx00051	Fructose and mannose metabolism (5)
kmx00220	Arginine biosynthesis (5)
kmx04144	Endocytosis (5)
kmx03018	RNA degradation (5)
kmx01212	Fatty acid metabolism (5)
kmx00640	Propanoate metabolism (4)
kmx00650	Butanoate metabolism (4)
kmx00250	Alanine, aspartate and glutamate metabolism (4)
kmx00230	Purine metabolism (4)
kmx04141	Protein processing in endoplasmic reticulum (4)
kmx00260	Glycine, serine and threonine metabolism (4)
kmx00900	Terpenoid backbone biosynthesis (4)
kmx00071	Fatty acid degradation (3)
kmx00860	Porphyrin and chlorophyll metabolism (3)
kmx00970	Aminoacyl-tRNA biosynthesis (3)
kmx01040	Biosynthesis of unsaturated fatty acids (3)
kmx04145	Phagosome (3)
kmx04213	Longevity regulating pathway - multiple species (3)
kmx00290	Valine, leucine and isoleucine biosynthesis (3)
kmx00561	Glycerolipid metabolism (3)
kmx04139	Mitophagy - yeast (3)
kmx00600	Sphingolipid metabolism (3)

Mitophagy (kmx04139) at 30 min $log_2 > 2$ No Protein name Function Query Identity cover (%) S. cerevisiae K. marxianus (%) KmATG32 Mitochondrial outer membrane protein required 29 1 ScATG32 73 (KLMA_30710) to initiate mitophagy; recruits the autophagy 2.425406 adaptor protein Atg11p and the ubiquitin-like protein Atg8p to the mitochondrial surface to initiate mitophagy, the selective vacuolar degradation of mitochondria in response to starvation; can promote pexophagy when placed ectopically in the peroxisomal membrane; regulates mitophagy and ethanol production during alcoholic fermentation ScFIS1 KmFIS1 99 57 2 - mitochondria fission 1 protein

Table S13	Significantly	upregulated	genes that a	are related to	mitophagy
-----------	---------------	-------------	--------------	----------------	-----------

		(KLMA_70171) 2.36173	 Protein involved in mitochondrial fission and peroxisome abundance; may have a distinct role in tethering protein aggregates to mitochondria in order to retain them in the mother cell; required for localization of Dnm1p and Mdv1p during mitochondrial division; mediates ethanol-induced apoptosis and ethanol-induced mitochondrial fragmentation 		
Mito	phagy (kmx041	39) at 2 h $\log_2 > 2$		_	
No	Prote	ein name	Function	Query	Identity
•	S. cerevisiae	K. marxianus		cover (%)	(%)
1	ScATG32	KmATG32 (KLMA_30710) 2.081331	Mitochondrial outer membrane protein required to initiate mitophagy; recruits the autophagy adaptor protein Atg11p and the ubiquitin-like protein Atg8p to the mitochondrial surface to initiate mitophagy, the selective vacuolar degradation of mitochondria in response to starvation; can promote pexophagy when placed ectopically in the peroxisomal membrane; regulates mitophagy and ethanol production during alcoholic fermentation	73	29
2	ScFIS1	KmFIS1 (KLMA_70171) 2.036209	 mitochondria fission 1 protein Protein involved in mitochondrial fission and peroxisome abundance; may have a distinct role in tethering protein aggregates to mitochondria in order to retain them in the mother cell; required for localization of Dnm1p and Mdv1p during mitochondrial division; mediates ethanol-induced apoptosis and ethanol-induced mitochondrial fragmentation 	99	57

Table S14	Significantly	downregulated	genes that	are related to	mitophagy or	r
autophagy						

Mitc	phagy (kmx041	39) at 2 h $\log_2 < -2$			
No	Prote	ein name Function		Query	Identity
	S. cerevisiae	K. marxianus		cover	(%)
				(%)	
1	ScSSK1	KmSSK1	Cytoplasmic phosphorelay intermediate	46	52
		(KLMA 80078)	osmosensor and regulator; part of a two-		
		-2.07981	component signal transducer that mediates		
			osmosensing via a phosphorelay mechanism;		
			required for mitophagy; dephosphorylated form		
			is degraded by the ubiquitin-proteasome		
			system; potential Cdc28p substrate		
2	ScWsc3	KLMA 80280	cell wall integrity and stress response	80	43
		-2.05678	component 3		
3	ScWsc2	KLMA 50408	cell wall integrity and stress response	40	32
		-2.03973	component 3		
Auto	phagy (kmx041	38) at 30 min $\log_2 <$	-2		
No	Prote	ein name	Function	Query	Identity
.	S. cerevisiae	K. marxianus		cover	(%)
				(%)	
1	ScRAS2	KmRAS2	GTP-binding protein; regulates nitrogen	79	63
		(KLMA 80228)	starvation response, sporulation, and		
		-2.68782	filamentous growth; farnesylation and		
			palmitoylation required for activity and		
			localization to plasma membrane; homolog of		
			mammalian Ras proto-oncogenes; RAS2 has a		
			paralog, RAS1, that arose from the whole		
			genome duplication		
2	ScGCN4	KmGCN4	bZIP transcriptional activator of amino acid	96	41
		(KLMA 50398)	biosynthetic genes; activator responds to amino		
		-2.29719	acid starvation; expression is tightly regulated		
			at both the transcriptional and translational		
			levels		
3	ScPCL5	KmPCL5	Cyclin; interacts with and phosphorylated by	76	40
		(KLMA_70375)	Pho85p cyclin-dependent kinase (Cdk), induced		
		-3.23831	by Gcn4p at level of transcription, specifically		
			required for Gcn4p degradation, may be sensor		
			of cellular protein biosynthetic capacity		

No.	Primer name	Nucleotide sequence
1	ACT1-1552906-ins-5'-F	ATCACTCTTTCGGTGTTGCTC
2	ACT1-1552906-ins-3'-R	GTCATAGACAACGTACATCCTCTG
3	ACT1-47658-del-5'-F	TTAAGGGCATTAGGTGGCCC
4	ACT1-47658-del-3'-R	GGGAAGGTGGAATTAGTAACTTG
5	ACT2-1161817-snv-5'-F	GAAAGCAGTACTTCGTTTGGAC
6	ACT2-1161817-snv-3'-R	GGTTGGGATCGTATTGACGAAT
7	ACT2-712698-snv-5'-F	CGGTTATACTCTGGACCAAGC
8	ACT2-712698-snv-3'-R	CATTCTTGACTGACTCCACGGTG
9	ACT2-385614-snv-5'-F	GCTTCTTCGGAGGAATACCTTC
10	ACT2-385614-snv-3'-R	ACCAAGAGAACTAGAGTGTTCGG
11	ACT2-1269738-snv-5'-F	ACAATTGTGCACCCAAGAGCT
12	ACT2-1269738-snv-3'-R	GACGGCACTGGGAGCGTA
13	ACT3-1107715-snv-5'-F	GTCTCCCGTTACCAACAAGTC
14	ACT3-1107715-snv-3'-R	TCTCCCTTCCTTTCAAACCTG
15	TML1-613476-snv-5'-F	TACGAGGCTTGCGATCCCT
16	TML1-613476-snv-3'-R	GATGCACCGAATGATTTCTTGG
17	TML1-968552-ins-5'-F	CGAAGTTGTCCCAGGTGATATC
18	TML1-968552-ins-3'-R	CAGCACCGACAGCCATGG
19	TML1-1010140-snv-5'-F	GGCATCTACGTGAACGCTTC
20	TML1-1010140-snv-3'-R	CTTCATACCAACCACAGGG
21	TML1-1714543-snv-5'-F	GTACTTCCGCCTGCAGTGT
22	TML1-1714543-snv-3'-R	CCACGCCGGAATTGTCGC
23	TML1-767036-snv-5'-F	CATGAGGAGACAGCAGTAGCT
24	TML1-767036-snv-3'-R	TTGAAGGCGCCACCGCCA
25	TML1-724738-snv-5'-F	GTGCCTCTGGATCGTAATACG
26	TML1-724738-snv-3'-R	TCGGGCTCGTTGGTTCCAATTA
27	TML1-815396-snv-5'-F	ACGGCGTTGGTCTGCCTC
28	TML1-815396-snv-3'-R	GGTGGCCTTTGCACAACGG

Table S15 Primers used in this study.

Stress	Condition	Parental strain	Adapted strain	Increased ethanol (%)	Phenotype	Ref
Temperature (In addition, ethanol, acetic acid, other by-products and nutrient starvation)	Repetitive long-term cultivation in YPD medium with a gradual increase of temperature from 40 °C to 45 °C	K. marxianus DMKU 3 - 1042	Four mutants (ACT001, ACT002, ACT003 and TML001)	20 - 40	 acetate tolerance formate tolerance acid tolerance ethanol tolerance furfural tolerance HMF tolerance vanillin tolerance 	This study
Inhibitors in acid prehydrolysate of hardwood	Cultivation in acid prehydrolysate of hardwood supplemented with nutrients and minerals at 30°C for more than 6 weeks. The cultivation was performed with a gradual increase of amount of the acid prehydrolysate.	<i>P. stipitis</i> NRRL Y - 7124	One mutant	48	- acid tolerance	Nigam 2001
High sugar concentration (22 brix)	Sequential batch fermentation in sugar juice medium, 200 generations at 28 °C	<i>S. cerevisiae</i> G85 Chinese rice wine yeast	One mutant (G85X-8)	3	 ethanol tolerance osmotic tolerance temperature tolerance 	Bro <i>et al.</i> 2006
Ethanol	266 nm laser radiation and repetitive cultivation in YPD supplemented with 11%-15% ethanol at 34 $^\circ C$	S. cerevisiae YE0	One mutant (SM4)	29	- ethanol tolerance	Zhang et al. 2014
Acetic acid	Cultivation in YPD supplemented with 0.3%-1.3% acetic acid at 28 °C for 33 days. (The cultivation period was short (1-2 days) up to 19 days and increased (3-5 days) after that).	<i>S. cerevisiae</i> Y8 industrial osmotolerant strain	One mutant (Y8A)	26	 osmotic tolerance temperature tolerance saline tolerance ethanol tolerance organic acid tolerance 	Gurdo <i>et al.</i> 2018
Lactose concentration (200 g/L)	Cultivation in whey permeate (150-200 g/L lactose) at 37 $^{\circ}\mathrm{C}$ for 65 days	<i>K. marxianus</i> MTCC 1389	One mutant	18	- osmotic tolerance	Saini <i>et al.</i> 2017
(Xylose as a carbon source)	Repetitive cultivation in YEP medium supplemented with 2% xylose at 45 °C for 24 h, 60 cycles	K. marxianus NIRE- K3	One mutant (K3.1)	16	- improved xylose utilization	Sharma <i>et al</i> . 2017
(Xylose as carbon source and 2- deoxyglucose)	Repetitive cultivation in YP supplemented with 1.5% 2-deoxyglucose and 4% xylose at 30°C, 6 times over 50 days	K. marxianus 17694 - DH1	One mutant (SBK1)	NR	- improved co- fermentation of glucose and xylose	Kim <i>et al.</i> 2019
Ethanol	Ten consecutive rounds of liquid nitrogen freeze- thaw treatment followed by plate screening under osmotic and ethanol stresses	S. cerevisiae Y-1	One mutant (YF10-5)	16	- osmotic tolerance - ethanol tolerance	Zhang <i>et al.</i> 2019

Table S16 Comparison of evolutionary adaptation in this study with evolutionary adaptations reported previously