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Introduction

The origin of the ring theory can be traced back to the early 19th century. In partic-
ular, the field matured around the 1920s when the structural theorem of semisimple
rings was reported.

In 1953, Eckmann and Schopf [8] reported that every module over an arbitrary
ring is embedded in an injective module as an essential submodule. Such injective
module is called the injective hull of the module, and it is used to study the structural
properties of various modules. Conversely, the projective cover, which is a dual of
the injective hull, does not exist for all modules over any ring. In fact, such example
is easily constructed over the integer ring Z. Therefore, in 1960, Bass [4] considered
a ring whose any (finitely generated) module has the projective cover, and named it
a (semi)perfect ring. Three years later, Mares [28] considered “a projective module
of which any factor module has the projective cover”, as a generalization of semiper-
fect rings, and named it a semiperfect module. On the other hand, Harada [13] and
Oshiro [31] focused on the remarkable property of semiperfect rings “all idempotents
of the factor ring by the radical are lifted to idempotents of the original ring”, and
considered the property “all direct summands of the factor module by the radical are
lifted to direct summands of the original module” from the viewpoint of modules.
In 1983, Oshiro [31] considered “all direct summands of the factor module by any
submodule are lifted to direct summands of the original module” and introduced
semiperfect modules, quasi-semiperfect modules and lifting modules, as generaliza-
tions of semiperfect modules proposed by Mares. After that, Mohamed and Miiller
[29] called the Oshiro’s (quasi-)semiperfect modules as (quasi-)discrete modules to
distinguish semiperfect modules by Mares and those by Oshiro. The findings ob-
tained from the aforementioned studies have been applied to structural research of
various rings, such as (semi)perfect rings, quasi-Frobenius rings, Harada rings and
Nakayama rings. Many researchers both in Japan and abroad are continuing the
study on the aforementioned ones owing to its importance. This study focuses on

the direct sum decomposition of lifting modules.



In general, a direct sum of lifting modules is not always lifting. For (quasi-
)discrete modules which are types of lifting modules, it is characterized by the rela-
tive projectivity that these modules are closed under direct sums (see [6, 26.22 and
27.4]). Although the relative projectivity implies a condition that a direct sum of
lifting modules is lifting, but the converse does not hold. Therefore, Harada and
Tozaki considered that a direct sum of lifting modules being lifting might be char-
acterized by some kind of projectivity which is weaker than the relative projectivity,
and introduced the almost projectivity as follows: A module M is called an almost
N-projective for a module N if, for any module X, any homomorphism f : M — X,
and any epimorphism ¢g : N — X; (i) there exists a homomorphism h : M — N
such that f = gh or (ii) there exist a nonzero direct summand N’ of N and a

homomorphism A’ : N — M such that fh' = g|n-.

M N N M
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In 1990, Baba and Harada [3] reported the following result associated with direct

sums of lifting modules using almost projectivity.

Theorem. Let My, M, ..., M, be lifting modules whose their endomorphism
rings are local. Then @], M; is lifting if and only if M; is almost M;-projective for
distinct 4, j € {1,2,...,n}.

After the almost projectivity was introduced by Harada and Tozaki, Baba in-
troduced the almost injectivity as the dual of the almost projectivity. Following
that, in 2002, Hanada, Kuratomi and Oshiro [12] introduced the generalized injec-
tivity, which is more precise than the almost injectivity, as a necessary and sufficient
condition for a direct sum of extending modules with the finite internal exchange
property to be extending with the finite internal exchange property. In 2004, Mo-
hamed and Miiller [30] introduced the generalized projectivity as follows as the dual

of the generalized injectivity, and investigated a direct sum of lifting modules under



some kind of conditions. A module M is called generalized N-projective for a mod-
ule N if, for any module X, any homomorphism f : M — X, and any epimorphism
g : N — X, there exist decompositions M = M; ¢ My, N = Ny & Ny, a homomor-
phism h; : M; — Np, and an epimorphism hy : No — My such that ghy = f|y, and
fha = gln,.

M, @ M, = M
hy hot 1f
N @& N, =N % X =0

In 2005, Kuratomi [24] obtained the following results:

Theorem. Let My, M,, ..., M, be lifting modules with the finite internal ex-
change property. Then @7 M, is lifting with the finite internal exchange property
if and only if M; is generalized M /M;-projective for each i =1,2,... n.

Almost of known extending modules satisfy the finite internal exchange property,
but not all known extending modules satisfy the finite internal exchange property.
However, the existence of lifting modules which do not satisfy the finite internal
exchange property has not been confirmed for a long time.

In chapter 1, we solve the following problem negatively:
Does any lifting module satisfy the finite internal exchange property? --- (#)

In 1969, Warfield [33] reported that, for an indecomposable module M, if M? = M x
M satisfies the finite internal exchange property, then the endomorphism ring of M is
local. Hence, if we can confirm an indecomposable module whose its endomorphism
ring is not local and the square of the module is lifting, then we can make an example
of a lifting module which does not satisfy the finite internal exchange property. Now,
we introduce a certain projectivity, which is different from the almost projectivity
and the generalized projectivity, as a necessary and sufficient condition for the square

of a specific lifting module to be lifting:

Theorem A. Let U be a uniserial module. Then, the following are equivalent:

(a) U? is lifting,



(b) for any module X, any homomorphism f from U to X, any epimorphism g
from U to X, (i) there exists an endomorphism h of U, such that f = gh or
(ii) there exists a submodule N of U and an epimorphism A’ from N to U,

such that fh' = g|n.

U sy AU
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Let p and ¢ be distinct prime numbers, put a semiperfect ring R = w Q
0 Z
Y/
and a right ideal L = @ of R, and consider U = R/L. Then U is uniserial
0 Z

and its endomorphism ring is not local (see [9]). Therefore, based on the find-
ing reported by Warfield, U? does not satisfy the finite internal exchange property.
Moreover, U? is lifting according to Theorem A, and hence the problem (#) is neg-
atively solved over a semiperfect ring. On the other hand, Kikumasa and Kuratomi
[21] proved that “any lifting module over a right artinian ring satisfies the external
exchange property (and thus the finite internal exchange property)”. Hence, we
should consider the problem (#) over a right perfect ring or a semiprimary ring,
which are stronger than a semiperfect ring and weaker than a right artinian ring.

In chapter 2, we first introduce the concepts of a dual square free module and a
factor square full module, and give their fundamental properties. In 2021, Kuratomi
[26] has showed that any lifting module over a right perfect ring is a direct sum of
a dual square free module and factor square full module such that they have no
isomorphic nonzero factor modules, and any dual square free lifting module over a
right perfect ring is quasi-discrete. In the end of this chapter, we apply these results
to give the necessary and sufficient condition for a lifting module over a right perfect
ring to satisfy the finite internal exchange property.

In chapter 3, we consider when is a direct sum of lifting modules over a right



perfect ring to be lifting. As aforementioned, the almost projectivity and the gen-
eralized projectivity are strongly associated with the structure of lifting modules.
In this chapter, we first give new characterizations of these projectivities by the

projective covers as follows:

Theorem B. Let M and N be modules over a right perfect ring and let (P, ¢)
and (Q,1) be projective covers of M and N, respectively. Then the following

conditions are equivalent, respectively:

(1) (a) M is almost N-projective,

(b) for any o € Hompg(P, @), either a(Ker ¢) C Ker), or there exist P’ <
P and Q' <g @ such that 0 # ¥(Q") <o N, a|pr : P/ — Q' is an

isomorphism and (a|p) ! (Ker¢|g) C Ker ¢|pr.

(2) (a) M is generalized N-projective,

(b) for any @ € Hompg(P,(Q), there exist decompositions P = P, ¢ P, and
Q = Q1 © Q2 such that a(P)) C Q1, a(Kerp|p, ) C Kerv|g,, a|p, : P, —
(22 is an isomorphism, (| p,) ' (Ker¢|g,) € Ker |p,, M = (1) S p(l)
and N = (Q1) © Y(Q2).

After that, using Theorem B, we investigate the relationship between the almost
projectivity and the generalized projectivity, and conditions for these projectivities
to close under direct sums, over a right perfect ring. Finally, we give a condition for
a direct sum of lifting modules over a right perfect ring to be lifting.

In the Appendix, we provide details about im-small projective, im-closed pro-
jective and im-summand projective related to almost projective and generalized
projective, and rings whose factor square full modules are closed under essential

extensions or essential submodules.
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0O Preliminaries

Throughout this dissertation, we consider an associative ring R with identity, and all
modules considered are unitary right R-modules. N <, M means that N is a direct
summand of a module M. A submodule N of a module M is said to be essential in
M (or an essential submodule of M) if N N X is nonzero for any nonzero submodule
X of M and we denote by N C, M in this case. A submodule N of a module M
is said to be small in M (or a small submodule of M) if N + X is proper for any
proper submodule X of M and we denote by N < M in this case. A homomorphism
f: M — N is called a small epimorphism if f is onto and Ker f < M.

Lemma 0.1 ([1, Propositions 5.16, 5.17 and 5.20])
(1) Let K and N be submodules of a module M with K C N, then

1. KC. N and N C, M if and only if K C, M.

2. N< M if and only if K < M and N/JK < M/K.
(2) Let K and N be submodules of a module M, then

1. KC. M and N C. M if and only if KN N C, M.

2. K< M and N < M if and only if K+ N < M.
(8) Let N; be a submodule of a module M; (i =1,2,...,n). Then

1. N; C. M; for eachi=1,2,....n if and only if & | N; C. &, M;.

2. N; < M; for eachi=1,2,...,n if and only if &' | N; < B | M;.

(4) A submodule N of a module M is essential in M if and only if, for any nonzero

element x of M, there exists an element r of R such that 0 # zr € N.

A module M is called N-projective for a module N if, for any module X, any

homomorphism f : M — X and any epimorphism ¢ : N — X, there exists a

11



homomorphism h : M — N such that f = gh. In particular, M is called projective

if it is N-projective for any module N.

M
hyO Lf
N % X =0

Dually, a module M is called N-injective for a module N if, for any module X, any
homomorphism f : X — M and any monomorphism g : X — N, there exists a
homomorphism h : N — M such that f = hg. In particular, M is called injective if

it is N-injective for any module N.

0o - x % N

fd osh
M

Lemma 0.2 ([29, Propositions 1.3, 1.5, 1.6, 4.31, 4.32 and 4.33]) Let M, N and N;
be modules (i = 1,2,...,n). Then the following holds.

(1) If M is N-projective, then it is N'-projective and N/N'-projective for any
submodule N' of N.

(2) N -projective modules are closed under direct summands and direct sums.
(3) If M is N;-projective for any i € {1,2,...,n}, then M is & N;-projective.

(4) If M is N-injective, then it is N'-injective and N/N'-injective for any sub-
module N' of N.

(5) N-injective modules are closed under direct summands and direct products.
(6) If M is Nj-injective for any i € {1,2,...,n}, then M is @, N;-injective.

A module N is called an essential extension of a module M if M is isomorphic
to an essential submodule of N. In particular, if N is injective, then it is said to be

an injective hull of M. We denote the injective hull of a module M by E(M). A

12



pair (P, ) of a module P and a small epimorphism ¢ : P — M is called a small
cover of a module M. In particular, if N is projective, then a pair (P, ¢) is said to
be a projective cover of M. We also employ natural variations and abbreviations of

this terminology; for example, we may well call P itself a projective cover of M.

Lemma 0.3 ([1, Theorem 18.10 and Lemma 17.17])
(1) Every module has an injective hull and it is unique up to isomorphism.

(2) If a module M has a projective cover, then it is unique up to isomorphism.

Lemma 0.4 Let M; be a module and (P;, ¢;) a small cover (the projective cover) of
M; i=1,2,...,n). Then (B P, B ;) is a small cover (the projective cover)

Proof Clear. O

For a submodule N of a module M, K is called a complement of N in M if it
is a maximal element in the set of all submodules K’ of M with NN K’ = 0. A
submodule N of a module M is said to be closed in M (or a closed submodule of
M) if N has no essential extensions in M. Let K C N C M, then K is called a
coessential submodule of N in M if N/K is small in M/K and we write K C¥ N in
this case. A submodule N of a module M is said to be coclosed in M (or a coclosed
submodule of M) if N has no proper coessential submodules in M. Clearly, any

direct summand of a module M is closed and coclosed in M.

Lemma 0.5 ([6, 1.9 and 1.10])
(1) For any submodule N of a module M, there exists a complement of N in M.

(2) Any complement of a submodule of a module M is closed in M.

Lemma 0.6 ([10, Proposition 1.4]) A submodule N of a module M is closed in M
if and only if X/N C. M/N for any essential submodule X of M containing N.

13



Lemma 0.7 ([6, 3.2])

(1) For any submodules K and N of a module M with K C N, K is a coessential
submodule of N in M if and only if M = K + X holds for any submodule X
of M with M = N + X.

(2) Let M = My ® My be a module and N a submodule of M with My C N. Then
M, CM N if and only if N N My < M.

(3) Let f : M — N be an epimorphism. If A CM B, then f(A) CM f(B).
Moreover, C CN D if and only if f~(C) CM f~Y(D). In particular, suppose
that f is a small epimorphism. If X is coclosed in M, then f(X) is coclosed
in N.

(4) X CM X + S for any submodule X of a module M and any small submodule
S of M.

A direct sum decomposition M = @®;M; is said to be exchangeable if, for any
direct summand X of M, there exists M C M, (i € I) such that M = X & (&,M]).
A module M is said to satisfy the (finite) internal exchange property if any (finite)
direct sum decomposition M = &;M; is exchangeable. A ring R is called local if it

has the maximum proper right (or left) ideal.

Lemma 0.8 ([6, 11.40]) Let My, M,, ..., M, be modules and put M = &I M,.
Then M satisfies the finite internal exchange property if and only if each M; sat-
isfies the finite internal exchange property and the decomposition M = @& | M; is

exchangeable.

Lemma 0.9 (cf. [29, Theorem 1.21]) An injective module satisfies the (finite) in-

ternal exchange property.

Lemma 0.10 (cf. [33, Proposition 1]) For an indecomposable module M, if M? =
M x M satisfies the finite internal exchange property, then the endomorphism ring

of M s local.

14



For a direct sum decomposition M = A @ B and a homomorphism i : A — B,
the set {a+h(a) | a € A} is called a graph of h and denoted by (h). It is clear that
M = (h) DB, An(h) = Kerh, and M = A+ (h) if h is an epimorphism.

A family {X;};c; of submodules of a module M is called a local summand of M
if >, X; is direct and ), X is a direct summand of M for any finite subset F' of I.
A module M is said to satisfy LSS if any local summand of M is a direct summand

of M.

Lemma 0.11 ([29, Lemma 2.16 and Theorem 2.17])

(1) A module M satisfies LSS if and only if the union of any chain of direct

summands of M 1is a direct summand of M.
(2) If a module satisfies LSS, then it has an indecomposable decomposition.

A module M is said to be lifting if, for any submodule N of M, there exists a
direct summand X of M such that X C¥ N. An indecomposable lifting module is
called hollow. A module M is called local if it has a small maximal submodule. A
lifting module M is called quasi-discrete if AN B is a direct summand for any direct

summands A and B with M = A + B.

Lemma 0.12 ([6, 2.15, 22.2, 22.3])

(1) Lifting modules and quasi-discrete modules are closed under direct summands.
(2) Hollow modules are closed under factor modules and small covers.

(8) A module M is hollow if and only if any proper submodule of M is small in
M.

(4) Any local module is hollow.

(5) Any submodule of a lifting module M is a direct sum of a direct summand of

M and a small submodule of M.

Lemma 0.13 ([31, Theorem 3.5] and [29, Theorem 4.15]) A quasi-discrete module
satisfies LSS and the internal exchange property.
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Lemma 0.14 ([6, Corollary 23.12 and 26.22]) Let M; and My be lifting modules
and put M = My & M. If M; is M;-projective (i # j), then M is lifting and the
decomposition M = M; ® My s exchangeable. In particular, if My and Ms are
quasi-discrete, then M is quasi-discrete if and only if M; is Mj-projective (i # j).

A module M is said to be extending (or CS) if, for any submodule N of M, there
exists a direct summand X of M such that N C, X. An indecomposable extending
module is called uniform. A module M is said to be uniserial if its submodules are

linearly ordered by the inclusion.

Lemma 0.15 ([29, 1.16, 2.17] and [6, 2.17])
(1) Extending modules are closed under direct summands.
(2) Uniform modules are closed under submodules and essential extensions.
(8) A module M is uniform if and only if any nonzero submodule of M is essential.
(4) Any injective module is extending.

(5) A module M is uniserial, if and only if any submodule of M is hollow, if and

only if any factor module of M s uniform.

(6) Uniserial modules are closed under submodules and factor modules.

A submodule Y of a module M is called a supplement of a submodule X in M
ifM=X+Y and XNY Y. A module M is called amply supplemented if, for
any submodules X and Y of M with M = X + Y, Y contains a supplement of X
in M.

Lemma 0.16 ([6, 20.22] and [29, Proposition 4.8])
(1) Amply supplemented modules are closed under factor modules.

(2) Any lifting module is amply supplemented.
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Lemma 0.17 ([18, Lemma 1.6]) Let M be a lifting module, N an amply supple-
mented module and f : M — N a homomorphism. Then there exists a decom-
position M = My © My such that f(My) is coclosed in N and f(Ms) is small in
N.

A ring R is called right perfect (left perfect, semiperfect, resp.) if, any right R-
module (left R-module, finitely generated right R-module, resp.) has the projective

cover.

Lemma 0.18 ([29, Theorem 4.41] and [1, Theorem 28.4])
(1) For a ring R, the following are equivalent:

(a) R is right perfect,
(b) any projective right R-module is lifting,

(¢) any right R-module is amply supplemented.

(2) Any module over a right (left, resp.) perfect ring has a mazimal (minimal,

resp.) submodule.

Lemma 0.19 Let M be a module over a right perfect ring and let (P, ) be the
projective cover of M. Then for any finite direct sum decomposition M = @I | M,
of M, there exists a direct sum decomposition P = @ | P; such that each (P, ¢|p,)

1s the projective cover of M.

Proof Let M = @] ;M,;. Because P is lifting, there exist direct summands P,
and P| of P such that P, CF 71 (M;) and P| CF' o=Y(@"_,M;). By Lemma 0.7
(1), P = P, + P|. Since P is quasi-discrete and P, N P] C Kerp < P, we see
P =P & P/. By Lemma 0.7 (3), (P1,¢|r,) and (P, ¢|p;) are the projective covers
of My and ®}_,M;, respectively. Inductively, we obtain a decomposition P = @} | P

such that each (P, ¢

p,) is the projective cover of M;. U

An element e of R is called idempotent if e = e¢?. An element ¢ of R is called

central if cr = rc for any element r of R. An idempotent e of R is said to be primitive
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if eR is indecomposable. Elements eq,¢es,..., e, of R is said to be orthogonal if
e;e; = 0 for any distinct 4,5 € {1,2,...,n}. A set {ej,es,...,e,} of elements
of R is said to be complete if ey +ex+ -+ +¢, = 1. A set {e1,eq,...,¢,} of
primitive orthogonal idempotents of R is said to be basic if (i) e;R % e;R for any
distinet 4,7 € {1,2,...,n} and (ii) for any primitive idempotent e of R, there exists
i € {1,2,...,n} such that eR = ¢;R. A semiperfect ring R is called basic if any

complete set of primitive orthogonal idempotents of R is basic.

Lemma 0.20 ([1, Corollaries 4.7, 7.4, 7.5 and Propositions 7.2, 7.6, 27.10])

(1) For any idempotents e; and e; of R, e;Re; = Hompg(e;R,e;R) as the abelian

group.
(2) For any idempotent e of R, eR is a direct summand of the right R-module R.

(8) For any central idempotent e of R, eRe forms a ring by the addition and the

multiplication of R.
(4) For any elements ey, e, ..., e, of R,

(a) {e1,ea,...,e,} is a complete set of primitive orthogonal idempotents if
and only if RR =e1R® eaRS --- D e, R.
(b) {e1,ea,...,e,} is a complete set of primitive central orthogonal idempo-

tents if and only if R = ey Re; X eaReg X -+ - X e, Re,, as the ring.

(5) A semiperfect ring has a complete set (and a basic set) of primitive orthogonal

tdempotents.

Lemma 0.21 ([1, Theorem 27.11]) Let {ey,eq,...,e,} be a basic set of primitive
orthogonal idempotents of R. Then for any projective module P, there exists a set

A; (1,2,...,n) such that P = (e, R)M) @ (eaR) A2 @ -+ @ (e, R) ).
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1 An example of a lifting module which does not
satisfy the finite internal exchange property

The content of this chapter is described in [32].

In this chapter, we give a new characterization for the square of a uniserial module
to be lifting by the certain projectivity different from the almost projectivity and
the generalized projectivity, and make an example of a lifting module which does
not satisfy the finite internal exchange property using the characterization.

First, we show the following lemmas:

Lemma 1.1 Let A and B be modules and put M = A® B. For any nonzero proper
direct summand X of M, the following holds:

(1) If A and B are hollow, then so is X.

(2) If A and B are uniform, then so is X .

Proof lLetp: M =A® B — Aandq: M = A® B — B be the canonical
projections.

(1) Since A and B are hollow and X is non-small, X satisfies either p(X) = A or
q(X) = B. Without loss of generality, we can take X with p(X) = A. By X # M,
we see X N B < B because B is hollow. Since X is a proper direct summand of M,
we obtain Kerp|x = X N B <« X. Hence (X, p|x) is a small cover of A. By Lemma
0.12 (2), X is hollow.

(2) Since A and B are uniform and X is non-essential, X satisfies either XNA =0
or X N B = 0. Without loss of generality, we can take X with X N A = 0. Then

qlx : X — B is a nonzero monomorphism. By Lemma 0.15, X is uniform. L]
Now we give a key lemma for Theorems 1.3 and 1.4.

Lemma 1.2 Let U be a uniserial module and put M = U?, Uy = U x 0 and Uy =
0 x U. Then for any submodule Ny of Uy and any epimorphism hy from Ny to Us,

(h1) is a direct summand of M.
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Proof 1If Ny = Uy or Kerh; = 0, it is clear M = (hy) & Uy or M = (hy) @ U;.
We assume N; # U; and Kerhy; # 0, and take a submodule Ny of U; which is a
natural isomorphic image of N; and an epimorphism hs from N, to U;. Now we
prove M = (hy) & (hs).

First we show M = (h;) + (hs). Let ¢; : h; '(N;) — U; (i # j) be the inclusion.
Then Im¢; = h; '(N;) € h; '(U;) = N; € U; (i # j). We define a homomorphism
R, : hi'(N;) — U; by hi(z) = hjhi(z) for x € hi'(N;) (i # j). Then h} is onto
(i = 1,2). Since U; is hollow, we obtain that ¢; — k] : hy ' (N;) — U; is onto (i # j).

For any element u; + uy of M (u; € U;), there exists an element x; of h; '(N;) such

that (1; — h})(z;) = u; (i # j). Hence

up + ug = ((71 = ha(72)) + hi(z1 — ha(22))) + (w2 — ha(71)) + ha(22 — ha(21)))
S (h1> + <h2>.

Thus M = (hy) + (ha).
Next we show (h1) N (he) = 0. We see

((h1) N ¢h2)) N Ker hy = ((ha) N (ha)) N ((ha) N Ny) C (he) NN = 0.

Since (hy) = Np is uniform and Ker h; # 0, we obtain (hy) N (hy) = 0. O

The following theorem is a characterization for the square of a uniserial module

to be lifting.

Theorem 1.3 Let U be a uniserial module and put M = U?, Uy = U x 0 and

Uy =0 x U. Then the following conditions are equivalent:
(a) M is lifting,

(b) for any module X, any homomorphism f : Uy — X and any epimorphism

g : Uy — X, one of the following holds:

(i) there exists a homomorphism h : Uy — Uy such that f = gh,
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(ii) there exist a submodule N of Uy and an epimorphism h : N — Uy such

thatg'N:fh7
U sy oy
hy/O Lf om0 Lf
v 2 X v 4 ox

(c) for any module X, any homomorphism f : Uy — X and any epimorphism

g : Uy — X, one of the following holds:

(i) there exists a homomorphism h : Uy — Uy such that f = gh,

(i1) there exist a submodule K of Ker g and a monomorphism h : Uy — Uy /K
such that g'h = f, where ¢ : Us/ K — X s defined by ¢'(a) = g(u) for
uelUy/K.

U U
“hyO Lf or hey O LS
vo4 X vk L x

Proof Let p; : M = U; @ Uy — Uj; be the canonical projection (i = 1,2).

(a) = (b): Let f: Uy — X be a nonzero homomorphism and g : Uy — X an
epimorphism. We define a homomorphism ¢ : M — X by ¢(u; +uz) = f(u1)—g(us)
for w; € U; (i = 1,2). Since M is lifting, there exists a direct summand A of M
such that A CM Kery. Then M = Kery + Uy = A + U, because g is onto. So
p1(A) = Uy.

If ANU; = 0, we can define a homomorphism h : Uy = p1(A) — Us by h(p1(a)) =
po(a) for a € A, and h satisfies f = gh. Therefore (i) holds.

Otherwise we see A NU; = 0 since U is uniform. Hence we can define an
epimorphism h : pa(A) — p1(A) = Uy by h(ps(a)) = p1(a) for a € A, and h satisfies
Glps(ay = fh. Thus (ii) holds.

(b) = (a): Let X be a submodule of M. We may assume that X is a proper
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non-small submodule of M. Since U; and U, are hollow with U; = U,, we only
consider the case p1(X) = U;. Then M = X +U,. Let # : M — M/X be the

natural epimorphism. Since 7|y, is onto, one of the following (i) or (ii) holds:
(i) there exists a homomorphism h : Uy — Uy such that 7|y, = 7|y, h,

(i) there exist a submodule N of Uy and an epimorphism h : N — U; such that

7T|N :7T|U1h.

Jh
Ul 3.]\[ — U1
“hy/O Lrly, or [0 Laly
7TIUQ 7T‘U2

In either case, we see (—h) is a direct summand of M by Lemma 1.2, and (—h) C X
by the commutativity of the diagram. Put M = (—h) @ T using a direct summand
T of M. Since T is hollow by Lemma 1.1, we obtain TN X < T". Hence (—h) CM X
by Lemma 0.7 (2). Thus M is lifting.

(b) = (c): It is enough to show (b)(ii) = (c)(ii). For any homomorphism f :
U; — X and any epimorphism ¢ : Uy, — X, we assume that there exist a submodule
N of Uy and an epimorphism h : N — Uj such that g|y = fh. Then Kerh C Ker g,
hence we can define an epimorphism ¢’ : Uy/ Kerh — X by ¢'(u) = g(u) for w €
Us/Kerh. Let h: N/Kerh — U, be the natural isomorphism and ¢ : N/ Ker h —
U,/ Ker h the inclusion, and put &' = th~!. Clearly, &’ is a monomorphism and
gh =f.

(¢) = (b): We show (c)(ii) = (b)(ii). For any homomorphism f : U; — X and
any epimorphism ¢ : Uy — X, we assume that there exist a submodule K of Ker g
and a monomorphism h : U; — Us/K such that f = ¢’'h, where ¢’ : Uy/K — X
is defined by ¢'(u) = g(u) for w € Uy/Kerh. We express Inh = N/K. Let
¢ : N/K — U be the inverse map of h and 7 : N — N/K the natural epimorphism,
and put b’ = ¢m. Then I is onto and g|y = fh/. U

The following is the dual of Theorem 1.3.
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Theorem 1.4 Let U be a uniserial module and put M = U?, Uy = U x 0 and

Uy =0 x U. Then the following conditions are equivalent:

(a) M is extending,

(b) for any module X, any homomorphism f : X — Uy and any monomorphism
g : X — Uy, one of the following holds:

(i) there exists a homomorphism h : Uy — Uy such that f = hg,

(ii) there exist a submodule K of Uy and a monomorphism h : Uy — Uy /K

such that hf = wg, where 7 is the natural epimorphism from Uy to Uy /K,

x 2

U, x 2 U
fLosh o fL oo i
Us U, - U /K

(c) for any module X, any homomorphism f : X — Uy and any monomorphism
g : X — Uy, one of the following holds:

(i) there exists a homomorphism h : Uy — Uy such that f = hg,

(i1) there exist a submodule N of Uy containing Img and an epimorphism
h: N — U, such that f = hg.

x < x 2 N cu
f4 o h or fl Ow¥h
Us

Us
Proof Let p;: M = U; @ Uy — U; be the canonical projection (i = 1, 2).

(a) = (c): Let f : X — U, be a nonzero homomorphism and ¢ : X — U; a
monomorphism. We define a homomorphism ¢ : X — M by ¢(z) = g(z) + f(z)

for x € X. Since M is extending, there exists a direct summand A of M such that
Imp C, A. By ImpnNU; =0, ANU; = 0.
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If p1(A) = Uy, we can define a homomorphism o : Uy = pi(A) — Uy by
h(pi(a)) = pa2(a) for a € A, and h satisfies f = hg. Therefore (i) holds.

Otherwise, we see pa(A) = U, since U is hollow. We see Img C p;(A), and we
can define an epimorphism A : p;(A) — pa(A) = Us by h(pi(a)) = pa(a) for a € A.
Then h satisfies f = hg. Therefore (ii) holds.

(¢) = (a): Let X be a submodule of M. We may assume that X is a nonzero
non-essential submodule of M. Since U; and U, are uniform with U; = Us, , we only
consider the case X N Uy = 0 because U is uniform. Since p;|x is a monomorphism,

one of the following (i) or (ii) holds:
(i) there exists a homomorphism h : Uy — U, such that ps|x = hpi|x.

(ii) there exist a submodule N of U; containing p;(X) and an epimorphism A :

N — U, such that ps|x = hp1|x.

nlx x "X oN cou
p2|X I O h or p2|x I O xh
U2 U2

In either case, (h) is a direct summand of M by Lemma 1.2, and X C (h) by
commutativity of the diagram. Since (h) is uniform by Lemma 1.1, we obtain
X C. (h). Thus M is extending.

(¢) = (b): It is enough to show (c)(ii) = (b)(ii). For any homomorphism f : X —
Us and any monomorphism ¢ : X — U;, we assume that there exist a submodule
N of U; containing Im g and an epimorphism h : N — U, such that f = hg. Let
h: N/Kerh — U, be the natural isomorphism and ¢+ : N/Kerh — U;/Kerh the
inclusion, and put A’ = th~'. Then k' is a monomorphism and k'f = mg, where
7 : Uy — Uy / Ker h is the natural epimorphism.

(b) = (c): We show (b)(ii) = (c)(ii). For any homomorphism f : X — U, and
any monomorphism g : X — U;, we assume that there exist a submodule K of U
and a monomorphism h : Uy — U;/K such that hf = mg, where 7 : Uy — U;/K
is the natural epimorphism. We express Imh = N/K. Let ¢ : N/K — U, be the
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inverse map of h and  : N — N/K the natural epimorphism, and put &' = ¢n.

Then we see Img C N, h' is an epimorphism and f = h/g. O

Lifting modules do not necessarily satisfy the finite internal exchange property.
At the end of this chapter, we make an example of a lifting module without the

finite internal exchange property, using Theorem 1.3.

Example 1.5 Let Zy, and Zg) be the localizations of Z at two distinct prime num-

7
bers p and q, respectively. We consider a semiperfect ring R = » Q and
0 Zy)
Y/
its right ideal L = @ , and put Ur = R/L. Then U is uniserial whose the
0 Z)

endomorphism ring is not local (see [9]). According to the contraposition of Lemma
0.10, U? does not satisfy the finite internal exchange property. We show U? is lift-
ing. For any nonzero homomorphism f : U — U/X where X is a submodule of U,

we can take

z 0
f( ) = + X for some x € L.
0 0

1 xz 0
If © € Zg), we can define an endomorphism h of U with h( ) =
0 0 0 0

and h satisfies mh = f, where 7 is the natural epimorphism from U to U/X.

)

Otherwise we can express x = p™—=L where m € NU {0}, n € N and s,t €

g s’
p" 0 . .
Z\ (pZUqZ). Put N = R. We can define an epimorphism b/ : N — U
0 0
‘ p" 0 ¢"t 0 . .
with W' ( ) = ’ , and h' satisfies fh' = 7|y, where 7 is the natural
0 0 0 0

epimorphism from U to U/X. Thus U? is lifting by Theorem 1.3.
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2 On a lifting module over a right perfect ring

In this chapter, we introduce the concepts of “dual square free” and “factor square
full” modules and give these fundamental properties. After that we consider a
condition for a lifting module over a right perfect ring to satisfy the finite internal
exchange property using them.

First, we show that a lifting module over a right perfect ring satisfies LSS.

Proposition 2.1 Let M and N be lifting modules and let f : M — N be an epi-
morphism. If M satisfies LSS, then so does N.

Proof Since any direct summand of M is lifting with LSS, we may assume that
f: M — N is a small epimorphism. Let {N;};c; be a chain of direct summands
of N. By Lemma 0.11 (2), we shall show that U;N; is a direct summand of N.
Consider the collection X = {M'" <4 M | f(M') = UgN; for some K C I}. Since
M satisfies LSS, the set X is non-empty and inductive with respect to inclusion. By
Zorn’s Lemma, we obtain a maximal element M’ of X. Let M = M’ & M" and let
K be a subset of I with f(M') = Ug ;.

Suppose Uk NV; # Uy N;. Then there exists a € [ \ K such that UxN; C N,. By
M C (M) € fHN,), we see fH(N,) =M & (f1(N,)NM"). Since M" is
lifting, there exists a direct summand M; of M” such that A, CM" f~1(N,) N M".
By N, = f(M')+ f(f 1 (N,) N M"), we see f~1(N,)NM" is non-small in M" and so
M, # 0. By Lemma 0.7 (3), f(M;) €Y f(fY(N,)NM"). Hence f(M'®M,;) CV N,.
As N, is a direct summand of N, f(M'®M,;) = N, which contradicts the maximality
of M’'. Thus UxN; = U;N;. By Lemma 0.7 (3), f(M’) is coclosed in N. Since N is
lifting, we obtain U;N; = UgN; = f(M') <4 N. O

Corollary 2.2 (27, Theorem 3.3]) Any lifting module over a right perfect ring sat-

isfies LSS. Hence it has an indecomposable decomposition.

Proof By Lemmas 0.11, 0.18, 0.13 and Proposition 2.1. U
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2.1 Dual square free modules

The notion of square free modules was introduced by Camillo [5] in the study of
distributive modules. It plays important roles in the several studies, such as quasi-
continuous modules, and the exchange properties for modules.

After that, the notions of dual of square free modules were introduced by Ding-
Ibrahim-Yousif-Zhou [7] as DSF-modules in the study of D4-modules in 2017, and by
Kikumasa-Kuratomi [21] as d-square free modules in the study of H-supplemented
modules in 2018, respectively. The definition of a DSF-module and a d-square free
module are coincide (see [19]). In this section, we give some fundamental properties

of dual square free modules.

Definition. A module M is called DSF' if there are no proper submodules A and
B of M such that M = A+ B and M/A = M/B. A module M is called d-square

free if there are no epimorphisms from M to N? for some nonzero module N.

Now we shall show that they are equivalent. Assume that M is d-square free.
Let M = A+ B and M/A = M/B. Clearly, M/(ANB) = A/(ANB)®B/(ANDB) =
M/B & MJA = (M/A)?. Since M is d-square free, M/A = 0, and hence A = M.
Thus M is DSF. Conversely, assume that M is DSF. Let f : M — N? = N; © N, be
an epimorphism, where Ny & Ny. Then M = f~1(Ny)+f " (Ny). Put 4; = f~1(N,).
Then we obtain A; N Ay = Ker f. Therefore M/A; = (A; + Ay)/A; =2 Ay/ Ker [ =
f(As) = Ny = Ny = Aj/Kerf =2 M/Ay. Since M is DSF, A; = M. Hence
Ny =2 M/A; = 0. Thus M is d-square free. In this dissertation, we shall call them

dual square free.

Proposition 2.3 Dual square free modules are closed under factor modules and

small covers.

Proof It is clear that dual square free modules are closed under factor modules.
We prove that they are closed under small covers.

Let M be a dual square free module and let (P, ¢) be a small cover of M. Take
submodules A and B of P with P = A+ B and P/A = P/B. We shall show B = P.
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Consider the epimorphism 7 which is obtained by compositions of natural maps:

P — P/A~ P/B — P/(B + Kery).

Then A C Kern, P = (B + Kery) + Kern and P/(B + Kery) =2 P/ Kern. Next,

we consider the epimorphism p which is obtained by compositions of natural maps:

P — P/(B+Kery) = P/Kern — P/(Kern+ Ker ).

Then B + Kerp C Kerp, P = Kerp + (Kern + Ker ¢) and P/ Kerp = P/(Kern +
Ker ). Since Keryp C Kerp N (Kern + Ker p), there exists an epimorphism g :
M — P/(Kerpn (Kern + Kery)) = Kerp/(Kerp N (Kern + Kery)) & (Kern +
Kery)/(Kerp N (Kern 4+ Kery)) = P/(Kern + Kerp) @ P/ Kerp = (P/(Kern +
Ker ))?. Since M is dual square free, we see P/(Kern + Kerp) = 0. Therefore
P = Kern + Keryp = Kern. Since P/(B + Kery) =2 P/Kern = 0, we see P =
B+ Ker p = B. Thus P is dual square free. 0

Lemma 2.4 ([29, Theorem 4.24]) Let A and B be direct summands of a quasi-
discrete module M. If A/X = B]Y where X < A andY < B, then A = B.

Proposition 2.5 Let M = &1 H; be a quasi-discrete module, where each H; is hol-
low and #1 > 2. Then M is dual square free if and only if H; 2 Hy, for any distinct
J,kel.

Proof We prove the contraposition: “there exist distinct j, & € I such that H; = Hy,
if and only if M is not dual square free”.

(=) Obvious.

(<) If M is not dual square free, then there exist proper submodules A and
B of M with M = A+ B and M/A = M/B. As M is lifting, there exist direct
summands A’ and B’ of M such that A’ CM A and B C¥ B. Then M = A’ + B’
by Lemma 0.7 (1). Since M is quasi-discrete, we can express A’ = C @ (A' N B’)
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and B =D& (ANB'). Then M =Ca&(ANB)sD=C+B=A+D and
C/(CNB)®M/B=M/A~D/(DnA)

By CNB <« C, DNA <« D and Lemma 2.4, there exists an isomorphism g : C' — D.
Since M = @ H; is exchangeable, there exist nonempty disjoint subsets K and L of
I and isomorphisms o : C — @ xH; and 8 : D — ©p H; such that M = (bxH;) @
(AANB") @ (®LH;). Given k € K. Since 5(D) = @1 H; is exchangeable, there exists
| € L such that 3(D) = Bga ' (Hy) ® (©p\yH;). Thus H; = fga™ ' (Hy) = Hi. O

Proposition 2.6 A dual square free module over a right perfect ring is cyclic.

Proof Let R be a right perfect ring with a basic set F' = {ey,es,...,e,} of
primitive orthogonal idempotents, M a dual square free module and (P, ) the
projective cover of M. By Lemma 0.21, there exists a set [; (j = 1,2,...,n) such
that P 2 (e;R)") @ (e;R)2) @ -+ @ (e, R)I"). By Propositions 2.3 and 2.5, P is
isomorphic to e¢;, RPe;, RS- - - Se;, R for distinct e;; € F. Therefore P is isomorphic

to a direct summand of R and hence M is cyclic. Il

2.2 Factor square full modules

In this section, we introduce the concept of factor square full modules and give its

fundamental properties. The content of this section is described in [22].

Definition. A module M is called factor square full if, for any proper submodule
X of M, there exist a proper submodule Y of M with X CY and an epimorphism
f:M— (M/Y)2.

Proposition 2.7 For any module M, the following are equivalent:

(a) M is factor square full,
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(b) for any proper submodule X of M, there exist a proper submodule Y of M and
an epimorphism f: M — (M/Y)? such that X CY and pf : M — M/Y is
the natural epimorphism, where p is the canonical projection from (M/Y)? to

M/Y ((@,b) — a),

(c) for any proper submodule X of M, there exist proper submodules Y and Z of
M such that X CY, M =Y +Z and MY = M/Z.

If M is lifting, (a) — (c) are equivalent to:

(d) for any proper direct summand X of M, there exist proper submodules Y and
Z of M such that X CY, M =Y +Z and M]Y = M/Z.

Proof (b) = (a): Clear.

(a) = (c): For any proper submodule X of M, by (a), there exist a proper
submodule Y of M with X C Y and an epimorphism f : M — (M/Y )% Let p; :
(M/Y)?=M]/Y®M/Y — M]Y be the i-projection (i = 1,2). If M =Y +Kerp, f,
then (c) holds. Otherwise, by (a) again, there exist a proper submodule Y’ of M
with Y + Kerp;f C Y’ and an epimorphism g : M — (M/Y’)%. Let n be an

epimorphism which is defined by compositions of maps as follows:
M — M/Kerpof X M/)Y — MY’

Then X CY CY' M =Y'+Kernand M/Y' = M/ Kern.
(¢) = (b): For any proper submodule X of M, by (c), there exist proper sub-
modules Y and Z of M such that X CY, M =Y +Z and M/Z =~ M/Y . Then we

can define an epimorphism as follows:

M — M/iYeM/Z = M/Y®SMY = (M/Y)?
m — (m+Ym+2Z) — (m+Y,e(m+2))

Thus (b) holds.
(¢) = (d): Clear.
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(d) = (¢): For any proper submodule N of M, by Lemma 0.12 (5), there exist a
proper direct summand X of M and a small submodule S of M such that N = X@®S.
By (d), there exist proper submodules Y and Z of M such that X CY M =Y + 7
and M/Y = M/Z. Then Y + S is proper in M and there exists an epimorphism 7

by compositions of maps as follows:

M — M/Z=M]Y - M/(Y + S).

Clearly, M = (Y + 5) + Kern and M/(Y + S) = M/ Kern. Thus (c) holds. O

Proposition 2.8 Let M be a module over an arbitrary ring. Then MW, M are

factor square full, where I is an index set which has at least two elements.

Proof Suppose that [ is a finite set, this is shown by the induction on the number
of elements of I. In the case of #I = 2, we put M; = M x 0 and My = 0 x M,
and let p : M? = M; © M, — M, be the canonical projection and o : M; — M,
an isomorphism. Take a proper submodule X of M?. If p(X) # M, we put
Y =p(X)® My and Z = M; © a(p(X)). Then Y and Z are proper submodules
of M? and they satisfy X C Y, M?> =Y + Z and M?/Y = M?/Z. Otherwise,
M? = X + My. We put W = o1 (X N M) & My. Then M? = X + W and
M?/X = M?/W. Therefore M? is factor square full by Proposition 2.7.

Assume that M™ is factor square full for n > 2, and we consider the case of
#I =n+1. Put M = M x0x---x0, and let ¢ : M = M x M — M"
be the canonical projection and § : M; — M an isomorphism. Take a proper
submodule X’ of M™!. If ¢(X') # M™, there exist proper submodules A and B
of M™ such that ¢(X') C A, M" = A+ B and M"/A= M"/B. Put Y =M x A
and Z' = M x B. Then Y’ and Z’ are proper submodules of M™™! and they satisfy
X' CY/, M" =YY"+ Z" and M")Y' = M"™*1 /7' Otherwise, M" ™' = M; + X'.
Put W= MxB(MNX")x M x---x M. Then M"™ = X'+ W' and M /X' =
M"Y /W'. Therefore M™ is factor square full.

Suppose that I is an infinite set, we see that M) = (M(D)2 and M! = (M7)?

are factor square full by the above result. Il
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Proposition 2.9 Factor square full modules are closed under small epimorphic im-

ages, small covers and finite direct sums.

Proof First we show that factor square full modules are closed under small epi-
morphic images. Let M be a factor square full module and f : M — N a small
epimorphism. Take a proper submodule X of N. Since Ker f < M, f~}(X) is
proper in M. As M is factor square full, by Proposition 2.7, there exist proper
submodules Y and Z such that f~'(X)CY, M =Y + Z and M/Y = M/Z. Since
Ker f C Y, we see that M/Y is isomorphic to N/f(Y') by the induced map. We

consider an epimorphism 7 which is defined by compositions of maps as follows:

N = N/F(Y)= MY 2 M/Z - N/f(2).

Then X C f(Y) € Kern € N, N = Kern + f(Z) and N/Kern = N/f(Z). By
Proposition 2.7 again, N is factor square full.

Next we show that factor square full modules are closed under small covers. Let
M be a factor square full module and f : N — M a small epimorphism. Take
a proper submodule X of N. As Ker f <« M, f(X) is proper in M. Since M
is factor square full, by Proposition 2.7, there exist proper submodules Y and Z
such that f(X) C Y, M =Y + Z and M/Y = M/Z. Then X C f~1(Y) C N,
N=f'Y)+fZ)and N/ f~ 1Y) MY =2 M/Z = N/f~'(Z). By Proposition
2.7 again, N is factor square full.

Finally we show that factor square full modules are closed under finite direct
sums. It is enough to show that A @ B is factor square full for any factor square full
modules A and B. Put M = A® B andlet p: M = A® B — A be the canonical
projection. Take a proper submodule X of M. If p(X) # A, since A is factor
square full, there exist proper submodules A; and Ay of A such that p(X) C Ay,
A=A+ Ay and AJA; = AJ/Ay. PutY = A1 @ B and Z = Ay & B. Then
XCYCM M=Y+Zand M/Y = M/Z. Otherwise, M = X + B. Since
X N B # B and B is factor square full, there exist proper submodules B; and
By of B such that X N B C By, B = By + By and B/B; = B/B,. Then we see
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X+ B; # M. Let n be an epimorphism which is obtained by compositions of natural
maps as follows:

M — M/By = M/By — M/(X + By).

We see M = (X + B;) + Kern and M/ Kern = M/(X + By). Thus M is factor
square full. 0

According to the following example, factor square full modules are not closed
under neither essential extensions nor essential submodules. In Appendix 4.2, we
provide details of rings whose factor square full modules are closed under essential

extensions or essential submodules.

Example 2.10 Let K be any field, and we consider

)

a b ¢ d
0 e 0 f
R = a,b,c,de, f,gh e K p, Mp=(0,K K, K).
0 0 e g

0 00 h

V

We put Ny = (0,1,0,0)R and Ny = (0,0,1,0)R, then we can see

M =N, + N, NyAN,=(0,0,0,K) < M

0

and P(N;) = P(N,) =

o o o O
o O = O
o o o O

0
1
0

where P(Ny) and P(Ny) are projective covers of Ny and Ny respectively. We obtain
P(M) = P(N,) @ P(Ny) = P(Ny)?. By Propositions 2.8 and 2.9, M s factor
square full. Moreover M 1is indecomposable because it has simple essential socle
Soc(M) = (0,0,0,K). However its injective hull E(M) = (K, K, K, K) and its
essential submodule Soc(M) = (0,0,0, K) are not factor square full.

Modules A and B are said to be dual orthogonal if there are no nonzero factor
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modules of A and B which are isomorphic. In general, factor square full modules
are not closed under direct summands. For instance, H? is factor square full by
Proposition 2.8 and H is not factor square full for any hollow module . However,

the following proposition is true.

Proposition 2.11 Let M = A® B be a factor square full module. If A and B are

dual orthogonal, then they are factor square full.

Proof Let p: M = A& B — A be the canonical projection. For any proper
submodule X of A, there exist proper submodules Y and Z of M such that X & B C
Y, M =Y+ Zand M/Y = M/Z. Then Y = p(Y) © B. Now we assume that
p(Z) = A, then M = Z + B, and so

0#A/p(Y)=M/Y =M/Z=B/(BNZ),

a contradiction that A and B are dual orthogonal. Hence p(Z) # A. We consider

the nonzero epimorphism 7 which is obtained by compositions of natural maps:
M — MY =2M/Z - M/(p(Z)® B).

Then Kern = p(Kern)® B, sowesee X C p(Y) C p(Kern) C A, A = p(Kern)+p(2)
and A/p(Kern) = M/Kern = M/(p(Z) ® B) = A/p(Z). Thus A is factor square
full. U

Proposition 2.12 Let M = @&;H; be a quasi-discrete module, where each H; is
hollow and #1 > 2. Then M 1is factor square full if and only if, for any j € I, there
exists k € 1\ {j} such that Hy, = H,.

Proof (=) For any j € I, ® (;;H; is a proper submodule of M. Since M is factor
square full, there exist proper submodules X and Y of M such that ®p; H; € X,
M =X+Y and M/X = M/Y. Then X is a direct sum of a direct summand
®ngyH; of M and a small submodule X N H; of M, and hence ®pnH; CM X
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by Lemma 0.7 (4). Since M is lifting, there exists a decomposition M = Z & 7’
such that Z CM Y. Hence M = X +Y = (OpjHi) + Z. As M is quasi-discrete,
(OngyHi) N Z is a direct summand of M. Put & p g H; = K O [(Opg3H:) N Z] and
Z=La[(@engHi)NZ]. Then M = Ko |[(@njH)NZ]@L, M =KaZ = K+Y
and M = (©pqH;) @ L = X + L. Hence

L/(XNL)=M/X=M/Y =K/(YNK).

By Lemma 2.4, H; =2 L = K. Since ©p\ ;3 H,; is exchangeable, there exists [ € I'\ {;}
such that ©p g Hy = Hy @ (D3 H;) N Z]. Thus we see H; = K = H;.

(<) For any proper direct summand X of M, as M = @®yH; is exchangeable,
there exists a nonempty subset K of I such that M = X & (& H;). Given k € K.
By the assumption, there exists j € I (j # k) such that H; = H;. Put Y =
X @ (©x\uyHi). Then X CY C M, M =Y + (O3 H:) and M/Y = Hy, = H, =
M/(®nj1H;). Thus M is factor square full by Proposition 2.7. O

Proposition 2.13 Factor square full modules over a right perfect ring are closed

under direct sums.

Proof Let {ej,es,...,¢e,} be a basic set of primitive orthogonal idempotents of
R and M; a factor square full module (i € I), and put M = @;M;. Then each
projective cover P(M;) of M; is factor square full by Proposition 2.9 (i € I). By

Proposition 2.12 and Lemma 0.21, we can express
P(M) = @ P(M;) = @p_, (exR)I),

where #1I, = 0 or #I;, > 2 for any k = 1,2,...,n. By Proposition 2.12 again, we
see that P(M) is factor square full. Thus M is also factor square full by Proposition
2.9. ([l
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2.3 The finite internal exchange property for lifting modules

over a right perfect ring

In this section, we consider a condition for a lifting module over a right perfect ring

to satisfy the finite internal exchange property.

Lemma 2.14 ([26, Theorem 2.1]) Let M be a lifting module over a right perfect
ring. Then M is a direct sum of a dual square free module A and a factor square

full module B such that A and B are dual orthogonal.

Lemma 2.15 (|26, Cororally 2.2]) A dual square free lifting module over a right

perfect ring is quasi-discrete.

Lemma 2.16 ([29, Proposition 4.35]) Let I be an arbitrary set. If M s finitely

generated and N;-projective for a module N; (i € I), then M is b; N;-projective.

Proposition 2.17 Let M be a lifting module over a right perfect ring and let M =
A® B be a decomposition such that A is dual square free and B is factor square full
such that A and B are dual orthogonal (see Lemma 2.14). Then the decomposition

M = A @ B is exchangeable, and so it is unique up to isomorphism.

Proof By Corollary 2.2, A and B have indecomposable decompositions A = &, H;
and B = ©;L;, respectively. For any ¢ € I and any j € J, by Proposition 2.5 the
projective cover P(H;) ® P(L;) of H; ® L, is dual square free, and so H; @ L; is also
dual square free by Proposition 2.3. Therefore H; @ L; is quasi-discrete by Lemma
2.15. By Lemma 0.14, H; and L; are relative projective. Since H; and L; are cyclic,
by Lemma 2.16, we see [; is (D Lj-projective and L; is (D M;-projective. Moreover,
by Lemma 0.2 (2), A is B-projective and B is A-projective. Thus the decomposition
M = A @ B is exchangeable by Lemma 0.14.

Let M = C ® D, where C' is a dual square free module, D is a factor square
full module, and C, D are dual orthogonal. Since M = A ® B is exchangeable,
there exists direct summands A’ of A and B’ of B such that M =C & A’ & B'. As
D = A" @ B', by Proposition 2.11, A’ is factor square full. Therefore A" = 0. Let
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B=B&B'" AsC = A$ B” is dual square free, so is B”. On the other hand,
since C =2 A® B” and D = B’ are dual orthogonal, by Proposition 2.11 again, B”
is factor square full. Hence B” = 0. Thus C' =2 A and D & B. 0

In the end of this chapter, we give a necessary and sufficient condition for a lifting

module over a right perfect ring to satisfy the finite internal exchange property.

Corollary 2.18 Let M be a lifting module over a right perfect ring and let M =
A ® B be a decomposition such that A is dual square free and B is factor square
full such that A and B are dual orthogonal (see Lemma 2.14). Then M satisfies the
finite internal exchange property if and only if the factor square full part B satisfies

the finite internal exchange property.

Proof By Lemmas 0.8, 2.15 and Proposition 2.17. Il
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3 Direct sums of lifting modules over a right per-
fect ring

The content of this chapter is described in [23].

The almost projectivity and the generalized projectivity play important roles to
the study of a direct sum of lifting modules. In this chapter, we consider almost
projective modules and generalized projective modules over a right perfect ring.
First, we give new characterizations of these projectivities by projective covers.
Using these characterizations, we study on direct sums of almost projective modules,
a relationship between almost projective modules and generalized projective modules

and a direct sum of lifting modules.

3.1 A characterization of almost N-projective modules and

its applications

In this section, we give a characterization of almost N-projective modules by ho-
momorphisms between their projective covers. Recall the definition of almost N-

projective.

Definition. A module M is said to be almost N -projective if for any module X,
any homomorphism f : M — X and any epimorphism g : N — X, either there
exists a homomorphism h : M — N such that gh = f or there exist a nonzero direct

summand N’ of N and a homomorphism &' : N' — M such that fh' = g|n.

M N 5 M
hy Lf or [ f
N % X =0 N % X S0

Proposition 3.1 Almost N-projective modules are closed under direct summands

and direct sums for a module N .
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Proof Obvious. U

Lemma 3.2 Let X be a module, M an amply supplemented module, N a lifting
module, f : M — X a homomorphism and g : N — X a small epimorphism.
Then for any direct summand N’ of N and any homomorphism h : N' — M with
fh=g|n, h(N') is coclosed in M.

Proof By Lemma 0.17, there exists a decomposition N’ = N; @& Ny such that h(Ny)
is coclosed in M and h(Ny) is small in M. Then fh(Nz) is small in X. On the other
hand, by Lemma 0.7 (3), fh(N2) = g(Nz) is coclosed in X. Therefore g(Ny) = 0.
Since Ny C Kerg < N and Ny <5 N, Ny = 0. Hence h(N') = h(Ny) is coclosed in
M. O

Now we shall give a new characterization of almost N-projective modules.

Theorem 3.3 Let M and N be modules over a right perfect ring and let (P, ) and
(Q, 1) be projective covers of M and N, respectively. Then the following conditions

are equivalent:
(a) M is almost N -projective,

(b) for any o € Homg(P, Q), either a(Ker¢) C Ker, or there exist P' < P and
Q' <g Q such that a|p : P' — Q' is an isomorphism, (a|p) ! (Ker|g) C

Ker¢|pr and 0 # 9(Q') <o N.

Proof (a) = (b): Let o € Homp(P,Q), put N = N/va(Ker p) and let 7: N — N
be the natural epimorphism. Then we can define a homomorphism f : M — N by

flp(z)) = mpa(x) (z € P), and we obtain the following diagram:

P 3 Q
pd 10
M © N
N\ T
N

39



Since M is almost N-projective, either there exists a homomorphism ¢ : M —
N such that mg = f or there exist a nonzero direct summand N’ of N and a
homomorphism h : N — M such that fh = 7|y

First, we consider the former case. For any x € P, ma(x) = fo(x) = mgp(zx).
Therefore we see Ya(r) — gp(x) € Kerm = Ya(Kerp). Take k € Kerp with
va(xr) — gp(x) = Ya(k). Then Ya(r — k) = gp(x) = ge(x — k), and so x — k €
Ker(pa — gp). Hence we obtain

P = Ker(¢a — gp) + Ker ¢ = Ker(va — gyp).

For any a € Ker ¢, 0 = (Yo — gp)(a) = Ya(a). Thus a(Ker p) C Ker 1.

Next, we consider the latter case. Put M’ = h(N'). Since @ is lifting and N’ is
coclosed in N, there exists a direct summand @Q* of @ such that Q* C% ¢~ 1(N'),
and hence N’ = ¢(Q*). By Lemma 3.2, we see M' = hy)(Q*) is coclosed in M.

Put K = Ker ((hpa — ©)|(pa)-1(vynp-1(mr)) . Next we prove M’ = ¢(K). For
any m € M’, there exist x € ¢~ '(M’) and n € N’ such that ¢(z) = m = h(n). Then
7(n) = fh(n) = fp(r) = mpa(r) and so n — Ya(x) € Kerm = tpa(Ker p). Hence
there exists k € Ker ¢ such that n —¢a(z) = Ya(k). Then x +k € (Ya) H(N'). On
the other hand, by hya(z + k) = h(n) = ¢(x) = ¢(x + k), we see z + k € K and
hence m = ¢(z) = p(x + k) € p(K). Thus M = p(K).

Since P is lifting, there exists a direct summand P’ of P such that P’ C”
K. As M’ is coclosed in M, M' = o(K) = ¢(P'). Put Q" = a(P'). Now we
show that (Q’',%|¢/) is the projective cover of N’. Since P' and @ are lifting and
o|lpr = hpa|pr, by Lemma 3.2, ' = «(P’) is a direct summand of ), and so @)’
is projective. Moreover, since ¢|pr = hpalp : PP — M’ is onto and Kerh C
Ker fh = Kern|ys < N'; N' = ¢a(P’) + Ker h = Ya(P’') = (Q"). In addition, by
Kery <« @, Ker¢|g < Q. Thus (Q',9|¢) is the projective cover of N'.

Since @' is projective and Kera|p C Kerhypa|p = Kerp|p < P, we get
Kera|pr = 0 and hence P’ and @' are isomorphic by the restricted map afp:.

Moreover, by p(a|p) H(Kert|g) = hpa(alp) (Ker|g) = hp(Kerp|g) = 0,
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we obtain

(Oé|p/>71<KeI' w|Q’> g Ker g0|p/.

(b) = (a): Let X be a module, let g : N — X be an epimorphism and let f :
M — X be a homomorphism. Since P is projective, there exists a homomorphism
a : P — @Q such that gpa = fp. By (b), either (i) a(Kerg) C Ker, or (i)
there exist P, <. P and ()7 <g @ such that a|p, : P, — ()7 is an isomorphism,
(a]p,) H(Kertlg,) C Kerg|p, and 0 # 9(Q1) <s N.

If the case (i) occurs, then we can define a homomorphism h : M — N by
h(e(z)) = Ya(x), where x € P. Then, for any p(z) € M, f(e(x)) = ga(z) =
gh(sp(x)).

If the case (it) occurs, we can define a homomorphism A’ : ¥(Q1) — M by

W(P(y)) = ¢lalp) H(y), where y € Q. Then, for any ¥(y) € V(Q1), fI' (¥ (y)) =
folalp) t(y) = gala(y)) = g(¢(y)). Thus M is almost N-projective. O

The following corollary means that an almost N-projective module is im-small

N-projective for a module N. See Appendix 4.1 for details.

Corollary 3.4 (cf. Proposition 4.4) Let M and N be modules over a right perfect
ring and let (P, @) and (Q,v) be projective covers of M and N, respectively. If M
is almost N-projective, then for any homomorphism « : P — Q with o(P) < Q,
a(Kerp) C Kerp.

It is well known that M is @], N;-projective if M is N;-projective for any i =
1,...,n. However this fact is not satisfied for almost relative projective modules in
general [16]. This is one of differences between relative projective and relative almost
projective. Harada and Mabuchi [15] and Harada [14] took note of this fact and they
have filled this gap when each module is an indecomposable module with the certain
conditions over a right (semi-) perfect ring. As an application of Theorem 3.3, we
consider the case that each NN; is not necessarily indecomposable.

First we show the following two lemmas.
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Lemma 3.5 Let M and N be modules, let f : M — N be an epimorphism such that
M = M, ® My and N = f(M;) @ f(Ms), and let g - My — My be a homomorphism.
Then N = f({g)) © f(Ms) if and only if g(Ker f|ar,) C Ker |,

Proof (=) For any k € Ker flu,, f(k+ g(k)) = fg(k) € f({g)) N f(Mz) = 0.
Hence g(Ker f|y,) C Ker fas-

(«) For any f(my + g(mi)) = f(m2) € f((9)) N f(M), f(ma) = f(ma —
g(m2)) € f(Mi) N f(Ms) = 0. By g(Ker flar,) € Ker fla,, f(g(m1)) = 0. Thus
f(my 4+ g(mq)) = 0. O

Lemma 3.6 (cf. [29, Proposition 4.35]) Let I be an arbitrary set, M a direct sum of
finitely generated modules and N; a module (i € I). If M is almost @ N;-projective
for any finite subset F' of I, then M 1is almost &7 N;-projective.

Proof Obvious. U

Theorem 3.7 Let M and N; be modules over a right perfect ring (i € I). If M
is lifting and almost N;-projective for any i € I, and N; is almost Nj-projective for

any distinct i, 5 € I, then M 1is almost b, N;-projective.

Proof Let (P,¢) and (Q;, ;) be the projective covers of M and N; (i € I),
respectively, and put Q = ©;Q;, N = ®;N; and ¢ = ;.

By Corollary 2.2, M is a direct sum of local modules. If any indecomposable
direct summand of M is almost &;N;-projective, then so is M. Hence we may
assume that M is a local module. By Lemma 3.6, it is enough to show the case that
I is a finite set.

Let a: P — () be a homomorphism. Let g : QQ = ©;0Q; — (QQr be the projection
(k € I). By Theorem 3.3, for any k € I, either (i) gra(Kery) C Ker )y, or (i)
there exists Q) < Qr such that 0 # Y (Q)) <o Nk, P = Q) = qa(P) (by gr)
and (gra) ! (Ker¢y|q ) € Ker¢. Note that a : P — a(P) and gglap) : @(P) — Q)

are isomorphisms in the case (i7).
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If (¢) holds for any k € I, then
a(Ker ) C &(gra(Ker p)) C &7 Ker ¢y, = Ker ¢).

Otherwise, let I; be a collection of elements of I which hold (éi). Note that
I is nonempty. Suppose [; has at least two elements. For any distinct k,l € Iy,
(@lap))(@lapy) ™ = Qp — Q) is an isomorphism. Since 1, (Q},) is almost ¢ (Q})-
projective, by Theorem 3.3, either (ql|a(p))(qk|a(p))*1(Kerwk|%) C Kerylq,, or
(kla(r)) (@lacp)) " (Kerthy|g) € Kertylg . Thus we can take j € I, such that
(45lap) ™ (Ker ¥l qr) € (qrlacr)) ™ (Ker |, ) for any k € 1.

Put f; = (Qi|a(P))(Qj|a(P))71 1 Q) — Q for any i € [ \{/} and f = Zz\m Ji-
Then f(Ker f(/)j|Q;,) C Kertlg, @ and a(P) = (f). Note that if /; has only one
element, then the above f can be defined in the same way. By Lemma 3.5, ¢)(«(P))
is a direct summand of N and isomorphic to a direct summand of N;. Since M
is almost 1 (a(P))-projective, by Theorem 3.3, either a(Kery) C Ker)|ypy, or
P = o(P) (by ) and a ' (Ker¢|qop)) € Kerp. By Theorem 3.3 again, we obtain
that M is almost N-projective. U

3.2 A characterization of generalized N-projective modules

and its applications

In this section, we first give a characterization of generalized projective modules by
homomorphisms between their projective covers. In addition, as its application, we
consider a condition for a direct sum of lifting modules to be lifting over a right

perfect ring. Recall the definition of generalized N-projective.

Definition. A module M is said to be generalized N-projective for a module
N if, for any module X, any homomorphism f : M — X and any epimorphism
g: N — X, there exist direct sum decompositions M = M; & Ms and N = Ny @ N,

a homomorphism h; : M; — N; and an epimorphism hy, : Ny — M, such that
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flan = ghy and g|n, = fho.

M, & M, = M
hil ho? 1f
N & N, =N L X 0.

Proposition 3.8 Let M and N be modules over any ring. If M is generalized
N -projective, then M is generalized A-projective for any submodule A of N.

Proof Let A and X be submodules of N with X C A, 7 : N — N/X the natural
epimorphism and f: M — A/X a homomorphism. Then

M

Lf
AN Ax o
ol NI

N 5 N/X =0

Since M is generalized N-projective, there exist decompositions M = M; & My and
N = N; ® N, a homomorphism h; : M; — N; and an epimorphism hy : Ny — M,
such that why = f|a, and fhe = 7|n,. For any n € Ny, n+ X = m(n) = fha(n) €
A/X and hence Ny C A. So we see A = (AN N;p) & Ny. Similarly, for any m € My,
by hi(m) + X = whi(m) = f(m) € A/X, hi(M;) € AN N;. Thus we obtain the

following diagram:

M, & M, = M
bl hol Lf
(ANN) @ N = A M A/x 50 .
Therefore M is generalized A-projective. 0

Theorem 3.9 Let M and N be modules over a right perfect ring and let (P, ¢) and
(Q, 1) be projective covers of M and N, respectively. Then the following conditions
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are equivalent:
(a) M is generalized N -projective,

(b) for any o € Hompg(P,Q), there exist decompositions P = P, © Py and Q =
Q1 @ Q2 such that a(P) C Q1, a(Kery|p) C Kert|g,, afp, 1 Po = Q2
is an isomorphism, (a|p,) H(Ker|g,) C Kerp|p,, M = p(P1) & p(P) and
N = (@) & ¥(Q2).

Proof (a) = (b): Let a € Homp(P,Q), put N = N/¢a(Ker p) and let 7: N — N
be the natural epimorphism. Then we can define a homomorphism f : M — N
by f(p(x)) = mpa(z) (r € P). Since M is generalized N-projective, there exist
decompositions M = M; & My and N = Ny & N,, a homomorphism hy : M7 — N
and an epimorphism hs : No — My such that f|y, = why and 7|y, = fho. Put
Ky = Ker ((hgq/za — gp)|(w)71(N2)W71(M2)). Since P is lifting, there exists a direct
summand P, of P such that P, CI' Ky. Put Qy = a(P,). By the same way as in
the proof of (a) = (b) in Theorem 3.3, we obtain My = ¢(K>) = ¢(FP2), (Q2,%]0,)

is the projective cover of Ns,

alp,

2
PZ = QQ S@ Q and (05|P2)_1(Ker¢|@2) - Ker90|P2'

Since @ is quasi-discrete, by Lemma 0.19, we can take a direct summand (), of
() such that Q = Q1 ® Q2 and (Q1,v]g,) is the projective cover of N;. Now we
take any x € P and express a(z) in Q = Q1 © Q2 as a(r) = y; + yo where y; € Q;
(i =1,2). By yo € Q2 = a(P), there exists x5 € P, such that a(zs) = y». Hence
alr —x9) = y; € Q1. Sowesee v € Py +a1(Qy) and hence P = o 1(Q,) + P.
By a(a (@) N R) C Q1 NQy =0 and Kera|p, =0, = (Q1) N P, = 0. Hence
P=a1Q1)® P Put P, = a (Q1). Then

P:PI@PQ and OZ<P1>QQ1

Put K; = Ker ((¢a — h19)|prp-1(ay))- Now we shall show that M; = ¢(K)).
Given m; € M;. As ¢ is onto, there exists x € ¢ (M) with ¢(x) = m;. Then

45



whip(x) = fe(x) = mpa(x) and hence hip(x) — Ya(x) € Kerm = a(Ker p).
So there exists k € Kerg such that hyo(z) — Ya(z) = Ya(k). Now we express z
and kin P=P @ P asx = +x and k = ky + ko (7, k; € P), respectively.
Then hip(x) — Ya(x; + k1) = Ya(xy + k) € Ny N Ny = 0. By va(zs + k) = 0,
o(rg + ko) = hotpa(ry + ko) = 0 and hence x5 + ky € Kery. In addition, by
hip(z) —Ya(zr + ki) =0, Ya(zy + k) = hip(z) = hip((x1+ k1) + (22 + k) — k) =
hig(xy + k1) and hence (Yo — hyp)(z1 + k1) = 0. Moreover, my = ¢(x) = ¢((x; +
ki) 4 (x2 + ko) — k) = (21 + k1) € p(Ky). Thus M; = o(K;).

By o(P) =M = My © My = (K1) ® (), we see P = (K1 @ P5) + Kerp =
K, @ Py and so K7 = P;. Hence (P, ¢|p,) is the projective cover of M.

Thus we obtain
a|P1

Pl Ql
elp O bplg,
M, LS N
fan N O iy
m(N1)

By (l/}a(KergplPﬁ) = hlSﬁ(Ker90|P1) =0,
a(Ker p|p,) € Ker )|, .

Thus (b) holds.

(b) = (a): Let X be a module, g : N — X an epimorphism and f: M — X a
homomorphism. Since P is projective, there exists a homomorphism v : P — @) such
that gia = fp. By (b), there exist decompositions P = P, @ P, and @ = Q1 & Q2
such that o(P) C @1, a(Kery|p,) C Kert, alp, : P» — Q9 is an isomorphism,
(ol p,) " (Ker dlg,) € Kerglp,, M = p(P1) @ ¢(P2) and N = ¢(Q1) @ ¢(Q2). Then
we can define a homomorphism hy : ¢(Py) — ¥(Q1) by hi(p(z)) = Ya(z) and an
epimorphism hy : ¥(Q2) — ©(I%) by ha(¥(y)) = p(alp,) ' (y), where z € P, and
y € Q. Clearly ghy = fl,(p,) and fhy = gly.), and hence we see M is generalized
N-projective. U
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Corollary 3.10 (cf. [30, Proposition 3.7] and [24, Proposition 2.3]) Let M and N
be modules over a right perfect ring. If M is generalized N -projective, then M’ is

generalized N -projective for any direct summand M’ of M.

Proof Let (P, ) and (Q, ) be the projective covers of M and N respectively, and
let M = M'@ M"”. By Lemma 0.19, there exists a decomposition P = P’ @ P” such
that (P, ¢|p/) and (P”, |pr) are the projective covers of M’' and M”, respectively.
Let p: P = P'@® P” — P’ be the projection and take a homomorphism « : P' — Q.
By Theorem 3.9, there exist decompositions P = P; & P, and Q) = )1 & Q2 such
that ap(Py) C Q1, ap(Kery|p,) € Kerv|g,, ap|p, : P» — @2 is an isomorphism,
(ap|p,) H(Ker¢|g,) € Kerplp,, M = (1)@ p(%) and N = 1(Q1) D1(Q2). Since

ap|p, is an isomorphism, we see P C Kera @ P” = Kerap C P;. Hence we obtain
P'=p(P) @ p(F).

Given k = p(z1) € Ker ¢|(p,), where 71 € Pi. Then k = 2, —(1—-p)(21) € P +P" =
P, and hence Ker ¢|,p) C Kerglp and a(k) = ap(z1) € ap(Kerplp) N Q1 C
Ker+y N Q1 = Ker|g,. Thus

a(Ker ¢lyp)) C Kerlg,.

By a(p(R,)) = Q2
a|p(py) @ P(FP2) = @2 is an isomorphism.

Now we show (a|yp,)) ' (Kerv|g,) € Kerplyp,). By M’ N M” = 0, we obtain
p((ap|p2)_1(Ker¢|Q2)) C p(Pg) NKerp = Ker¢|p(P2)’ Hence

(alpry) ' (Keriplg,) € Ker @lyp,).

Next we prove M’ = ¢(p(F1)) ® ¢(p(P2)). Given ¢(p(z1)) = ¢(p(z2)) € w(p(F1)) N
©(p(Py)) where x; € P; (i =1,2) and we express z; in P = P’ & P" as x; = x} + x/
where 2, € P' and z/ € P" (i = 1,2). By ¢(a] — 2%) = p(p(z1)) — ¢(p(a2)) = 0,
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Plaz) = () — ol — ) € (PN e(P) = 0. So glplaz)) = o(ay) = —(sf) €
e(P)Np(P") =M nM"=0. Hence we see p(p(P1)) N(p(F2)) =0 and so

M’ = o(p(P)) © p(p(F2)).

Po= ph)  © p(P) M’ = ¢(p(P1)) © o(p(F2))
Valyry — Malyry)™
Q@ = @ D Q2 , N =19(Q1) ®¢(Q2)
By Theorem 3.9 again, M’ is generalized N-projective. U

Clearly, a generalized N-projective module is almost N-projective for any module

N. However even case that M and N are indecomposable modules over an artinian
K 0 K
ring, the converse does not hold. For example, let K beafield, R=| 0 K K

Y

0 0 K
M = (K,K,K) and N = (K,0,K). Then right R-module M has the following

submodule lattice:

M
Y N
N = (K.0,K) 0, K, K)
N %
(0,0, K)
I
(0,0,0)

Let w: N — N/(0,0, K) be the natural epimorphism. Since (1,1,0) is a generator
of M, any nonzero homomorphism f : M — N/(0,0, K) is defined by f(1,1,0) =
(a,0,0) for some a € K. Since the length of N is less than that of M, there are no
epimorphisms from N to M. In addition, by Homg(M, N) = 0, M is not generalized
N-projective. On the other hand, for a homomorphism h : N — M defined by
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R((1,0,0)) = (a™*,0,0), we see fh = m. Hence M is almost N-projective.
Now we consider a condition for an almost N-projective module to be generalized

N-projective.

Lemma 3.11 ([29, Lemma 4.22]) Let M be a quasi-discrete module and let M; be an
indecomposable summand of M (i € 1) such that M =3, M; and M # 3\ 4 M;
forany k € I. Then M = &;M,;.

Theorem 3.12 Let M and N be lifting modules over a right perfect ring. Then M

1s almost N-projective if and only if M s generalized N -projective.

Proof Let (P, ) and (@, ) be the projective covers of M and N respectively, and
let @ : P — @ be a homomorphism. Put I' = {X <5 P | a(Kerp|x) C Kert}.
Since P satisfies LSS, by Zorn’s Lemma, there exists a maximal element X of I'. As

M is lifting and P is quasi-discrete, by Lemma 0.19, we obtain decompositions
P=X®P and M =p(X)®pl).

Then Ker ¢ = Ker ¢|x @ Ker¢|p. Since P’ is lifting and the maximality of X, we
see Ker a|pr < P'. By Lemma 0.17, there exists a decomposition P’ = A & B such
that a(A) <g @ and o(B) < Q. By Corollary 3.4, we see a(Ker ¢|p) C Kert. By
the maximality of X, we see B = 0 and hence a(P’) = a(A) <o Q. As «o(P’) is
projective and Kera|pr < P’ a|pr : P’ — a(P’) is an isomorphism. By Lemmas
0.7 (1) and 2.2, ¢»(a(P")) is a direct summand of N and it has an indecomposable
decomposition ¥ (a(P’)) = @;N;. Then there exists a direct summand @; of a(P’)
such that (Q;, ¢
®1Qi. Put P, = (a|p) " H(Q;) and M; = o(P;) (i € I). Since M; is almost N;-

0,) s the projective cover of N; (i € I), by Lemma 3.11, a(P’) =

projective for any ¢ € I and the maximality of X, we see (a|p,) ' (Ker¢|qop,)) C

Ker ¢|p,. By Ker¢|opy = @ Ker¢g,,

(alp) " (Ker h|acp) € Ker g pr.
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Since N is lifting and R is right perfect, there exists a direct summand ()’ of () such
that

Q=0Q ®a(l) and N =9(Q") ®V(a(P)).

Then Ker ¢ = Ker ¢)|g ©Ker ¢|opry. Let ¢ : Q = Q' ®a(P') = Q" and ¢2 : Q = Q'@
a(P") — a(P') be the projections, and put f = —(a|p/) 'qecr|x. Then f(Ker ¢|x) =
—(a|p) tpa(Ker p|x) € —(alp) (Ker o) C Kerg|p. By Lemma 3.5, we
obtain

P=(f)oP" and M =e((f))® ().

By a((f)) C (o — 2o)(X) € @', ol : (f) = Q" is a homomorphism. Given
kE+ f(k) € Kery|py. By k€ Kery|x, a(k+ f(k) = qa(k) € ¢1(Ker ) = Ker¢)|¢
and so

a(Ker¢|py) € Ker g

By Theorem 3.9, M is generalized N-projective. Il

Lemma 3.13 ([24, Theorem 3.1]) Let My and My be lifting modules and put M =
My @ Ms. Then, M is lifting and the decomposition M = My ® My is exchangeable,
if and only if M is generalized M;-projective for any direct summand M of M,
(i # j)-

The following result is a consequence of Theorems 3.12 and 3.7, Corollary 3.10

and Lemma 3.13.

Proposition 3.14 Let A, By and By be lifting modules over a right perfect ring.
Assume that B; is generalized Bj-projective for distinct i,j € {1,2}.

(1) If A is generalized B;-projective (i = 1,2), then A is generalized By & Bs-

projective.

(2) If B; is generalized A-projective (i = 1,2), then By ® By is generalized A-

projective.
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Lemma 3.15 ([24, Theorem 3.7]) Let My, My, ..., M, be lifting modules with the
finite internal exchange property and put M = @' M;. Then M 1is lifting with
the finite internal exchange property if and only if My, and ©;2,M; are generalized

relative projective for each k =1,2,...,n.

Finally, we give conditions for a direct sum of lifting modules to be lifting over

a right perfect ring.

Corollary 3.16 Let My, My, ..., M, be lifting modules (lifting modules with the fi-
nite internal exchange property, resp.) over a right perfect ring and put M = &7 M.

Then the following conditions are equivalent:

(a) (i) M is lifting, and

(1) the decomposition M = ®I | M, is exchangeable (M satisfies the finite

internal exchange property, resp.),
(b) M, is generalized M;-projective for any distinct i,j € {1,2,...,n},
(¢) M; is almost M;-projective for any distinct i,j € {1,2,...,n}.

Proof By Theorem 3.12, Proposition 3.14, Lemmas 3.13 and 3.15 and induction.
O
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4 Appendix

In this appendix, we provide details about im-small projective, im-closed projective
and im-summand projective related to almost projective and generalized projective,
and rings whose factor square full modules are closed under essential extensions or

essential submodules.

4.1 Im-small coinvariant modules and im-summand coin-

variant modules

The content of this section is described in [20].

A module M is said to be im-small (im-coclosed, im-summand, resp.) N-
projective for a module N if, for any module X, any homomorphism f : M — X
with f(M) < X (f(M) is coclosed in X, f(M) <4 X, resp.) and any epimorphism
g : N — X, there exists a homomorphism h : M — N such that gh = f.

Now we define notions of N-im-small coinvariant modules and N-im-summand

coinvariant modules.

Definition. Let M and N be modules over a right perfect ring and let (P, )
and (@, ) be projective covers of M and N, respectively. M is called N-im-small
coinvariant (N-im-summand coinvariant, resp.) if, for any homomorphism « : P —

Q with o(P) < Q (a(P) <g @, resp.), a(Ker ¢) C Ker .
Proposition 4.1 Let M, N, M; (i € I) and N; (j € J) be modules over a right
perfect ring. Then

(1) If M is N-im-small coinvariant, then M is N/X-im-small coinvariant and

X -im-small coinvariant for any submodule X of N.

(2) If M is N-im-summand coinvariant, then M is N/ X -im-summand coinvariant
for any submodule X of N. Moreover, for any coclosed submodule X of N, M

18 X -im-summand coinvariant.
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(3) If M/S is N-im-small (N-im-summand, resp.) coinvariant for some S < M,

then M is N-im-small (N-im-summand, resp.) coinvariant.

(4) If M is N-im-small (N-im-summand, resp.) coinvariant, then M’ is N-im-

small (N-im-summand, resp.) coinvariant for any direct summand M’ of M.

(5) If M; is Nj-im-small coinvariant for any i € I and j € J, then &M, is

@y N;-tm-small coinvariant.

Proof (1) Let X be a submodule of N, let (P, ), (@,%) and (Q’',7') be the
projective covers of M, N and N/X, respectively. Let o« : P — () be a homo-
morphism with a(P) < @'. Since @) is projective, there exists a homomorphism
f:Q — @ such that ¢'f = w), where 7 : N — N/X is the natural epimorphism.
As Kervy/' <« @' and 7 is onto, f is an epimorphism. Therefore there exists a
monomorphism g : Q" — () such that fg = 1g. Since M is N-im-small coinvari-
ant, we see ga(Ker ) C Kert. Then ¢'a(Kerp) = ¢/ fga(Ker p) C o' f(Ker) =
mip(Ker) = 0, and hence a(Ker ¢) C Kerv/. Thus M is N/X-im-small coinvariant.

Next we show that M is X-im-small coinvariant. Let (Q)”,v") be the projective
cover of X and let 8 : P — Q" be a homomorphism with §(P) < Q. Since Q" is
projective, there exists a homomorphism A : Q" — @) such that ¢h = ", As M is N-
im-small coinvariant, h5(Ker¢) C Ker and hence S(Ker ¢) C Ker(¢h) = Ker ¢”.
Thus M is X-im-small coinvariant.

(2) We can see that M is N/ X-im-summand coinvariant for any submodule X of
N, by similar proof of (1). Let X be a coclosed submodule of N and let (P, p) and
(Q, 1) be projective covers of M and N, respectively. Since () is lifting, by Lemma
0.7 (3), there exists a direct summand T of @ such that X = ¢(7"). Then, (7,%|7)
is the projective cover of X. For any homomorphism f : P — T with f(P) < T,
since M is N-im-summand coinvariant, f(Kerp) C Kert. On the other hand, by
f(Kery) C T, we see f(Kery) C Kerty N'T = Ker¢|p. Thus M is X-im-summand
coinvariant.

(3) We prove only the case for N-im-small coinvariant. Let S be a small submod-

ule of M and let (P, ¢) and (Q, 1)) be the projective covers of M and N, respectively.
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By S <« M, (P, my) is the projective cover of M/S, where 7 : M — M/S is the nat-
ural epimorphism. Let o : P — @ be a homomorphism with «(P) < Q. Since M/S
is N-im-small coinvariant, a(Ker ¢) C a(Kermp) C Kertp. Thus M is N-im-small
coinvariant.

(4) We prove only the case for N-im-small coinvariant. Let M = M’ & M"
and let (P, ¢), (P",¢") and (Q, ) be the projective covers of M’ M"” and N,
respectively. Let o : P' — @ be a homomorphism with a(P') < Q. Put P = PP P”
and ¢ = ¢ @ ¢"”. Then (P,y) is the projective cover of M. Since M is N-im-
small coinvariant, a(Kery¢') = (o @ 0)(Kery) C Kere. Thus M’ is N-im-small
coinvariant.

(5) First we show if each M; is N-im-small coinvariant, then so is @;M;. Let
(P;, ;) and (@, 1)) be the projective covers of M; (i € I) and N, respectively. Put
M = o, M;, P = ®;P, and ¢ = @®;¢p;. Then (P, ¢) is the projective cover of
M. Let a : P — () be a homomorphism with a(P) < . Since each M; is N-
im-small coinvariant, («|p,)(Kerp;) € Kere. Hence a(Kery) = a(®; Kerg;) =
Y oa(Kerp;) € Ker.

Next we show if M is N;-im-small coinvariant for any j € J, then M is @ ;N;-
im-small coinvariant. Let (P, ¢) and (Q;, ;) be the projective covers of M and N;
(j € J), respectively. Put N = @;N;, Q = ©,;Q; and ¢ = ®,1;. Then (Q, )
is the projective cover of N. Let p, : Q = @,Q; — Qi (k € J) be the projection
and let § : P — () be a homomorphism with 8(P) < Q. Since M is N;-im-small
coinvariant, p,;8(Ker ¢) C Ker, for any j € J. Hence f(Kery) C @ p,8(Kerp) C
@y Kery; = Ker. U

Lemma 4.2 Let My and My be modules and put M = M, & M. If M = X &
M & My for some X C M and M C M,; (i = 1,2), then there exist M/ C M,
(i =1,2) and a homomorphism &; : M — M} (i # j) such that M; = M ©® M/ and
X = (1) © (e9).

Proof Let M =X & Mo M}, where M" C M; and put M; = A; & M/ (i =1,2).
Letp: M=A A eM/ &M A @Ayandqg: M =A, & Ay & M & M) —
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M & MY be the projections. Then we see p(X) = A; & Ay and we can define a
homomorphism f : p(X) — ¢(X) by f(p(x)) = ¢(x), where x € X. So we see

Let m; : M} @& MY — M be the projection and let §; : (m; f|4,) — A; be the natural
isomorphism (i = 1,2). Then we obtain (f|4,) = (7; f8:) (i # j). Put M = (7, f|a,)
and g, = m; fB; (1 # j), then M; = M] @ M (i =1,2) and X = (e1) @ (£2). O

Proposition 4.3 Let My, Ms, ..., M,,, N1, N>, ..., N, be modules over a right per-
fect ring. If M; is Nj-im-summand coinvariant and N;-im-small coinvariant for
any i € {1,2,...,m} and j € {1,2,...,n}, then &2, M; is ®}_, Nj-im-summand

comuvariant.

Proof It is enough to show the case of m = n = 2, by Proposition 4.1 (5).

First we show M is N; @ Ny-im-summand coinvariant if M is N;-im-summand
coinvariant and N;-im-small coinvariant (i = 1,2). Let (P, ) and (Q;, ;) be the
projective covers of M and N; (i = 1,2) respectively, put @ = Q19 Q2, ¥ = 11 Do
and let o« : P — @ be a homomorphism with «(P) <s Q. Since @ satisfies
the finite internal exchange property, there exists Q7 C @; (i = 1,2) such that
Q =a(P)® Q] 3 Q. By Lemma 4.2, there exist a direct summand @} of Q); and a
homomorphism ¢; : Qi — Q7 (i # j) such that Q; = Q;©Q{ and a(P) = (£1) © (e2).
Let p; : a(P) = (1) © (e2) — (&), ¢+ @ = Q1 D Qy ® Qf & Q) — @ and
@ Q=QoQ,pQ]®Q) - Q (i = 1,2) be the projections. Since M is

N;-im-summand coinvariant and ¢p;a(P) = Q) <g Q;, we see
gipia(Ker o) C Kerep; --- (i)

for i =1,2. As ()] is lifting, there exists a decomposition ()] = @7, & )}, such that
I Q?j q‘;/pia(P) (i #j). Let 55 : Q7 = Q) & QY — Q7; be the projection (1,5 =

1,2). By ¢fpi(P) = Qfy © (qfpic(P) N Qf,), we see s;1(qfpio(P)) = Qfy <o Q;

95



and sj2(q;pi(P)) = ¢ipic(P) N Qly < Qi (i # j). Since M is Nj-im-summand
coinvariant, we obtain s;1¢]p;a(Ker p) C Kere); (i # j). On the other hand, since
M is Nj-im-small coinvariant, we see s;2q; piv(Ker p) C Kerp; (i # j). Hence we

obtain
gjpic(Ker ) C sjiqipic(Ker ) © sjpqipic(Ker ) C Ker gy - - - (i),

Since p;a(Kerg) C Q) & QF, by (i) and (ii), we see p;a(Ker ) C Kert (i = 1,2).

Hence we obtain
a(Ker ) € pra(Ker ¢) @ pra(Ker ) C Ker v

Thus M is N; @& No-im-summand coinvariant.

Next we prove M; & My is N-im-summand coinvariant if M; is N-im-summand
coinvariant and N-im-small coinvariant (i = 1,2). Let (P, ¢;) and (Q,v) be the
projective covers of M; (i = 1,2) and N respectively, put P = P, @& Ps, p = 1 D 9
and let a : P — @ be a homomorphism with a(P) <g Q. Since «(P) is projective,
Kera is a direct summand of P. Since P satisfies the finite internal exchange
property, there exists P’ C P, (i = 1,2) such that P = Kera& P/'@ Py. By Lemma
4.2, there exist a direct summand P; of P, and a homomorphism ¢; : P/ — P} (i # j)
such that P, = P/@® P and Kera = (1) ®(s2). Letp, : P =P @& Py P/ &Py — P]
be the projection (i = 1,2). Then p}|., is an isomorphism from (e;) to P/ (i # j).
Put g; = (p}
a(P!") <g Q, we see

<5i>)_1 @ 1pr. Since M, is N-im-summand coinvariant and afi(P) =

afi(Ker ;) € Kertp -- - (iid)

for i = 1,2. As P/ is lifting, there exists a decomposition P/ = P} @& P}, such that
Py

Pl Ce? &(P) (i # j). Let sy : P = Pjj © Py — P/} be the projection (i, j = 1,2).

Since M; is N-im-summand coinvariant and as;ie;(pi|p,)(F) = a(P))) <g Q, we

see asji&;p;(Ker ;) C Kertp. On the other hand, by sjoe;(F)) = &;(F)) N Py < P,

asjeei(pi|p) (%) = afei(P)) N Pjy) < Q. Since M; is N-im-small coinvariant, we see
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asjogi(pl] p,) (Ker ;) € Ker. Hence

agipi(Ker ;) = alsj + sjo)ep;(Ker ;) C Kerep - - - (iv).

For any k; € Ker ¢;, we express k; in P, = P/ & P/ as k; = k] + k!', where k] € P/
and k! € P!'. By (iii) and (), a(k;) = a(k, + k) = a((kl +&:;(k}) + k) —ei(k])) =
afi(k;) — ag;pi(k;) € Kert and therefore a(Ker ¢;) C Ker. Hence we obtain

a(Ker p) = a(Ker ¢ & Ker ¢q) C Ker 1.

Thus M; & M is N-im-summand coinvariant. Il

Now we consider a connection between im-small coinvariance and im-small pro-

jectivity, over a right perfect ring.

Proposition 4.4 Let M and N be modules over a right perfect ring. Then M is

N-im-small coinvariant if and only if M is im-small N-projective.

Proof Let (P, ¢) and (Q,7) be projective covers of M and N, respectively.

(=) Let f : M — X be a homomorphism with f(M) < X and g : N — X
an epimorphism. Since P is projective, there exists a homomorphism a : P — @
such that gya = fp. As @ is lifting, there exists a decomposition Q = K & Q'
such that K C9 Kergy. Let ¢ : Q = K & Q" — Q' be the projection. Suppose
Q' = qo(P)+T for some T' C Q". By gip(qa(P)) = gvva(P) = fo(P) = f(M) < X,
g¥(Q') = g¥(qa(P)) + g(T) = g(T). So Q" = Ker(g|g) + T = T and hence
ga(P) < @'. Since M is N-im-small coinvariant, qa(Ker ¢) C Ker . Therefore we
can define a homomorphism h : M — N by h(y¢(x)) = ¢qa(z), where x € P. Then
for any m = p(z) € M, gh(m) = gh(¢(z)) = giqa(z) = gba(z) = fe(x) = f(m),
where x € P. Thus M is im-small N-projective.

(<) Let @ : P — @ be a homomorphism with a(P) < ) and let 7 : N —
N/vpa(Ker @) be the natural epimorphism. Then we can define a homomorphism f :
M — N/¢pa(Ker ) by f(e(x)) = mpa(z), where © € P. By a(P) < Q, f(M) <
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N/ya(Ker ). Since M is im-small N-projective, there exists a homomorphism
h: M — N such that 7h = f. By the same proof in (a) = (b) of Theorem 3.3, we
obtain «a(Ker ¢) C Ker . O

Next, we consider a connection between N-im-summand coinvariance and im-

coclosed N-projectivity, over a right perfect ring.

Theorem 4.5 Let M and N be modules over a right perfect ring. Then M is N-

im-summand coinvariant if and only if M is im-coclosed N -projective.

Proof Let (P,¢) and (Q, ) be projective covers of M and N, respectively.

(=) Let X be a module, f : M — X a homomorphism such that f(M) is
coclosed in X and g : N — X an epimorphism. Since () is lifting, there exists a
decomposition @ = K & Q' such that K C% Ker gio. Then gi)|g : Q' — X is a small
epimorphism. Since ' is also lifting, there exists a decomposition Q' = Q1 & Q-
such that Q1 CZ (g¢lq) ' (f(M)). By Lemma 0.7 (3), g(Q1) X f(M). As
f(M) is coclosed in X, we see gi)(Q1) = f(M). Since P is projective, there exists
a homomorphism a : P — @ such that (g¢|g,)a = fe. By Kergi|g, < O,
a is onto. So we see a(Kerp) C Kervy. Hence we can define a homomorphism
h: M — N by h(p(x)) = Ya(x). Then gh = f.

(<) Let @ : P — @ be a homomorphism with a(P) <4 Q. By va(Kerp) < N,
the natural map © : N — N/va(Kery) is a small epimorphism. Hence mwipa(P)
is coclosed in N/ipa(Kery) by Lemma 0.7 (4). Now we define a homomorphism
f:M — N/ypa(Ker ) by f(p(z)) = mpa(x), where z € P. Since f(M) is coclosed
in N/vya(Ker ), there exists a homomorphism h : M — N such that 7h = f. By
the same proof in (a) = (b) of Theorem 3.3, we obtain a(Ker ¢) C Ker . O

Proposition 4.6 Let M and N be modules over a right perfect ring. Then M is X -

im-summand coinvariant for any submodule X of N if and only if M is N-projective.

Proof (<) By Lemma 0.2 (1) and Theorem 4.5.
(=) Let f : M — N/K be a homomorphism and let 7y : N — N/K be
the natural epimorphism, where K is any submodule of N. Put f(M) = A/K
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for some submodule A of N with K C A. Let (P,¢) and (Q,%) be projective
covers of M and A, respectively. Since () is lifting, there exists a decomposition
Q = T ® Q' such that T C9 Kermy¢), where 74 : A — A/K is the natural
epimorphism. Put ¢/ = ma1|¢, then (@', ¢’) is the projective cover of A/K. Since
P is projective, there exists an epimorphism « : P — Q)" such that fo = 1’«a. Since
M is A-im-summand coinvariant by the assumption, we see ta(Kery) C Ker ),

where ¢ : Q' — Q =T & (' is the inclusion. Hence we can define a homomorphism

h: M — N by h(p(x)) = ¢Yra(x), where x € P. Then nyh = f. O

The following corollary is immediate from Propositions 4.1, 4.4 and Theorem

4.5.

Corollary 4.7 Let M, N, M; (i € I) and N; (j € J) be modules over a right
perfect ring. Then
(1) If M is im-small N-projective, then M is im-small N/X -projective and im-

small X -projective for any submodule X of N.

(2) If M is im-coclosed N -projective, then M is im-coclosed N /X -projective for
any submodule X of N. Moreover, for any coclosed submodule X of N, M is

im-coclosed X -projective.

(8) If M/S is im-small (im-coclosed, resp.) N-projective for some S < M, then

M is im-small (im-coclosed, resp.) N-projective.

(4) If M is im-small (im-coclosed, resp.) N-projective, then M’ is im-small (im-

coclosed, resp.) N-projective for any direct summand M' of M.

(5) If M; is im-small N;-projective for anyi € I and j € J, then &M, is im-small
@y N;-projective.

Example 4.8 An N-im-summand coinvariant module is not always N -im-small

K K K K
0 K 0 K
cotnvariant. Let R = , where K is any field. Then R s right
0 0 K 0
0 0 0 K
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perfect. Let M = (0,K,K,K)/(0,0,K,K) and N = (K,K,K,K). Since N is
hollow, N/X s also hollow for any submodule X of N. A homomorphism f :
M — N/X such that f(M) is coclosed in N/X is only the zero map, because M
is mot isomorphic to N/X for any submodule X of N. Hence M is im-coclosed
N-projective. On the other hand, the inclusion map + : M — N/(0,0, K, K) cannot
be lifted to a homomorphism from M to N. Since Ime is small in N/(0,0, K, K),
M is not im-small N-projective. Thus M is N-im-summand coinvariant but not

N-im-small coinvariant by Theorem 4.5 and Proposition 4.4.

According to the above example, in general, an N-im-summand coinvariant mod-
ule M need not be N-im-small coinvariant for a module N over a right perfect ring.

However, if N is a small epimorphic image of M, the following holds.

Proposition 4.9 Let M and N be modules over a right perfect ring. Suppose that
there exists a small epimorphism from M to N. If M is N-im-summand coinvariant,

then M is N-im-small coinvariant.

Proof Let M be N-im-summand coinvariant and let f : M — N be a small
epimorphism. Since f is a small epimorphism, we can take (P, ¢) and (P, fy) as
the projective covers of M and N respectively.

Let o : P — P be an endomorphism with a(P) < P. By a(P) < P, P = (1 —
a)(P)+a(P) = (1—a)(P). So we see that 1 —« is onto. Since M is N-im-summand
coinvariant, (1 — a)(Kerp) C Ker fo. By Keryp C Ker fy, a(Kerp) C Ker fep.

Therefore M is N-im-small coinvariant. O

Let M be a module over a right perfect ring and let (P, ¢) be the projective
cover of M. M is called automorphism coinvariant if a(Kerp) C Kerp for any
automorphism « of P.

In the proof of Proposition 4.9, for any k& € Ker(1 — a), k = a(k) € a(P). So
Ker(1 — a) C a(P) <« P. On the other hand, Ker(1 — ) is a direct summand of P
by P/ Ker(1 —«a) = (1 —«)(P) = P. Hence 1 — « is a monomorphism. Thus by the

similar proof of Proposition 4.9, we obtain the following:
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Corollary 4.10 Let M be a module over a right perfect ring and we consider the

following conditions:
(1) M is M-im-summand coinvariant,
(2) M is automorphism coinvariant,
(8) M is M-im-small coinvariant.

Then (1) = (2) = (3) holds.

A module M is said to be radical N-projective for a module N if, for any module
X, any homomorphism f : M — X and any epimorphism g : N — X, there exists
a homomorphism h : M — N such that (f — gh)(M) < X.

Lemma 4.11 ([25, Proposition 1.2]) A module M is radical N -projective for a mod-
ule N if and only if, for any module X, any homomorphism f : M — X and any
epimorphism g : N — X, there exist a module Y, a small epimorphism p: X —Y

and a homomorphism h : M — N such that pf = pgh.

Proposition 4.12 Let M and N be modules over a right perfect ring. If M is

im-summand N -projective, then M is radical N-projective.

Proof Let X be a module, f : M — X a homomorphism and g : N — X an
epimorphism. Let Y be a supplement of f(M) in X. By f(M)NY is small in X,
the natural epimorphism p : X — X/(f(M)NY) is a small epimorphism. Then
X/(FM)NY) = f(M)/(f(M)NY)Y/(f(M)NY) and so pf (M) = f(M)/(f(M)N
Y) is a direct summand of X/(f(M)NY). Since M is im-summand N-projective,
there exists a homomorphism h : M — N such that pf = pgh. Therefore M is
radical N-projective by Lemma 4.11. O

Lemma 4.13 ([25, Proposition 1.3]) Let M and N be modules. Then M is N-

projective if and only if M is radical N-projective and im-small N -projective.

61



Proposition 4.14 Let M and N be modules over a right perfect ring. Then M
is N-im-summand coinvariant and N-im-small coinvariant if and only if M is N-

projective.
Proof By Propositions 4.4, 4.12, Theorem 4.5 and Lemma 4.13. U
The following is obtained by Propositions 4.1 and 4.14.

Corollary 4.15 Let M and N be modules over a right perfect ring and S a small
submodule of M. If M/S is N-projective then M is N-projective.

Theorem 4.16 Let M be a module over a right perfect ring and let N be a small

epimorphic image of M. Then the following conditions are equivalent:
(a) M is N-projective,
(b) M is im-coclosed N -projective,
(¢) M is N-im-summand coinvariant.

Proof By Theorem 4.5, Propositions 4.9 and 4.14. U

Next we show that M is M-projective if and only if M is im-summand M-
projective, if and only if M is M-im-summand coinvariant, for any module M over

a right perfect ring. We first need to give the following lemma:

Lemma 4.17 Let M be an im-summand M -projective module with the projective

cover (P, ). Then for any decomposition P = P, & Py, M = ¢(P,) & ¢(P).

Proof Letp,: P = P, @& P, — P, (i = 1,2) be the projection. Given ¢(z;) =
o(2) € [p(P)/ e (Ker 0)] N [(p(P2) + op1 (Ker ) /opi (Ker ). By p(ay —a2) €
op1(Ker @), there exists k € Ker ¢ such that ¢(z; — z3) = ¢(p1(k)). Then z; —
xe — p1(k) € Kery and so ;7 — p1(k) € pi(Kerp). By z; € pi(Kerg), we see
[o(P1)/epr(Ker )] N [(p(F) + ¢p1(Ker @) /epi(Kerg)] = 0. Now, we define a

homomorphism f : M — M/gp;(Kerg) by f(p(x)) = ¢pi(x), where = € P.
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Then f(M) = ¢(P1)/pp1(Ker p) <g M/pp1(Ker ). Since M is im-summand M-
projective, there exists an endomorphism A of M such that wh = f, where 7 :
M — M/ppi(Ker ) is the natural epimorphism. By the same proof in (a) = (b)
of Theorem 3.3, we obtain p; (Ker ¢) C Ker ¢.

By o(P1) N(P,) C ppi(Kerp) C p(Kerp) = 0, we obtain that M = p(P) &
o(Py). O

Theorem 4.18 Let M be a module over a right perfect ring. Then M is im-

summand M -projective if and only if M is M-im-summand coinvariant.

Proof (<) By Theorem 4.5.

(=) Let (P, ) be the projective cover of M and let o be an endomorphism of P
with a(P) <g P. Put P = a(P)®P’. By Lemma 4.17, we see M = p(a(P))Dp(P').
Then M/pa(Kerp) = (pa(P)/pa(Kerp)) @ ((p(F') + pa(Ker ¢))/va(Ker ¢)).
Now we define a homomorphism f : M — M/pa(Kery) by f(o(z)) = mpa(x),
where x € P and 7 : M — M/pa(Ker ) is the natural epimorphism. Since M
is im-summand M-projective and pa(P)/pa(Ker¢) <g M/pa(Ker @), we obtain
a(Kery) € Kery by the same proof in (a) = (b) of Theorem 3.3. Thus M is

M-im-summand coinvariant. O

A module M is called pseudo-projective if, for any module X, any epimorphisms

f and ¢ from M to X, there exists an endomorphism h of M such that f = gh.

Lemma 4.19 ([17, Corollary 2.6]) A lifting module M is pseudo-projective if and
only if it is M -projective.

Lemma 4.20 ([11, Theorem 2.3]) A module M over a right perfect ring is auto-

morphism coinvariant if and only if it is pseudo-projective.

Corollary 4.21 Let M be a module over a right perfect ring. Then the following

conditions are equivalent:
(a) M is M-projective,
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(b) M is im-coclosed M -projective,
(¢c) M is im-summand M -projective,
(d) M is M-im-summand coinvariant.
If M is lifting, then (a)-(d) are equivalent to :
(e) M is automorphism coinvariant.

Proof By Proposition 4.18, Theorem 4.16 and Lemmas 4.19 and 4.20. U

4.2 Rings whose factor square full modules are closed under

essential extensions or essential submodules

According to Example 2.10, factor square full modules are not closed under essential
extensions or essential submodules, in general. In this section, we study right perfect

rings which satisfy the following conditions:
(%) factor square full modules are closed under essential extensions,
(xx) factor square full modules are closed under essential submodules.

Throughout this section, we denote the Jacobson radical of R by J.
A module M is called noetherian (artinian, resp.) if it satisfies the ascending
(descending, resp.) chain condition on submodules. A ring R is said to be right

noetherian (right artinian, resp.) if the right R-module R is noetherian (artinian,

resp.).
Lemma 4.22 ([1, Propositions 10.9 and 10.10])

(1) A module M is noetherian if and only if any submodule of M is finitely gen-

erated.

(2) A module M 1is artinian if and only if any factor module of M is finitely

cogenerated.
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Lemma 4.23 (cf. [1, Corollary 15.23]) A ring is right artinian if and only if it is
right noetherian and right (or left) perfect.

Proposition 4.24 (1) A uniserial module over a right perfect ring is noetherian.

(2) A uniserial module over a left perfect ring is artinian.

Proof (1) Let U be a uniserial module over a right perfect ring. Then any sub-
module of U is uniserial with the maximum proper submodule by Lemmas 0.15 (6)
and 0.18 (2). Therefore U is noetherian by Lemma 4.22 (1).

(2) Let U be a uniserial module over a left perfect ring. Then any nonzero factor
module of U is uniserial with the minimum nonzero submodule by Lemmas 0.15 (6)

and 0.18 (2). Therefore U is artinian by Lemma 4.22 (2). O

Lemma 4.25 Let R be a right perfect ring with the condition (x) or (xx), let e be a
primitive idempotent of R and let S be a simple module. If S is embedded in eR/X
for some submodule X of eR, then S = eR/elJ.

Proof Let f be a primitive idempotent of R with S = fR/fJ. Since S is embedded
in eR/X, there exists a complement submodule K/X of S in eR/X. By Lemma
0.6, (S & (K/X))/(K/X) Ce (eR/X)/(K/X).

In the case that R satisfies (%), (eR/X)/(K/X) @ fR/fJ is factor square full
because it is an essential extension of a factor square full module S @ S = (S @
(K/X))/(K/X)® fR/fJ. So its projective cover eR @ fR is also factor square full
by Proposition 2.9.

In the case that R satisfies (xx), since eR @ eR is factor square full, we see
(eR/X)/(K/X) @ eR is factor square full, and so is its essential submodule (S @
(K/X)/(K/X)®eR=SoeR= fR/fJ®eR. Hence fRGeR is also factor square
full by Proposition 2.9.

In either case, eR = fR by Proposition 2.12. Thus S = fR/fJ = eR/el. O

A ring R is said to be right serial if the right R-module R is a direct sum of

uniserial modules.
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Proposition 4.26 Let R be a right perfect ring with the condition (x) or (xx). Then

R is right artinian right serial.

Proof Let {ej,es,...,e,} be a complete set of primitive orthogonal idempotents
of R. We show that any nonzero submodule of e; R is local for each i = 1,2,...,n.
Assume that there exists a nonzero submodule X of e¢; R which has two distinct
maximal submodules A and B. Put T'= ANB. By X = A+B, wesee X/T = A/T®
B/T = X/B®X/A. Since X/T C ¢;R/T, X/A and X/B are isomorphic to e;R/e;J
by Lemma 4.25. Now, there exists a homomorphism g : ¢;R/T — E(X/T) such that
g|x/r is the inclusion by injectivity of £(X/T). Then X/T C g(e;R/T) C E(X/T),
so X/T C. g(e;R/T) C. E(X/T). Since X/T = X/A® X/B = (e;R/e;J)* and
E(X/T) = E(e;R/e;J)? are both factor square full, g(e;R/T) is also factor square
full. This contradicts that g(e; R/T) is hollow. Therefore any nonzero submodule of
e; R is local, and so e; R is uniserial by Lemma 0.15 (5). By Lemma 4.24, each e; R
is noetherian. Hence Rp = @] ¢, R is also noetherian. Thus R is right artinian by

Lemma 4.23. U

Proposition 4.27 Let R be a basic right perfect ring with the condition (x) or (xx)
and {e1, eq, ..., e} a basic set of primitive orthogonal idempotents of R. Then each

e; 18 central.

Proof If there exists a nonzero homomorphism f : e, R — ¢ R for k # [, then
Ker f < e R and f(erR) C. €,R because each e; R is uniserial by Proposition 4.26.
Since R satisfies (%) or (xx), f(exR) @ e R is factor square full because it is an
essential extension of f(exR) @ f(erR) and an essential submodule of ¢;R @ ¢,R.
Hence its projective cover e, R ® ¢ R is also factor square full, a contradiction. So
eRer = Hompg(epR, e R) = 0 for k # [. Thus for any element r of R, e;r =
eir(er+es+---+e,) =ere; = (e +ea+---+e,)re; =re; forevery i =1,2,... n.

O

Theorem 4.28 Let R be a basic right perfect ring and {e1, es, ..., e,} a basic set of

primitive orthogonal idempotents of R. Then the following conditions are equivalent:
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(a) R satisfies the condition (%),
(b) dual square free modules are closed under submodules,
(¢) R=1I",e;Re; as rings and each e;Re; is right artinian right uniserial.

Proof (b) < (c) is proved in [19, Proposition 4.6].

(a) = (c): By Propositions 4.26 and 4.27.

(¢) = (a): Let N C, M, let (P, ¢) and (Q, ) be the projective covers of M and
N respectively, and express P = @7 (e;R)) and Q = &7, (e; R)59). Suppose that
M is not factor square full, there exists k& € {1,2,...,n} such that #I = 1. Since
(@ is projective, there exists a homomorphism f : ) — P such that of = 1. As
each ¢; is central, f((e,R)*#)) C ¢, R. Since ;R is uniserial and Ker fliepryn <

(exR)E®) | (e, R)E#) is hollow and so #K;, = 1. Thus N is not factor square full. [J

Proposition 4.29 Let R be a right perfect ring with the condition (xx) and let
{e1,ea,...,en} be a basic set of primitive orthogonal idempotents of R. Then each

e R is injective.

Proof Let (P, ) be the projective cover of E(e,R) and let P = @7 (e;R)™). By
Proposition 4.27, ¢((e;R)*))NepR = 0 for every i # k, and hence ¢((e;R)*)) =0
because e, R C, E(exR). So P = (e, R)™%). In addition, #A; = 1 by the condition
(xx). Hence |exR| < |E(exR)| < |exR|, where | X| means the length of a module X.
Thus E(exR) = exR. O

A ring R is called quasi-Frobenius if R is two-sided artinian and two-sided self-

injective.

Lemma 4.30 ([1, Theorem 31.9]) For a ring R, the following conditions are equiv-

alent:
(a) R is quasi-Frobenius,
(b) any projective right R-module is injective,
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(c) any injective right R-module is projective.

Lemma 4.31 ([1, Theorem 32.3]) For a right artinian ring R, R is two-sided serial
if and only if the injective hull and the projective cover of any simple right R-module

18 uniserial.

Theorem 4.32 Let R be a basic right perfect ring and {e1, es, ..., e,} a basic set of

primitive orthogonal idempotents of R. Then the following conditions are equivalent:
(a) R satisfies the condition (xx),
(b) dual square free modules are closed under essential extensions,

(¢) R=T1I!" ,e;Re; as rings and each e;Re; is (quasi-)Frobenius uniserial.

(a) = (¢
() = (a

of M. Then E(M) is factor square full by Theorem 4.28. By Lemma 4.30, E(M) is

Proof (b) < (c¢) is proved in [19, Theorem 4.11].
): By Propositions 4.26, 4.27, 4.29 and Lemma 4.31.
):

Let M be a factor square full module and N an essential submodule

projective and so we can express F(M) = O (e;R)™) where #A; > 2 or #A; =0
for i =1,2,...,n. Let t;, : ;R — (e;R)™) be the M-injection (i = 1,2,...,n and
A€ N;). Foranyi=1,2,...,nand any A\ € A;, t;x(e; R)NN C, 1;5(e; R) because N is
essential in £(N) = E(M) and each e; R is uniserial. Hence @7 @y, (tix(e;R)NN) C,
N C. @7, (e;R)™). Since the projective cover of 15 (e;R)N N is e;R (i =1,2,...,n
and A € A;), &, B, (tin(e;R) N N) is factor square full by Proposition 2.9. Thus
N is also factor square full by Theorem 4.28. U

Remark 4.33 By Theorem 4.28 and Theorem 4.32, a ring R with (xx) satisfies
(x). However, the converse does not hold. Let R = Q(x) @ uQ(x) and define
its multiplication by (f(x) + ug(x))(f'(x) + ug'(z)) = f(2)f'(x) + u(g(x)f'(z) +
f(x®) g (2)) for f(z) +ug(z), f'(x) +ug'(x) € R. Then R is a right artinian right
uniserial ring but not left uniserial (see [19, Example 4.12]). Hence R satisfies (x)

but it does not have (xx).
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