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SUMMARY

Most of the area in Malaysia are prone to floods, and get affected almost every year.
Flooding can be caused by heavy rainfall during the monsoon, geographical conditions, and
other factors. Flood change studies are divided into 2 dimensions: temporal and spatial. A high
number of flood observation is crucial so that timely measures can be taken. However, because
each satellite data has its own characteristics, obtaining a consistent and robust water
classification is difficult. Change detection, visual interpretation utilizing RGB composition,
supervised classification, image texture algorithms, and active contour models are some
available SAR and optical image data classification technique. Despite the abundance of near
real-time data available, decision-makers in the disaster response phase appear to be
underutilizing the data and information due to a number of constraints. Despite numerous
remarkable efforts, existing satellite technology or any single data product has not been able to
overcome the current decision-makers problem. As a result, rather than establishing a new
system for a better flood operation, there is a requirement to develop a process for improving the
end product for an efficient disaster response. This study focuses on using the same processing
platform to standardize multi-source remote sensing data. In this context, standardizing with the
meaning to eliminate major inconsistency and differences between the dataset.

The first main objective of this dissertation is to show how to use SAR polarization to
automatically detect floods. Otsu thresholding method and using either single-polarization or
total backscatter were assessed to extract surface water from image data. In comparison, total
backscatter of polarization was chosen for automatic extraction due to the higher frequency of
bimodal histogram compared to using single polarization. This chapter also is to utilize optical
images to detect floods automatically. Spatial performance of each classifier, Normalized
Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and
Automated Water Extraction Index No shadow (AWElInsh), and Automated Water Extraction
Index with shadow (AWEIsh), stability of each classifier was compared for extraction of surface
water from image data. MNDWI is chosen to represent surface water classification from the
optical image data.

The dissertation's second objective is to increase the stability of surface water
classification by integrating multispectral and multi SAR images. The flood event in Perlis in
September 2017 was chosen as the case study. During this flood episode, Perlis was hit by
Typhon Doksuri, which passed over Northern Vietnam on September 15th, resulting in
continuous rainfall from September 15th until early October 2017. This study proposes to use the
Modified Normalized Water Index (MNDWI) on one Landsat 7 image, two Landsat 8 images,
five MODIS images, and total backscatter of polarization in four ALOS-2 images and ten
Sentinel-1 images, then to employed Otsu image segmentation to distinguish water and non-
water areas. The potential for image fusion to improve water area extraction consistency was
studied. In this context, fusion is required to obtain a single image that retains essential features
of original images, the simple and robust fusion of images with the same observation period has
been proposed in this study. Similar image registration and preprocessing are used in the overall
for fusion processing. The backscatter of SAR is not directly comparable to the MNDWI, from
optical images. The MNDW!I data was rescaled by inverting the minimum and maximum index
values, so that pixels near to 1 represent water and pixels close to 0 represent non-water. The
rescaled MNDWI optical image and SAR were then used to a 2D wavelet transform. The
wavelet transform was utilized in this work to fuse two images using Python 3.6. Finally, the
fused images were processed using Otsu thresholding. The results suggest that using a grid to
incorporate a flood inundation model provides a useful overview of the flood inundation process
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and able to eliminate inconsistency, especially in areas where data is scarce. Unflooded areas can
be ignored when utilizing a grid system, which reduces processing time.

The third objective is to discuss about the relation of the flood occurrence with the
surface water map at a low-lying area. To validate our findings, we used global surface water
(GSW), to be as referral map to associate flood occurrence with the surface water flood. This
varied distribution suggests that the levels of risk of surface water flooding are determined by
factors associated with topography and land use. The low-lying areas, which include the main
paddy lands, residential areas, highways, rails, and sugarcane plantations, are identified as those
that are destructible by floods. The other class in the reclassified map includes primarily forest
and rubbers which refer as highland area, which are less likely to be inundated or disrupted by
floods than low-lying areas.

Although there is still challenge to eliminate temporal inconsistency, standardization of
flood map is critical step to classified water extent from multisensor satellite.



TABLE OF CONTENTS

Page
ACKNOWLEDGMENT 2
PREFACE 3
SUMMARY 5
TABLE OF CONTENTS 7
LIST OF FIGURES 9
LIST OF TABLES 12
LIST OF ACRONYMS 13
CHAPTER I INTRODUCTION 15
1.1 Background 15
1.2 Research Problems 19
1.3 Research Objectives 19
1.4 Dissertation Structure and Outline 20
References 20
CHAPTER II LITERATURE REVIEW 22
2.1 Flood mapping: Radar and optical 22
2.2 L-band and C-band for flood detection 23
2.3 Flood mapping using optical 27
2.4 Principle of single image water mapping 28
2.5 Otsu method 29
References 30
CHAPTER III OVERVIEW OF THE WORK 36
3.1 Overview of the work 36
CHAPTER IV AUTOMATED CLASSIFICATION USING THRESHOLDING 37
4.1 Introduction 37
4.2 Study area 38
4.3 Satellite data 39
4.4 Research flowchart 39
4.5 Development of water references 40
4.6 Automatic thresholding using Otsu Thresholding in Python 41
4.7 Results and discussions 44
4.7.1 Automated thresholding with Otsu 44
4.7.2 Water classification using Otsu technique 48
4.7.3 Cloud masking of multispectral images 48
4.7.4 Automatic thresholding using Otsu Thresholding 50

4.7.5 Changes of water extent in the study area from Landsat 7, Landsat 8, and MODIS 52
data using various water indexes.

4.8 Ground Station data 52
4.9 Multitemporal water spatial classification using Sentinel-1 56
4.10 Integration of Multi SAR and Multispectral 59
4.11 Discussion of chapter IV 60
References 61



CHAPTER V IMPROVED CONSISTENCY INTEGRATION OF SAR AND OPTICAL
WATER EXTENT DATA

5.1 Introduction

5.2 Satellite data

5.3 Research flowchart

5.4 Grid resolution and image resampling

5.5 2D wavelet transform for image fusion

5.6 Performance evaluation for data-scarce areas
5.7 Grid-based image fusion

5.8 Evaluation results

5.9 Discussion of chapter V

References

CHAPTER VI ASSESS WATER EXTENT MAP WITH SURFACE WATER MAP FROM
GSW
6.1 Introduction
6.2 Study area and Satellite data
6.3 Accuracy assessment Method
6.4 Results and Discussion

6.4.1 Region a)

6.4.2 Region b)

6.4.3 Region ¢)
6.5 Discussion for Chapter VII
References

CHAPTER VII CONCLUSION
7.1 Dissertation Conclusions
7.2 Limitations and Future Work

62

62
62
64
65
66
67
67
71
72
73

74

74
75
77
78
78
79
80
81
82

83
84



LIST OF FIGURES

Figure 1.1: Regional wind flow and seasonal monsoon flows.

Figure 1.2: Flood-prone area in Malaysia mark in green. Source: Drainage and
Irrigation Department Malaysia [Online] (2012).
Figure 1.3: Multi satellite earth observation data for flood spatial study.

Figure 1.4: Example of Multi satellite earth observation for Flood Mapping
Figure 1.5: Methods for flood mapping.

Figure 1.6: Common method for flood mapping.

Figure 2.1: Conceptual model of spatial and temporal variations for pre-flood, flood,
and post-flood.

Figure 2.2: Different radar signal shows different penetration levels [39]

Figure 2.3: Example of the horizontal and vertical radar signal. [39]

Figure 2.4: Example of the horizontal and vertical radar signal. [39]

Figure 2.5: Example of the incidence angle. [39]

Figure 2.6: Interaction of L-band and C-band with different types of surface during
and no flood condition.

Figure 2.7: SAR backscattering histogram thresholding.

Figure 2.8: Optical satellite histogram thresholding.

Figure 3.1: Overview of the work.

Figure 4.1: Photographs from the Perlis flood disaster on September 22nd and 23rd,
2017.

Figure 4.2: Study area.

Figure 4.3: Flowchart of spatial-temporal water movement detection

Figure 4.4: Water references selection criteria

Figure 4.5: Determination of foreground and background using water references with
bimodal.

Figure 4.6: Calculation within class variance

Figure 4.7: Same calculation needs to be performed for all the possible threshold
values.

Figure 4.8: Automatic thresholding using OTSU Thresholding in Python

Figure 4.9: The weigh average of HH applied on the whole area

Figure 4.10: The weigh average of HH+HV applied on the whole area

Figure 4.11: Extracted result of weight average from the image acquired on October
02 2014 a) raw ALOS-2 HH, b) OTSU ALOS-2 HH, c¢) raw ALOS-2 HH+HYV d)
OTSU ALOS-2 HH+HV.

Figure 4.12: Close-ups of the extracted result from the image HH+HV acquired on
October 02 2014.

Figure 4.13: Visual of surface water extent using ALOS-2 6.25m for 2014 and 2017
flood.

Figure 4.14: Cloud masking of optical images.

Figure 4.15: Determination of foreground and background using water references
with bimodal histogram.

Figure 4.16: Same calculation needs to be performed to all water indices.

Figure 4.17: Sample of water classification using different water index using

Landsat 7 (2017/09/07).

Page
15

16

17

17
18

19
22

24
25
25
26
27

29
29
36
37

38
40
41
42

43
43

44
45
45
46
47
48

49
50

50
51



Figure 4.18: Changes of water extent in the study area from Landsat 7, Landsat 8,
and MODIS data using various water indexes.

Figure 4.19: The study area's elevation map. The map displays the location and flood
information for some of the damaged residential areas, which are represented by red
dots. Blue triangles show water level data from the ground station.

Figure 4.20: Study area contour map.

Figure 4.21: Downstream ground observation data

Figure 4.22: Upstream ground observation data.

Figure 4.23: Upstream and downstream maximum water level comparison.

Figure 4.24: Sample of water classification using different water index using Sentinel
1 from 06/09/2017 to 30/10/2017

Figure 4.25: Temporal coverage of ALOS-2 and Sentinel-1

Figure 4.26: Changes of water extent in the study area from Sentinel-1 and ALOS-2 data.
Figure 4.27: Extent of the September 2017 flood extracted from the Sentinel-1
satellite images.

Figure 4.28: Examples of water area detection in a) lake and b) river (bottom). The
water area is shown in blue and the background image shown is the Google Earth
image.

Figure 4.29: Temporal coverage of the satellite images used in this study.

Figure 4.30: Changes of surface water extent in the study area from Sentinel-1,
ALOS-2, Sentinel-2, Landsat 7, Landsat 8, and MODIS data between 06/09/2017 to
30/10/2017.

Figure 5.1: Flowchart of the automatic flood mapping process.

Figure 5.2: A reference vector grid of 30 x 30-pixel (w x h) size.

Figure 5.3: 2D wavelet transform fusion process [5].

Figure 5.4: Landsat 7 optical image (left) and MODIS Terra optical image (center),
both acquired on 7 September 2017, and a fused image created using these two
images (right). The water area is shown in blue.

Figure 5.5: Scatterplots between (a) MNDWI of Landsat 7 optical images and that of
MODIS optical image, (b) MNDWI of Landsat 7 optical image and that of fused
image, and (¢c) MNDWI of MODIS optical image and that of the fused image.

Figure 5.6: Sentinel-1 (left) and MODIS Terra (center) images, both acquired on 12
September 2017, and a fused image created using these two images (right). The water
area is shown in blue.

Figure 5.7: Scatterplots between (a) MNDWI of Sentinel-1 backscatter images and
that of MODIS optical images, (b) MNDWTI of Sentinel-1 backscatter images and

that of fused images, and (c¢) MNDWI of MODIS optical images and that of fused
images.

Figure 5.8: Time series of the surface water extent extracted from multiple satellite
images for some of the flood-affected grids. (a) Grid 5, (b) Grid 20, (c¢) Grid 21, (d)
Grid 29, and (e) Grid 39.

Figure 5.9: Time series of (a) the extracted surface water area in grid 21 and the
water level measured at the Kg Repoh station, and (b) the extracted surface water
area in grid 29 and the water level measured at the Kg Bakau station.

Figure 6.1: a) No flood view in Kedah area and b), ¢) and d) Photos of submerged
houses and paddy field in torrential rain in Kedah source from social media. Kedah
land use majorly comprise of paddy field.

10

52

53

54
54

55

55
56

56
57
57
58

59
59

65
66
67
68

68

69

69

70

71

74



Figure 6.2: a) ALOS-2 HH+HV b) GWS binary image. Dark color indicates water
region while, white color indicates non-water area.

Figure 6.3: Closed up of study area a), b) and c¢) and the blue is the flood extent on
2014 report by DID.

Figure 6.4: a) ALOS-2 HH+HV b) GWS binary image. White color indicates water
region while, dark color indicates non-water area.

Figure 6.5: a) ALOS-2 HH+HV b) GWS binary image. Dark color indicates water
region while, white color indicates non-water area.

Figure 6.6: a) ALOS-2 HH+HV b) GWS binary image. Dark color indicates water
region while, white color indicates non-water area.

11

75

76

78

79

80



LIST OF TABLES

Table 2.1 Summary of L band and C band characteristics.

Table 4.1: Utilized PALSAR-2 data.

Table 4.2: Automatic threshold values using the OTSU technique of water reference
with circle areas from the HH and HH + HV sigma-naught values taken on the
evening of 02 October 2014 5.30 PM until 01 March 2018 5.30 PM.

Table 5.1: Details of the (SAR) and optical satellite images used in this study.

Table 6.1: Result of Errors of Omission, Errors of commission and Kappa coefficient
for Region a)

Table 6.2: Result of Errors of Omission, Errors of commission and Kappa coefficient
for Region b).

Table 6.3: Result of Errors of Omission, Errors of commission and Kappa coefficient
for Region c¢)

12

Page
26

39
47

63
78
80

81



LIST OF ACRONYMS

ALOS-2: Advanced Land Observing Satellite-2

AWElInsh: Automated Water Extraction Index No shadow
AWEIsh: Automated Water Extraction Index with shadow
DEM: Digital Elevation Model

DID: Department of Irrigation and Drainage

ENSO: El-Nifio Southern Oscillation

EO: Earth Observation

HH: Horizontal transmission and horizontal reception
HV: Horizontal transmission and vertical reception
HH: Containing high-frequency diagonal information
HL: Containing high-frequency vertical information
10D: Indian Ocean Dipole

GEE: Google Earth Engine

GSW: Global Surface Water

LH: Containing high-frequency horizontal information
LL: Containing low-frequency approximation information
MBE: Mean Bias Error

MJO: Madden-Julian Oscillation

MODIS: Moderate Resolution Imaging Spectroradiometer
MNDWI: Modified Normalized Difference Water Index
NaFFWS: National Flood Forecasting and Warning System
NDWI: Normalized Difference Water Index

NIR: Near-infrared

13



OLI:

PALSAR-2:

RGB:

RMSE:

SAR:

SWIR:

SLC:

TIRS:

UTM:

VV:

VH:

Operational Land Imager

Phased Array L-band Synthetic Aperture Radar-2
Red, Green and Blue

Root Means Square Error

Synthetic Aperture Radar

Shortwave infrared

Scan Line Corrector

Thermal Infrared Sensor

Universal Transverse Mercator

Vertical transmission and vertical reception

Vertical transmission and horizontal reception

14



Chapter 1
Introduction

1.1 Background

Peninsular of Malaysia is located at the equatorial zone extending in between northern
latitude 1° and 6° N and the eastern longitude from 100° to 103° E. Malaysian climate is
influenced by Northeast monsoon and southwest monsoon, which blow alternately by season.
There is an increase in rainfall during the Northeast monsoon, which takes place from November
and ends in February. While the Southwest monsoon starts from May to August, Malaysia is
more likely in a dry season due to the weaker wind speed.

Figure 1.1: regional wind flow, seasonal monsoon flows, and other dominant modes of
climate variability [12].

Figure 1.1 shows the regional wind flow and seasonal monsoon flows. The Northeast
wind cross over the South China Sea during the Northeast monsoon, and East and South of
Peninsular Malaysia are under heavier rainfall than usual [1]. During Southwest monsoon-
influenced by southwesterly winds usually last for 3-4 months from May to August [2] [3] [4].
Since the southwest monsoon has a weaker wind speed than the northeast monsoon, the dry
season is more likely to occur during this period. Dry seasons are more frequent than wet seasons
due to the stable atmosphere, resulting in less intense convective development. West coastal area
experienced thunderstorms, heavy rain, and strong gusting winds in the predawn and early
morning.

Two shorter transitional periods occur between the monsoon period, usually in April and
October [5]. The winds are generally light and variable.
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Large-scale phenomena such as the El Nifio-Southern Oscillation (ENSO) [7] [8], Indian
Ocean Dipole (IOD) and the Madden-Julian oscillation (MJO) have a significant impact on the
climate of Malaysia [9] [10] [11]. On an intraseasonal period, the Madden-Julian Oscillation
(MJO), which was present throughout the northeast monsoon season, has a considerable impact
on large-scale circulations over the Indian Ocean and Maritime Continent.

Tangang et al. (2008) [9] showed the MJO's relation to the Maritime Continent when
they studied at the impact of atmospheric variables in causing extreme flooding in Malaysia's
southern peninsula. They suggested that the MJO's influence over the Indian Ocean stimulates
strong easterly winds over the Maritime Continent. The easterly wind increases rainfall in
Malaysia's southern peninsula in 2 directions. First, it prevents the Borneo vortex from
developing. When the Borneo vortex is present, the most of the rainfall usually falls in the
western part of East Malaysia. Second, the 5 easterly winds increase the northeasterly wind's
effect. The cold and dry northeasterly wind from the Siberian High warmed up as it passed over
the warm tropical sea, merging with the warm and moist easterly from the Pacific Ocean,
resulting in a more intense formation of convective clouds across southern peninsular Malaysia.

The development of sea surface temperature across the Indian Ocean, known as the
Indian Ocean Dipole (IOD), influences convection during the northeast monsoon season. [13]
stated that the anomalous colder sea surface temperature (SSTA) (negative IOD) across the
southeastern Indian Ocean reduces convection over that region while enhancing convection over
the Malaysian region during the NEM monsoon.

The ENSO is categorized into three phases: neutral, warm (EI Nifio), and cold (La Nifia).
In general, most studies agree that El Nifio tends to reduce rainfall across the Maritime Continent,
whereas La Nifia enhances higher rainfall.

Subramaniam (2009), were discussed for NEM 2016/2017. Over the years, Malaysia has
been prone to flood risk, with an area of about 29,000 km?, as shown in Figure 1.2, affecting
more than 4.82 million people (22% of the population) and suffering annual damage of almost
USD 298.29 million. The previous large-scale floods have destroyed infrastructure, agriculture,
fatality, interfered the human activities, and slowed down economies.

Figure 1.2: Flood-prone area in Malaysia mark in green. Source: Drainage and Irrigation
Department Malaysia [Online] (2012).
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Peninsular Malaysia are very vulnerable to floods and frequently occur during the
monsoon season. Over the years, Malaysia has been prone to flood risk, with an area of about
29,000 km?, as shown in Figure 1.2, affecting more than 4.82 million people (22% of the
population) and suffering annual damage of almost USD 298.29 million. The previous large-
scale floods have destroyed infrastructure, agriculture, fatality, interfered the human activities,
and slowed down economies.

Figure 1.3: Multi satellite earth observation data for flood spatial study.

Every year, there are many parts of Malaysia affected with flood. and, it is difficult for a
single earth observation satellite to cover those affected areas in a short time. the use of
Multisatellite earth observation data to catch significant information of those flood affected areas
was proposed in this study.

Figure 1.4: Example of Multi satellite earth observation for Flood Mapping
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Figure 1.4 shows the example of Multi satellite earth observation near real time data based
on a flood case in Perlis, Malaysia on September 2017. Another important aspect of flood study,
is its temporal changes. And multisatellite have significant advantage on increasing the
frequency of flood observations during the duration of flood. For example, in here we are
showing multisatellite coverage before, during and after a flood case in Perlis on September to
end of October 2017. in case we only use alos-2 images, we can only get 4 numbers of
observation within those 2 months. but when we maximize the utilization of satellite images we
can increase the number of observation frequency and reduce the interval times of observation.

ALOS-2

Sentinel-1
Sentinel-2
Landsat
ASTER
MODIS

WorldView

Figure 1.5: Methods for flood mapping.

Many techniques are used to extract water using optical satellite images and SAR images,
from image processing techniques to image classification techniques: Backscattering difference
use two SAR images (one post-flood /one co-flood or pre-flood) were used for change detection
analyses (Davide et al., 2018). Amplitude classification where training data using water signature
in SAR amplitude image. Signature value is highly variable depending on image acquisition (Liu
et al., 2018). Band index (NDVI, MNDWI, NDW]I) is a derivation of index using imaging
spectral band and its limitation is selecting the optimal water related bands is vital. Supervised
classification (Giordan et al., 2018) select water training data over composite band image
however, it is time consuming (Campbell and Wynne, 2011). Histogram thresholding separate
water and non-water pixels from histogram distribution of SAR backscatter or optical image. It is
based on a single image (Vaibhav et al., 2021), effective pixel-based approach, common method
(Fan and Lei, 2012; Nakmuenwai et al., 2017) and required less time-consuming (Chen et al.,
2021).
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ALOS-2

Sentinel-1

Sentinel-2

Landsat

ASTER

MODIS

WorldView

Figure 1.6: Common method for flood mapping

Presently, even though an abundance of near real-time data is available, the data and
information still appear to be underutilized by decision-makers in the disaster response phase due
to a few constraints, such as the limitation on (1) time and capacity of a person to process new
geospatial datasets, (2) accessibility of near real-time data, (3) compatibility of user platforms
and geospatial data formats, (4) knowledge of the data availability and inadequacy of data
latency, and (5) understanding of the end-user demand on the product and timing needs [6].
Despite various notable efforts, to this end, existing satellite technology or any single data
product could not solve the current challenge from the decision-making standpoint. Hence, to
fulfill decision-makers' needs, there is a demand to develop a process for improving the end
product for an effective disaster response rather than developing a new system to improve flood
operation. The study motivation is to proposed the use of a common method that highly
adaptable to any satellite input data in order to increase the frequency of flood extent observation
during the duration of disaster.

1.2 Research Problem

1. There are much emerging satellite imageries, the data and information still appear to be
underutilized by decision-makers in the disaster response phase.

2. Processing satellite images separately can lead to inconsistency when combining different
datasets for time change analysis using a specific time.

3. Accuracy assessment of satellite imagery is needed to identify the problem of the input
dataset.

1.3 Research Objectives
1. To establish an automated water classification by using SAR and optical images using
common method.

2. To standardize the flood extent output from multi satellite in the context of elimination of
major inconsistency and differences between dataset.
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3. To discuss about the relation of the flood occurrence with the surface water map at a low-
lying area.

1.4 Dissertation Structure and Outline

This dissertation consists of six chapters. This paper begins with an introduction of the
research, given in Chapter 1. A short explanation of the basic theory behind SAR and related
methods of water classification and thresholding using SAR and optical data are presented in
Chapter 2. To summarize the research objectives, the overview of the work was shown in
Chapter 3. The automatic flood detection using ALOS-2 images and for optical images, water
surface detection is described in Chapter 4. Chapter 5 focuses on the applications of both
automatic methods on both SAR and optical images and in order to improve consistency of multi
satellite output by standardizing the automatic flood detection method and the results obtained.
Discussion about the relation of the flood occurrence with the surface water map at a low-lying
area is evaluated in Chapter 6. Finally, Chapter 7 discusses and summarizes the main results of
the study.
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Chapter 11
Literature Review

2.1 Flood mapping: Radar and optical

To monitor surface water dynamics, two forms of Earth Observation (EO) satellite
images with high geographical and temporal resolutions are used: multispectral and radar data.
Earth observation satellites provide multitemporal coverage of huge areas, which is commonly
used to study differences in land cover before, during, and after flood occurrences. [1,2,3.4].
Figure 2.1 shows the dynamic behavior of a flood in an inundated area. The conceptual model is
consistent with prior research [5,6], which found that the flood extent peaked during the flood
and then rapidly declined a few days later.

A

Spatial variation

Low ——» High

Low » High
Temporal variation

Figure 2.1: Conceptual model of spatial and temporal variations for pre-flood, flood, and post-
flood.

Optical and radar satellite images can be used to extract large-scale flood information.
Optical sensors useful for mapping inundation areas include the Moderate Resolution Imaging
Spectrometer (MODIS) onboard the Aqua and Terra satellites [7,8], the Land Remote-Sensing
Satellite (Landsat) [9,10], and Sentinel-2 [11]. Both Sentinel-1 [12,13] and ALOS-2 [14,15,16]
are equipped with radar sensors and provide valuable data for flood mapping. Optical images
provide extensive information on land cover, while radar data can be utilized to identify flooded
regions quickly. The number of flood surface observations could be increased by combining
optical and radar imagery [17].

The appearance of a cloud during a flood occurrence is quite often unavoidable,
especially in the tropical zone, where cloud cover varies with time [18,19]. Because of its
wavelength capability penetrating clouds, synthetic aperture radar (SAR) is effective for
consistently monitoring flooded areas [17]. In general, the wavelength, polarization, resolution,
look angle, surface roughness, dielectric characteristics, and slope of a SAR sensor determine
how microwaves interact with the earth's surface. The smooth water surface behaves as a
specular reflector, giving SAR images a dark appearance and low backscatter [20]. For high-
accuracy surface water mapping, choosing the right SAR polarization is crucial. Horizontal
transmission and horizontal reception (HH), horizontal transmission and vertical reception (HV),
vertical transmission and vertical reception (VV), or vertical transmission and horizontal
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reception (VV) are all examples of single-polarization SAR (VH). For the delineation of open
water bodies, HH polarization has proven high classification accuracy [21,22,23]. Using the C-
band Radar Satellite (RADARSAT-2) SAR data, Manjusree et al. [24] investigated the
backscatter response in multi-polarizations and discovered a difference in the response of the
flooded region discrimination depending on the polarization. HH's radiometric profile is less
backscattered than HV and VV's; yet, HH's accuracy in heterogeneous regions is lower than HV
and VV's [25]. The use of dual-polarization in flooded vegetation was studied by Henry et al.
[26], Horritt et al. [27], and Irwin et al. [28], and their findings proved the benefits of dual-
polarization observations in detecting inundated areas in vegetated regions. There are two
channels of intensity and phase information in dual-polarization SAR, providing for the
differentiation of scattering mechanisms [25]. The most reliable result for automatic
classification mapping utilizing a large dataset was reached by combining HH and HV (HH +
HV) [28]. Furthermore, if the histogram has a bimodal distribution, the Otsu thresholding [29]
approach performs well because a threshold is chosen at the bottom of a steep valley linking
two tops representing object and background. Furthermore, instead of adopting single-
polarization, HH + HV maintains bimodality (HH or HV) [30,31].

Visual interpretation of optical images at visible and near-infrared (NIR) wavelengths can
be utilized to extract water surfaces. Optical images, unlike SAR images, are affected by
weather conditions. Sunlight and the inability to penetrate clouds have a significant impact on
the quality of information in optical images. Furthermore, optical images lack information on
surface structure and roughness when compared to SAR images. Using a water index derived
using two or more bands is the quickest and most reliable method of identifying water areas
from an optical image [32]. In recent years, a number of water indices have been established
[33,34,35,36]. The Normalized Difference Water Index (NDWI) and the Modified Normalized
Difference Water Index (MNDWI) are the most frequently used (MNDWTI) [37]. The NDWI
detect water characteristics in remote sensing images by using green and NIR bands [33]. The
MNDWI, on the other hand, is a more dependable and stable water index since it enhances open
water features and successfully removes noise in images of urban areas, vegetation, and soil
using shortwave infrared (SWIR) rather than near-infrared (NIR) [34]. Based on optical images
from Sentinel-2, Landsat-7, Landsat-8, and MODIS MODO09A1, Husniyah et al. [38] compared
NDWI, MNDWI, Automated Water Extraction Index with no shadow (AWEInsh), and
Automated Water Extraction Index with shadow (AWEIsh), and concluded that MNDWI was
relatively stable and could reduce the inconsistency of flood extent detection when combined
with multiSAR images.

2.2 L-band and C-band for flood detection

It leads to a rapid increase in the availability of near-real-time SAR data because
SAR independence from sunlight and weather conditions. Longer wavelength SAR sensors may
also penetrate deeper into vegetation cover and identify sub-canopy conditions; thus, radar
remote sensing can be quite useful for monitoring flood change. The SAR systems onboard
Earth Observation satellites for flood detection often use the X-, C-, or L-band frequencies.
Varying X-, C-, and L-band sensors have different capabilities based on their sensor properties
(wavelength, polarization, and incidence angle) and environmental circumstances aspects (for
example, vegetative type, phenology of plants, soil moisture). Figure 2.2 demonstrates several
radar signals and their penetration levels. The wavelength of the X-band is around 3.0 ¢cm, the
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C-band is around 5.6 cm, and the L-band is up to 24 cm. Because it is only effective for
detecting flooding beneath sparse vegetation or forest after leaf-off, the X-band radar has lower
reliability for flood classification beneath a forested canopy, as shown in Figure 2.2. The C-
band can penetrate deeper into vegetation volume than X-band sensors, which scatter at the
canopy at the trees' tips. L-band, on the other hand, is more reliable due to a larger range of
backscattering enhancement and better penetration.

Figure 2.2: Different radar signal shows different penetration levels [39]

Multifrequency SAR is essential for flood analysis because it improves consistency and
temporal coverage. For pre-flood, during, and post-flood analysis, this study uses SAR images
acquired in the L and C bands for automatic and robust flood extent estimation. SAR data was
obtained in a timely manner from European Space Agency's Copernicus for Sentinel-1 satellites'
frequent six-day revisits and the Japan Aerospace Exploration Agency's for ALOS-2. Several
previous studies have demonstrated successful Sentinel-1 and ALOS-2 time series data
integration, with good agreement with validation sources such as aerial imaging, optical imagery,
and other validation sources.

For a single channel, SAR polarisation can be horizontal (H) or vertical (V), and is
determined by the orientation of the electromagnetic field vector with respect to its propagation
direction. Figure 2.3 shows the horizontally and vertically polarized radar signal's direction. The
multipolarized L-band can transmit and receive radar in a linear manner, such as polarized:
horizontal transmit, horizontal receive (HH); vertical transmit, vertical receive (VV); and cross-
polarized: horizontal transmit, vertical receive (HV); and vertical transmit, horizontal receive
(VV); and cross-polarized: horizontal transmit, vertical receive (VV); and vertical transmit,
horizontal receive (VV) (VH). In comparison to single polarized radar data potential HH and HV
dual-polarization evaluated in this study, a polarized radar system can influence backscatter
strength and detect submerged cropped area. SAR images with single co polarization HH
(horizontal transmit and horizontal receive) have been employed in many past researches to
estimate water and flood areas because they improve the contrast between forest and flooded
vegetation and maximize canopy penetration. Wind is less of an issue for cross polarized HV
(horizontal transmit vertical receive) and VH (vertical transmit horizontal receive) than for co-
polarized HH. As a result, dual-polarization has the potential to improve water extraction
efficiency. Sentinel-1A images with dual-polarization vertical transmit, vertical receive VV,
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vertical transmit, and horizontal receive VH were employed in this study. The ESA Copernicus
Open Access Hub was used to download all of the Sentinel-1A images.

Figure 2.3: Example of the horizontal and vertical radar signal. [39]
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Figure 2.4: Example of the horizontal and vertical radar signal. [39]

The incidence angle, in addition to wavelength and polarization, can affect its ability to
detect floods. The angle of the pulse of microwave energy transmitted by satellite perpendicular
to the earth's surface is known as the incidence angle. The explanation of the incidence angle is
shown in Figure 2.5. The larger the incidence angle, the shallower it is, and the smaller the
incidence angle, the steeper it is. Because shallow incidence angles are more influenced by the
top of the tree, creating more volume scattering, a steeper incidence angle is preferred for
separating water from non-water in the flooded forest. The use of a combination of multi-
incidence angles, on the other hand, is useful for monitoring floods in wetlands.

25



Direction of Flight
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Figure 2.5: Example of the incidence angle. [39]

Table 2.1 Summary of L. band and C band characteristics.

ALOS-2 Sentinel-1
Band L C
Wavelength (cm) 22.9 5.6
Incidence angle (°) 8" -70° 20° —46°
Polarization HH and HV VVand VH
Revisit days 14 days 12 days
Spatial resolution (m) 6.25m,25m 10 m

Figure 2.6 represents the microwave scattering interaction on high and low vegetation
during dry and flood conditions. In general, forested wetlands should use longer wavelengths (L-
band) to detect flooding, while herbaceous wetlands should use shorter wavelengths (C-band). L
band SAR operates as a mirror, reflecting most energy away from the sensor, and reflects flat
surfaces such as paddy fields to water. Backscattered radiation, on the other hand, will increase
as it interacts with rougher surfaces. When the forest is not flooded and interacts with the forest
canopy, volumetric scattering occurs. The volumetric scattering intensity is determined by the
height of the vegetation layer underneath the forest's main canopy.

The interaction of incident energy with the tree trunk is followed by a shift in direction to
a specular surface (usually bare earth, extremely short vegetation, or water), where energy is
reflected back to the sensor; this process also occurs in the opposite direction. When the region is
flooded, even if only temporarily, there is a high double-bounce reflection between the tree
trunks and the water surface, which adds to the volumetric scattering within the canopy and
greatly improves the return signal to the sensor. The main scattering processes are the same for
C-band and L-band, but due to the shorter wavelength of C-band, the interactions between
incident radiation and specific cover types differ (5.6 cm). The shorter wavelengths of the C-
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band, for example, do not penetrate deep forest canopy. As a result, volumetric scattering within
the canopy records for the majority of backscattering for this cover type; short vegetation, such
as pasture, which may not be visible at longer wavelengths due to specular reflection, will
provide a moderate backscattering return, also due to volumetric scattering.

The smooth water surface acts as a specular reflector, while the surrounding environment
(soil and plant) acts as diffuse reflectors, which is how side-looking radar images are used to
map water bodies. As a result, water surfaces have minimal backscatter, but soil and vegetation
morphologies have more backscatter. The minimal size of detectable objects and the sensors'
position in the satellite's range of view are both limitations in radar data. As a result of the latter,
shadows or blind areas appear in synthetic aperture radar (SAR) satellite images, which are
mistakenly perceived as water surfaces.
( \:{uugh scattering/volume (B) ©

Volume scattering Corner Reflection/Double bounce

scattering
»;
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Figure 2.6: Interaction of L-band and C-band with different types of surface during and no flood
condition.

In this, when the cover is “dry,” there is surface reflection at both short and long
wavelengths due to the relative surface roughness in addition to volume backscatter from the
grasses (short wavelength) and penetration into the soil itself (penetration will be greater at the
long wavelengths). When flooded, the reflection becomes specular (assuming little surface
roughness of the water) although emergent vegetation will create backscatter at the short
wavelengths. For forest (B), short wavelength scatter will be dominated by volume scattering
within the canopy and, if dense, the electromagnetic energy might not penetrate to the surface.
Longer wavelengths will scatter from branches and tree structure in addition to “double-bounce”
surface/trunk backscatter. When inundated the “double bounce” return will be highly amplified.
In urban regions (C) the “double-bounce” effect can tend to dominate at both scales, although
surfaces will appear “rougher” at short wavelengths, dulling this. When flooded, the “double”
and indeed multiple-bounce returns will be heightened significantly.

2.3 Flood mapping using optical

Optical remote sensing uses visible, near infrared (NIR), and short-wave infrared (SWIR)
sensors to detect sun radiation reflected from targets on the ground to produce images of the
earth's surface. Because different materials reflect and absorb differently at different
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wavelengths, the targets can be distinguished by their spectral reflectance characteristics in
remotely sensed images. The number of spectral bands used in the imaging process is used to
classify optical remote sensing.

However, optical sensors are limited by their dependency on both sunlight and clouds,
which may limit the ability to collect data during a flood. Many factors allow atmospheric
correction of satellite data over inland water difficult. The adjacency effect of neighboring land
pixels, which significantly raises water reflectance, is one of the most significant challenges.
Other significant challenges include terrestrial atmospheric pollution, high turbidity, floating
objects, and the adjacency effect of neighboring land pixels, which significantly raises water
reflectance.

The fact that clear water absorbs almost all near-infrared light, in contrast to highly
reflecting adjacent soil or plants, has been utilized to detect surface-water locations using optical
data. The technique of categorizing individual pixels in an image, usually based on spectral
reflectance properties.

Thematic classification [40], linear unmixing [41], single-band thresholding [42] and
two-band spectral water indices are four common water classification methods using optical
remote sensing pictures [43]. [40], [41], [42]. Because thresholding from single and two-band
indices takes less time to complete, it is the most often utilized approach for water extraction
[44]. Manual classifications are time-consuming and prone to error due to false interpretation of
satellite imagery.

2.4 Principle of single image water mapping

Various image processing approaches have been introduced that so far. Using satellite
data, these techniques assist in the identification of water features. Thresholding-based methods
have been the most extensively employed in the literature, in part because they are less
computationally time-consuming while yet producing equivalent accuracy to more complicated
segmentation approaches [45], [46]. The thresholding approach is the quickest way to classify an
image into binary categories. The selection of an appropriate threshold has a significant impact
on the classification results. Thresholds are commonly calculated by evaluating the SAR
backscatter intensity histogram or water index from optical image and determining the
probability distributions of water and non-water pixels and was shown in Figure 2.7 and Figure
2.8. The basic principle is that a SAR intensity image's histogram contains two partially
overlapped distributions of water and non-water pixels. Their intersection produces the best
threshold for distinguishing the two classes with the least amount of error. A smaller threshold
usually identifies water extent with higher confidence, while a larger threshold tends to increase
the confidence of identifying dry land [45], [47].
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Figure 2.7: SAR backscattering histogram thresholding.
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Figure 2.8: Optical satellite histogram thresholding.

2.5 Otsu method

A basic, simple option method could help with a specific task while reducing the
computational cost for broader application. Because of their simplicity, robustness, and
adaptability, this study focuses on Otsu thresholding approaches, which is one of the most often
used thresholding algorithms. Nobuyuki Otsu proposed the Otsu thresholding technique. By
increasing the between-class variation of the gray levels in the object and background sections,
Otsu thresholding approaches select the best threshold. Image segmentation is a key step in
extracting water features information. The threshold segmentation has been adopted in water
index to separate the image into two classes: water features and background features. The
threshold values for water index, NDWI and MNDWI were set to zero, but the adjustment of
the threshold based on actual situations is necessary. And that could achieve a more accurate
result for the water information delineation. Hence, dynamic thresholds are needed when
different regions or different phases of remote sensing data are employed to detect water
features information. Many methods can be used for image threshold segmentation. The Otsu
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method is a dynamic threshold method that has been successfully used in delineating water
bodies and monitoring water, area changes [49].

Furthermore, if noise removal and character identification are implemented appropriately,
Otsu can be utilized for thresholding and performs satisfactorily. Because the calculation
requires 1D intensity data, the advantage is that determining the threshold is simple, which helps
to reduce computational processing time in real-world applications. Many techniques to improve
the original Otsu method have been presented as a result of these advantages. However, if the
images have noise, these methods are unlikely to give satisfactory segmentation results.

Eq. 1 shows the equation for within-class variance (iterative technique) (1). Let a2y,
represent the mathematical expression for within-class variance, o?, represent the variance of
background pixels and o ¢ represent the variance of foreground pixels. Furthermore, W}, and Wy
are mathematical symbols representing the background and foreground weights, respectively.

oty = Wyo? s + Wyo?s

Eq. 2 shows the equation for between-class variance (custom approach) (2). Let
represents the mathematical expression for between-class variance, with the background pixels'
mean value representing the background, and the foreground pixels' mean value representing the
foreground.

o?p = WuWr(up — 1r) ?

The Otsu thresholding approach is effective for image segmentation since it takes less
time to compute than other methods. When identifying or calculating the best threshold value,
Otsu thresholding uses a simple mathematical equation in its algorithm. Otsu’s method is a
finding an optimal threshold based on the observed distribution of pixel values (Otsu. 1979).
Otsu is an acceptable method to achieve stable temporality classification for time series analysis
(Wolfgang, 2012). However, if the histogram is unimodal or close to unimodal, the threshold is
difficult to detect (Nicolas et al., 2010; Coudray et al., 2021). Applying automatic clustering-
based thresholding to a large area or global thresholding may return unsatisfying results because
its histogram sometimes is not bimodally distributed (Sezgin et al., 2004). Local thresholding
methods try to overcome these problem considering thresholds only for a region with bimodally
distributed and a value then, assigned to the large image (Vala et al., 2013).
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Chapter 111
Overview of the work

Grid basec
SAR satellite Optical satellite

usmg ALOS-2

and optical
tent

Figure 3.1: Overview of the work.

To summarize the research objectives, we create the overview of the work as shown in Figure
3.1. First of all, we start with assessing suitable data for automated classification using SAR data.
Either to use single or dual polarization using ALOS-2 images. Next, we integrate ALOS-2 and
Sentinel-1 extracted water area based on a temporal coverage of flood event. Then, we assess the
stability of water index using various optical data and we integrate multiSAR and multispectral
together. Second main work, is to improves the consistency of the integration result using grid
based and fused of single data. In additional, we assess the water extent with surface water map
from GSW.
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Chapter IV
Automated classification using thresholding

4.1 Introduction

Flood is the most disastrous natural disaster in Malaysia. According to DID's annual
flood report for 2016/2017, 404 flood occurrences were identified across Malaysia, resulting in a
total economic loss of USD12,649,379.84 and 95,929 people being displaced from their homes
[1]. In Malaysia, there are two types of floods: monsoon floods and flash floods. From
November to March, the Northeast monsoon brought heavy rains to Peninsular Malaysia's east
coast, the northern part of Sabah, and the southern part of Sarawak.

7 Figure 4.1: Photographs from the Perlis flood disaster on September 22nd and 23rd, 2017.
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Delineation approaches, object or pixel-based classifications, and pre and post-flood
comparisons are all common techniques for detecting floods using remote sensing data. The
purpose of this research is to apply machine learning to identify floods automatically. The
automatic thresholding method using radar data proposed was adopted in this study, Pisut et al.,
2017 [2].

Using averages of local Otsu's threshold values and total backscatter of HH and HV of
ALOS-2, this study aims to create an automated surface water extraction method. Sentinel-1,
Landsat 7, Landsat 8 and MODIS, derived indices used for monitored spatial-temporal water
movement during the start date and end date of the 2017 flood.

4.2 Study area

The study area is in the northwest of Peninsular Malaysia, which includes the states of
Perlis and Kedah. The study area is approximately 5.35°N to 6.35°N longitude and 99°46'3.22"E
to 99°59'25.07"E latitude, as illustrated in Fig. 4.2. The largest paddy growing area in Malaysia
is in the northwest. The climate regime in Northwest Malaysia is characterized by a typical dry
season that lasts 2 to 4 months from December to March. The rainy season occurs from
September to November and April to May.

Figure 4.2: Study area

The state of Kedah receives an average annual rainfall of 2400 mm. In 2017, the average
annual rainfall for Kedah was less than 7%, which was 2245mm. Although, the annual average
rainfall is reduced but floods still occur in the state. A total of 57 flood incidents were recorded
in 2017. The recorded flood incidents are a series of flash flood incidents and flood incidents
caused by overflow from rivers. In September 2017, there were 17 reports of floods throughout
the state of Kedah. The state of Kedah was in the northeast monsoon season where rain and
strong winds hit almost every day. The water level in the main rivers increased and eventually
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overflowed when the rain continued and high tide conditions that caused the outflow of river
water to the sea is disrupted. The flood period was also long and involved a lot of evacuation,
especially for victims who live close to the river. The topography of Perlis mostly flat with less
than 61 meters above sea level. Perlis experience rainfall from April to May and August to
October with average rainfall per year ranges between 1704 mm and 2005 mm. In this study,
only Arau and Kangar chose a study area because of only these two areas reported in the
Department of Irrigation and Drainage Flood Annual Report 2017/2018 facing flood twice in the
year 2017/2018.

4.3 Satellite data

In this study, ALOS-2 data are utilized. Table 4.1 summarizes the description of ALOS-2.
In total, there are 18 ALOS-2 images with ascending mode, with a constant off-nadir angle of
32.9°, a spatial resolution of 6.25 m, and in dual-polarization, HH and HV are selected. ALOS-2
data was ordered from https://auig2.jaxa.jp.

Table 4.1: Utilized PALSAR-2 data.

No. | Scene ID Operation | Date Pass Frame | Polarization
Mode mode

1 AL.0S2019460100-141002 FBD 2014/10/02 | Ascending [ 100 HH/HV
2 AT.0S2019460110-141002 FBD 2014/10/02 | Ascending | 110 HH/HAV
3 AL0S2040160100-150219 FBD 2015/02/19 | Ascending [ 100 HH/HV
4 ALOS2040160110-150219 FBD 2015/02/19 | Ascending | 110 HH/HV
5 AL.0S2073280100-151001 FBD 2015/10/01 | Ascending | 100 HH/HV
6 AT.0S2073280110-151001 FBD 2015/10/01 | Ascending [ 110 HH/HV
7 AL0S2093980100-160218 FBD 2016/02/18 | Ascending | 100 HH/HV
8 ALOS2093980110-160218 FBD 2016/02/18 | Ascending [ 110 HH/HV
9 AL.0S2127100100-160929 FBD 2016/09/29 | Ascending | 100 HH/HV
10 | ALOS2127100110-160929 FBD 2016/09/29 | Ascending | 110 HH/HV
11 ALOS2147800100-170216 FBD 2017/02/16 | Ascending [ 100 HH/HV
12 | ALOS2147800110-170216 FBD 2017/02/16 | Ascending [ 110 HH/HV
13 | ALOS2180920100-170928 FBD 2017/09/28 | Ascending | 100 HH/HV
14 | ALOS2180920110-170928 FBD 2017/09/28 | Ascending [ 110 HH/HAV
15 | ALOS2199550100-180201 FBD 2018/02/01 | Ascending [ 100 HH/HV
16 | ALOS2199550110-180201 FBD 2018/02/01 | Ascending | 110 HH/HV
17 | ALOS2203690100-180301 FBD 2018/03/01 | Ascending [ 100 HH/HV
18 | ALOS2203690110-180301 FBD 2018/03/01 | Ascending | 110 HH/HV

4.4 Research flowchart

Figure 4.3 shows the flowchart of spatial-temporal water movement detection. Initially,
ALOS-2 image preprocessed using Sentinel Application Platform (SNAP) software.
Preprocessed of ALOS-2 image involve merge of two ALOS-2 frames to cover study area,
calculation of beta Nought, Lee speckle filtering with 5x5 windows and sigma Nought
calculation. Afterward, each co polarized HH (horizontal transmit and horizontal receive) image
and dual polarized which is total backscatter of HH and HV cut into small specific water
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references. The criteria of water references explained in the next section. Histogram of Otsu of
each water references determined fully automatic by developing Python script with software
library like GDAL and Numpy.

Otsu threshold value of each water references with bimodal shape used for averaging to
represent the whole region threshold while unimodal histogram rejected for next processed.
Among the water extraction map from each average Otsu image threshold was compared and the
most precise segmented image was selected for final representation of water movement map and
integrated with Sentinel-1, Landsat 7, Landsat 8 and MODIS.

ALOS-2/PALSAR-2 o . .
HH. HV ( 18 Images) Radiometric Calibration

Preprocessimg

Data

Developient of Water Refereuce

Automatic Otsu threshold calculation

Select water reference with bimodal listogram

Average threshold of bimodal histogram

Water map output

Figure 4.3: flowchart of spatial-temporal water movement detection

4.5 Development of water references

All the water references were selected using the following criteria proposed by Pisut et al.
(2017): having an area larger than 320000m? (8192 pixels for a resolution 6.25m), containing
water throughout the year, not facing a flood situation, located on flat ground as much as
possible, and having water and non-water cover ratio of nearly 1:1. An irregular shape was
allowed. In this study a circle shape is used to maintain ratio of water and non-water 1:1 ratio.

The 68 water references were selected from different types of water bodies, natural and
man-made. The locations water references distribution and criteria are shown in Fig. 4.4.
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Figure 4.4: water references selection criteria.

4.6 Automatic thresholding using Otsu Thresholding in Python

Various thresholding algorithm have been proposed to optimally segment an image into
two classes for example minimum error thresholding, IsoData thresholding and Yen thresholding.
In this study, we decide to use Otsu because of its simplicity, robustness and adaptability on any
input data as we are using multi source of satellite images. Among many threshold selection
methods, Otsu is the optimum one in the sense that it maximizes the between class variance, a
well-known measure used in statistical discriminant analysis.

However, we did try to compare on using other modification of Otsu method. Three
methods were tested to detect a threshold value for water presence from ALOS-2 automatically:
Otsu, Otsu Village emphasis thresholding and Otsu neighbourhood emphasis, but the result from
the experiment shows no significant difference between these three methods. Therefore, Otsu’s is
sufficient for further analysis.Image thresholding involves converting grayscale image (f(x,y)) to
binary image (g(x.,y)) where pixels value lower than threshold classified as zero while pixels
higher than threshold classified as one. In general, this can be simplified as follows:

(x,y)={10if f(x,y)>T otherwise, (1)

(1) First, to compute the Otsu threshold, the histogram of the pixels computed. Probability of
threshold, T determined by dividing gray image pixels into the background, b and foreground, p.
Then, the weight of background, wy and foreground pixels, wp calculated by dividing the total of
background pixels frequency, f, with the total number of entire pixels as follows:

Wb (Weight background)=fbl+fb2+---fn Total number of entire pixels , (2)
Wp (Weight foreground)=fpl+fp2+---fn Total number of entire pixels, (3)
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1e threshold value

Figure 4.5: Determination of foreground and background using water references with bimodal

(2) the mean of background and foreground pixels calculated by adding multiplication of
background pixels frequency, fy with its pixels value Vy and divide with the sum of background
pixels. The calculation is as follows:

Mb (Mean background) = (fp1*vb1) + (fb2*vb2)+---(fn*vn)+(fn*vn) /Total number of background pixels, (4)
Up (Mean fOT‘eground)=(fpl*vp1)+(fp2*vp2)+---(fn*Vn)+(fn*vn)/Total number of foreground pixels , (5)

(3) The variance of background pixels and foreground pixels calculated by averaging square distance
background frequency pixels with the mean background

Vb (Variance background) = ((fb1—ub)*xvb1) +((f b>*—ub)*+vb2) .... (fn—w)**vn)

H(fn—py*+vn) /
Total number of background pixels, (6)
Vp (Variance foreground) = ((fp1-up)**vp1) +({(fp*—pp)**vp2) .... (fn—p)**vn)
H(fn—pw?*vn) /
Total number of foreground pixels, (7)

(4) Afterward, the within-class variance was calculated by totaling background and foreground
variance multiplied with their weights.

Within class variance=WpVbo+WrVr, (8)
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Figure 4.6: Calculation within class variance
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Figure 4.7: Same calculation needs to be performed for all the possible threshold values

Otsu's method is one of the best threshold selection methods for general gray-level
images. This technique chooses the threshold value of the minimum within-class variance (6*w)
or the maximum between-class variance (6°B)) in Equation (1). Although this method can obtain
satisfactory segmentation results in many cases, it is limited to images with background and
foreground Gaussian distributions of equal variance. Therefore, images that do not meet this
criterion may return unsatisfactory results, especially when the gray level histogram is unimodal
or close to a unimodal distribution.

To address this weakness, many modifications of the Otsu method have been proposed.
For example, the valley-emphasis method (VE), modified by weight 6B with p(t), the
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complement of a probability at a threshold value t, causes the valley in the histogram to be more
likely to be better determined. The neighborhood valley-emphasis (NE) improves the valley-
emphasis method by weighting 6B with the neighborhood information in n =2m + 1 intervals at
the threshold value. The result is closer to the valley of the histogram because it considers the
neighborhood around the threshold point in addition to the threshold point. Figure 4.8 shows the
coding for automatic thresholding using Otsu thresholding and its modified in Python. The
automatic process used the modified applicable Python script as the open-source Otsu algorithm
is unsuitable for spatial data images.

Figure 4.8: Automatic thresholding using Otsu Thresholding in Python

4.7 Results and discussions
4.7.1 Automated thresholding with OTSU

By considering the peaks, valleys, and curvatures of the smoothed histograms, the water
references with unimodal distributions were rejected, and only those with bimodal distributions
were considered. The weight average value of automated threshold for Otsu technique display on
each whole HH PALSAR-2 image histogram in Fig. 4.9.
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Figure 4.9: The weigh average of HH applied on the whole area

Fig. 4.10 shows the histogram of HH+HV PALSAR-2 with applied weight average of
Otsu.

Figure 4.10: The weigh average of HH+HV applied on the whole area

Based on Fig. 4.9 by applying Otsu on the HH image the threshold value is not accurately
located at the valley of the histogram compare with Fig. 4.10 where by using HH+HYV threshold
value mostly located at closest valley point of the histogram.
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Figure 4.11: Extracted result of weight average from the image acquired on October 02
2014 a) raw ALOS-2 HH, b) Otsu ALOS-2 HH, ¢) raw ALOS-2 HH+HV d) Otsu ALOS-2
HH+HV.

The image segmentation by using Otsu was used to simply extract water surface by
applying a global threshold value to each PALSAR-2 image. Fig. 4.11 shows October 02 2014 as
the sample image of the extracted result. Otsu threshold of HH image = 48.4 while, Otsu
threshold of HH+HV = 84.3. The result shows that HH+HV gives a better surface water
extraction compared to HH by using VE technique, threshold of HH = 48.5 and threshold of
HH+HV= 84.6. While, NE weight average threshold for HH image = 48.0 and HH+HYV image =
83.4. The range of each threshold technique for each single image indistinct with each other.

Based on Fig. 4.11, HH+HV image separated the object clearly with more object details
than HH image. Otsu, VE, and NE technique does not give significant impact on separating the
object with the background. In this study, threshold from Otsu technique selected to represent
water movement pre-flood, during and post flood event.

As seen in Table 4.2, the bimodal percentage number indicates the occurrence probability
of the bimodal distribution for each image. Thus, HH + HV is more likely to have a bimodal
distribution with 73%-85% and is more suitable for automatic classification compare to HH that
have percentage 56%-72% to get bimodal distribution. In other words, the HV polarization can
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improve the efficiency of water surface extraction. Thus, the extracted water areas presented in
this study were derived from HH + HV.

Table 4.2: Automatic threshold values using the Otsu technique of water reference with circle
areas from the HH and HH + HV sigma-naught values taken on the evening of 02 October 2014
5.30 PM until 01 March 2018 5.30 PM.

Local Time Pass Beam Number of Bimodal Bimodal

Some of the close-ups of the extracted result from the HH+HV image acquired on
October 02 2014 with Otsu threshold value are shown in Figure 4.12. The water boundaries
obtained using this technique appear to be reasonable. The results of the water area are shown in
white, and the non-water area shown in blue.

Figure 4.12: Close-ups of the extracted result from the image HH+HV acquired on
October 02 2014

47



There are some errors in waterline area positions due to side-looking geometry of the
SAR sensors cause shadowing, foreshortening and layover effects and underestimation of
waterline.

4.7.2 Water classification using Otsu technique
Figure 4.13 shows a comparison of ALOS-2 for 2014 and 2017 flood.

Figure 4.13: Visual of surface water extent using ALOS-2 6.25m for 2014 and 2017 flood.

Figure 4.13 shows the extracted surface water with basis from HH+HV data during 2014
and 2017 flood event. ALOS-2 gives detail and precise flood occurrence due to the high spatial
resolution.

4.7.3 Cloud masking of multispectral images

Multispectral images are from Sentinel-2, Landsat-7, Landsat-8, and MODIS MODO09A.
Sentinel-2 revisit period is five days. Sentinel-2B was launched on March 7, 2017. The Sentinel-
2 image has a different spatial resolution on each band. Due to its different spatial resolution size
for the SWIR band, we decide to only apply NDWI on the Sentinel-2 image. We use only green
band B3 (560 nm) and its Near-infrared is B8 (842 nm) with both 10m spatial resolution.

For Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+) sensor and has
acquired and delivered data with data gaps caused by the Scan Line Corrector (SLC) failure. It
has 30 m spatial resolution and the image we utilized in this study are Band 1 Visible (0.45 -
0.52 um), Band 2 Visible (0.52 - 0.60 um), Band 4 Near-Infrared (0.77 - 0.90 um), Band 5 Short-
wave Infrared (1.55 - 1.75 um) and Band 7 Mid-Infrared (2.08 - 2.35 um).

Meanwhile, Landsat 8 carries the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS) instruments. Band 2 Visible (0.450 - 0.51 um), Band 3 Visible (0.53 -
0.59 um), Band 5 Near-Infrared (0.85 - 0.88 um), Band 6 SWIR 1(1.57 - 1.65 um) and Band 7
SWIR 2 (2.11 - 2.29 pm). All of these images are 30 m resolution.
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The MODIS Terra MODO09AT1 is an 8-day product (http://LPDAAC.usgs.gov) starting
from the 6 September 2017 is used in this study. The layers used from the MODO9A1 product
are the surface reflectance band 2 (841-876 nm), surface reflectance band 3 (459-479 nm),
surface reflectance band 4 (545-565 nm), surface reflectance band 5 (1230-1250 nm), and
surface reflectance band 6 (1628-1652 nm). All of these multispectral images data are available
on GEE, which enables a quick and multi-scale analysis. For the quantitative analyses of the
Landsat, MODIS Terra and Aqua images cloud masking was performed as shown in Figure 3.14
[48]. The pre-processing of optical images was fully implemented in Google Earth Engine (GEE).
Landsat 7 ETM+ contain data gaps due to the failure of the Scan Line Corrector (SLC), which
were filled in GEE. For Landsat 7 masked for “cloud shadows” is bit 3 while “clouds” are bit 5
respectively. Cloud mask for Landsat 8 is bit 8-9 and for MODIS state 1km was masked and
assign according to this cloudBitMask = 1, cloudshadowBitMask = 1 << 2, cirrusIBitMask = 1
<< 9, cloudInternalBitMask = 1 << 10; adjacentBitMask = 1 << 13.

Figure 4.14: Cloud masking of optical images.

The equation of MNDWI, (Equation 8), was used to extract water features using the
green and SWIR bands.

MNDWI= (green - SWIR)/(green + SWIR), (8)
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4.7.4 Automatic thresholding using OTSU Thresholding

Histogram of MNDWI

Threshold value is 0.172

Figure 4.15: Determination of foreground and background using water references with bimodal
histogram.

NDWwi MNDWL - AWEInsh AWEIlsh

Figure 4.16: Same calculation needs to be performed to all water indices.

Gennadii et al. (2016) proposed the unsupervised classification step based on the local
adaptive threshold detection method. The segmentation of the water from the spectral index was
build based on the extension of the Otsu method by a Canny edge filter where the number of
input pixels only to those located near water-land edges. Using the morphological dilation, water
and land pixels located near water are then computed applied to the detected edges. In the case of
thin, single-pixel wide water bodies skewed distribution might be obtained. A buffer size
(dilation) equal to half of the pixel is used to overcome the problem. A bimodal distribution is

50



expected so that a clear distinction of land and water can be acquired. Using the following
parameters: ¢ = 0.7, the = 0.99 for the Canny edge filter, and a structuring element with the size
15 m x 15 m to dilate the edges and create a surrounding buffer region in a case of two classes in
the grid tile, we were able to get an almost perfect detection of water pixels. The ¢ and th
parameters are used to define the standard deviation of the Gaussian smoothing kernel and the
threshold used to define the sensitivity of the filter, respectively.

4.7.5 Changes of water extent in the study area from Landsat 7, Landsat 8, and MODIS
data using various water indexes.

AWElIsh - AWEInsh

Figure 4.17: Sample of water classification using different water index using Landsat 7
(2017/09/07)

The extraction result shows that both can distinguish water area from the land area.
Figure 4.17 shows the changes of classified surface water extent from Landsat 7 by the time
during the flood event using the threshold of NDWI, MNDWI, AWEInsh, and AWEIsh.
MNDWI.
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Figure 4.18: Changes of water extent in the study area from Landsat 7, Landsat 8, and MODIS
data using various water indexes.

Figure 4.18 shows the changes of classified surface water extent from Landsat 7,
Landsat 8, and MODIS by the time during the flood event using the threshold of NDWI,
MNDWI, AWEInsh, and AWEIsh. MNDWI shows the best development of flood progression.
MNDWTI has been selected to represent the water index for Landsat 7, Landsat 8, and MODIS.
MNDWTI shows more stability when integrating different optical data. MNDWI use green and
SWIR able to enhanced positive value for water and negative for built-up land, soil and
vegetation compared to NDWI. Eventhough AWEI developed to suppress shadow but it is not
good as NDWI and MNDWTI in the detection of water bodies in the non-built land.

4.8 Ground Station data

The area of study is in Malaysia's Perlis region, which was flooded in 2017. The study
region extends from 6°43'19" N latitude to 100°07'59" E longitude, covering approximately 795
km?. There are two distinct seasons: a rainy season with heavy rainfall and a hot season with
prolonged drought are the two distinct seasons. The rainy season, which is related to the
southwestern monsoon, begins in April or May and lasts until September or October. Meanwhile,
the northeast monsoon influences the dry season, which lasts from December to March. The
average annual rainfall ranges from 2000 to 3000 mm, and the average annual temperature is
27°C. Figure 4.19 shows an elevation map of the study area, which includes the locations of the
affected villages as described in a report by the Department of Drainage and Irrigation (DID) [1].
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Figure 4.19: The study area's elevation map. The map displays the location and flood
information for some of the damaged residential areas, which are represented by red dots. Blue
triangles show water level data from the ground station.

Flooding is reported in two districts in Perlis, Kangar and Arau, by the DID in 2017 and
2018. Continuous rainfall was observed in several districts from September 15 until early
October 2017. Rainfall was triggered by high atmospheric humidity around this time, as well as
Typhoon Doksuri, which passed over Northern Vietnam on September 15th. In this monsoon's
final phase, Malaysia was impacted by the relatively weak southern monsoon and the Northern
Hemisphere summer monsoon. Wind gusts were caused by the tail effect of Typhoon Doksuri in
Malaysia, particularly in northern Peninsular Malaysia [2]. This condition contributed to the
significant rains that hit Perlis in September 2017, resulting in two-week-long flooding in some
locations. Additionally, high tides worsened the floods.
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Figure 4.20: Available Ground Dataset for September 2017 flood

The river is the principal cause of flooding because it is constricted at its lower reaches. The
capacity of the river at downstream area is less than 10,000m>/s, therefore flood that exceeds this
capacity will overspill the banks and inundation flood water at land surface area and finally
moving to the sea. The downstream and upstream ground station in this study was divided based
on the boundary of the main river mouth (Sg.Perlis) as shown in Figure 4.21. The elevation of
ground station at the downstream approximately 0 m (Figure 4.21) while, at the upstream the
elevation is 20 m to 50 m (Figure 4.22).

Figure 4.21: Downstream ground observation data
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Figure 4.22: Upstream ground observation data.

Figure 4.23: Upstream ground observation data.

Water level data from ground station were available at DID website
(https://publicinfobanjir.water.gov.my/aras-air/data-paras-air/?lang=en) and opened for public
access. The only provided information is 15 minutes resolution water level, monthly and daily
rainfall data. Based on the elevation and peak of maximum water level, the study area was a
pretty flat land and the maximum water of downstream and upstream has no interval difference
(Figure 4.23), this study will only focus on extract surface water and inclusion of depth will be
our future study.
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4.9 Multitemporal water spatial classification using Sentinel-1

Sentinel-1 images of the Arau and Kangar areas on 24 September 2017 were used as flood
stage images. The methods described in Section 4.3 were used to extract the surface water area,
and an automated thresholding method was developed to differentiate water and non-water areas.
Figure 4.24 shows an example of the water area extracted from the Sentinel-1 images.

el i | A . bl 4 ! Pl S 7 " ks

Figure 4.24: Sample of water classification using different water index using Sentinel 1 from
06/09/2017 to 30/10/2017

MultiSAR used in this study are images from ALOS-2 and Sentinel-1 satellites. The
ALOS-2 image use in this study is a high sensitive 6 m resolution image with 14 days revisit
time. We used both HH and HV of the 28 September 2017 image and it is in the ascending mode.
Sentinel-1 is a C-band SAR data with a revisit time of 6 days and high spatial resolution with a
resolution of 10 m. We use VV and VH polarisation from each image and both ascending
descending images are included to achieve high temporal coverage.

Figure 4.25: Temporal coverage of ALOS-2 and Sentinel-1
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Figure 4.26: Changes of water extent in the study area from Sentinel-1 and ALOS-2 data.

Figure 4.26 shows that satellite water extent from SAR nearly in agreement with ground
water level. The graph shows the relationship of satellite water extent with ground water level
with correlation 0.609. The integration increase the frequency of observation.

FLOOD EXTENT 2017 I

Figure 4.27: Extent of the September 2017 flood extracted from the Sentinel-1 satellite images.

The result shows that the flood extent information is consistent with the classification
results of flood susceptibility in previous studies, in which major floods were found to be located
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in the south of Perlis and paddy field areas [38,55]. As shown in Figure 4.27, the extracted flood
extent (blue color) covered 41% of the total combined area (150.95 km?) of the Kangar and Arau
districts. The high flood susceptibility in the south of Perlis is due to the presence of alluvial
deposits, paddy fields, low-humidity clay soil, and flat terrain. The flood event in 2017, due to
Typhoon Doksuri, severely damaged rice crop. Most paddy field areas were submerged in water
for over three days, preventing seedlings from growing. Based on the result, this study shows
agreement with the other previous study which indicated that flood mostly occur due to its
terrain structure where low-lying areas like paddy fields located [56,57]. In general, it is
challenging to perform flood classification using radar sensors when the land pixels have similar
characteristics to water pixels. The results of this study show that the cause of overestimation of
flooded areas is shadow due to terrain characteristics or the incidence angle of satellite images;
the backscatter value of the shadow which is similar to that of water causes the misclassification
of shadow as floodwater [58].

b)

Figure 4.28: Examples of water area detection in a) lake and b) river (bottom). The water area is
shown in blue and the background image shown is the Google Earth image.
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4.10 Integration of MultiSAR and Multispectral

Figure 4.29: Temporal coverage of the satellite images used in this study.

Figure 4.30: Changes of surface water extent in the study area from Sentinel-1, ALOS-2,
Sentinel-2, Landsat 7, Landsat 8, and MODIS data between 06/09/2017 to 30/10/2017.

Figure 4.29 shows temporal coverage of the satellite images used in this study and Figure
4.30 shows the integrated surface water extent from various multi-satellite. The dataset still has a
fluctuation of classified surface water however, it shows a distinct preflood, during, and post
flood of surface water area. The lowest recorded surface water was suited at the beginning before
the flood start and the highest peak recorded during flood occurrence and the total area gradually
decrease after the flood ended. However, due to varying spatial resolution, MODIS overestimate
the water extent compare to Sentinel-1 during flood on 30 September where flood area by
Sentinel-1 around 60 km but MODIS estimate water area around 200 km. MODIS also highly
affected with cloud and most of the pixels were removed and caused no water area detected on
14" September and 8™ October. This bias and variance can be overcome by applying statistical
procedure like polynomial regression to achieve low bias and low variance dataset. The model
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can be very useful in quickly understanding the changes in water bodies by the time during flood
events from multi-satellite.

4.11 Discussion of chapter IV

HH+HV grayscale image have a higher frequency of bimodal distribution with range
73.53 % to 85.53% compare to HH backscattering with 55.88 % to 83.82 % frequency bimodal.
Thus, HH+HV chosen for automatic thresholding using OTSU. This technique provides a
satisfactory water extraction result.

Next this chapter has discussed the technique for automatic extraction of the time series
of the flooded area, calculating the surface water extent and integrate SAR and optical images.
Based on the analysis, MNDWI shows the best and the most stable water index for the automatic
thresholding of a multispectral image. After the optical and multiSAR integration, although there
is still a fluctuation of classified surface water in the dataset, it does reveal a distinct preflood,
during, and post-flood surface water area. The lowest recorded surface water level occurred
before the flood began, and the highest peak occurred during the flood, with the total area
progressively decreasing after the flood stopped. However, MODIS overestimates the water
extent compared to Sentinel-1 during the flood on September 30th, where Sentinel-1 estimated
the flood area to be around 60 km whereas MODIS estimated the water area to be over 200 km
due to differing spatial resolution. MODIS was also heavily impacted by cloud, with the majority
of pixels being deleted, resulting in no water area being recorded on September 14th and 15th.
On the 14th and 8th of October, MODIS was also heavily impacted by cloud, with the majority
of pixels being deleted and no water area being recorded. To achieve low bias and low variance
datasets, statistical procedures such as polynomial regression can be used to overcome bias and
variance. The model can help quickly comprehend how water bodies change over time during
flood events using multi-satellite data. We'd like to execute a fusion on an overlapping satellite
image, which includes MODIS and Sentinel-1 images, in the next chapter. On the 14th and 8th
of October, MODIS was also heavily impacted by cloud, with the majority of pixels being
deleted and no water area being recorded. To achieve low bias and low variance datasets,
statistical procedures such as polynomial regression can be used to overcome bias and variance.
The model can help quickly comprehend how water bodies change over time during flood events
using multi-satellite data. Compare to multispectral, multiSAR show higher correlation with
ground observation. This is due to the optical images affected by cloud occlusion, causing loss
of data during the cloud masking process.

To summarise, the result also shows that the extracted surface water from multispectral
images using the Otsu threshold from a stable water index can reduce the inconsistency with a
set of multiSAR images when integrated. The agreement water extent from satellite with ground
data slightly increase when number of observation increase. We'd like to execute a fusion on an
overlapping satellite image, which includes MODIS and Sentinel-1 images, in the next chapter.
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Chapter V
Improved consistency integration of SAR and optical water extent data

5.1 Introduction

Despite various notable efforts, to this end, existing satellite technology or any single
data product could not solve the current challenge from the decision-making standpoint. Hence,
to fulfill decision-makers needs, there is a demand to develop a process for improving the end
product for an effective disaster response rather than developing a new system to improve flood
operation. This study focuses on the standardization of multi-source remote sensing data by
using the same processing platform. In this context, to obtain a single image that retains essential
features of original images, the simple and robust fusion of images with the same observation
period has been proposed in this study.

The main objectives of this study are i) to classify the water extent based on the average
Otsu threshold values calculated for individual grids with a bimodal histogram, ii) then, the
temporal changes of the flood extent are assessed by analyzing the grids that indicate flood-
affected areas, iii) the analysis proceeds to applying 2D wavelet transform to fuse two images
with the same observation period. Finally, the of temporal distribution of water classification was
compared with the ground water level data. That the proposed model can be used to estimate
flood duration as well as to estimate the flood-related losses, especially in ungauged or data-poor
regions.

5.2 Satellite data

In this study, 22 SAR and optical images collected over the study region between 4
September 2017 and 30 October 2017 were acquired (Table 5.1). Four ALOS-2 SAR images in
the HH and HV polarization modes were acquired from the Japan Aerospace Exploration
Agency (JAXA) (https://auig2.jaxa.jp/ips/home). The acquired ALOS-2 images were in the L-
band with a wavelength of 22.9 cm and spatial resolutions of 6.25 m and 25 m. The incidence
angle of the ALOS-2 images varied between 8° and 70°. A total of 10 Sentinel-1 SAR images
with VV and VH polarization with ascending and descending modes were used
(https://scihub.copernicus.eu/dhus/#/home); these were Level-1 processed ground range detected
(GRD) products collected in interferometric wide swath (IW) mode. The Sentinel-1 images were
in the C-band with incidence angles between 29° and 46° and wavelength 5.6 cm.

The cloud-covered images less than 20% [1], were obtained from Landsat 7, Landsat 8,
daily MODIS Terra MOD09GA, and MODIS Aqua MYDO09GA. The Landsat 7 Enhanced
Thematic Mapper (ETM+) and the Landsat 8 Operational Land Imager (OLI) have
approximately 710 km sun-synchronous circular 98.2° inclined orbit with a revisit time of 16
days, but these overpass each other by eight days [1]. MOD0O9GA and MYDO09GA version 6
provide bands 1-7 in a daily gridded L2G product in a sinusoidal projection, including
reflectance values with a resolution of 500 m and observation and geolocation statistics with a
resolution of 1 km.
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Table 5.1: Details of the (SAR) and optical satellite images used in this study.

. Acquisition Resolution Pass Source  Projection Central
Satellite Sensor d Polarizati
ate (m) (Polarization) Wavelength (nm)
Descending  JAXA UTM
ALOS-2 PALSAR-2 4/9/2017 25 (HH & HV) L band
Descending  JAXA UTM
ALOS-2 PALSAR-2 9/9/2017 25 (HH & HV) L band
ALOS-2 PALSAR-2 28/9/2017 625 Ascending (HH JAXA — UTM L band
& HV)
Descending  JAXA UTM
ALOS-2 PALSAR-2 21/10/2017 25 (HH & HV) L band
. Descending ESA  Ellipsoid
Sentinel-1 C-SAR 6/9/2017 10 (VV & VH) L band
Sentinel-l  C-SAR 1292017 10  Ascending (Vv ESA  Ellipsoid C band
& VH)
. Descending ESA  Ellipsoid
Sentinel-1 C-SAR 18/9/2017 10 (VV & VH) C band
Sentinel-l  C-SAR  24/9/2017 jo  Ascending (VV-ESA  Ellipsoid C band
& VH)
. Descending ESA  Ellipsoid
Sentinel-1 C-SAR 30/9/2017 10 (VV & VH) C band
Sentinel-1  C-SAR  6/10/2017 jo  Ascending (VVESA  Ellipsoid C band
& VH)
. Descending ESA  Ellipsoid
Sentinel-1 C-SAR  12/10/2017 10 (VV & VH) C band
Sentinel-1  C-SAR  18/10/2017 10  Ascending (Vv ESA  Ellipsoid C band
& VH)
. Descending ESA  Ellipsoid
Sentinel-1 C-SAR  24/10/2017 10 (VV & VH) C band
Sentinel-1  C-SAR  30/10/2017 10  Ascending (Vv ESA  Ellipsoid C band
& VH)
Landsat 7 ETM+ 7/9/2017 30 USGS UTM Green: 560
SWIRI: 1648
Landsat 8 OLI 1/10/2017 30 USGS UTM Green: 562
SWIRI: 1610
Landsat 8 OLI 17/10/2017 30 USGS UTM Green: 562
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SWIRI: 1610
USGS  Sinusoidal Green: 555
MODIS Terra 7/9/2017 500
Terra SWIRI: 1640
USGS  Sinusoidal Green: 555
MODIS ) e 1292017 500
Aqua SWIR1: 1640
USGS Sinusoidal Green: 555
MODIS Aqua 30/9/2017 500
Aqua SWIRI: 1640
USGS Sinusoidal Green: 555
MODIS = noa 18102017 500
Terra SWIRI: 1640
USGS Sinusoidal Green: 555
MODIS ) ia 19/102017 500
Aqua SWIRI: 1640

5.3 Research flowchart

The analysis involved the assessment of the temporal changes of floodwater area in the
affected grid. The following four main steps were taken to achieve this objective: (1) pre-
processing the images, (2) resampling and dividing the study area into an aligned grid, (3)
identifying flood water extent time changes and (4) fusion by a grid.

Refer to Figure 5.1, the image with the same observation date was used for the image
fusion process. There are two kinds of fusion based on the availability of data: optical with
another optical image (example, Landsat 7 and MODIS Terra on 7 September 2017) and optical
image with SAR image (example, Sentinel 1 and MODIS Terra on 12 September 2017). The
overall fusion processing goes through image registration and pre-processing. MNDWI was
calculated for optical images, however, the backscatter of SAR is not directly comparable with
the MNDWI. Hence, the MNDWI information was rescaled by inverting the minimum and
maximum index values so that the pixel close to the value of -1 represents water while close to 1
was classified as non-water [2]. Then 2D wavelet transform was applied to the rescaled MNDWI
optical image and SAR. This study used wavelet transform to fuse two images using Python 3.6.
Finally, Otsu thresholding was applied on the fused images.
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Figure 5.1: Flowchart of the automatic flood mapping process.
5.4 Grid resolution and image resampling

This study uses multi-satellite images with different orbital platforms. These satellites
have different properties such as daily revisit time but lower spatial resolutions (500 m), such as
MODIS Terra and Aqua. Other satellites with a better spatial resolution have a lower temporal
resolution, such as Landsat 7, Landsat 8, Sentinel-1 and ALOS-2. Hence, image alignment and
resampling is an essential step for this multitemporal and multi-satellite study. In this study, the
input remote sensing images were resampled using bicubic spline interpolation with a pixel size
of 0.001°. The size of the pixel was decided considering the spread of the ground data and
convenience for the user since high spatial resolution might cause inconvenience during access
[4]. A vector grid (Figure 5.2), was built as a reference for image projection and alignment. The
vector grid was reprojected as a Universal Transverse Mercator (UTM) zone 47N coordinate
system. The proposed method required overlapping images, and to do this the pixel of each
image is aligned with the corresponding pixel of the referred vector grid. Then, each resampled
and reprojected image was cropped to a 30 x 30 pixel (w x h) following the reference vector grid
for further processing.
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Figure 5.2: A reference vector grid of 30 x 30-pixel (w x h) size.
5.5 2D wavelet transform for image fusion

The fusion process begins by decomposing the image volume to frequency bands.
Wavelet transform decomposes images into four quadrants of high- and low-frequency bands.
The input images were transformed into four wavelet coefficients called HH (containing high-
frequency diagonal information), LH (containing high-frequency horizontal information), HL
(containing high-frequency vertical information), and LL (containing low-frequency
approximation information). Then, the frequency bands of each image are analyzed by the set
fusion rules to determine which one can be combined and which one has to be removed from the
final volume of coefficients. To produce the fused and combined coefficient map of the input
images, “the average” was used, and then an inverse wavelet transform was implemented to
reconstruct the fused image [5]. Figure 5.3 shows the schematic diagram of 2D wavelet
transform fusion process. The 2D wavelet transform was performed using PyWavelets which is
wavelet transform software for Python.
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Figure 5.3: 2D wavelet transform fusion process [5].

5.6 Performance evaluation for data-scarce areas

To assess the accuracy of the surface water area derived from the multi-satellite time
series, a correlation coefficient (Equation 1) was used to measure the correlation between the
satellite-derived water area and the ground-measured water area.

Zie1 (Ps,~Ps)(Po,—Po)

\/Z?Ll (Psi_mz\/z?lﬂ (Poi—mz

Correlation coefficient =

(D

Where, N is the number of samples, Pg, is the estimated surface water extent value, Pg, is
the mean of estimated surface water extent, Py, is the observed water level value, and Py, is the
mean of observed water level value. Additionally, the root means square error (RMSE) was used
to measure the magnitude of the average error in the extracted surface water area. The RMSE,
(Equation 5), is important for detecting undesirable large errors [6].

sy (Ps;=Po)’ i
Root Mean Square Error (RMSE) = [%] )
Finally, the mean bias error (MBE) (Equation 6), was used to measure the mean absolute
value of the error. If the predicted value is larger than the observed value, the mean bias error
will be positive, and vice versa.

N —
EiEl (P;l POI) (3)

Mean Bias Error =
5.7 Grid-based image fusion
Subsequently, the method explained in Section 5.3 was applied to the MNDWI images
since it is less complex than applying the fusion method to the green and SWIR bands, which are
used to calculate the MNDWI. Figure 5.4 shows the extracted water area for grid 21 (Figure 5.2)
based on two optical images acquired on 7 September 2017, one from Landsat 7 and one from
MODIS Terra.
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Figure 5.4: Landsat 7 optical image (left) and MODIS Terra optical image (center), both
acquired on 7 September 2017, and a fused image created using these two images (right). The
water area is shown in blue.

Figure 5.5 shows the scatterplots between the MNDW!I of Landsat 7 optical images and
that of MODIS optical images, the MNDWI of Landsat 7 optical images and that of fused
images, and the MNDWI of MODIS optical images and that of fused images. The correlation
coefficients were 0.31, 0.56, and 0.66, respectively. The amount of spectral content is preserved.

(b) (c)

Figure 5.5: Scatterplots between (a) MNDWI of Landsat 7 optical images and that of MODIS
optical image, (b) MNDW!I of Landsat 7 optical image and that of fused image, and (c) MNDWI
of MODIS optical image and that of the fused image.

Figure 5.6 shows the results of the fusion of a MODIS Terra optical image and a
Sentinel-1 SAR image acquired on 12 September 2017 for grid 21. The results show that the
fused image can preserve the information of the multispectral image while maintaining the
structural and geometrical information of the SAR image. Although the Sentinel-1 image has
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been filtered to remove noise, a few pixels of noise still appear, and the boundaries of objects are
more apparent in the fused image than in the Sentinel-1 or MODIS Terra images.

Figure 5.6: Sentinel-1 (left) and MODIS Terra (center) images, both acquired on 12
September 2017, and a fused image created using these two images (right). The water area is
shown in blue.

Figure 5.7 shows the correlation between the backscatter of Sentinel-1 and that of
MODIS optical images, the backscatter of Sentinel-1 and that of fused images, and the MNDWI
of MODIS optical images and that of fused images. The correlation coefficients were 0.06, 0.33,
and 0.18, respectively. Compared with the fused images created using two optical images, the
fused images created using optical and SAR images have a lower correlation coefficient owing to
the differences in data types, data structures, spatial resolution, and geometric characteristics.

(b) (c)

Figure 5.7: Scatterplots between (a) MNDWI of Sentinel-1 backscatter images and that of
MODIS optical images, (b) MNDWI of Sentinel-1 backscatter images and that of fused images,
and (c) MNDWI of MODIS optical images and that of fused images.
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The classification of the surface water area using the integration of optical, SAR, and
fused images from 4 September to 30 October 2017 for some affected grids is shown in Figure
5.8. In general, the water area in all of the grids is consistent with the ideal flood variation
modelling curve (Figure 2.1). In grid 5, the maximum surface water extent occurred on 1
October, with a water area of 6.89 km? and abruptly declined after 11 days. The maximum
surface water extent in grids 20, 21, 29, and 39 was observed on 28 September 2017, with water
areas of 7.19, 8.07, 7.47, and 10.02 km?, respectively. The surface water area abruptly declined
in the next period, 30 September 2017, and subsequently decreased slowly until the end of the
observation period.

(b)
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(d)

(e)
Figure 5.8: Time series of the surface water extent extracted from multiple satellite

images for some of the flood-aftected grids. (a) Grid 5, (b) Grid 20, (c¢) Grid 21, (d)
Grid 29, and (e) Grid 39.

The fused image on 7 September 2017 for grid 5 showed a zero amount of surface water
recorded. This might be due to the fused optical images seriously affected by cloud occlusion,
causing loss of data during the cloud masking process. In such circumstances, alternatively a
single image with lower contaminated data is a better option to represent data on that certain date.
Discrepancies of each image can cause fluctuations in a certain period. Since this study aimed to
use all the images regardless of image condition, standardization is required. For improvement,
polynomial modelling could be utilized to achieve low bias and low variance time series data.

5.8 Evaluation results

Because of the scarcity of rain gauge data for the September 2017 flood event, ground
observations of water level were only available for two grids. The correlation coefficient (r),
RMSE, and MBE were calculated to evaluate the extraction results. Figure 5.9 shows the
temporal variations of the extracted surface water area and the ground-measured water level for
grids 21 and 29.
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(b)

Figure 5.9: Time series of (a) the extracted surface water area in grid 21 and the water level
measured at the Kg Repoh station, and (b) the extracted surface water area in grid 29 and the water level
measured at the Kg Bakau station.

Based on the observed water level in grid 21, on 24 September, the water level was at a
dangerous level (>3.5 m), with a recorded level of 4.91 m. Additionally, in grid 21, the peak of
the ground-measured water level (24 September) occurred before the peak of the extracted water
area (28 September). The RMSE between the extracted water area and the ground-observed
water level is 1.55, and the MBE is —0.57 (underestimation). Similarly, for grid 29, the peak of
the ground-measured water level also occurred before the peak of the extracted water area, and
the values of RMSE and MBE for this grid are 2.56 and —2.15 (underestimation), respectively.
Overall the two data did not have a good relationship, but there is an assumption that there is a
delay of flooding event associated with the increase of river water level [59]. Therefore, the
results are acceptable for further analysis.

5.9 Discussion of chapter V

In mid-September 2017, Typhoon Doksuri caused heavy rain and high winds in northern
Peninsular Malaysia, which resulted in a flood event in Kangar and Arau districts. In this study,
Landsat 7, Landsat 8§, MODIS, ALOS-2, and Sentinel-1 images were integrated to estimate
changes in the floodwater extent during the September 2017 event. A simple and operational
flood monitoring methodology is presented. The integration of data from different sensors
enables a higher observation frequency, which is favorable for flood response and increases the
reliability of the estimation of flood duration. The degree of economic loss and structural damage
is highly dependent on the flood duration.

This study found that the proposed automatic flood detection method is efficient for
mapping the water surface area during flood events. The water area extraction results are
acceptable for lakes that are large and homogenous. However, the classification showed a lower
performance for rivers, especially when the rivers are narrow, close to urban structures, or follow
a meandering path. Therefore, mapping flood occurrence in urban areas using SAR images
remains challenging. It was impossible to extract the flood area in urban areas using Sentinel-1
data due to the high radar backscatter. Furthermore, the results showed that incorporating a flood
variation spatial and temporal model gives a useful overview of the flood inundation process,
especially in data-scarce areas. By using a grid system, unflooded areas can be ignored, thus
reducing the processing time.

In the future, we plan to introduce a more reliable method to detect floods in urban areas
and enhance the flood-detection ability in areas with small rivers. The implementation of a
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well-defined method that considers spatial and temporal data about flood depth using digital
elevation models (DEMs) and topographic information should be considered in future research.
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Chapter VI
Assess water extent map with surface water map from GSW

6.1 Introduction

Serious floods have hit the State of Perlis and Kedah in 2005, 2010, 2011,2014 as well as
2017. Frequent areas flooded are Kota Setar, Pokok Sena, Kubang Pasu, Padang Terap, Kuala
Muda, Baling and Sik. There are many factors that influence the occurrence of unusual flood in
Kedah and one of the causes is human activities that exploit an area unsustainably [1]. According
to a study by Hafsat Saleh et al. [2], the low-lying areas, which include the main paddy lands,
residential areas, highways, rails, and sugarcane plantations, are identified as those that are
destructible by floods. The other class in the reclassified map includes primarily forest and
rubbers which refer as highland area, which are less likely to be inundated or disrupted by floods
than low-lying areas [2]. Flood on September 2017 in Kedah, overflow of river water in addition
of high tide phenomenon during long duration of heavy rainfall contribute to flood [3]. The flood
receding at a slow pace due to the high tide phenomenon.

Figure 6.1: a) No flood view in Kedah area and b), ¢) and d) Photos of submerged houses and
paddy field in torrential rain in Kedah source from social media. Kedah land use majorly comprise of
paddy field.

Surface water map can indicate where surface water flooding could occur as a result of
local rainfall [4]. This chapter explores the spatial distribution of surface water flooding and
land use that affect people's exposure to flooding in Kedah area based on proposed method to
extract flood extent using ALOS-2. We used global surface water (GSW) which maps global
surface water (GSW) bodies from 1984 to 2020 and provides statistics on their extent and
changes were used to validate our result.

Jie Liu et. al [5], used global surface water (GSW) to validate their flood hazard zoning of
the Angkor site using synthetic aperture radar (SAR) data. Based on the result the global surface
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water recurrence and occurrence band dataset shows that there is correlation where high values
of occurrence and recurrence shows higher flood risk in the high hazards zones and lower
occurrence and recurrence value shows moderate flood risks in moderate hazard zones.
Meanwhile, the zero occurrence and recurrence indicate absence of water in the region and low
possibility of flood.

The GSW monthly water history datasets was referred to in order to show that the extent
of the flood is higher in the lowest lying paddy field areas, thereby ensuring the degree of
accuracy of the new flood extent that was formed from ALOS-2 HH+HYV using an Otsu method.
During the period of flooding and rice transplanting, there is a large proportion of surface water
in a land surface consisting of water, vegetation and soils and with heavy rainfall it can cause
surface water flooding. The GSW data was importantly referred to validate the outcome map
because it shows specifically the association of the value of each pixel with the surface water
flooding. The aim of the GWS monthly water history datasets in this section is to aid in
justifying the flood extent map by showing the low-lying areas covered by paddy in high risk of
flood.

6.2 Study area and Satellite data

Three area has been selected to be validated. This area consists of region a), b) and c)
which shown in figure 6.2. Based on annual flood report on 2014 from DID [6], these three
regions have flood recorded and shown in Figure 6.3. Region a) consist of residential area and
paddy field and closely located with straits of Malacca and Merbok river, b) area is majorly
classified as paddy field and c) consist of paddy field, several manmade which are airport and
residential area.

Figure 6.2: a) ALOS-2 HH+HV b) GSW binary image. Dark color indicates water region while,
white color indicates non-water area.
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Figure 6.3: Closed up of study area a), b) and ¢) and the blue is the flood extent on 2014 report
by DID.

Local scale flood observation may benefit from global geospatial datasets, especially in
data-poor areas [7]. Pekel et al. [8] reported created the 19842015 global 30 m 30 m resolution
surface water dataset in 2016, which maps global surface water (GSW) bodies from 1984 to
2020 and provides statistics on their extent and changes. GSW consists of information of the
seven bands of global surface water dataset which are occurrence, absolute change in occurrence
normalized change in occurrence, seasonality, recurrence, transition and maximum extent.

GSW monthly water history datasets were used to validate our results. The data set
presented here freely available at https://global-surface-water.appspot.com/. Three million
Landsat 5, 7, and 8 images with a 30 m spatial resolution were used to create this dataset. From
1984 to 2020, this dataset includes maps of the location and temporal distribution of global
surface water, as well as statistics on the extent and variation of those water surfaces. Using an
expert system, visual analytics, and evidential reasoning, each pixel in the dataset was identified
as water or non-water. The dataset consists of three bands, with band 0 indicating "no data," band
I represent "not water," and band 2 showing "water." The classifier makes less than 1% false
water detections and misses less than 5% of the water [8].

Long-term water records were used to create thematic products that show many aspects
of surface water dynamics. Water surfaces present during an entire year's observations are
separately mapped from those that are seasonal, and the frequency with which water returns from
year to year across the time-series is represented as recurrence. Between any two years of
observation, transitions between permanent water, seasonal water, and land classes can be
determined based on transitions between the first and last year of observation. Change
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measurements at the global, continental, and country scales are obtained by merging these
complimentary information layers, which capture water history per pixel, month, and year.

The GSW monthly dataset for September 2017 has scan line error so, was Classified
water area from ALOS 2 HH+HV on 2014 was preferable to be validated. Classified water area
from ALOS 2 HH+HYV on 2014 (refer Chapter 3) has been used to validate with September 2014
GSW monthly water history dataset to justifying the flood prone area in low lying paddy field
area. The GSW monthly dataset for September 2017 was

6.3 Accuracy assessment Method

The GWS map were compared with HH+HV ALOS-2 flood maps using three accuracy
indicators, which are Errors of Omission, Errors of Commission and Kappa coefficient.

Reference sites that were left out (or excluded) from the correct class in the classified
map are referred to as omission errors. On the classified map, the real land cover type was left
out or omitted. Error of omission is sometime also referred to as a Type I error. In one area, an
error of omission will be counted as an error of commission in another. By checking the
reference sites for inaccurate categories, omission errors are calculated. This is accomplished by
summing up the wrong classifications for each class and dividing them by the total number of
reference sites for that class. Each class's omission error is usually calculated separately. This
will allow us to assess each class's categorization accuracy and error.

The commission errors are related to the classed results. These are places that were
classed as reference sites in the classified map but were left out (or omitted) from the correct
class. Commission errors are calculated by looking for incorrect classifications on classified sites.
This is accomplished by summing up the wrong classifications for each class and dividing them
by the total number of categorized sites for that class.

When all parts of the error matrix are considered, the Kappa coefficient (k) is a measure
of agreement between two maps. A statistical test is used to calculate the Kappa Coefficient,
which is used to assess the correctness of a categorization. Kappa essentially assesses how well
the classification performed in comparison to simply assigning values at random, i.e. if the
classification outperformed chance. The Kappa Coefficient can be all between -1 and 1. The
classification is no better than a random classification if the value is 0. The classification is much
worse than random if the number is negative. A close approximation to 1 suggests that the
classification is much better than random. Referring to the previous study, the computed Kappa
coefficient, the performance of an image classification method can be grouped into five
categories (Richards et al. 2013): poor (k < 0.4), moderate (0.4 <k < 0.6), good (0.6 <« <0.75),
excellent (0.75 < x < 0.8), and most perfect (k > 0.8). According to these criteria, we target
accuracy Kappa coefficients of higher than 0.76 as the best accuracy. In terms of an error matrix,
it is defined as follows:

k = (Obs — Exp)/(1 — Exp)

For the target accuracy, since we used multi satellite, setting a target based on input data
is inappropriate. Hence, we select the target standard accuracy based on the Otsu method.
Referring to the previous study, the computed Kappa coefficient, the performance of an image
classification method can be grouped into five categories (Richards et al. 2013): poor (k < 0.4),
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moderate (0.4 < x < 0.6), good (0.6 < k < 0.75), excellent (0.75 < x < 0.8), and almost perfect
(k > 0.8). According to these criteria, we target accuracy Kappa coefficients of higher than 0.76
as the best accuracy.

6.4 Results and Discussion
6.4.1 Region a)

Figure 6.4 shows comparison of ALOS-2 HH+HV and GSW classified water and non-
water image for region a). White color indicates water region while, dark color indicates non-
water area. The spatial distribution affected by surface water flooding across Region a) from the
GSW indicates that the highest proportion of areas under flooding are located at the paddy field
lower region area, whilst the upper area no flooding detected even existence of paddy field in
that region as well. Upper region where the paddy field located is actually closed to recreational
forest area. This varied distribution suggests that the levels of risk of surface water flooding are
determined by factors associated with topography and land use. However, because the range of
backscatter intensity in flooded agricultural fields was nearly the same as that of non-flooded
agricultural fields, HH+HV from ALOS-2 incorrectly identified paddy field as flood region. As a
result, a histogram-based classification approach is likely to generate inaccurate results [9].

region while, dark color indicates non-water area.

The results of Errors of Omission, Errors of commission and Kappa coefficient for
Region a) was shown in Table 6.1. The temporary water class is generally delineated with
satisfactory accuracies. The results agreed well with the GSW data; the accuracy was Kappa =

0.780. The floods detected outside the validation area were likely the overland floods of rice-
paddy fields.

Table 6.1: Result of Errors of Omission, Errors of commission and Kappa coefficient for Region




Kappa = 0.780

Kappa Variance = 0.000001
Observe Correct = 1012371
Total Observe = 1086530

% Observed Correct = 93.175

6.4.2 Region b)

For region b), see Figure 6.5 for a comparison of ALOS-2 HH+HV and GSW categorized
water and non-water images. The color dark denotes a water area, while the color white denotes
a non-water area. The same with Region a) spatial distribution affected by surface water flooding
across Region b) from the GWS indicates that the highest proportion of areas under flooding are
located at the open paddy field. Overall, other area other than paddy field was affected with flood.
However, HH+HV from ALOS-2 identified more apparent paddy field as flood region compared
to GSW. HH+HV from ALOS-2 more sensitive to water presence in mixed land cover. The
overestimation of paddy fields was primarily due to the higher spatial resolution
(6.25m) of ALOS-2 compared with that of GSW data (30 m).

Figure 6.5: a) ALOS-2 HH+HV b) GSW binary image. Dark color indicates water region while,
white color indicates non-water area.

The results of Errors of Omission, Errors of commission and Kappa coefficient for
Region b) was shown in Table 6.2. The temporary water class is generally delineated with

79



moderate accuracies. The results agreed with the GSW data with the accuracy was Kappa =
0.520. The overestimation of paddy fields was mostly due to ALOS-2's higher spatial resolution
(6.25 m) when compared to GSW data (30 m). Uncertainties may also arise from a change in
land use during the period when the ALOS-2 image was acquired in 02 October and the monthly
September GSW data.

Table 6.2: Result of Errors of Omission, Errors of commission and Kappa coefficient for Region

Kappa = 0.520

Kappa Variance = 0.000
Observe Correct = 1259753
Total Observe = 1548276

% Observed Correct = 81.364

6.4.3 Region c)

Figure 6.6 shows a comparison of ALOS-2 HH+HV and GSW categorized water and
non-water photos for region c). A water area is indicated by the color dark, while a non-water
area is shown by the color white. The land use of Region ¢) is more heterogenous compared to
Region a) and b). HH+HV ALOS-2 misclassified airport runway as water area while GSW did
not classified them as flood. The same case with paddy field, airport runway range of
backscatter intensity in water and flat areas is the same.

Figure 6.6: a) ALOS-2 HH+HV b) GSW binary image. Dark color indicates water region
while, white color indicates non-water area.

Table 6.3 shows the findings of Errors of Omission, Errors of Commission, and Kappa
coefficient for Region c¢). The temporary water class is generally delineated with poor accuracies.
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The results poorly agreed with the GSW data with the accuracy was Kappa = 0.312. The
overestimation of flat manmade and overestimation of paddy field might be due to high
difference of spatial resolution of both satellites data.

Table 6.3: Result of Errors of Omission, Errors of commission and Kappa coefficient for Region

c)

Kappa=10.312

Kappa Variance = 0.000002
Observe Correct = 220246

Total Observe = 296784

% Observed Correct = 74.210874

6.5 Discussion for Chapter V

A surface water map can show where floods from surface water could occur as a result of
local rainfall. Based on a suggested approach to extract flood extent using ALOS-2, this section
explores the spatial distribution of surface water flooding and land use that affect people's
exposure to flooding in the Kedah area. To corroborate our findings, we used global surface
water (GSW), to be as referral map to associate flood occurrence with the surface water flood.

Overall accuracy of the estimated area of water in area a) is almost perfect agreement
with value 0.903. This is because there is an open water area and ALOS-2 HH+HV can classified
open water area well. Upper region where the paddy field located is actually closed to
recreational forest area. This varied distribution suggests that the levels of risk of surface water
flooding are determined by factors associated with topography and land use. However, because
the range of backscatter intensity in flooded agricultural fields was nearly the same as that of
non-flooded agricultural fields, HH+HV from ALOS-2 incorrectly identified paddy field as flood
region. As a result, a histogram-based classification approach is likely to generate inaccurate
results for area b), the major area is a paddy field area and there is some area misclassified as
water thus, the accuracy drops to 0.780. Overall, other area other than paddy field was affected
with flood. However, HH+HV from ALOS-2 identified more apparent paddy field as flood
region compared to GSW. HH+HV from ALOS-2 more sensitive to water presence in mixed
land cover. The overestimation of paddy fields was primarily due to the higher
spatial resolution (6.25 m) of ALOS-2 compared with that of GSW data (30 m). For
area c), there is a built-up zone where, urban area and airport located in this area. ALOS-2
HH+HYV misclassified an airport as water area then reducing the accuracy to 0.315. HH+HV
ALOS-2 misclassified airport runway as water area while GSW did not classified them as flood.
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The same case with paddy field, airport runway range of backscatter intensity in water and flat
areas is the same.
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Chapter VII
Conclusion
7.1 Dissertation Conclusions

This dissertation has dealt with the use of multi-temporal flood detection. However, it is
limited. Otsu method has been widely accepted and its capability quantitatively and qualitatively
proved. Many techniques are used to extract water using optical satellite images and SAR images,
from image processing techniques to image classification techniques: change detection, visual
interpretation using RGB composition, supervised classification, image texture algorithms, and
active contour models. Meanwhile, for optical images, some examples are spectral indices, RGB
False Color Composites (FCCs), supervised classification, unsupervised ISODATA
classification, and dynamic thresholding. Presently, even though an abundance of near real-time
data is available, the data and information still appear to be underutilized by decision-makers in
the disaster response phase due to a few constraints, such as the limitation on (1) time and
capacity of a person to process new geospatial datasets, (2) accessibility of near real-time data, (3)
compatibility of user platforms and geospatial data formats, (4) knowledge of the data
availability and inadequacy of data latency, and (5) understanding of the end-user demand on the
product and timing needs. Despite various notable efforts, to this end, existing satellite
technology or any single data product could not solve the current challenge from the decision-
making standpoint. Hence, to fulfill decision-makers' needs, there is a demand to develop a
process for improving the end product for an effective disaster response rather than developing a
new system to improve flood operation. This study focuses on the standardization of multi-
source remote sensing data by using the same processing platform. In this context,
standardization in the meaning to reduce the inconsistency of dataset.

In mid-September 2017, Typhoon Doksuri caused heavy rain and high winds in northern
Peninsular Malaysia, which resulted in a flood event in Kangar and Arau districts. In this study,
Landsat 7, Landsat 8, MODIS, ALOS-2, and Sentinel-1 images were integrated to estimate
changes in the floodwater extent during the September 2017 event. A simple and operational
flood monitoring methodology is presented. The integration of data from different sensors
enables a higher observation frequency, which is favorable for flood response and increases the
reliability of the estimation of flood duration. The degree of economic loss and structural damage
is highly dependent on the flood duration.

Based on our findings in Chapter 1V, it shows that MNDWI shows the best and the most
stable water index for the automatic thresholding of a multispectral image and total backscatter
of HH+HV ALOS-2 and VV+VH for Sentinel | is preferable for automatic thresholding. After
the integration, due to differing spatial resolution. MODIS was also heavily impacted by cloud,
with the majority of pixels being deleted, resulting in no water area being recorded on September
14th and 15th. On the 14th and 8th of October, MODIS was also heavily impacted by cloud, with
the majority of pixels being deleted and no water area being recorded. To achieve low bias and
low variance datasets, statistical procedures such as polynomial regression can be used to
overcome bias and variance.

Chapter V, the analysis proceeds by applying 2D wavelet transform to fuse two images
with the same observation period using grid based. Finally, the of temporal distribution of water
classification was compared with the ground water level data. Overall the two data did not have a
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good relationship, but there is an assumption that there is a delay of flooding event associated
with the increase of river water level. Therefore, the results are acceptable for further analysis.

In Chapter VI, we discussed about function of surface water map to indicate where
surface water flooding could occur as a result of local rainfall. This chapter explores the spatial
distribution of surface water flooding and land use that affect people's exposure to flooding in
Kedah area based on proposed method to extract flood extent using ALOS-2. We suggest that
varied distribution levels of risk of surface water flooding in the study area are determined by
factors associated with topography and land use.

To summarize the main conclusion:

1. For automatic classification of multisatellite data, Otsu thresholding worked robustly. In this
study, we have found multiSAR classification gives better result with dual polarization and
optical images gives improve result with MNDWTI as an input data when using for automatic
surface water mapping.

2. Use of multisatellite data increases the frequency of observation which help in capturing the
short-span flood as well as provides the possibility to track the changes of water extent
during the long extent event.

3. Automatic classification accuracy of multisatellite data improves when using multiSAR data
along with the multispectral data. In our study, the classification results from multispectral
data improves from r=0.498 to r=0.64 when integrate with multiSAR.

7.2 Future Work

We would like to focused on developing image datasets with combination of both a high
temporal resolution and medium spatial resolution by harmonizing the time-series of SAR and
multispectral images. We would like to proposed a methodology that highly accurate, with high
temporal resolution and medium spatial resolution and it was possible to harmonize that can help
resolve issues arising from inconsistency of satellite imaging datasets.

To conclude the limitation and future works, we summarized them below:

1. Lack of calibration for data harmonisation among various sensors.

2. Varied topographical and climatical places can be selected for comparison of
performance of the recommended method.

3. Accuracy assessment is still a challenging factor that restrict the high-level application of
multi-source remote sensing satellites data. Collaboration for the data sharing with the local
government should be promoted to investigate the accuracy and improved the consistency of
multisource satellite data.
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