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Tit-for-Tat strategy is a strategy in repeated two-player symmetric games which imitates the

previous action of the opponent. We show that the Tit-for-Tat strategy is a zero-determinant

strategy, which unilaterally equalizes the expected payoffs of two players, if and only if the

stage game is a potential game. Because it has been known that this condition is equivalent

to the condition that the Tit-for-Tat strategy is unbeatable, our results suggest some relation

between unbeatable property and the concept of zero-determinant strategy.

1. Introduction

The Tit-for-Tat (TFT) strategy was discovered as a cooperative strategy in the infinitely

repeated prisoner’s dilemma game, which imitates the previous action of the opponent.1) Al-

though a pair of TFT does not form subgame perfect equilibrium, it forms Nash equilibrium.

Axelrod obtained the numerical results that TFT is the most successful strategy in the pris-

oner’s dilemma game by using computer tournaments.2) Meanwhile, in evolutionary games,

it was pointed out that TFT is not successful because it is not robust against errors.3–5) Re-

cently, it was found that TFT is contained in the class of zero-determinant (ZD) strategies,

which unilaterally enforce linear relations between expected payoffs.6) Furthermore, it was

shown that TFT is also a deformed ZD strategy which unilaterally equalizes all moments of

payoffs of two players.7) Variants of TFT were recently proposed which are robust against

implementation errors.8, 9)

Although many researchers investigated properties of TFT in the repeated prisoner’s

dilemma games, little is known about properties of TFT in other repeated two-player sym-

metric games. Although simple, imitation strategies are generally successful in several sit-

uations.10–13) Recently, Duersch et al. found that TFT is unbeatable if and only if the stage

game is a potential game.14) Potential games are a class of games in strategic form which
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have potential functions.15) For potential games, Nash equilibrium is realized as the maxi-

mum of a potential. Potential games contain several important situations such as the Cournot

duopoly game and the public goods game, in addition to the prisoner’s dilemma game. For

non-potential games, such as rock-paper-scissors game, TFT can be exploited unboundedly.

In this paper, we show that, in infinitely repeated two-player symmetric games, TFT is

unbeatable if and only if TFT is a ZD strategy. ZD strategies attract much attention because of

their counterintuitive properties that the payoffs are unilaterally controlled by one player.16–20)

We show that TFT is a ZD strategy, which unilaterally equalizes the expected payoffs of two

players, if and only if the stage game is a potential games, even if the stage game is not the

prisoner’s dilemma game. When combined with the results of Ref.,14) we can see that the

unbeatable property of TFT is equivalent to that TFT is a ZD strategy.

This paper is organized as follows. In Section 2, we introduce a model of infinitely re-

peated two-player symmetric games. In Section 3, we introduce basic concepts used in the

later sections and results of the previous papers.6, 15) In Section 4, we prove our main theorem

that TFT is a ZD strategy if and only if the stage game is a potential game. In addition, we

also show that TFT unilaterally equalizes the expected payoffs of two players in potential

games. Moreover, we show that TFT cannot unilaterally enforce any linear relations between

expected payoffs in non-potential games, if the opponent uses memory-one strategies. In Sec-

tion 5, we check the main result in two examples. In Section 6, we introduce the results of

Ref.,14) and discuss the relation between our results and the results of Ref.14) In this section,

we also provide the results about other imitation strategies. Section 7 is devoted to concluding

remarks.

2. Model

We consider a two-player symmetric game. The set of player is N := {1, 2}. The set

of action of player a in the stage game is Aa = A := {1, · · · ,M}, where M is a natural

number representing the number of action. The action of player a is written as σa ∈ A. We

collectively write σ := (σ1, σ2), and call σ a state. The payoff of player a ∈ {1, 2} in the stage

game when the state is σ is described as sa (σ). Therefore, the stage game is described as

G := (N, {Aa}a∈N , {sa}a∈N).21) We introduce the notation that −a := N\{a}. We assume that the

game is symmetric, that is, s2(σ1, σ2) = s1(σ2, σ1) (∀σ1,∀σ2).

We repeat the stage game G infinitely. We write an action of player a at round t ≥ 1

as σ(t)
a . We also introduce the notation h[t:t′] :=

(
σ(t), · · · ,σ(t′)

)
for t ≤ t′, and call h[t:t′] the

history in time interval [t : t′]. A strategy of player a in the infinitely repeated game is defined
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by
{
T (t)

a

(
σ(t)

a |h[1:t−1]

)}∞
t=1

, where T (t)
a

(
σ(t)

a |h[1:t−1]

)
is the conditional probability of taking action

σ(t)
a at round t when the history is h[1:t−1]. We write the expectation of the quantity B with

respect to strategies of both players by E[B]. The payoff of player a in the infinitely repeated

game is defined by

Sa := (1 − δ)E
 ∞∑

t=1

δt−1sa

(
σ(t)
) , (1)

where δ is a discounting factor satisfying 0 ≤ δ ≤ 1.

Below we consider only the case δ = 1, where the payoff of player a is described as

Sa = lim
T→∞

1
T
E

 T∑
t=1

sa

(
σ(t)
) . (2)

3. Preliminaries

In this section, we introduce several concepts used in later sections. Below, the quantity

δσ,σ′ represents the Kronecker delta. We also define s0 (σ) := 1 (∀σ).

First, we introduce time-independent memory-n strategies.

Definition 1 A strategy of player a is a time-independent memory-n strategy (n ≥ 0) when it

is written in the form

T (t)
a

(
σ(t)

a |h[1:t−1]

)
= Ta

(
σ(t)

a |h[t−n:t−1]

) (
∀σ(t)

a ,∀h[1:t−1]

)
(3)

for all t ≥ n + 1 with some common conditional probability Ta.

It should be noted that, in order to define a strategy, the initial condition for t ≤ n must also

be given aside from Ta.

As a special time-independent memory-one strategy, we introduce the Tit-for-Tat strategy.

Definition 2 A time-independent memory-one strategy of player a is the Tit-for-Tat (TFT)

strategy when Ta in Definition 1 is written in the form

Ta
(
σa|σ′

)
= δσa,σ

′
−a

(∀σa,∀σ′
)
. (4)

That is, TFT imitates the action of the opponent in the previous round.

Next, we introduce zero-determinant strategies. For time-independent memory-one strate-

gies Ta of player a, we first introduce the Press-Dyson vectors22, 23)

T̂a
(
σa|σ′

)
:= Ta

(
σa|σ′

) − δσa,σ
′
a

(∀σa,∀σ′
)
. (5)

Because the second term in the right-hand side of Eq. (5) can be regarded as the strategy

“Repeat”, which repeats his/her own action in the previous round, the Press-Dyson vectors

are interpreted as the difference between his/her own strategy and “Repeat”. By using the
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Press-Dyson vectors, we define the zero-determinant strategies.

Definition 3 A time-independent memory-one strategy of player a is a zero-determinant (ZD)

strategy when its Press-Dyson vectors can be written in the form∑
σa

cσaT̂a
(
σa|σ′

)
=

2∑
b=0

αbsb
(
σ′
) (∀σ′) (6)

with some nontrivial coefficients {αb} and
{
cσa

}
(that is, not α0 = α1 = · · · = αN = 0, and not

c1 = · · · = cM = const.).

In other words, in ZD strategies, a linear combination of the Press-Dyson vectors is described

as a linear combination of payoff vectors and a vector of all ones. We remark that the defi-

nition of ZD strategies of player a does not depend on the length of memory of strategies of

player −a.

In order to see properties of ZD strategies, we first remember that the joint probability of

states satisfies the recursion relation

P
(
h[1:t+1]

)
=

∏
a

T (t+1)
a

(
σ(t+1)

a |h[1:t]

) P
(
h[1:t]
)
. (7)

We also define probability distribution of σ(t) by

Pt

(
σ(t)
)

:=
∑

h[1:t−1]

P
(
h[1:t]
)
. (8)

We consider the situation that player a uses a ZD strategy. By taking
∑
σ(t+1)
−a

∑
h[1:t]

in both sides

of Eq. (7), we obtain∑
σ′

δσ′a,σ(t+1)
a

Pt+1
(
σ′
)
=
∑
σ′

Ta

(
σ(t+1)

a |σ′
)

Pt
(
σ′
)

(9)

Then, by replacing σ(t+1)
a → σa and calculating limT→∞

1
T

∑T
t=1 of both sides, we obtain∑

σ′

δσ′a,σa P∗
(
σ′
)
=
∑
σ′

Ta
(
σa|σ′

)
P∗
(
σ′
)
, (10)

where we have defined the limit distribution

P∗ (σ) := lim
T→∞

1
T

T∑
t=1

Pt (σ) . (11)

This fact is known as Akin’s lemma:

Lemma 1 (22, 23)) The Press-Dyson vectors satisfy∑
σ′

P∗
(
σ′
)

T̂a
(
σa|σ′

)
= 0 (∀σa). (12)

We also remark that the payoffs in the repeated games are described by expectation with
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respect to the limit distribution:

Sb = lim
T→∞

1
T

T∑
t=1

∑
σ

sb (σ) Pt (σ)

=
∑
σ

sb (σ) P∗ (σ) . (13)

Below we write the expectation of quantity B with respect to the limit distribution P∗ as ⟨B⟩∗.
Therefore, Sb = ⟨sb⟩∗. The following proposition about ZD strategies is a direct consequence

of Akin’s lemma.

Proposition 1 (6, 23)) A ZD strategy (6) unilaterally enforces a linear relation between ex-

pected payoffs:

0 =

2∑
b=0

αb ⟨sb⟩∗ . (14)

In other words, ZD strategies unilaterally control expected payoffs. We emphasize that this

property of ZD strategies hold regardless of the strategy of player −a. Although we above

consider the situation that the action set A is countable, ZD strategies were also extended

to games with uncountable action set.24) For such cases, the argument about probability is

replaced by that about probability density, and the Kronecker delta is replaced by the Dirac

delta. Furthermore, we also remark that the concept of ZD strategies was recently extended

to memory-n strategies with n ≥ 1.20, 25)

Finally, we introduce the concept of potential game.15)

Definition 4 A game G = (N, {Aa}a∈N , {sa}a∈N) is an (exact) potential game when there exist a

common function Φ(σ) satisfying

sa(σa, σ−a) − sa(σ′a, σ−a) = Φ(σa, σ−a) − Φ(σ′a, σ−a) (∀σa,∀σ′a,∀σ−a) (15)

for all player a.

The function Φ is called a potential function. Because the Nash equilibrium σ∗ is defined by

the condition

sa(σ∗a, σ
∗
−a) ≥ sa(σa, σ

∗
−a) (∀a,∀σa), (16)

the condition of the Nash equilibrium for potential games is rewritten as

Φ(σ∗a, σ
∗
−a) ≥ Φ(σa, σ

∗
−a) (∀a,∀σa). (17)

Therefore, for a potential game, the Nash equilibrium is realized as the maximum of a poten-

tial function. It should be remarked that the concept of potential game is also defined for the

case that the action set A is uncountable.
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4. Results

In the prisoner’s dilemma game, it is known that TFT is a ZD strategy, which unilaterally

enforces ⟨s1⟩∗ = ⟨s2⟩∗.6) A natural question is “Is TFT also a ZD strategy in other two-

player symmetric games?”. In this section, we show that TFT in two-player symmetric games

becomes a ZD strategy if and only if the stage game is a potential game.

We consider the situation that player 1 takes TFT. Below, for quantities B(σ1, σ2), we use

the following notations

B(S)(σ1, σ2) :=
1
2

[B(σ1, σ2) + B(σ2, σ1)] (18)

B(A)(σ1, σ2) :=
1
2

[B(σ1, σ2) − B(σ2, σ1)] , (19)

which correspond to symmetric and anti-symmetric parts of B(σ1, σ2), respectively.

4.1 When is TFT a zero-determinant strategy?

We first prove the following lemma, which is essentially the same as one in Ref.26)

Lemma 2 For two-player symmetric games, the definition of potential game is equivalent to

the condition

s(A)
1 (σ1, σ2) = cσ2 − cσ1 (∀σ1,∀σ2) (20)

with some function cσ.

Proof. For two-player symmetric game, the definition of potential game is explicitly writ-

ten as

s1(σ1, σ2) − s1(σ′1, σ2) = Φ(σ1, σ2) − Φ(σ′1, σ2) (∀σ1,∀σ′1,∀σ2) (21)

s2(σ1, σ2) − s2(σ1, σ
′
2) = Φ(σ1, σ2) − Φ(σ1, σ

′
2) (∀σ2,∀σ′2,∀σ1). (22)

Because the game is symmetric, the condition (22) is equivalent to

s1(σ2, σ1) − s1(σ′2, σ1) = Φ(σ1, σ2) − Φ(σ1, σ
′
2). (23)

By relabeling the name of variables, it is rewritten as

s1(σ1, σ2) − s1(σ′1, σ2) = Φ(σ2, σ1) − Φ(σ2, σ
′
1). (24)

Then we obtain

Φ(σ1, σ2) − Φ(σ′1, σ2) = Φ(σ2, σ1) − Φ(σ2, σ
′
1), (25)

or

Φ(A)(σ1, σ2) = Φ(A)(σ′1, σ2), (26)
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which means that the anti-symmetric part of the potential Φ does not depend on σ1. By using

the same argument, we also obtain

Φ(A)(σ1, σ2) = Φ(A)(σ1, σ
′
2). (27)

Therefore, Φ(A) must be constant. However, because Φ(A) is the anti-symmetric part,

Φ(A)(σ,σ) = 0 for any σ, and this constant must be zero. Thus, Φ(A)(σ1, σ2) = 0 for all

(σ1, σ2), and we conclude that the potential Φ is symmetric.

By using this fact, we find that

s1(σ1, σ2) − s1(σ2, σ1) = s1(σ1, σ2) − s2(σ1, σ2)

= [Φ(σ1, σ2) − Φ(1, σ2) + s1(1, σ2)] − [Φ(σ1, σ2) − Φ(σ1, 1) + s2(σ1, 1)]

= [−Φ(1, σ2) + s1(1, σ2)] − [−Φ(1, σ1) + s1(1, σ1)]

= dσ2 − dσ1 , (28)

where we have defined

dσ := −Φ(1, σ) + s1(1, σ). (29)

Therefore, we obtain the form (20).

Conversely, when the condition (20) holds,

s1(σ1, σ2) − cσ2 = s1(σ2, σ1) − cσ1 . (30)

When we introduce the quantity

ϕ(σ1, σ2) := s1(σ1, σ2) − cσ2 , (31)

it satisfies

ϕ(σ1, σ2) = ϕ(σ2, σ1). (32)

Then we find that

s1(σ1, σ2) − s1(σ′1, σ2) =
[
ϕ(σ1, σ2) + cσ2

] − [ϕ(σ′1, σ2) + cσ2

]
= ϕ(σ1, σ2) − ϕ(σ′1, σ2) (33)

and

s2(σ1, σ2) − s2(σ1, σ
′
2) = s1(σ2, σ1) − s1(σ′2, σ1)

= ϕ(σ2, σ1) − ϕ(σ′2, σ1)

= ϕ(σ1, σ2) − ϕ(σ1, σ
′
2). (34)
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Therefore, the quantity ϕ can be regarded as a potential. □

We now prove our main theorem.

Theorem 1 For two-player symmetric games, TFT is a ZD strategy if and only if the stage

game is a potential game.

Proof. When player 1 takes TFT, her Press-Dyson vector is described as

T̂1
(
σ1|σ′1, σ′2

)
= δσ1,σ

′
2
− δσ1,σ

′
1
. (35)

If TFT is a ZD strategy (6), it satisfies

cσ′2 − cσ′1 =

2∑
b=1

αbsb
(
σ′1, σ

′
2
)
+ α0 (36)

with some non-trivial coefficients {αb} and
{
cσa

}
. Because

cσ′1 − cσ′2 =

2∑
b=1

αbsb
(
σ′2, σ

′
1
)
+ α0, (37)

we obtain

−
2∑

b=1

αbsb
(
σ′1, σ

′
2
) − α0 =

2∑
b=1

αbsb
(
σ′2, σ

′
1
)
+ α0, (38)

or

0 =

2∑
b=1

αbs(S)
b

(
σ′1, σ

′
2
)
+ α0, (39)

for all
(
σ′1, σ

′
2

)
. Furthermore, because the game is symmetric, this equation can be rewritten

as

0 = (α1 + α2) s(S)
1
(
σ′1, σ

′
2
)
+ α0, (40)

Then, the coefficients must satisfy either of the following relations: α0 = − (α1 + α2) s(S)
1 (1, 1)

(
if s(S)

1

(
σ′1, σ

′
2

)
= s(S)

1 (1, 1) (∀σ′1,∀σ′2)
)

α1 + α2 = 0, α0 = 0 (otherwise).
(41)

For the former case, Eq. (36) can be rewritten as

cσ′2 − cσ′1 =

2∑
b=1

αbsb
(
σ′1, σ

′
2
) − (α1 + α2) s(S)

1 (1, 1)

= α1

[
s(S)

1
(
σ′1, σ

′
2
)
+ s(A)

1
(
σ′1, σ

′
2
)]
+ α2

[
s(S)

1
(
σ′2, σ

′
1
)
+ s(A)

1
(
σ′2, σ

′
1
)] − (α1 + α2) s(S)

1 (1, 1)

= α1s(A)
1
(
σ′1, σ

′
2
)
+ α2s(A)

1
(
σ′2, σ

′
1
)

= (α1 − α2)s(A)
1
(
σ′1, σ

′
2
)
. (42)
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For the latter case, Eq. (36) can be rewritten as

cσ′2 − cσ′1 = α1s1
(
σ′1, σ

′
2
) − α1s2

(
σ′1, σ

′
2
)

= α1s1
(
σ′1, σ

′
2
) − α1s1

(
σ′2, σ

′
1
)

= 2α1s(A)
1
(
σ′1, σ

′
2
)
. (43)

Therefore, cσ′2 −cσ′1 , which is non-zero for some pairs
(
σ′1, σ

′
2

)
, is proportional to s(A)

1

(
σ′1, σ

′
2

)
for both cases. From Lemma 2, this is the condition for a game to be a potential game.

Therefore, if TFT is a ZD strategy, then the game must be a potential game.

Conversely, if the game is a potential game, it satisfies

cσ′2 − cσ′1 = s(A)
1
(
σ′1, σ

′
2
)

(44)

for some function cσ (Lemma 2). This means that

cσ′2 − cσ′1 =
1
2

s1
(
σ′1, σ

′
2
) − 1

2
s1
(
σ′2, σ

′
1
)

=
1
2

s1
(
σ′1, σ

′
2
) − 1

2
s2
(
σ′1, σ

′
2
)

(45)

with

cσ′2 − cσ′1 =
∑
σ1

cσ1T̂1
(
σ1|σ′1, σ′2

)
. (46)

Therefore, if the game is a potential game, TFT is a ZD strategy. □

The following corollary is a direct consequence of Theorem 1 and Proposition 1.

Corollary 1 For two-player symmetric games, TFT unilaterally enforces

⟨s1⟩∗ = ⟨s2⟩∗ (47)

for potential games.

Proof. In the proof of Theorem 1, we find that∑
σ1

cσ1T̂1
(
σ1|σ′1, σ′2

)
=

1
2

s1
(
σ′1, σ

′
2
) − 1

2
s2
(
σ′1, σ

′
2
)

(48)

for potential games. By using Proposition 1, we obtain Eq. (47). □

We remark that the linear relation enforced by TFT in potential games is restricted to Eq.

(47). Therefore, TFT can only unilaterally equalizes the expected payoffs of two players in

potential games.
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4.2 TFT in non-potential games

Theorem 1 claims that TFT cannot be a ZD strategy in non-potential games. However,

this does not directly lead to the statement that TFT cannot unilaterally enforce any linear

relations between expected payoffs in non-potential games, since there is no guarantee that

ZD strategies are only strategies which unilaterally enforce linear relations between expected

payoffs. In Ref.,27) the authors proved that memory-one strategies which unilaterally enforce

linear relations between expected payoffs are restricted to ZD strategies and unconditional

strategies in the prisoner’s dilemma game, if both players use memory-one strategies and a

stationary distribution of the induced Markov chain exists. Here we extend their results to our

case.

Theorem 2 For two-player symmetric games, if the opponent −a also uses a time-

independent memory-one strategy T−a (σ−a|σ′) and the induced Markov chain

Pt+1 (σ) =
∑
σ′

 2∏
a=1

Ta
(
σa|σ′

) Pt
(
σ′
)

(49)

has a stationary distribution, then the following two conditions are equivalent:

(a) TFT is a ZD strategy.

(b) TFT unilaterally enforces a linear relation between expected payoffs.

Proof. ((a)⇒(b)): If TFT is a ZD strategy, Theorem 1 claims that the stage game is a po-

tential game. Then, under the assumptions, Corollary 1 claims that TFT unilaterally enforces

a linear relation (47).

((b)⇒(a)): We first note that the limit distribution P∗ coincides with the stationary dis-

tribution of Eq. (49) under the assumptions. We assume that TFT of player 1 unilaterally

enforces a linear relation between expected payoffs

0 = α1 ⟨s1⟩∗ + α2 ⟨s2⟩∗ + α0. (50)

Due to the assumptions, the stationary distribution exists, such that

P∗ (σ) =
∑
σ′

T
(
σ|σ′) P∗ (σ′) (51)

with the transition probability

T
(
σ|σ′) :=

2∏
a=1

Ta
(
σa|σ′

)
. (52)

By introducing a vector P∗ := (P∗ (σ))σ∈A2 and a matrix T ′ := T − IM2 , where Ik is a k × k
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identity matrix, this condition can be rewritten as

T ′P∗ = 0. (53)

Therefore, for a non-trivial solution P∗ to exist, det T ′ = 0 must hold. On the other hand,

because of the relation between a matrix T ′ and its adjugate matrix Adj(T ′), we obtain6)

T ′Adj(T ′) =
(
det T ′

)
IM2 = OM2 , (54)

where Ok is a k × k zero matrix. Then, we find that P∗ is proportional to the every column of

Adj(T ′). By choosing the last column of Adj(T ′) as P∗, we obtain

P∗ (σ) = C · (Adj(T ′)
)
σ,(M,M) (∀σ), (55)

where C is a constant. By using this fact, the expected value of a quantity B with respect to

the stationary distribution is

⟨B⟩∗ =
∑
σ

B(σ)P∗ (σ)

= CD(B), (56)

where we have defined

D(B) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T′(1, 1)T

T′(1, 2)T

...

T′(M,M − 1)T

BT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (57)

and vectors T′(σ) := (T ′ (σ|σ′))σ′∈A2 and B := (B (σ))σ∈A2 . We find that C = D(1)−1, where 1

is a vector of all ones. Then, a linear relation (50) can be rewritten as

0 =
D(α1s1 + α2s2 + α01)

D(1)
. (58)

Below we set B = α1s1 + α2s2 + α01.

The necessary and sufficient condition for Eq. (58) to hold is that M2 vectors T′(1, 1), · · · ,
T′(M,M − 1), B are linearly dependent, that is∑

σ,(M,M)

cσT′(σ) + c(M,M)B = 0 (59)

for some non-trivial {cσ} (that is, not cσ = 0 (∀σ)). When player 1 uses TFT, Eq. (59) is

written as

0 =
∑

σ,(M,M)

cσ
[
δσ1,σ

′
2
T2
(
σ2|σ′

) − δσ1,σ
′
1
δσ2,σ

′
2

]
+ c(M,M)B(σ′) (∀σ′). (60)
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These are M2 simultaneous equations of M2 variables {cσ}. Or, explicitly, the vectors

T′(σ1, σ2) are

T′(σ1, σ2) =



0
...

T2 (σ2|1, σ1)
...

0

0
...

T2 (σ2|2, σ1)
...

0
...

0
...

T2 (σ2|M, σ1)
...

0



−



0
...

0

1 (← (σ1, σ2))

0
...

0


(∀σ , (M,M)), (61)

and therefore Eq. (59) can be expressed as

∑
σ2

c(1,σ2)T2 (σ2|1, 1)
...∑

σ2
c(M−1,σ2)T2 (σ2|1,M − 1)∑
σ2,M c(M,σ2)T2 (σ2|1,M)

...∑
σ2

c(1,σ2)T2 (σ2|M, 1)
...∑

σ2
c(M−1,σ2)T2 (σ2|M,M − 1)∑
σ2,M c(M,σ2)T2 (σ2|M,M)



−



c(1,1)
...

c(1,M−1)

c(1,M)
...

c(M,1)
...

c(M,M−1)

0



+ c(M,M)B = 0. (62)

We remark that the normalization condition of T2 leads to

T2
(
M|σ′1, σ′2

)
= 1 −

M−1∑
σ2=1

T2
(
σ2|σ′1, σ′2

)
(∀σ′). (63)

12/21



J. Phys. Soc. Jpn.

By using this fact, Eq. (62) is rewritten as

∑
σ2,M
(
c(1,σ2) − c(1,M)

)
T2 (σ2|1, 1)

...∑
σ2,M
(
c(M−1,σ2) − c(M−1,M)

)
T2 (σ2|1,M − 1)∑

σ2,M c(M,σ2)T2 (σ2|1,M)
...∑

σ2,M
(
c(1,σ2) − c(1,M)

)
T2 (σ2|M, 1)

...∑
σ2,M
(
c(M−1,σ2) − c(M−1,M)

)
T2 (σ2|M,M − 1)∑

σ2,M c(M,σ2)T2 (σ2|M,M)



+



c(1,M)
...

c(M−1,M)

0
...

c(1,M)
...

c(M−1,M)

0



−



c(1,1)
...

c(1,M−1)

c(1,M)
...

c(M,1)
...

c(M,M−1)

0



+ c(M,M)B = 0.

(64)

Since we consider the situation that TFT unilaterally enforces a linear relation between ex-

pected payoffs, this equation must hold irrespective of the strategy T2 of player 2. Therefore,

the first vector must be zero. We remark that the coefficient of T2 (σ2|i, j) in these equations

is common for all i. This leads to

c(i,σ2) = ci (1 ≤ i ≤ M − 1, 1 ≤ σ2 ≤ M) (65)

and

c(M,σ2) = 0 (1 ≤ σ2 ≤ M − 1). (66)

Below, we write cM := 0. Substituting Eqs. (65) and (66) into Eq. (60), we finally obtain for

∀σ′

0 =

σ1,M∑
σ

+

σ1=M,σ2,M∑
σ

 cσ
[
δσ1,σ

′
2
T2
(
σ2|σ′

) − δσ1,σ
′
1
δσ2,σ

′
2

]
+ c(M,M)B(σ′)

=

σ1,M∑
σ

+

σ1=M,σ2,M∑
σ

 cσ1

[
δσ1,σ

′
2
T2
(
σ2|σ′

) − δσ1,σ
′
1
δσ2,σ

′
2

]
+ c(M,M)B(σ′)

=
∑
σ1,M

cσ1δσ1,σ
′
2
−
∑
σ1,M

cσ1δσ1,σ
′
1
+ c(M,M)B(σ′)

=
∑
σ1

cσ1δσ1,σ
′
2
−
∑
σ1

cσ1δσ1,σ
′
1
+ c(M,M)B(σ′)

= cσ′2 − cσ′1 + c(M,M)B(σ′)

=
∑
σ1

cσ1T̂1
(
σ1|σ′

)
+ c(M,M)B(σ′). (67)

Therefore, TFT is a ZD strategy. □
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Theorem 2 states that TFT cannot unilaterally enforce any linear relations between ex-

pected payoffs in non-potential games, if the opponent also uses memory-one strategies and

a stationary distribution exists. Extension of this theorem to the case that the opponent uses

memory-n strategies is a subject of future work.

5. Example

In this section, we provide two examples of potential game where TFT is a ZD strategy.

5.1 Two-player three-action game

We first consider the following two-player three-action symmetric zero-sum game:

s1 = (0,−2,−1, 2, 0, 1, 1,−1, 0)T (68)

s2 = (0, 2, 1,−2, 0,−1,−1, 1, 0)T . (69)

We can easily check that this game is a potential game with c1 = 1/2, c2 = −3/2 and

c3 = −1/2 in Lemma 2, and the potential is Φ = (0, 2, 1, 2, 4, 3, 1, 3, 2)T if we assume

that Φ(1, 1) = 0. We write the strategy of player a by Ta(σ) := (Ta (σ|σ))σ∈A2 . TFT of

player 1 is T1(1) = (1, 0, 0, 1, 0, 0, 1, 0, 0)T, T1(2) = (0, 1, 0, 0, 1, 0, 0, 1, 0)T, and T1(3) =

(0, 0, 1, 0, 0, 1, 0, 0, 1)T. By writing the Press-Dyson vectors as T̂a(σ) :=
(
T̂a (σ|σ)

)
σ∈A2

, we

obtain T̂1(1) = (0,−1,−1, 1, 0, 0, 1, 0, 0)T, T̂1(2) = (0, 1, 0,−1, 0,−1, 0, 1, 0)T, and T̂1(3) =

(0, 0, 1, 0, 0, 1,−1,−1, 0)T. We can check that the relation
3∑
σ=1

cσT̂1(σ) =
1
2

[s1 − s2] (70)

indeed holds, which means that TFT is a ZD strategy.

When player 2 uses the memory-one strategy T2(1) = (0, 1, 0, 0, 1, 0, 0, 1, 0)T, T2(2) =

(0, 0, 1, 0, 0, 1, 0, 0, 1)T, and T2(3) = (1, 0, 0, 1, 0, 0, 1, 0, 0)T, and both players choose the ac-

tions in the first round by the uniform probability distribution (1/3, 1/3, 1/3), the time evolu-
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tion is described by the Markov chain (49) with the transition probability

T =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0



(71)

and the initial condition (1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9)T. We can easily check that

for this initial condition, the Markov chain converges to the stationary distribution P∗ =

(0, 0, 1/3, 1/3, 0, 0, 0, 1/3, 0)T at the second round. The expected payoffs are

⟨s1⟩∗ = ⟨s2⟩∗ = 0, (72)

which is consistent with Corollary 1.

When we consider a slightly different game12)

s1 = (0, 0,−1, 0, 0, 1, 1,−1, 0)T (73)

s2 = (0, 0, 1, 0, 0,−1,−1, 1, 0)T , (74)

this game is not a potential game. When the strategies of both players are the same as those

above, we obtain

⟨s1⟩∗ = −2
3

(75)

⟨s2⟩∗ =
2
3
. (76)

Therefore, player 1 cannot unilaterally enforce a linear relation ⟨s1⟩∗ = ⟨s2⟩∗. In addition,

because this game is also a zero-sum game, s2 = −s1 holds. Furthermore, it should be noted

that T̂1(3) = −T̂1(1)−T̂1(2) holds due to the normalization condition of probability. Therefore,

if TFT is a ZD strategy for this game, the relation
2∑
σ=1

dσT̂1(σ) = α1s1 + α01 (77)

must hold with some non-trivial coefficients. Since the (1, 1) component of the left-hand

side is zero, α0 must be zero. Moreover, since the (1, 3) component of T̂1(2) and the (3, 2)
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component of T̂1(1) are zero, d1 = α1 and d2 = −α1 must hold. Then the (1, 2) component

of the left-hand side is −2α1 and that of the right-hand side is zero, leading to contradiction.

Therefore, TFT is not a ZD strategy in this game.

5.2 Cournot duopoly game

As noted in Section 3, the properties of ZD strategies and potential games hold even

if the action set is uncountable. Moreover, the theoretical results in subsection 4.1 can also

be easily extended to the case that the action is a continuous variable. Therefore, we here

consider the Cournot duopoly game with unbounded payoffs. The action space of both players

is A = [0,∞). The payoff of player a is given by

sa (σ) =

A − B
2∑

b=1

σb

σa −Cσa. (78)

The Cournot duopoly game has a potential

Φ (σ) =

(A −C) − B
2∑

b=1

σb

 2∑
b=1

σb + Bσ1σ2. (79)

For this continuous action space, the definition (15) of a potential leads to
∂sa

∂σa
(σ) =

∂Φ

∂σa
(σ) (∀σ) (80)

for all a. We can easily check that this relation indeed holds for Eqs. (78) and (79).

If player a takes TFT

Ta
(
σa|σ′

)
= δ

(
σa − σ′−a

)
, (81)

where δ represents the Dirac delta function, her Press-Dyson vectors are

T̂a
(
σa|σ′

)
= δ

(
σa − σ′−a

) − δ (σa − σ′a
)
. (82)

When we consider the quantity

c (σ) = [(A −C) − Bσ]σ, (83)

we obtain∫
dσc (σ) T̂a

(
σ|σ′) = c

(
σ′−a
) − c

(
σ′a
)

=
[
(A −C) − Bσ′−a

]
σ′−a −

[
(A −C) − Bσ′a

]
σ′a

=

(A −C) − B
2∑

b=1

σ′b

σ′−a −
(A −C) − B

2∑
b=1

σ′b

σ′a
= s−a

(
σ′
) − sa

(
σ′
)
. (84)
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Therefore, TFT is a ZD strategy, and unilaterally enforces ⟨s1⟩∗ = ⟨s2⟩∗.

6. Discussion

In Ref.,14) the authors proved that TFT is unbeatable if and only if the stage game is a

potential game. In this section, we introduce their results and discuss the relation between

our results and their results.

We first introduce the unbeatable property.14)

Definition 5 The strategy of player a is unbeatable if
T∑

t=1

[
s−a

(
σ(t)
)
− sa

(
σ(t)
)]
≤ max

σ
[s−a (σ) − sa (σ)] (∀T ≥ 1) (85)

for any strategies
{
T (t)
−a

(
σ(t)
−a|h[1:t−1]

)}∞
t=1

of player −a.

Duersch et al. proved the following proposition.

Proposition 2 (14)) For two-player symmetric games, TFT is unbeatable if and only if the

stage game G is a potential game.

When combined with our results, the following three conditions are equivalent for infinitely

repeated two-player symmetric games: (i) The stage game is a potential game, (ii) TFT is

unbeatable, (iii) TFT is a ZD strategy which unilaterally enforces S1 = S2. Particularly, TFT

is unbeatable if and only if TFT is a ZD strategy.

A natural question is whether the equivalence of unbeatable property and a ZD strategy

also holds for other strategies including imitation strategies in potential games. Generally,

unbeatable property is easily interpreted and observed in other strategies,12) but extension

to other games may be difficult, since difference of payoffs of two players is not always

important for other games. On the other hand, the concept of ZD strategy is clearly defined

in general games. Clearly, ZD strategies are not necessarily unbeatable, as we can see for the

case of an equalizer strategy.6) Meanwhile, here we consider the imitate-if-better strategy of

player a12)

Ta
(
σa|σ′

)
= δσa,σ

′
−a
I
(
s−a
(
σ′
)
> sa
(
σ′
))
+ δσa,σ

′
aI
(
s−a
(
σ′
) ≤ sa

(
σ′
)) (∀σa,∀σ′

)
,

(86)

where I(· · · ) is an indicator function that returns 1 when · · · holds and 0 otherwise. This

strategy has been known to be unbeatable in potential games.14) By using Lemma 2, we find

that ∑
σa

cσaT̂a
(
σa|σ′

)
=
∑
σa

cσa

{
δσa,σ

′
−a
− δσa,σ

′
a

}
I
(
s−a
(
σ′
)
> sa
(
σ′
))
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=

{
1
2

sa
(
σ′
) − 1

2
s−a
(
σ′
)}
I
(
s−a
(
σ′
)
> sa
(
σ′
))

(87)

for potential games, where the function cσ is that in Eq. (20). Then, from Lemma 1, we obtain

the following proposition.

Proposition 3 For two-player symmetric games, the imitate-if-better strategy (86) of player

a unilaterally enforces

0 =
⟨{

sa
(
σ′
) − s−a

(
σ′
)}
I
(
s−a
(
σ′
)
> sa
(
σ′
))⟩∗ (88)

for potential games.

This is not a ZD strategy, but is contained in the class of extended ZD strategies which uni-

laterally enforce linear relations between conditional expectations of payoffs.25) In fact, Eq.

(88) implies that the probability that the state σ′ such that s−a(σ′) > sa(σ′) is realized is

zero. Therefore, although unbeatable strategies are not necessarily ZD strategies, they may

be contained in the class of extended ZD strategies. Further investigation is needed to this

topic.

Finally, we discuss a slight difference between Ref.14) and our results. We first introduce

the following concept.

Definition 6 The strategy of player a is weakly unbeatable if

⟨sa⟩∗ ≥ ⟨s−a⟩∗ (89)

for any strategies of player −a.

It should be noted that an unbeatable strategy is weakly unbeatable. In Ref.,17) weakly un-

beatable strategies are called competitive (or rival) strategies. The following corollary is a

direct consequence of Proposition 2.

Corollary 2 For two-player symmetric games, TFT is weakly unbeatable for potential games.

In other words, when player a uses TFT, then

⟨sa⟩∗ ≥ ⟨s−a⟩∗ . (90)

This corollary is weaker than Corollary 1, because Corollary 1 claims that the equality ⟨sa⟩∗ =
⟨s−a⟩∗ must hold in the inequality (90). In other words, although TFT is unbeatable, TFT

can also never win. On the other hand, as we can see from Eq. (88), the imitate-if-better

strategy can win. For example, in the prisoner’s dilemma game, when player −a uses the

strategy which always cooperates (All-C), the imitate-if-better strategy wins if she starts with

defection.
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7. Concluding Remarks

In this paper, we proved that, for infinitely repeated two-player symmetric games, TFT is a

ZD strategy, which unilaterally enforces ⟨s1⟩∗ = ⟨s2⟩∗, if and only if the stage game is a poten-

tial game. We also proved that, TFT cannot unilaterally enforce any linear relations between

expected payoffs in non-potential games, if the opponent also uses memory-one strategies and

a stationary distribution of the induced Markov chain exists. We explicitly showed that TFT

is a ZD strategy in the two potential games, that is, a two-player three-action zero-sum game

and the Cournot duopoly game. Furthermore, we proved that the imitate-if-better strategy can

be regarded as an extended ZD strategy in potential games. When combined with the results

of Duersch et al.,14) which proved that TFT is unbeatable if and only if the stage game is a

potential game, TFT is unbeatable if and only if TFT is a ZD strategy. This result suggests

that there may be some relations between unbeatable strategies and ZD strategies.

In this paper, we consider only two-player symmetric games. Extension of our result to

multi-player symmetric games is non-trivial, because TFT in multi-player symmetric games

cannot be defined uniquely, although there are many multi-player symmetric potential games.

We would like to investigate whether imitation strategies in multi-player symmetric games

are ZD strategies or not in future.

Another subject of future work is whether TFT is efficient in asymmetric games. Even

though the game is asymmetric, imitation would be useful if the payoff of a player is similar to

that of other player. We would like to find the condition in which TFT is useful in asymmetric

games.
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