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PREFACE

This dissertation is hereby submitted to the Graduate School of Sciences and Technology

for Innovations (RKFFERIEFHEIFZEFL) of Yamaguchi University, Japan in partial fulfilment
of the requirements for the degree of Doctor of Engineering. The dissertation is the author's
original contribution and relevant references are provided in the dissertation itself, wherever the
author has used the results or data obtained from previous studies.

The publications that have been published in the course of the research and which have

contributed significantly in the chapters of this dissertation are as follows:

Papers

Katiyar, V., Tamkuan, N., Nagai, M (2021). Near-Real-Time Flood Mapping Using Off-the-
Shelf Models with SAR Imagery and Deep Learning. Remote Sens. 2021, 13, 2334.
https://doi.org/10.3390/rs13122334

This journal article focuses on the near real-time flood mapping using Sentinel-1, including
the application of the trained model as an off-the-shelf model on the selected test site in
Kerala India. This article is contributed significantly to chapter 3 of this dissertation.

Conference Papers

Katiyar, V., Nagai, M. (2020). Katiyar, V., Training data development strategy for applying
deep learning in remote sensing applications. I*' Intercontinental Geoinformation Days
(IGD).

This paper discusses the strategies of the training chips creation from big satellite images.
Similar techniques are employed to create training data in this study wherever the
customized dataset is used. Chapter 4 of this study mainly comes from this paper.

Tamkuan, N., & Nagai, M. (2020). Flood Area Detection Using Sar Images with Deep
Neural Network During, 2020 Kyushu Flood Japan. In The 41st Asian Conference on
Remote Sensing (ACRS 2020).

The content of this paper contributed mainly to chapter 5 of this dissertation, which mainly
focuses on the near-real-time flood mapping using ALOS-2 data.

Katiyar, V., & Nagai, M. (2019). Automated extraction of water bodies from ALOS-2 images
using U-net and rough training set. In 40th Asian Conference on Remote Sensing, (ACRS
2019).

This paper presented the work to detect water bodies from ALOS-2 using U-Net. It has
contributed to a part of chapter 6.
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Chapter 1 Introduction

Background and scientific motivation
A flood is one of the most devastating types of natural disaster. As per the report,

‘Economic Losses, Poverty & Disasters 1998-2017" from the United Nations Office of Disaster
Risk reduction (UNDRR), out of total affected people by all major natural disasters, flood alone
has affected more than 45% of the people worldwide between
1998 and 2017 (Figure 1.1). The importance of surface water
mapping can be further understood by studying UN Sustainable
Development Goals (SDGs), in which as many as four goals
directly mention surface water monitoring, including food
security (target 2.4), water-related ecosystem management
(targets 6.5 and 6.6), and the effect on land (target 15.3).
However, the most relevant target concerning this study is target
11.5 under goal 11 (sustainable cities and communities). It states
“By 2030, significantly reduce the number of deaths and the

number of people affected and substantially decrease the

economic losses relative to the gross domestic product caused

Figure 1.1 Number of people
by disasters, including water-related disasters, with a focus on affected per disaster type during
. . . . 19998-2017 (CRED report
protecting the poor and people in vulnerable situations” (UNEP, zconomic Losses, Poverty &

Disasters 1998-2017’)

2015). In this context, near-real-time (NRT) flood mapping
becomes very necessary.

There are mainly two types of causes of floods, natural or manmade. Natural reasons are
localized extreme rainfall, snowmelt, dike or dam break, glacial or lake outbursts, storm surges
from a tropical cyclone and tsunami (Cloke et al., 2017), whereas, manmade reasons include
deforestation, urbanization, elimination of floodplains and wetlands as well as river regularizations
(Kundzewicz, 2008). Flooding is a more widespread phenomenon affecting thousands of
kilometres and some of the majorly affected areas are lying in the developing countries of Asian
and African continents which are lacking on-site hydrological monitoring and other physical
systems. Moreover, the transboundary water further makes it a complex exercise to monitor the
flood extent. Due to these reasons remote sensing is an important tool and with the improved

spatial, temporal, and radiometric resolution of satellite images, it becomes the obvious choice for



flood mapping (H. Yang et al., 2011). There are many works related to the extraction of surface
water information, including floods, varying from different sensor types to different methods (C.
Huang et al., 2018). Huang et al. (2018) mentioned that the number of related works with “surface
water” or “flood inundation” and “remote sensing” has seen three- to seven-fold growth since the
year 2000 in comparison to the previous decade. A similar trend was also observed in the case of
the mapping surface water from SAR imagery (Schumann & Moller, 2015). Much of the surface
water and flood extent extraction studies using optical images have mainly focused on using water
indices such as the Modified Normalized Diftference Water Index (MNDWI) (Xu, 2006), the
Automated Water Extraction Index (Feyisa et al., 2014), and other rich spectral information (X.
Yang et al., 2018). Though studies by Yang et al. with sentinel-2, Herndon et al. with Landsat-8
(Herndon et al., 2020) and Feng et al. with the GaoFen-2 and WorldView-2 images (Feng et al.,
2019) have provided good results, optical images carry an inherent limitation; namely, dependence
on solar radiation. This limits the optical satellites image acquisition time only in the day, inability
to penetrate cloud cover and get affected by the adverse weather conditions which are often
prevalent during high-impact flood events (Schumann et al., 2018). Some studies have used
multimodal information, such as combining optical images and LiDAR with synthetic aperture
radar (SAR) images (Assad, 2019) and combining other auxiliary information with SAR (Bioresita
et al., 2019). Although multi-modal-based models provide improved results due to the
complementary capability but using a variety of data make it difficult to provide an NRT flood
map because of more time spent in data acquisition, receiving and processing. Therefore, only
SAR images are being used in this study. Flood mapping with only SAR images is further
categorized into two types: change detection using images captured before and during the flood,
and water area detection using a single SAR image captured during the flood. Though change
detection methods have the advantage of handling overprediction by providing additional
information about water-like surfaces, an additional limitation that occurs with this method is
finding an adequate reference image for flood detection (Hostache et al., 2012). During the disaster
response phase, the time is “key” and in this situation, it is necessary to have as few constraints as
possible to speed up processing, which is why this study adopted flood mapping based on a single
SAR image. For flood mapping from a single SAR image, the most well-known technique is
thresholding with certain algorithms, such as Otsu thresholding (Nobuyuki Otsu, 1979) and
minimum error thresholding (Kittler & Illingworth, 1986), with a global or tile-based approach.



Because global thresholding has a constraint of bimodality of data, which creates a problem in the
case of full image processing, tile-based thresholding, and the split-based approach (Martinis et
al., 2009) were proposed. However, with these methods, the choice of tiles plays an important role
and the wrong tile may impact the threshold significantly (Landuyt et al., 2019).

In recent times, we have seen lots of applications of deep learning in the remote sensing
domain. DCNNs have achieved significantly higher accuracy in comparison to other image
processing methods especially in cases like road segmentation (T. Li et al., 2019), building
detection (W. Li et al., 2019), land cover classification (C. Zhang et al., 2019) etc. However, here
we need to emphasize that these higher accuracies were achieved due to well established public
datasets, provided through SpaceNet challenges (Etten et al., 2018), ISPRS labelling contest
(Demir et al., 2018; Rottensteiner et al., 2014), DeepGlobe challenge (Demir et al., 2018) etc.
These kinds of public datasets are not available in many other areas such as in more dynamic cases
of natural disasters. Moreover, most of the datasets are available for optical high-resolution images.
Synthetic Aperture Radar (SAR) datasets are very scarce, which created the need to develop our
customized datasets. This study has used ALOS-2 level-1.5 image scenes of HH polarization to
create our customized dataset. All the ALOS-2 scenes belong to the flood events of japan of
different areas and times. Along with the above, the recently released dataset SenlFloodslI
(Bonafilia et al., 2020) which contains image chips based on Sentinel-1 was used in this study.
This also helped us to explore transfer learning (Goodfellow et al., 2016) in detail between the
Sentinel-1 and ALOS-2 SAR satellite data. To my knowledge, this area of applying transfer
learning in between different SAR images has been completely untouched till now. However, this
is a very important domain as SAR satellites are becoming ubiquitous in earth observation and
along with government agencies many private space companies are also launching their own SAR
satellite constellations.

Deep learning techniques had been applied successfully with SAR images for various
purposes such as for land cover classification (Sirirattanapol et al., 2020; Q. Zhang et al., 2019),
road extraction (Q. Zhang et al., 2019) etc. Semantic segmentation has been one of the major
techniques to exploit in the automated analysis of Remote Sensing Images for finding an exact
outline of the specific object/area. With the popularity of Deep Convolutional Neural Networks
(DCNNs), many new network architectures for segmentation have been proposed. Some of them

are Multi-scale or pyramid network-based models such as PSPNet, Dilation convolution-based



model such as DeepLab (L. C. Chen et al., 2018), Attention-based models such as DANet (Fu et
al., 2019), Encoder-decoder (autoencoder) based models such as HRNet (J. Wang et al., 2020),
Unet (Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017)etc. This study selected
UNet and SegNet like architecture to segment the flooded region as these architectures are
fulfilling the criteria of “low complexity and high accuracy” (Bahl et al., 2019) as well as their
proven history of better segmentation in single-band medical images (Ronneberger et al. 2015)
which can be seen on par the SAR images.

As satellite scenes are too big that is why we need to create image chips out of them (Han
et al., 2017), which can be feed to DCNNSs that can run efficiently on the GPUs memory. As per
Ning et al. (2020), training a network with a higher number of image chips normally leads to
greater accuracy (Ning et al., 2020). However, labelling SAR images are not only time consuming
but also need an expert understanding of the SAR images, this makes it a very expensive task
financially and time-wise (Bonafilia et al. 2020). Though data augmentation has proved a
successful mechanism to increase the variability from limited data and in turn improves the
performance of the Convolutional Neural Networks (Ding et al., 2016). There is still a need to find

other ways to increase the availability of training data without significantly increasing the cost.

Formulation of Objectives
Based on the previously stated background and scientific motivation, the major objective for

this study can be outlined as:

1. How and what kind of data to feed the DCNNs?
Under this objective, the major focus is on the data preparation part. Starting from
selecting the labelling techniques for annotation, to the methods of creation of chips from
satellite images. Moreover, finding suitable band polarization combinations for the flood
mapping or improving the accuracy of models.

2. How to efficiently train the model for a given input?
This objective mainly focuses on the training part. From selecting the best model
architecture to the different training scenarios. Lastly, using transfer learning making the
training quicker while needing a smaller number of training samples.

3. How to apply the model to various satellite scenes?

The last objective is to apply the trained model to real-life satellite images. Under this

will be focusing on the methods to efficiently apply the trained models on much bigger



satellite images while managing the boundary pixels error. Also, will be testing for the
generalization capability of the model by using transfer learning in different satellite
images. This will be especially helpful in the case of the SAR satellites which are
recently launched and training data for those satellites are not available to train the

models from scratch.

Structure of the dissertation
This dissertation consists of seven chapters. Chapter 1 presents the background and

scientific motivation, detailed objectives, and the structure of the dissertation. A short explanation
of'the basic theory behind SAR and unique properties of the water areas in SAR data and the basics
of deep learning has been discussed in chapter 2. Chapter 3 proposes detailed methods for near-
real-time flood mapping using Sentinel-1 training data and a model has been proposed to be used
as an off-the self-model, the application of which has been done at the Kerala flood 2018. The
detailed discussion of training data preparation and the best method for chip creation was discussed
in chapter 4. In chapter 5, the near-real-time flood mapping with ALOS-2 images is discussed with
the focus on the recently happened Kyushu flood in 2020. Whereas, chapter 6 discusses the
utilization of similar methods for permanent water bodies extraction. Finally, the findings and the
conclusions of this dissertation, along with ideas on the future role of deep learning for flood

mapping, are presented in chapter 7.



Chapter 2 SAR imaging and inundated regions response against sensor-related
factors

Concept of SAR Imaging
Imaging SAR generally works with varying frequencies, some of the most used are X-, C-,

L- and P-bands. Synthetic Aperture Radar (SAR) was developed in response to the limitation of
Real Aperture Radar (RAR) with the size of the antenna for achieving higher resolution. In the
case of SAR, the aperture is synthesized through modified data recording and processing
techniques (Figure 2.1). SAR is a side-looking sensor that looks towards the ground at the
perpendicular of its motion (Figure 2.2). Due to this reason, the effective antenna length increases

from near-range to far-range, resulting in the constant azimuth resolution irrespective of range.
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Figure 2.1 Concept of synthetic aperture (K.-S. Figure 2.2 Schematic diagram of SAR satellite in
Chen, 2016, modified) orbit (Sandwell et al. 2019)

SAR signal response over different flooded regions
SAR signals are scattered against different kinds of surfaces and objects differently. In the

case of inundated regions, this varies from the specular reflections to the diffused scattering. Some
of the specific surfaces and the corresponding scattering responses are discussed in the following
sections.
Over Ocean Surface

Backscattering over the ocean is mainly dependent upon the wind influenced waves.
Therefore, wind speed and wind direction play a major role in deciding the range of backscattering
from the sea. In the special case of the capillary waves and smaller gravity waves, making a regular

periodic structure and whose distances are in the range of the wavelength of the SAR sensor, will



Figure 2.3 Bragg scattering and constructive interference (Wolff, n.d.)

lead to Bragg scattering (Figure 2.3). Here constructive interference may lead to significant echo
signals, that will represent by the bright pixels in the image.

In the case of a shallow smooth surface which is mostly homogenous will results in
specular reflections and this leads to no or negligible return of the backscattering towards the
sensor. This result in the dark pixels in the SAR image. In some cases, diffused scattering is also

to be seen at the wave breaks or because of rain-induced ripples etc.

Over the inland water bodies
The presence of calm wind over large water bodies or smaller water bodies that do not get

affected much by wind are mainly shown the surface backscattering. Or in other ways, inland water
bodies can be considered as perfectly smooth surfaces with high dielectric constant, which acts as
a specular reflector. Due to very low signal returns these water bodies, in general, appear dark in
the SAR image. This land-water contrast rises with a higher incidence angle. However, it will also
result in larger shadow in the mountainous regions or urban areas in the case of high-resolution
SAR sensors. Moreover, a higher incidence angle may limit the vegetation penetration capability
and hinders the mapping of the inland water bodies such as rivers due to the presence of trees at

its banks.

Over the flooded vegetation
Some of the major kind of scattering happens in case of flooded vegetation area are

scattering happening over the canopy level, from canopy to trunk level, tree stems to surface level,
scattering from the rugged floor as well as from inundated water surface (Figure 2.4).

Richards et al. (1987) and Ormsby et al. (1985) discussed how SAR sensor with different
wavelength affects the type of objects the radar is sensitive to. The magnitude at which the
backscattering range increases due to flooding under vegetation is analyzed with the help of L-and

C- band satellite data (Ormsby et al., 1985; RICHARDS et al., 1987). Concerning vegetation,



Ormsby et al. observed that the L-band SAR data help to separate the deciduous or coniferous
vegetation from the shorter, partially submerged grasses and shrubs. The X- and C-band radar data

are useful when the vegetation of the disaster region is relatively short.

Flood

Figure 2.4 C and L-band SAR interactions with flooded vegetations ( Evans et al. 2009, modified)

In general, over such flooded forest regions, high classification accuracy is obtained when
using the high wavelength SAR signals during the leaf-off conditions. In the case of using the C-
band SAR data, Lang et al.(2008) and Martinis et al. (2009) prove that C-band SAR data still act
as a valuable tool in mapping the flood beneath the forest regions where the canopy is sparse and

short (Lang et al., 2008; Twele et al., 2016).

Over the flooded urban regions
Assessment of flooded urban regions using a SAR image is complicated due to multiple

backscattering effects that are mainly dominated by the corner reflection (dihedral and trihedral
scatterer) of urban buildings and other concrete infrastructures (Mason et al., 2010). As seen in

Figure 2.5, the flooded street AD will be affected by layover (AB) and shadow (CD) due to the
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Figure 2.5 Layover (AB) and shadow (CD) regions in a flooded street (AD) between adjacent buildings of
height hl and h2. 8 is the incidence angle (Mason et al. 2010, modified)

buildings, resulting in a very small part of the flooded street i.e., BC is visible. In this case, only



using “during flood” images, may not be sufficient which leads to many proposed hybrid methods

such as Using LIDAR DSM data, SAR interferometry, change detection etc.

Effect of Radar polarization for mapping of the flooded regions
In SAR image-based flood area mapping application, selecting the right choice of the

polarization image has to be given maximum importance as this plays a significant role in
classifying the inundated regions with maximum possible accuracy. Hess et al. (1990) analyzed
temporal SIR-C data of the Amazon river flood region and experienced both C-band and L-band
co- and cross-polarization data and observed that HH polarization was most useful for
distinguishing flooded from non-flooded vegetation and cross-polarized L-band data provided the
best separation between woody and nonwoody vegetation (HESS et al., 1990).

Henry et al. (2006) show the basic statistics of HH, HV, and VV polarization images and
its analysis exhibits that HH histogram is much wider and exhibits higher radiometric dynamics
than the other two polarization images (Figure 2.6). The wide histogram of the HH polarization
image helps for the better discrimination of thematic classes including possible differentiation of

identifying the open water from recently inundated areas, which mostly requires high-resolution

0 500 1000 1500 2000 2500
Wavelength

Figure 2.6 Radiometric profile of HH, HV, and VV polarization data of ENVISAT ASAR of Elbe River
flooding (Henry et al. 2006)

SAR images (Henry et al., 2006). Both Y. Wang et al., (1995) and P. Townsend, (2002) observed
that the ratio of backscatter from a flooded forest to that from a non-flooded forest is higher at HH

polarization than at VV polarization.



Effect of incidence angle for mapping the different flooded regions
In flood area mapping applications, the incidence angle of the sensor at which the terrain

information is captured plays a significant role as SAR signal response from steep to narrow
incidence angle has a considerable impact on the radiometric and backscattering range of the SAR
image. Studies by Richards et al. (1987), Hess et al. (1990), Wang et al. (1995) and Bourgeau-
Chavez et al. (2001) indicate that the steeper small incidence angles are preferable to distinguish
the flooded forest from non-flooded forest regions (Bourgeau-Chavez et al., 2001; HESS et al.,
1990). The signals of steep incidence angles have more penetration capabilities through the canopy
cover due to its shortest travel path, which in turn supports increased transmissivity at the crown
level as well as permits more energy interaction at the ground-trunk level. In contrast, shallow
incidence angle signals interact more at the canopy level, which in turn increase the volume

scattering.
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Chapter 3 Near-Real-Time flood mapping using the off-the-shelf models by
using a public dataset with Sentinel-1

Study area and data used

Study area

Figure 3.1 Kerala district map showing the areas worst affected by the 2018 flood.
The study area that was chosen for applying the off-the-self model is in the southern state
of India named Kerala, as shown in Figure 3.1. In 2018, an especially devastating flood occurred in

Kerala; this flood took more than 400 lives and affected millions more.

Table 3.1 Characteristics of the Sentinel-1 and Sentinel-2 images used for the test area

Satellite image name Acquisition date Flight Processing

(vyyy/mm/dd) direction level
S1A_IW_GRDH_1SDV_20180821T004109 20180821T004134 023337 0289D5 B2B2 2018/08/21 Descending L1-GRD (IW)
S1A_IW_GRDH_1SDV_20180821T130602 20180821T130631_023345 028A0A_C728 2018/08/21 Ascending L1-GRD (IW)
S1A_IW_GRDH_1SDV_20180821T004044_20180821T004109_023337_0289D5 D07A 2018/08/21 Descending L1-GRD (IW)

11



S1A_IW_GRDH_1SDV_20180821T130631_20180821T130656_023345 028A0A_E124 2018/08/21 Ascending L1-GRD (IW)

S2B_MSIL1C _20180822T050649 N0206_R019_T43PFL_20180822T085140 2018/08/22 Descending Level 1C

Figure 3.1 highlights the worst-affected districts in Kerala; western districts faced much
more severe flooding than eastern districts because western districts are topographically flat
(coastal plains). As mentioned in Table 3.1, four Sentinel-1 images of the affected area on the same
date of 21 August 2018 were selected for testing. Two images were acquired during the ascending
flight direction and two were acquired during the descending flight direction. The closest Sentinel-
2 image of the same area is available for 22 August 2018. However, most of the area in this image
has clouds. So finally, only the area belonging mainly to the Alappuzha district was selected
because this image has no or very few pixels affected by clouds in the Sentinel-2 image. This was
done to validate the detection from the Sentinel-1 image. In general, reference flood mask is
generated using aerial images (Y. Li et al., 2019; Martinis et al., 2009) or optical images such as
Worldview (Twele et al., 2016), Sentinel-2 (Clement et al., 2018; Tiwari et al., 2020). Therefore,
authors adopted using Sentinel-2 images, which previously were successfully utilized for flood
mapping (Caballero et al., 2019), on their own and as a flood reference mask to validate the results.
To make a reference water mask from the Sentinel-2 image, MNDWI, false-colour composite
using bands B12, B8, and B4 and the true-colour composite using B4, B3, and B2 bands were used,

along with this visual inspection was performed to maintain the accuracy of the mask.

Dataset details
This study used a public dataset, SenlFloodsll that was released during the 2020

Computer Vision and Pattern Recognition Workshop (Bonafilia et al., 2020) and generated by
Cloud to Street, a public benefit corporation. Details of the dataset are given below.

The dataset is divided into two parts, one containing data related to flood events and another
for permanent bodies of surface water. The permanent water data include images from the
Sentinel-1 satellite constellation and corresponding labels from the European Commission Joint
Research Centre (JRC) global surface water dataset. We mainly used the flood events dataset in
this study, which has two types of labels: weakly labelled and hand labelled. Weakly labelled here
means that the labels have not been checked for quality, as they were generated through semi-
automated algorithms that use certain thresholds to separate water and non-water areas. The
weakly labelled data have two kinds of labels generated from Sentinel-1 and Sentinel-2 images,
respectively. These labels are binarized images containing ones (for water pixels) and zeros (for

non-water pixels). Sentinel-1 weak labels were prepared using the Otsu thresholding method over
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the focal mean-smoothed VH band. For creating the weak labels from the Sentinel-2 images
expert-derived thresholds of 0.2 and 0.3 were applied over the Normalized Difference Vegetation
Index and MNDWTI bands, respectively. These weakly labelled data have not been quality
controlled and over- or under-segmentation is possible. The hand-labelled data were created using
information from overlapping tiles of both Sentinel-1 and Sentinel-2. The manual classification
was performed using the Sentinel-1 VH band and two false-colour images of Sentinel-2 (RGB:
B12, B8, B4 and B8, B11, B4) that highlight the water areas in the optical images. The resultant
labels are more accurate and have three values in the output: 1 (water pixels), 0 (non-water pixels),
and —1 (clouds or cloud shadows).

Overall, 4830 non-overlapping chips were available to us that belong to flood events of 11
countries. Of these, 4385 chips are weakly labelled with corresponding S1Weak (Sentinel-1) and
S2Weak (Sentinel-2) labels, while 446 chips are hand labelled and have corresponding quality-
controlled labels. Each chip size is 512 % 512 pixels. All chips have overlapping Sentinel-1 and
Sentinel-2 images. Sentinel-1 chips were created using du-al-polarized Sentinel-1 ground range
detected (GRD) images. As these images have been downloaded from the Google Earth Engine,
each image was pre-processed using the Sentinel-1 Toolbox by the following steps: thermal noise
removal, radiometric calibration, terrain correction using SRTM 30, and finally conversion of both
bands’ values into decibels via log scaling. In contrast, Sentinel-2 chips are from raw Sentinel-2
MSI Level-1C images having all 13 bands (B1 to B12). The 13 spectral bands represent the top of
atmosphere reflectance, scaled by 10,000.

The hand-labelled data were split into three parts with a ratio of 60:20:20 into training,
validation, and test sets. In contrast, all the weakly labelled data were used for training purposes
only. In this way, the test set remained the same throughout the study, while training data could be
changed according to our requirements, and we could do cross-comparison for different kinds of

training data.

Methodology

Network’s architecture
Segmentation networks are like autoencoders consisting of encoders that encode an image

into the smaller latent space and decoders that revert to reach the same spatial size. In this research

variants of autoencoders like networks, namely, SegNet-like and UNet-like architectures (Figure
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3.2), were selected for extracting the water areas from Sentinel-1 chips. These networks, as shown
in Figure 3.2, were selected because they are simple compared with other existing networks for
segmentation such as HRNet, DANet, etc., and they also have shown great performance when the
dataset is limited in size. Both networks can be divided into two parts, the contraction phase
(encoder path), and the expansion phase (decoder path). Each block in the encoder path contains
two convolution layers that have a kernel size of 3 x 3 and the ‘same’ padding along with the batch
normalization (Goodfellow et al., 2016) and rectilinear unit (relu) activation layer. This is followed
by a max-pooling layer with a size of 2 x 2 and a stride of 2. In this way, the convolution layer
increases the number of features in the channel space (depth) while the max-pooling layer contracts
the dimensions of the spatial feature space. Between both networks, the number of blocks in the
encoder and decoder path remained the same, but the method for increasing the spatial size (up-
sampling) in the decoder section was the main difference. Here, UNet uses up-convolution along
with the skip connections to use the features from previous layers, while in SegNet, up-sampling
in the decoder section uses pooling indices that are computed in the max-pooling step of the
corresponding encoder blocks. Thus, in the case of the SegNet, only spatial information is
transferred from the lower-level layers, while in the UNet, the low-level feature space is also
transferred to the high-level feature space and concatenated with it at the corresponding levels.
This passing of the low-level features to high-level becomes possible due to skip connection which
can bypass the intermediate layers. The networks remain fixed across the training cases and in
various band-combination inputs. This means only the shape of the input layer is modified while

all intermediate and output layers remain constant.

connections

Skip
1

(@) (b)
Figure 3.2 Network representations. (a) SegNet-like network. (b) UNet-like network.
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Hyperparameters
For the entire study, the mini-batch size was selected as 16 and iterated over the whole

dataset 200 times (epoch). The loss function used here was a custom loss function that used both
Dice loss and binary cross-entropy (BCE) (Jadon, 2020; Sekou et al., 2019) in a weighted manner.
While the Dice score mainly looks for the similarity of segmentation blob, BCE calculates pixel-
wise variance. This means the dice score do capture the spatial information better than the BCE,
which is why Dice loss was given a higher weight of 0.85, and BCE received a lower weight of
0.15. The Adam optimizer (Kingma & Ba, 2015) was used for training optimization, with an initial
learning rate of 0.01. The learning rate is decayed for faster convergence and to avoid over-fitting.
If there is no improvement (tolerance is set to 0.001) for continuously 10 epochs on a validation
set, the learning rate is reduced by the factor of 0.8. The minimum value for learning has been
fixed to 0.0001. The training was performed on a single NVIDIA Titan-V GPU. The whole model
development and training were performed using the Tensorflow platform along with the Keras

library in Python.

Training strategy
In total, three training cases were selected as shown in Figure 3.3: (1) training using more

accurate hand labels (2) training using Sentinel-1 weak labels, and (3) training using Sentinel-2

weak labels.

Figure 3.3 All the chosen training cases.
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In each case, four SegNet-like and UNet-like networks were trained for the different band
combinations: using both polarizations (VV, VH), using only cross-polarization (VH), using only
co-polarization (VV), and using a ratio as the third band, making the inputas VV, VH, and VH/VV.
Here it should be noted that the VV and VH bands are already log scale, so the values of each pixel
ranged between -50 and 1 dB. These inputs were normalized using min-max values so that the
resultant values were between 0 and 1 before they were passed on for training. Also, for the
calculation of the VH/V'V ratio, we simply subtracted the log-scaled VH and VV bands due to the
log properties:

VH
log (W) = log(VH) —log (VV)

Transfer learning
Transfer learning was also used to explore the option of making our model more adaptable

and scalable. For this step, three cases were selected. In the first case, the whole network was
retrained and pre-trained weights were used as starting weights rather than random weights, which
are typically used during training from scratch. In the other two cases, we conducted training only
during the contraction phase (encoders) while freezing the expansion phase (decoders) and vice
versa. Transfer learning has various benefits, such as the ability to include more training data in
the future to further tune the network, faster convergence due to pre-trained weights (L. Li et al.,
2019), and the possibility of extending the trained model to be used with a new set of satellite

images, such as from a different SAR satellite (Z. Huang et al., 2020).

Testing strategy

Testing on the Test Dataset
Three test cases were selected: all surface water detection, only permanent water detection

(using corresponding JRC labels), and flooded water detection (difference between all water and
permanent water). Because some of the image chips did not have any permanent water, they were
removed from the test set of permanent water. In total, we had 90 test image chips for all water
and flood water detection, and 54 chips for permanent water detection. All the trained networks,

totalling 24 networks (SegNet and UNet), were tested over the given three test cases.

Testing as an off-the-shelf model on the whole image during the 2018 Kerala Floods
To verify the generalizability of the trained model for use as an off-the-shelf model during

an emergency, a completely different flood event, the 2018 Kerala floods was selected. The first
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validation flood mask was prepared using the Sentinel-2 image. Although most of the Sentinel-2
image was covered by clouds, fortunately, the area most affected by the flooding had minimal
cloud cover, so that area was selected, amounting to 794 km?2 (Figure 3.4). After obtaining the
desired area, the semi-automatic classification in QGIS was used over the Sentinel-2 bands B2,
B3, B4, B8, B11, and B12 along with the MNDWLI. In this step, certain regions of interest for water
pixels were manually chosen across the selected area, after which classification was performed.
However, this classification still had numerous errors and cloud obstructions. Thus, after the
classification was complete, a manual inspection was performed to further improve the classified
results. In the end, these accurate classified results were exported as a binary flood mask, and this
mask performed the role of ground truth in the validation phase.

The Sentinel-1 images were first pre-processed using the European Space Agency’s snappy
package in Python to sequentially perform thermal noise removal, radiometric calibration, speckle
filtering, and terrain correction. As the selected area lies where two satellites images from the same
flight direction meet, both images were merged and gap-filled using QGIS. The same method was
also applied to the two images from different flight directions. After this, two separate methods
were employed for water area classification. The first is a thresholding method where a threshold
was selected based on a combination of minimum distance and the Otsu method, which was
implemented using scikit-image learning libraries. In the second method, our best-performing
trained model (after transfer learning), generated in the previous step, was used on the pre-
processed image to obtain a flood map as binarized output. The whole image with a size of
13,797x7352 pixels was processed within 1 minute and transformed into a binarized output. After
this, the same area as that selected in the Sentinel-2 was clipped from the output for evaluation

purposes.
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(c) (d)

Figure 3.4 Details of the selected area from the test site. (a) Sentinel-2 composite image in false colour (B12-
B8-B4). (b) Created validation flood mask. (c) and (d) Descending and ascending SAR images of the area of
interest, respectively.

Accuracy evaluation measures
For measuring the performance of the different approach, this study uses Intersection over

Union (Eq 1), F1 score (Eq 2), omission and commission error (Eq 3-4). Due to imbalanced classes
(flooded pixels are very low in comparison to non-flooded pixels), loU and F1 score is better
metrices to choose from as they are focusing on foreground pixels (flooded pixels) than
background (non-flooded pixels). In the equation TP, FP, FN, denotes to the ‘true positive’, ‘false

positive” and ‘false negative’ respectively.

loU = Ground Truth N Predicted _ TP Eq 1
OV = Ground Truth U Predicted TP + FP + FN 4
F18 > Precision = Recall TP
core = 2 * — = Eq 2
Precision + recall TP +%(FP +FN) q
Omissi _FN
mission error = FN TP Fq3
C (SSi = kP Eq 4
ommission error = FP 1 TP q
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Results and validation on the test set

Results
Figure 3.5 and Figure 3.6 show the different models’ mean IoU (mloU) over the whole test

set for SegNet and UNet, respectively. The x-axis shows the training cases, while the y-axis
represents the mloU. The detailed quantitative results from each network along with the respective
errors are presented in Table 3.2 and Table 3.3. Columns in the table represent the three detection
test cases, namely, permanent water, flooded water, and all surface water. For each test case, the
three evaluation criteria, mloU, omission error (Om.), and commission error (Comm.), as used in
(Bonafilia et al., 2020), is presented. In the rows of the tables, the three training cases, namely,
training using Sentinel-1 weakly labelled, Sentinel-2 weakly labelled, and hand-labelled data and
their corresponding results are given. Each training case further has four variations consisting of
different combinations of SAR bands. Along with our results, the baseline results from (Bonafilia
et al., 2020) are also shown for each training case, as well as Otsu thresholding results for better
comparison.

In both types of networks, a common pattern can be seen. For the permanent water, the
band combination of VV, VH and VH/VYV ratio performed best in most of the cases, while in cases
of flooded water and all surface water, the input with both polarizations VV and VH gave the best
results. Note that when we used only the co-polarized band (VV), the network trained on weak
labels performed worst, especially in the case of flooded water detection and all surface water
detection, with a very high omission error. The cause can be understood by the property of SAR
backscattering, which in the case of flooded vegetation or agriculture field may show very high
backscattering in the co-polarized band due to double bounce (caused by the small wavelength of

C-band SAR). A more detailed explanation is provided in the discussion section.
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Figure 3.5 Test results using SegNet, mloU with different labels, and the band combinations
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Figure 3.6 Test results using UNet, mloU with different labels, and the band combinations

Table 3.2 Performance of different SegNet models over all the test cases
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Hand-labelled

Permanent Water Flooded Water All Surface Water
SegNet/Dataset and Band Used mloU Om. Comm. mloU Om. Comm. mloU Om. Comm.
Sentinel-1 weak labels
VV, VH 0.492 0.008 0.046 0.286 0.378 0.044 0.364 0.249 0.044
Only VV band 0.519 0.255 0.032 0238 0474 0.037 0.313 0.397 0.037
Only VH band 0.482 0.009 0.048 0282 0.382 0.049 0.359 0.251 0.049
VV, VH, VH/VV 0.515 0.011 0.043 0.281 0.41 0.042 0.360 0.269 0.043
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Sentinel-2 weak labels

VV, VH 0.469 0.008 0.024 0342 0.365 0.021 0.417 0.239 0.020
Only VV band 0484 0315 0021 0292 0434 0016 0357 0393 0016
Only VH band 0.483 0.006 0.025 0318 0.382 0.021 0.396 0.252 0.020
VV, VH, VH/VV 0.534 0014 0018 0315 0438 0014 0392 029 0014
Hand labelling
VV, VH 0.447 0.005 0.029 0347 0.341 0.024 0.421 0.223 0.024
Only VV band 0.463 0.285 0.031 0342 0.355 0.023 0.412 0.331 0.023
Only VH band 0463 0011  0.032 0296 0429 0021 0374 0283  0.021
VV, VH, VH/VV 0.484 0.007 0.024 0.336 0.404 0.019 0.411 0.265 0.019
Benchmark from (Bonafilia et al., 2020)
Otsu thresholding 0.457 0.054 0.085 0.285 0.151 0.085 0.359  0.143 0.085
Baselines from (Bonafilia et al., 2020)
Sentinel-1 weak labels (VV, VH) 0.287 0.066 0.135 0242 0.119 0.100 0.309 0.112 0.997
Sentinel-2 weak labels (VV, VH) 0382 0.121  0.053 0339 0268  0.078 0408 0248  0.078
Hand labeling (VV, VH) 0.257 0.095 0.152 0.242 0.135 0.106 0.313 0.130 0.106
Table 3.3 Performance of different UNet models over all the test cases
Permanent Water Flooded Water All Surface Water
UNet/Dataset and Band Used mloU Om. Comm. mloU Om. Comm. mloU Om. Comm.
Sentinel-1 weak labels
VV, VH 0.406 0.006 0.052 0.288 0.352 0.050 0349 0.231 0.050
Only VV band 0.485 0.285 0.035 0.257 0445 0.038 0332 0.389 0.038
Only VH band 0.457 0.008 0.021 0285 0390 0.043 0362 0.256 0.043
VV, VH, VH/VV 0.446 0.006 0.039 0275 0396 0.037 0353 0.259 0.037
Sentinel-2 weak labels
VV, VH 0.529 0.009 0.017 0.366 0.358 0.014 0.439 0.236 0.014
Only VV band 0.427 0.293 0.021 0.303 0402 0.019 0367 0.364 0.019
Only VH band 0.469 0.004 0.025 0.332 0362 0.021 0407 0.236 0.021
VV, VH, VH/VV 0.458 0.004 0.029 0.362 0313 0.024 0434 0.205 0.024
Hand labelling
VV, VH 0.386 0.005 0.042 0.361 0.274 0.035 0432 0.181 0.035
Only VV band 0.386 0.289 0.038 0.339 0315 0.029 0404 0.306 0.029
Only VH band 0.436 0.005 0.035 0.309 0363 0.029 0386 0.236 0.029
VV, VH, VH/VV 0.462 0.003 0.027 0359 0309 0.024 0436 0.202 0.024
Benchmark from (Bonafilia et al., 2020)
Otsu thresholding 0.457 0.054 0.085 0285 0151 0.085 0.359 0.142 0.085
Baseline from (Bonafilia et al., 2020)
Sentinel-1 weak labels (VV, VH)  0.287 0.066 0.135 0.242 0.119 0.100 0.309 0.1124 0.997
Sentinel-2 weak labels (VV, VH) 0.382 0.120 0.053 0.339 0.268 0.078 0.408 0.2482 0.078
Hand labeling (VV, VH) 0.257 0.094 0.152 0242 0.135 0.105 0.312 0.1297 0.105

In contrast with the results in Bonafilia et al. (2020), where the best results came from Otsu

thresholding, our results clearly show that both SegNet and UNet convincingly surpass the Otsu

thresholding, as well as the baseline results, in all training cases. While in the case of permanent
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water our models show as much as 50% enhancement over the baseline, for all surface water our
model also shows an improvement of 20% over the Otsu thresholding.

In contrast with the results in Bonafilia et al., where the best results came from Otsu
thresholding for permanent water, our results clearly show that both SegNet and UNet
convincingly surpass the benchmark data by Otsu thresholding, as well as the baseline results, in
all training cases. However, other results for the flooded water and all-surface water are in sync
with Bonafilia et al., as the best detection in the case of SegNet, as well as UNet, comes from the
models trained using Sentinel-2 weak labelled dataset. Moreover, in the case of flooded water, our
models show as much as 50% enhancement over the baseline and for all surface water also our
model shows an improvement of around 40% with the UNet model trained with the hand labelling
dataset.

Overall, the UNet-like networks outperformed the SegNet-like networks in detecting the
flooded water and all surface water, which is the target in the study. One of the reasons may be the
use of skip connections, which propagate the shallow layer features to the deeper layers, helping
to create a better feature set for pixel-level classification. For this reason, subsequent processing
was done using UNet only. This means that features from the encoder layers played a more
important role in processing the SAR images, and this was further proved when transfer learning
was used. In other words, encoder retraining gives better results than does decoder retraining.

The weak labelling technique has the advantage of creating a larger set of training
samples in an automated way in a shorter time and less manpower than the hand labelling. A
larger number of training samples helps in finding greater insight. However, hand-labelled data
have consistency and include cases that could not be captured by weak labelling techniques.
Therefore, transfer learning was employed to take advantage of both situations, namely, more
samples for generalization and accurate labels for tuning. As our focus in the study is flood
mapping, the model that was trained using Sentinel-2 weak labels with both polarization bands
(VV and VH) was selected for transfer learning because it performed best among all other band
combinations, for “flooded water” and “all surface water” detection. Then, transfer learning was
employed on it using hand-labelled data and retraining it for the three cases, namely, retraining
the whole model, retraining only the expansion phase, and retraining only the contraction phase,

with the pre-trained weights (Figure 3.7). The results are presented in
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Table 3.4. Overall, the model retrained on the encoder part showed the best result and that

was used for real-time flood area detection at the chosen test site.

Hand labels

I | Input SAR ; Hand labels

bands

Input SAR i ‘ 7 ' ‘ Weak
bands labels . |
Sentinel-2

Input SAR Hand labels
bands ining only e ‘

Figure 3.7 Transfer learning used cases in the study.

Table 3.4. Results of the transfer learning were performed using hand-labelled data on the UNet model trained
on Sentinel-2 weakly labelled data with both polarizations (bold text represents the best result).

Transfer Permanent Water Flooded Water All Surface Water
Learning/Dataset

mloU Om. Comm. mloU Om. Comm. mloU Om. Comm.

Hand labelling

Whole model 0.530 0.0051 0.0264  0.409 0.3494 0.0207 0.483 0.2287 0.0207
Whole decoder 0.531 0.0054 0.0324 0.366 0.3745 0.0238 0.443 0.2451 0.0238
Whole encoder 0.532 0.0041 0.0243  0.420 0.3086 0.0204 0.494 0.2042 0.0204

Otsu thresholding (OT) 0.457 0.054 0.0849  0.285 0.151 0.0849 0.3591 0.1427 0.0849

% improvement over

OT +164 -924 7137 +473 +1043 =759 +37.6 +43.1 —75.9

K-fold cross-validation
To investigate the generalization capability of the model as well as to ensure that model is

not overfitting on the given data, K-fold cross-validation was used. For the implementation we
have used hand-labeled data. First dataset has been divided into five equal parts or folds, and then

four model for each band combination has been trained by leaving one part for testing and using
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four parts for training. This way we have trained five sets of models by leaving different part as a
test set in every time, to cover the whole dataset. The result of the models against the permanent
water, flooded water and all-surface water is shown in Figure 3.8. The average of all five models
with each band combination is mentioned in Figure 3.6 along with the standard deviation. Results
in Table 3.5 suggest that our models are consistent throughout different folds with standard

deviation ranging between 2—4%.

Table 3.5 Five-fold validation results on the hand labelled data.

Permanent Water Flooded Water All surface water
Band used Average Std. Dev. Average  Std. Dev. Average Std. Dev.
mloU mloU mloU
VV, VH 0.524 0.040 0.421 0.021 0.473 0.026
Only VV band 0.474 0.039 0.407 0.024 0.454 0.025
Only VH band 0.514 0.033 0.395 0.023 0.451 0.025
VV, VH, VH/VV 0.511 0.039 0.432 0.020 0.484 0.024

Permanent Water

mVV,VH ®OnlyVVband mOnlyVH band VV, VH, VH/VV
0.800

0.600

0.400
0.200
0.000

Fold1 Fold2 Fold3 Fold4 Fold5

mloU

Flooded Water
EVV,VH mOnlyVVband mOnlyVH band VV, VH, VH/VV

0.500

Fold1l Fold2 Fold3 Fold4 Fold5

0.400

mloU

0.300

0.200

24



All surface water
EVV,VH mOnlyVVband mOnlyVH band VV, VH, VH/VV

0.600

Foldl Fold2 Fold3 Fold4 Fold5

0.500

0.400

mloU

0.300

0.200

Figure 3.8 Model's performance with different cases of waters (permanent water, flooded water and all-
surface water)

Quantitative results on the error-free test set
As there were few wrong annotations which were presents due to the manual mistakes as

well as some annotation includes very small water bodies (only few pixels wide) which were
simply not possible to detect from the side looking Sentinel-1 images. So, to check the effect of
these problematic test dataset, we have removed them and used same model to check the
performance on this modified test set which now includes total 71 image chips in place of 90. The

result of which is presented in the Table 3.6

Table 3.6 Quantitative results on error-free test set

Transfer learning/ Permanent water Flooded water All surface water
dataset mloU Om. Comm.mloU Om. Comm. mloU Om. Comm.
Hand labelling

Whole encoder TL 0,661 0.0032 0.0341 0.511 0.255 0.0453 0.612 0.166 0.0452
(error-free test set)

Whole encoder TL () 532 0.0041 0.0243 0.420 0.307 0.0204 0.494 0.204 0.0204
(O1d test set)

Otsuthreshol(gr%g) 0.457 0.0542 0.0849 0.285 0.151 0.0849 0.359 0.143 0.0849

Results on the test site
The model resulting from the transfer learning performed notably well, and it was used on

the test site in both ascending and descending flight directions. As shown in Table 3.7, it gave a
better result than did the thresholding method. Moreover, the omission error was reduced
significantly from around 16% to 6%, which is a very important criterion in emergency mapping,

where omission error should be as low as possible. This means that false negatives should be fewer,
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even when some false positives may creep in. False negatives are a problem because leaving a
flood-affected area off the map may lead to bad decision making — such as failing to evacuate or
people travelling into the flooded regions.

Figure 3.9 shows the merged SAR images of the ascending flight direction and cor-
responding combined result of the surface water detection by Deep learning (our method) and Otsu
thresholding. In the detection result, the white and black pixels are representing that both methods
have classified the same either water or non-water, respectively. Contrarily to the red and cyan
pixels illustrate that both methods have been classitied differently. Cyan pixels imply that our
method has classified the pixels as water whereas the thresholding method classified it as non-
water and just the opposite in the case of Red pixels. In general, thresholding suffers from the noise
in the output, as is visible in the combined results in terms of salt and pepper noise, as well as in
the yellow and green insets. Owing to such kind of noise, a post-processing step, such as
morphological erosion-dilation or minimal mapping unit application, is required after thresholding
(Landuyt et al., 2019). The yellow rectangle displays a partially flooded agricultural area that was
detected successfully by the deep learning model (in cyan color). In addition, the area shown by
the green rectangle, which contains a few oxbow lakes on its far-right side, was successfully
segmented by our model. In contrast, the blue rectangle shows the area around Kochi Port, which
is one of the largest ports in India and docks multiple large vessels. This area produced some of
the brightest pixels, and our method was not able to detect water in that area, while the thresholding
method was able to achieve better results (red pixels). One of the reasons that the water was not
detected by our method is that deep learning models learn the contextual information through
spatial feature mapping, and it is a rare phenomenon to have water pixels covered by brighter
pixels (in this case from ships). One way to detect such kinds of rare events is by including a few

similar patterns in the training set or using some other ancillary data.

26



Figure 3.9 SAR (VH band) image and the corresponding combined result of Otsu thresholding (OT) and deep
learning (DL) in a single image. White and black pixels in the resulting image represent pixels detected by both
algorithms as water and non-water, respectively. Cyan and red pixels show areas where the algorithms differed,
with cyan representing areas classified as water by DL but as non-water by OT and red representing areas
classified as water by OT but as non-water by DL.

Table 3.7 Evaluation of the different methods on the test site (2018 Kerala flood)

Method Images ToU F1 score Om. error Comm.
error
Minimum and Otsu Merged images of ascending
thresholding flight direction 08394 09127 0.1328 0.0367
Our model (after  Merged images of ascending g849 9389 0.0587 0.0635
transfer learning) flight direction
Minimum and Otsu ~ Merged images of descending
thresholding flight direction 0.8214 0.9019 0.1535 0.0347
Our model (after Merged images of Qescendmg 0.8776 0.9348 0.0661 0.0642
transfer learning) flight direction
Discussion and prospects
The results presented in section 3 allow us to make the following observations:
1) When the labels are weak, models trained on the co-polarization VV band performed

poorly in comparison to models trained on the cross-polarization VH band. One of the reasons can
be the high sensitivity of co-polarization towards rough water surfaces, for example, due to wind,

as described by Manjushree et al. (Manjusree et al., 2012) and Clement et al. (2018). However, for
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hand-labelled data, VV performs better than VH, especially for flooded areas. Figure 3.10 shows
the results from the models trained on different band combinations. Because the training set here
was hand-labelled, VV performed mostly better than VH bands except in rows 6 and 7. One of the
interesting outcomes was that the three bands combined (VV, VH, and their ratio) gave the best
results, except for the first row in Figure 3.10. This combination provided very good improvement
in some of the difficult test cases, as in rows 5—7. This was particularly interesting as no new
information is provided in the third band, it is just the ratio of already present input bands.

2) Models trained on Sentinel-2 weakly labelled data gave better results in comparison to
Sentinel-1 weakly labelled data, which is consistent with the results of Bonafilia et al. (Bonafilia
et al., 2020). Moreover, the models' trained onhand-labelled data approximately matches the
accuracy of the models trained with Sentinel-2 data and sometimes even beat them despite limited
samples, which goes against the results of Bonafilia (Bonafilia et al., 2020), who concluded that
hand-labelled data are not necessary for training fully convolutional neural networks to detect
flooding. We have demonstrated that models trained with hand-labelled data perform better
throughout, as shown in Tables 2 and 3. Figure 3.11 shows a few examples of the improvement
achieved by hand-labelled data. However, sometimes models trained with hand-labelled data give
over-detection, as can be seen in the red circled areas in the first and last rows of the figure.

3) Successful implementation of transfer learning proves two things: First, there is no
substitute for more accurate labels (hand-labelled data), as can be seen by the improved results.
Second, it is a good approach to generate many training samples automatically, and a model trained
on more samples gives better generalization. Further, we can use transfer learning to tune the
model for our given test set. However, another interesting result is that, for finding surface water
in SAR images, general features play a larger role than do specific features. As explained by
Yosinski et al. (2014), layers close to the input, encoder blocks in our case, are responsible for
general feature extraction, and deep layers are responsible for obtaining specific features (Y osinski
et al., 2014). In our experiments, freezing the expansion phase and retraining the contraction phase
gave the most favourable result. This can be further explored with different architectures; if the
same behaviour persists, then we may use many shallow layer networks, making an ensemble to
detect water areas from SAR images without wasting too many resources. The enhancement in
water area detection using transfer learning is presented in Figure 3.12. Some of the examples,

such as rows 1, 2, and 5, show tremendous improvement.
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4) If we look only at mIoU in the test dataset, then its value, which was less than 0.5, does not
present a good picture of the surface water detection. However, if we see some examples of the
test set true labels along with the detected mask, such as in Figure 3.11, where we can see that the
detection is quite accurate, especially by the model trained on hand-labelled data. Similar accuracy
is seen in Figure 3.12, which shows the results of transfer learning models. Some of the reasons
for low mloU can be understood in Figure 3.13. In rows | and 2 of Figure 3.13, where a very
narrow stream has been labelled, this stream is either not visible due to mountainous terrain (first
row) or trees growing along with it (second row), and it becomes difficult to identify any
significant water pixels in the SAR image. Another issue is having very small water bodies
containing very few pixels scattered over the whole image (row 3). In this case, even though the
omission error will be lower, the loU will be near zero, affecting the mloU of the whole test dataset.
Moreover, a few incorrect labels are present in the test dataset. Some examples of this are shown
in rows 5 and 6, where the red ellipses show the locations of incorrect labels. In these situations,
even though our model is performing quite well, the IoU becomes very low or in some cases goes
to zero, such as in the last row. Whereas, according to the given label, there are no water bodies,
so the intersection will be zero and the union will be the detected water body pixels, which will
result in an IoU of zero. Moreover, there are also many possible scenarios where, due to the special
properties of the SAR, the detection is not accurate, such as in the case of row 4 in Figure 10. This
area was flooded in a field with sparse vegetation, as can be seen in the true-colour image in the
last row of Figure 3.14. This creates a double bounce from the specular surface of the water and
vegetation in the co-polarized band (VV). This anomaly is the reason that the model is not able to
identify it as a flooded field. Similar examples are shown in the first row of Figure 3.14, where
sand deposits in the river have high backscatter in the VV band, though in general, flat sandy
terrain works as a specular surface. One possible reason for the high backscatter is a wavy pattern

in the sand due to wave action, which may also result in a double bounce.
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SAR (VH band) True label wW VH WV, VH WV, VH, VH/WV

loU=0.433 loU=0.3479 loU=0.4503 loU=0.4387

1oU=0.7705 loU=0.7611 loU=0.7564 loU=0.7681

loU=0.5869 1oU=0.4994 loU=0.5702 loU=0.6012

10U=0.1935 10U=0.0348 10U=0.5179 10U=0.5184

loU=0.635 loU=0.3496 loU=0.5816 loU=0.6617

1oU=0.4605 loU=0.4893 10U=0.4392 loU=0.4895

10U=0.6186 10U=0.6689 1oU=0.56 10U=0.7679

Figure 3.10 Results from the models trained using different band combinations with the hand-labelled dataset
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SAR (VH band) True label SlLabel trained S2Label trained HandLabel trained

Figure 3.11 Results of the models trained with bands VV and VH combined over all three training sets
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SAR (VH band) True label S2Label trained HandLabel trained Transfer learning

Figure 3.12 The improved result, achieved by using transfer learning. Results are from the model trained
using the VV and VH bands combined and the Sentinel-2 weakly labelled dataset and retrained using the
hand-labelled dataset.
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SAR (VH band) True label Sllabel trained S2Label trained HandLabel trained

Figure 3.13 Major errors (circled by red dotted lines) in results obtained from the model trained using the VV
and VH bands with the hand-labelled dataset
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Sentinel-2 (True colour) Sentinel-1 (VV band) Sentinel-1 (VH band) True label

-

Figure 3.14 Some unique cases, where the classification behaviour is quite different with different
polarizations (areas circled by red dotted ellipses). Row 1 is the case of river sand, and row 2 represents
shallow flooding in agriculture fields with sparse vegetation.

Summary of the chapter
This chapter has presented the methodology for near-real-time flood mapping. It has been

implemented using the SenlFloodsl1 dataset that is available publicly. Results have shown a
notable improvement over the baseline. Later, the trained model was used as an off-the-shelf model
on a completely different site for validation purposes and the model has shown improved
performance in comparison to the Otsu thresholding method which is one of the major algorithms
used for the SAR image classification. The results of this chapter are presented in the Journal paper

Katiyar et al., (2021).
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Chapter 4 Training dataset preparation strategy

Introduction
As satellite scenes are too big that is why we need to create image chips out of them (Han

et al., 2017), afterwards these chips are supplied to the DCNNs that can run efficiently on the
GPUs memory. As per Ning et al., (2020), training a network with a higher number of image chips
normally leads to greater accuracy. Also, data augmentation has proved a successful mechanism
to increase the variability from limited data and in turn, improves the performance of the networks.

Our main objectives in this chapter are, studying different strategies to make image chips
for training and then cross-comparing them on two very popular segmentation networks, U-Net

and SegNet.

Training dataset preparation
The selection of the size of the chips depends

mainly on the two-constraints memory constraint and
batch-size constraint. As we aim to detect land-water
boundaries for better extraction of surface water,
contextual information plays a greater role. Many a time
the backscattering value of the pixels may be the same but
the spatial context plays a role in deciding the pixel’s
class. This is the reason that smaller areas of shadow

though have similar backscatter values as water, were

remain out of the class of surface water, in final detection.
Figure 4.1 Importance of the chip size.

In such a case, the context is the one thing that helps in

differentiating them, so that is why it is preferred to have a larger patch size for more contextual
information. However, we also need to take care of the GPU memory as bigger chips mean smaller
batch size and larger training time. Given the above-mentioned reasons, this study selected the
512x512 size of the chip. For better understanding, we can look the Figure 4.1, in which it is very
clear how chip size can affect contextual information. 256x256 size square is within the water
areas only so it can not provide some significant information for land-water boundary extraction.

On the other hand, 1024x1024 is having a lot of contextual information such as the contiguous

area to the river has been flooded.
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Another point to consider is that the flooded region is much smaller in comparison to the
non-flooded region, this creates an imbalance in the dataset. To reduce this imbalance, the study
has selected only those image chips which have at least 10% of total pixels belonging to a flooded
area, called in this study as valid chips-

N ,
FloodedPixels + 100 > 10

NTotalPixels

10% pixels from ALOS-2 image with 3m spatial resolution means approx. 8-hectare area,
over which very few surface water bodies occur in that area. This helps to remove the noise from
smaller lakes/ponds. Following methods have been used to extract image chips- 1) Sliding
Window 2) Randomized sampling.

Sliding window
Under this method, a sliding window has been used to slide over the scene and create the

chips with the different overlap of successive steps. Four sets of overlap have been used namely,

no overlap, 30% of overlap, 50% overlap and 70% overlap as shown in Figure 4.2.

(a) (b) (c) (d)

Figure 4.2 Overlap in successive steps in the case of a sliding window. (a), (b), (c) and (d) are showing the
different scenario- 0%, 30%, 50% and 70% overlap for the chips

The different overlap will result in a different number of the total chips, and a greater
number of chips may give a better result. So, in this study, we have decided to select an equal
number of chips for each scenario. To decide that how many chips should be selected, we have
used 70% overlap, as in this scenario the maximum number of chips will be created to cover the
whole scene (Figure 4.3), the total valid image-chips have been found around 200 (this number
depends upon the size of the image as well as the abundance of foreground pixels). For this reason,

in all scenarios we have created 200 image chips, if the total number of valid chips is less than this
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limit such as in the no-overlap scenario, then we just duplicated the valid chips to satisfy the

condition.

Randomized sampling/ random cropping
In this method, the 200 random patches have been selected using a ‘sampling’ method. The

validity of these patches was calculated and recursively sampling has been done till the time the
total number of valid image chips reach the mark of 200 or more (shown by Red square in Figure
4.3). In the end, only 200 of valid-chips has been saved for the training step (Yellow square in

Figure 4.3).

S

Randomize mpling Image 70% overlap Sliding Window

Figure 4.3 Training data creation. Image chips were created concerning the flood mask as can be seen in all
the images above leaving satellite images aside. Blue colour bounding boxes (BBs) in the images are invalid
due to not meeting the condition of 10% water pixels and Red colour BBs are valid while yellow BBs are the
selected chips from total valid ones.

Results and Discussion
In the step of the creation of the training data, maximum time was spent in the randomized

sampling method and in the case of the sliding window method, time is decreasing with decreasing

overlap. So, the fastest method for image-chip creation was a sliding window with no overlap.
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After training data preparation, U-Net and SegNet were trained on each training set i.e., five
different training sets. Each training took between 15-20 mins for finishing 50 epochs. Here it
needs to be focused on, that, hyper tuning of the network has not been done and rather than saving
the best model, the model has been saved after 50 epochs. As the main aim was to do the cross-
method comparison for different methods of training data preparation.

Training accuracy and binary cross-entropy loss during the training have also been plotted (Figure
4.4). As per the plot, the no-overlap scenario was converging fastest, while the randomized

sampling one was more versatile and showing fewer sudden peaks with increasing epochs.

Figure 4.4 Cross-entropy loss and accuracy plot during the SegNet training.

The study has found that 50% overlap has the poorest scores throughout, one of the possible
reasons can be that it has learned more on the negative samples, this can be seen in Figure 4.5, U-
Net and SegNet cross method comparisons. In the figure, 50% overlap scenario is showing the
highest accuracy which is just a measure of total correct pixels predicted and as non-flooded pixels

are much higher in the scene, so predicting most of the pixels as non-flooded area leads to increase
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the accuracy. However, F1 Score and Jaccard score are the lowest showing the failure of predicting
the right class for foreground i.e. flooded area.

Overall Randomized sampling shows best or approx. equal score around all the parameters.
This seems logical too as all the methods in the study can also be seen as image-chips creation
along with data augmentation in the manner of ‘translation’ (moving image to X and Y direction).
Randomized sampling can be seen as translation of the image with an arbitrary factor within

(0,512), whereas other methods and scenarios have a fixed-step translation.

U-Net cross methods comparison

W Accuracy M F1 Score
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SegNet cross method comparison
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Figure 4.5 Charts of the performance of U-Net and SegNet with the chips created by all the previously
mentioned methods



As per the time concerned for image-chips creation, it was the fastest in the case of the
sliding window with no overlap. It was the case due to a smaller number of chips possible with
this condition and then for making the desired number of chips, we have just duplicated the valid
chips. This duplication is the reason that Figure 4.4 shows sharp convergence of SW_O (in Red
colour) but with multiple bigger peaks at each interval. This behaviour may be better monitored
when training for a greater number of epochs.

Although we have found that randomized sampling is best suited in this case, still it needs
a greater number of test cases, for checking that either this observation holds in other cases or not.
Moreover, we need to emphasize here that these strategies are not an alternative to more data. As
in this case, data information remains the same and the only augmentation happens which has its

limitations.
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Chapter 5 Near-Real-Time flood mapping using ALOS-2 imageries, with a
case study on Kyushu Flood 2020

Study area and data used

This study has selected the Kuma river basin which is one of the major rapid of the japan,
as a focused area. One of the big cities of the Kumamoto prefecture, Hitoyoshi city has been
impacted quite drastically due to a levee breach in July 2020. Kumamoto University’s Center for
Water cycle Marine environment and Disaster management (CWMD) in their disaster
investigation report has mentioned that the flood level in the Hitoyoshi City even breached the
previous record of the July 1965 flood (CWMD, 2020). This led to the evacuation of thousands of
people and scores of them have been died too. This is why Hitoyoshi city (Figure 5.1) has been
chosen as the focus area, the city has been surrounded by mountains from all sides and in past also

flash-flood has occurred in this region.

This study has used ALOS-2 images during the flood. These images have been accessed
through the Sentinel Asia portal, which is an international cooperation project with a focus on
disaster management in the Asia-pacific region and Yamaguchi University is part of it. All the
scenes selected here are of HH polarization, while orbit looking is the mix of ascending and
descending, solely based on the availability of images on the day of the flood. Other than the
satellite images, the estimated flood inundation map generated by the Geospatial Information

Authority of Japan (GSI) has been used to create the ground truth for flood-affected areas.
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Figure 5.1 Study Area (Hitoyoshi city Kumamoto Japan)

Figure 5.2 Areas used for training. (a) Saga city (b)
Kurashiki city, Kumamoto (c) Nagano city. The blue
colour in the area images is showing the flooded area

Training
Availability of good training data is the basic need for the deep learning approaches to

work better. This study has used scenes from three previous flood disasters: Kurashiki city area
from Okayama prefecture during the 2018 japan floods (7 July 2018), Saga city area from 2019
floods (28 Aug 2019) and Nagano city area during the Hagibis typhoon-fueled flood 2019 (13 Oct
2019) as shown in Figure 5.2. Many different scenes which belong to the different areas have the
advantage of capturing more spatial and temporal diversity in the training data rather than just
using one scene or one area images. Ground truth has been created by using the estimated flood
inundation map provided by GSI and with the help of a SAR image expert. Still, there is the
possibility of some areas being left out which was flooded and some of the non-flooded areas may
be included as flooded. These problems during the creation of ground truth from SAR data happens
due to the complex nature of SAR images. Some of the reasons for the problems are- 1) Geometry
distortion due to the ‘look angle’ 2) Shadow areas in hilly regions 3) Paddy field which has been
flooded for agriculture purposes and bare plain field that returns low to negligible backscatter and
makes hard to distinguish between these areas with the flooded areas.
For testing, a Single polarized ALOS-2 image (HH) of 4" July 2020 has been used. The

desired area for the testing site, Hitoyoshi city has been extracted in QGIS by the respective ROI.
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Methodology

Training Data Preparation
The ground truth of flood that was created as a polygon on QGIS software, has been saved

as a mask raster file (GeoTIFF image) with the binary value of 1 (flooded area) and 0 (non-flooded
area). Iterative Random sampling on this mask image has been carried out to create 512x512 pixel
tiles and only those tiles which fulfil the condition that at least 10% of its pixels belong to the flooded
area has been classified as valid tiles (Figure 5.3). Out of the total valid tiles, 200 of them has been
selected randomly from each training area this makes a total of 600 tiles, together with the mask the

corresponding tiles from images have also been saved.

Figure 5.3 (a) and (b) are showing the training data creation using flood masks. Blue rectangles show not
valid tiles(<10% flood area pixels), Red rectangles are valid and Yellow rectangles are the ones chosen out
of red ones. (c) is showing the image and mask tiles, created through the above-shown procedure.

(c)
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Network and Architecture
Due to the limited number of training tiles and binary classes (flood and non-flood class),

we have selected U-Net (Figure 5.4) with the modification of using 5x5 kernel size with 3x3 kernel
size in the alternate setting during the encoder phase. This helps to increase the receptive field (RF)
of the network. As flood is an event that affects the larger area with diverse landscapes so larger
RF will help in capturing local context details, which in turn will help in increasing the accuracy
of the flooded-area segmentation.

For this study, we have used five encoder and five decoder blocks along with one
bottleneck block. Loss has been calculated by binary cross-entropy, which is optimized by Adam
optimizer with the initial learning rate of 0.0001. The adaptive learning rate was modified by 0.001
on each round after the training hit plateau for more than five epochs. Starting feature size is chosen
as 16 which getting double at each encoder block till 512 features in the bottleneck block after
which it starts getting half at each up-sampling. All the layers are using ReLU as an activation

function except the last one which is using sigmoid as an activation function.

Figure 5.4 U-Net architecture

As the total number of training tiles are less for training a deep neural network, this study
has used the image augmentation technique to increase the samples, mainly horizontal and vertical
flip has been used which keep maintaining the data integrity. For validation data, the available data
has been divided at runtime which has been set up as 20% of total tiles available which means

practically 480 tiles has been used for training and 120 for the validation. However, these 480 tiles
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do not remain fixed but keep changing on each epoch due to the validation split is happening at
runtime. The network has been trained for 100 epochs with a batch size of 16 on two Nvidia Titan-
V GPU. U-Net does not have many complex calculations and binary cross-entropy is a much

simpler loss function to optimize, this is why total training has taken less than one hour.

Test results
The size of the test image is 5102x2319 (width x height). The ‘same’ padding i.e. zero

value pixel has been added at the border of the tile during training to maintain the size of the output
after convolution, but the output value at the border will surely be biased due to padding (zero or
other value) (Huang B., 2018). This does create a big problem in the testing of remote sensing
images as the training data and testing data always have a huge difference in their spatial extent.
Due to this reason few techniques that have been proposed by Huang et al. (2018) have been used
to minimize the effect of tiling on the result- 1) The output sized has been maximized as per the
GPU memory, in our case (2048 x 2048) tile can be processed at the same time. 2) The translational
variance has been handled by using overlapped tiles for evaluation and during stitching time just
neglected the affected boundary pixels, which has been calculated by the number of times pooling
has been done. Also, for other overlapped pixels we have taken weighted sum with the limit of
max value as one because the output of the network is the probability of the pixels to belongs to a
particular class and that has to be within the range of zero to one.

Our results show that U-Net can extract the flooded area in a more homogenous way in
comparison to the thresholding method as can be seen in Figure 5.5. The accuracy of the extracted
flood areas, in comparison to the inundation map provided by GSI Japan comes to 89.57%, which
is an improvement over the thresholding method (86%). Moreover, the major improvement can be
seen in the F1 Score which has increases from 0.21 (thresholding method) to 0.43 (our method).
Even though the F1 score improved by more than 100% from the thresholding method but still it
is less, however, we need to recognize the lack of training data availability and also the inadequacy
of the ground-truth credibility, a few areas have been flooded but have not been included in the
flooded-area due to limitation of ground data etc. and vice-versa as mentioned by GSI. More

detailed results are presented in the Figure 5.6
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" Result y the thresoding method Result b our ethod

Figure 5.5 ALOS-2 image of the study area along with the ground truth and results by thresholding as well as
of our method (flooded-area is shown in Blue color)
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SAR Image Thresholding Our method
Figure 5.6 Zoomed areas of the results to highlight the advantages over thresholding methods. The shades of
blue color in our method are representing the confidence of the network for classifying the area that belongs to
flood (Dark blue means the confidence is in range of (0.9-1.0) and lightest blue is in range (0.4-0.6) and the
remaining shades lie in between (0.6-0.9))

Transfer Learning from Sentinel-1 to ALOS-2 using flood area in the target training data
Preparing a large amount of training data for each kind of satellite system separately is not

a practical approach. Building a larger training dataset for different SAR satellites have the
following constraints-

1) The interpretation of SAR images needs expert knowledge, so annotation is a time-
consuming and resource-intensive procedure.

2) Most of the SAR satellites are commercial, so buying enough scenes just for training
data preparation for each satellite will be very expensive and not very practical.

3) Many new satellites are getting launched and these do not have enough flood events in
their archived data to prepare a large training dataset.

Due to these reasons, in the study, we have experimented with transfer learning especially
using the weights of SAR trained models. Here we have used sentinel-1 trained models to work
with the ALOS-2. As we have proved in the earlier chapters that feature from the encoder section
of UNet plays a more important role than the decoder section so we have only retrained the encoder
section during the transfer learning with a much smaller target dataset made using ALOS-2 images
(number of chips used are the half of the chips used with the training from scratch). This retraining
has been done for 100 epochs.

The qualitative results are shown in Figure 5.7 and quantitative results are presented in Table
5.1. The results show that by using transfer learning among the SAR images, even a smaller dataset
(just 240 chips) is able to give comparative results with the network which were trained on the

much bigger dataset (480 chips) and for a longer time.
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Detected flood area with the network Transfer learnig from sentinel-1 to
trained from scratch ALOS-2
Figure 5.7 Comparisons of the results of the different trained networks- from scratch and using transfer
learning

Table 5.1 Results of the transfer learning from Sentinel-1 to ALOS-2

Method Accuracy F1 Score
Thresholding Method 84% 0.21
Transfer Learning 88.49% 0.38
Trained from scratch 89.57% 0.43

Overall discussions and conclusions
Disaster management needs quick results as response time plays important role in saving

people lives by timely evacuation. For this purpose, our method using U-Net have done a good job
as it has been able to process the complete scene of the satellite within a few seconds while
maintaining the good detection ability. The detected flooded regions are more connected and
homogenous in comparison to the patchy result of the thresholding method. Overall the accuracy
of the method has been close to 90% which can be considered as a good detection rate. Figure 5.6
compares the result of our method with the thresholding method. The first row of Figure 5.6 is
showing the golf course which has been detected as water areas in thresholding methods due to
the specular reflectance from the flat golf fields, however, our methods have been able to detect
the difference. In the case of the middle row, thresholding was not able to detect urban areas which
have been flooded but due to double-bounce those areas were showing greater backscatter, here
our model detected some areas as flooded areas but still a lot of flooded urban areas has been left
out. Another advantage of the method has also been seen in the case of shadows in hilly regions
(last row of figure Figure 5.6) where our method precisely left out the smaller shadow regions. As

Japan has a lot of hilly regions that is why in general, pre-processing is required using the Digital
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elevation model (DEM) to remove those shadow regions based on the slope of the area, nonetheless
here we have not used any pre-processing over images. Although some very big shadow regions
may have been classified as a flooded region by our method too. Here we also want to emphasize
that the data that has been used for training belongs to complete different areas with no fixed
geometry as we have used ascending and descending images without any priority and when applied
on the test region it has given a very good result, this shows that network was able to grasp the
complexity of SAR images.

Although the U-Net has performed really well in comparison to the thresholding method
this study has encountered few limitations too. Some of them can be seen in figure 7, in the first,
the areas as per the ground truth available are the urban area which has been flooded and the last
row is showing the areas that contained river with surrounding agriculture field. In the first row,
our result has been able to detect some areas as flooded areas which may become possible due to
the presence of some urban flooded areas in our training data too. This is a very challenging task
as an urban flood can become very bright due to double bounce and it may also become bright in
certain look angle so differentiating between both of them will be a big challenge. In the last row,
our model is showing a clear presence of flood however GSI’s map does not mention anything
about this area. One possible reason can be the presence of flooded paddy fields which has been
detected as a flooded region. Another reason can be that it was flooded and GSI may miss it, as
one news article mentions that the Yamada River (the river presents in the last row area) has been
flooded but did not mention the exact stretch of the flooded river so cross-verification was not
possible. There has been some wrong detection as well which can be seen by the FI measure,
however, there are few reasonable reasons for that such as limitations of the SAR images (detecting
the undetectable such as differentiating the intentionally flooded paddy field versus flooded
agriculture area due to disaster) and lack of credible training data. Additional data along with the

more credible ground truth will surely improve the flood area extraction.
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Figure 5.8 Limitations due to SAR special properties. The top row is showing the urban flood region and the
bottom row shows the situation of either paddy field or unmapped flooded area in the ground truth.

The limitation of the training data has motivated us to apply transfer learning among
different satellites. Our experiments of transfer learning from Sentinel-1 to ALOS-2 shows
encouraging results. This can be further explored with a larger number of satellites and varied
study areas to gauge the applicability of transfer learning for flood regions among different

wavelength satellite systems.
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Chapter 6 Extraction of water bodies from ALOS-2 images by utilizing rough
training set

Introduction
Automated extraction of water bodies in the geospatial domain has various applications

such as urban planning, hazard mapping, change detection, etc. This has been specifically
highlighted in Sustainable Development Goals 6 (SDG-6) i.e. ‘Ensure availability and sustainable
management of water and sanitation for all”. In the sub-goal 6.6 it has mentioned as ‘by 2020,
protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers,
aquifers and lakes’ (UNSKP, 2015). Implementation of these objectives is required frequent
monitoring of these sites to avoid any encroachment and proper maintenance. However, regular
manual surveys and monitoring are not practical as they will be more costly and human-resource
intensive. Due to these reasons along with the improvement in the technology such as satellite
imagery with higher special, spectral and temporal resolution and development of the machine
learning techniques- an automated system of water bodies extraction has been propounded.
Though most of them are mainly focusing on using optical images (W. Huang et al., 2018) such
as low & medium spatial resolution satellite images (Jawak et al., 2015; Mishra & Prasad, 2015)
and High & very high-resolution satellite images (Feng et al., 2019; L. Li et al., 2019). While they
have produced some very good results but still the limitation of the optical image is always present
that is affected by cloud and weather conditions. Due to this reason Huang, 2018 have
recommended using SAR images along with optical images which can help not only in penetrating
the cloud but also the vegetation. Chandran et al., (2018) are using sentinel-1 (SAR) satellite for
extraction of the water bodies, however, they are training a separate network for finding the

shadow to remove it from the final detected water bodies.

Study area and data preparation
As there was no training data available for ALOS-2 satellite images so training data for the

water body has been prepared in-house. A single polarized ALOS-2 image (HH) of April 2019 has
been chosen which has a resolution of 10 m with an observation width of 70 km. Two Zones which
has been observed as having a greater number of water bodies has been selected with the dimension
of 15 x20 Km. For creating the training data faster, the study had used google earth high-resolution
optical images with the QGIS digitization tool. The output of this step is saved as a vector file

containing polygons of the shape of water bodies. Later on, this vector layer has been converted
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as a raster layer with binary value, 1 for water-bodies and 0 for others, converting it as a mask
layer. Even though ALOS-2 PALSAR-2 L1.1 data has been orthorectified using ESA’s SNAP
(Sentinel Application Platform) toolbox, It was still not very well overlapped, one of the reasons
was the usage of 30-Meter (low resolution) SRTM DEM (Shuttle Radar Topography Mission,
Digital Evaluation Model) as well as certain limitation in horizontal positional accuracy of google
earth (Goudarzi & Landry, 2017). Along with it, Mountainous terrain and SAR side-looking
geometry were making things more complex for perfect overlapping. So this is why to create
training data with better quality, manual shifting of the polygons have to be done, this is a complex
task as small water bodies may not be visibly clear in the SAR image. Moreover, the boundary of
the water bodies may also be blurred which in turn reduce the quality of training data. Due to those
reasons, the study utilizes the same polygon which has been drawn on google earth images without
shifting them as can been seen in Figure 6.1(a) and (b). The unevenness of the real ground truth can
be seen in Figure 1(c) and (d) where the red colour polygon shows the boundary of the water body
in google earth and the green colour polygon shows the boundary of the same water body in SAR
image.

After this, iterative random clipping has been used to get 256x256 size of SAR image for
the training set, totalling 20,000 image tiles. However, high unbalanced data have detrimental
effects on the classification or segmentation algorithms (Buda et al., 2018). To reduce this problem,
the study has used a threshold approach in the final phase of training data preparation i.e. selecting
a tile as ‘final’ only when it has at least 5 % pixels under water bodies. For calculating this we
have used a ratio of ‘total number of pixels’ with the ‘total pixels that belong to water-bodies from

the water-bodies mask layer.

(b)
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(©) )
Figure 6.1 Training data preparation. (a) and (c) are the clipped google earth images, blue color in them
shows digitized water bodies area and (b) and (d) are the clipped ALOS-2 images after converting into
backscatter (sigma zero - db) format using SNAP.

Methodology
This study has adopted U-Net architecture (Akeret, 2017; Akeret, 2018) with some

modifications to handle the satellite images, this network is running on the two Titan-V GPUs with
12 GB of memory each. The language and supporting libraries used are Python and its supporting

packages along with TensorFlow and Keras.

Network and architecture
U-Net is running with the 7 convolution layers in the encoder part and 6 convolutions in

the decoder part. Due to the limited number of training samples there was a high possibility of
overfitting and to avoid this, certain drop-out layers (regularization) has been inserted with
probability (p) = (0.8, 0.5) for the different hidden layers of the network. Leaky ReL U activation
function has been used in the hidden layers and sigmoid in the output layer due to binary classes.
Training

Total 20,000 images of the size 256x256 have been used for the training of the network
with the validation split of 30 per cent. This means at one time 14,000 images have been used for
training and the remaining 6000 has been used for validation purposes dynamically. Just a little

over 100 epoch model shows convergence with the batch size 25 (Figure 6.2).
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model loss model accuracy

Figure 6.2 Model loss and accuracy curve of training and the location of the best model

Testing
For testing and evaluating the model 1500 images of the same size (256x256) has been

used which have not been seen by the model before. This set has been randomly divided into three
parts to test the model. The predicted probability image has been converted to binary prediction
using a threshold of greater than 50%. For evaluating the model, Intersection over Union (IoU)

matrix has been chosen which can be defined as (Eql)-

__ (GroundtruthnPredicted)
B (GroundtruthUPredicted)

loU (Eql)

[oU for the parts of the test set has been falling in the interval of 0.69 to 0.76 with the loss
hovering in the interval of 0.22 to 0.28. This loU seems at the lower side, however, we need to
realize that IoU is best measured when the bounding box is pretty good. In this study, the ground
truth has been rough so even when the model will predict the exact object still IoU will not be

close to 1.0.

Results
Some of the predicted output of the images by the trained model has been shown in Figure

6.3. If we see Figure 6.3(a) where all the water bodies even though they are small has been identified
by the model though the extent of them seems a little bit reduced. In Figure 6.3(b) the rivulet with
the over-bridge has been captured properly. Figure 6.3(c) shows a challenging task as small water
bodies were in the golf areas which itself looks very similar to the water areas in the SAR image.
However, the model has been able to distinguish between water bodies and golf fields beautifully.

Even the water body at the bottom left corner has not been detected clearly due to the presence of
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power lines which create more backscattering. Though the still model has wrongly predicted few
areas as water. On the other hand, in Figure 6.3(d) model has predicted the completely wrong result,
the baseball field is very flat and it shows a very strong probability to classify it as a water area.
While there are other sports fields and with a similar flat surface, the model does not recognize
them as water bodies. In the case of baseball field specifically, it shows stronger bias towards the
water, it may be a case of shape which model learn due to the presence of many lakes in the training

set. Still, this point needed to be explored further in the study.

QOriginal SAR Image - Water-bodies (Ground truth) Water-bodies (predicted binary)

50 150 200

(a) Small water bodies

100 150

(b) Rivulet
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Figure 6.3 Left side image shows SAR image, the middle image shows the ground truth and the right side is
showing predicted water bodies in binary form (after thresholding)

Transfer Learning from Sentinel-1 to ALOS-2 using water bodies (permanent water) area
in the target training data
As mentioned in chapter 5, in the cases of newly launched satellite, there is possibility that

we do not have archive data which includes any flood event. In that scenario we cannot do transfer
learning which were utilized in the chapter 5. For handling this kind of situation author have tried
to utilize the water bodies data (or permanent water data) with the transfer learning. However,
model performed very poorly as shown in the Figure 6.4. This suggest that only water bodies data
for flood detection is not a suitable measure to map the flooded region. This result can be
understood in the light of the diversity of the backscattering value included in the flooded region
in comparison to the permanent water bodies. Flooded region includes much diverse pixels as has
been shown in the previous chapter too. Another thing to be noted here that this result is agreement
with the Bonafilia et al., (2020) where they have found that network trained with only permanent

water bodies, performed worst for flood detection.
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Detected flood area with the network Transfer learning from sentinel-1 to
trained from scratch ALOS-2

Figure 6.4 Comparisons of the results of the differently trained networks- from scratch and using transfer

learning

Conclusion
While SAR data is already becoming ubiquitous, and many new SAR satellites are planned

to be launched. Such kinds of models can be very helpful to process SAR images automatically
and with less amount of human resources and expenditure. The above discussion shows that a
simple model with even a rough training set can provide a good accuracy over SAR images.
Therefore, the availability of a better annotated and larger dataset can help in better utilization of
SAR images for many areas including disasters such as flood monitoring, urban development and

water ecosystem management etc.
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Chapter 7 Dissertation findings, conclusions, and future recommendations

Dissertation findings and conclusions
In this study, we have presented that if available more polarization will improved detection

of flooded areas as seen in the case of Sentinel-1 using both polarizations (VV and VH). Also,
adding a third band as a ratio of two polarizations has been shown to refine the results further in
few scenarios. We also proved that there is no way to avoid hand labelling completely, but it can
be used in combination with weak labels for developing a more generalized model. This way we
can take advantage of both situations: more samples from weak labelling for better generalization
and accurate samples from hand labelling for fine-tuning during transfer learning. Also, transfer
learning showed that the same models can be enhanced with access to more training data in the
future to further improve the model. During the implementation, we have found that in the specific
case of Flood mapping from SAR image, it is the general features that are playing a greater role
than many complex features, so much complex network may not be beneficial for this problem. In
this way, existing datasets can be used for NRT flood mapping. As this technique uses only a single
image, namely, only an image during flooding, it is much easier to implement a generalized model
in any affected area without having the constraint of searching archived data and appropriate
reference images. We have demonstrated a notable improvement over thresholding techniques
with the off-the-shelf model, which can process a whole satellite image in less than 1 minute with
a very low omission error. Thus, our models can be implemented as a prompt emergency response
and information disburser for first responder organizations.

Another notable finding was the successful implementation of transfer learning among the
different SAR satellites. The network trained on the Sentinel-1 data has been used with ALOS-2
data by freezing its decoder section and only retraining the encoder part of the network. It shows
that even with a much smaller training set and training time we can achieve approximately a similar
level of flooded area detection as we can get by training the network from scratch with double the
dataset and a greater number of epochs. However, using only permanent water bodies data with
ALOS-2 for training is not suitable to detect the flooded region and this conclusion has followed
the similar interpretation given by Bonafilia et al, 2020 in their study on the Sentinel-1. This means
before applying to any other satellite data we need to have some training data for flooded regions
from that satellite. Though the requirement of the amount of training data is greatly reduced

because of the transfer learning.
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Future recommendations
As we have presented in the study, NRT flood mapping is the need of the hour due to

frequent flood-related disasters and short response time. However, for calculating the damage by
the flood some other parameters are also needed such as how long and how deep an area has
been flooded. Also, to make the system more user friendly the constraint on its implementation

need to be reduced. These points are further elaborated below:

Accuracy focused
e Easily accessible ancillary data, such as height above the nearest drainage (HAND), can

also be added for more refined detection. This will not only help in reducing the false
positives but can also help in creating a flood depth map. However, it will perform better
with more accurate DEM.

e The training dataset should be further enhanced. Some recommendations to improve the
datasets are:

o Inclusion of specialized classes of the flooded areas as the type of floods, such as
open flood, flooded vegetation, and urban flood. As each kind of flooded region
has its unique properties, having separate classes will assist the detection of
flooded regions with higher accuracy.

o Balanced and error-free input data. This means enough samples must be provided
for different kinds of flooded regions spatially and geographically. This will
reduce the chances of anomaly type of regions that were giving erroneous
detection and reduces the accuracy of the overall model.

o Ensuring that the test set is error-free. The test set should be quality controlled so
that efficacy of the different deep learning models can be better measured and

compared.

Implementation focused
e In future, the same system can be tested on Google Collaboratory and other cloud

platforms to make it more versatile for use without the constraint of in-house GPUs.
e Integration with the platform such as Google Earth Engine (GEE). As GEE provides
freely accessible data, so it will remove the time loss due to downloading of data. This

will make NRT further efficient.
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