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Along with the development of information technology, more and more
software products have been applied to most aspects of society and facil-
itated people’s lives. Consequently, the problems of software quality and
security have been paid more attention. Software testing is an important
means to ensure software quality and reliability, which is to find bugs, de-
fects, or errors in a software program and is indispensable for all software
development since it is a critical element of software quality assurance and

represents the final review of specification, design, and coding.

Path testing is an important measure of general software testing, which
searches specific test input data that covers every possible path in the
software program. Among testing activities, test data generation is one of
the most intellectually demanding tasks and also one of the most critical
ones, since it has a strong impact on the effectiveness and efficiency of the

whole testing process. However, with the increasing of complexity and
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scale of software, a software program may contain an infinite number of
paths when the program has loops. In addition, the number of paths is
also exponential to the number of branches of the program. As a result,
test input data generation takes much computational time and is an NP-

complete problem, which makes input data generation more complex.

Graphs can capture complex data dependencies and be widely used to
model and analyze data-flow programs. As a kind of graph, data-flow
program net (program net or net for short) is an important way to study
data-flow programs. Program net is specially tuned to data-flows through
arithmetic and logical operations. This dissertation discusses how to apply
program nets to generate test input data for approaching the software
testing problem theoretically. This dissertation is organized as follows:
Chapter 1 gives an introduction of the research background and presents

the motivation and the target of this dissertation.

Chapter 2 presents the basic definitions of program nets and proposes a
necessary extension of program nets so-called exhaustive program nets to
describe the dynamic behaviour information of program nets. The known
basic properties and the whole process of applying program nets to test

input data generation are also given.

Chapter 3 presents a proposal to generate such required subnets’ set
that can cover all nodes of a given program net and gives its correspond-
ing algorithms to (1) construct the layer net of the given program net,
(2) construct the acyclic program net from the given program net with
directed circuits, (3) obtain the initial subnet, and (4) generate the re-
maining subnets so that the obtained subnets set containing the initial
subnet can cover all nodes of the given program net in order to finally

find a specific test data used in software testing.

Chapter 4 presents a method to find a specific test input data for such
subnets that may possess input data based on the analysis result of the
behaviours of all the subnets. Firstly, a brief introduction is given to
Satisfiability Modulo Theories (SMT for short) that can be used to find
test input data. Then, discussion is done on how to equivalently transform
the subnets obtained in Chapter 3 into exhaustive subnets. After that,

an algorithm is designed to obtain all constraint conditions from a given
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exhaustive subnet. Finally, we introduce an SMT solver, Z3 Prover, which

can find the specific test input data according to the constraint conditions.

Chapter 5 gives a case study that shows how to generate required sub-
nets for three actual Java programs by using the algorithms proposed in
Chapter 3, as well as to indicate how to find a set of test input data for
the subnets by using the SMT solver introduced in Chapter 4. Also, the

experimental results are shown and discussed for the Java programs.

Chapter 6 concludes the results obtained in this dissertation and dis-

cusses future research works remaining to be solved.
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Notation

reX : x is an element of set X.

r¢X : x is not an element of set X.
XCY: Set X is contained in set Y.
XUY . Union of sets X and Y.

XNY : Intersection of sets X and Y.
X-Y: Difference of sets X and Y.
X—x: Delete the element = from X.
mazr X : The maximum element of set X.
Z x; The summation of all x;.

o Empty set.

N : The set of natural numbers.

YA The set of integers.

Ty Assign a value of y to varibale .
X XU{x1, @9, -, Tn} - Add elements x1, zs, - - -, 7, to set X.
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Chapter 1

Introduction

1.1 Research Background and Motivation

Computer software (or simply software) is defined as a collection of data or computer
instructions that tell the computer how to work. Software is generally divided into
system software, application software, and middleware between them. In computer
science and software engineering, a software includes all information processed by
computer systems, programs and data [1].

With the development of economic globalization, the software industry has also
ushered in its best development opportunities [2]. With the reorganization of inter-
national production factors and the transfer of industries, the international software
industry is undergoing a global transformation of production regions [3, 4]. As the
cradle of the early software industry and the world’s software power, United States
of America is a global leader in software product development and basic research
[5]. However, in recent years, the Asian software market has sprung up. Due to its
obvious production cost advantage and broad development prospects, it is mainly rep-
resented by China, India, and Japan, occupying the largest share of global software
outsourcing [5, 6]. As a result, businesses are more than ever willing to invest in be-
spoke software development. Furthermore, the centre of global software development
is slowly shifting to Asia [7, §].

In the context of the rapid development of Asian software industry, the scale
of software is getting larger and larger, and the complexity is getting higher and
higher [9]. Therefore, ensuring software quality has become an urgent research issue.
Software quality is very important, especially for commercial and system software like
Microsoft Office, Microsoft Windows, and Linux, furthermore, if a software is faulty
(buggy), it can delete a person’s work, crash the computer and do other unexpected

things [1]. An example of a programming error that led to multiple deaths is discussed
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in Dr. Leveson’s paper [10]. There are other more serious incidents caused by software
failure.

The Internet service company-Yahoo reported two major user account data leak-
age incidents during the second half of 2016 [11]. The first announced breach was
reported in September 2016, which had occurred sometime in late 2014 and affected
over 500 million Yahoo user accounts [11, 12, 13]. In May 2015, Airbus issued an
alert for urgently checking its A400M aircraft when a report detected a software bug
that had caused a fatal crash earlier in Spain [14]. Prior to this alert, a test flight in
Seville had caused the death of four air force crew members and two were left injured
(14, 15].

Therefore, ensuring software quality is so important that testing the software be-
fore its release is essential. Software testing is very important because of the following

reasons [16, 17]:

e Software testing is really required to point out the defects and errors that were
made during the development phases.

e [t is essential since it makes sure that the customer finds the organization reliable
and their satisfaction in the application is maintained.

e Quality product delivered to the customers helps in gaining their confidence.

e In order to provide convenience to customers, such as delivering high-quality
products or software applications, they need to be tested with lower mainte-
nance costs to obtain more accurate, consistent and reliable results.

e Testing is required for an effective performance of software application or prod-
uct.

e [t is important to ensure that the application should not result into any failures
because it can be very expensive in the future or in the later stages of the

development.

Software testing is to find bugs, defects or errors in a software program and the
purpose is to verify whether the software meets the required specifications [18]. There-
fore, many researchers paying more and more attention to software testing. Broadly
speaking, there are four levels of testing: unit testing, integration testing, system
testing and acceptance testing [19]. Among them, unit testing refers to the tests that
verify the functionality of a specific section of code. Integration testing is a type of
software testing that aims to verify the interface between components based on the

software design. System testing will test the fully integrated system to verify if the
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system meets its requirements. Acceptance testing’s purpose is to evaluate the sys-
tem’s compliance with the business requirements and assess whether it is acceptable
for delivery. Currently, many testing approaches, such as black box testing, structural
testing, gray box testing, etc., have been developed for these four levels of testing.
For instance, black box testing [20, 21] and structural testing [22] can be applied to
all these four levels of software testing, gray box testing [23] is usually used in the
level of integration testing, alpha and beta testing [24] are often used in the level
of acceptance testing. Among these approaches, structural testing is the most com-
monly used approach, which is defined as the testing of a software solution’s internal
structure, design, and coding. The main focus of this testing method is on investi-
gating the internal logic and structure of source code [25, 26]. In structural testing,
the code is visible to the tester, moreover, it focuses primarily on verifying the flow
of inputs and outputs through the application, improving design and usability, and
strengthening security [27]. It is most important and necessary for a tester to have
complete knowledge of source code in using the test technique. Next, the structural
testing is described in detail below.

A) Structural Testing

Structural Testing is an approach of testing to test the internal structure of a
program. It is also known as White Box testing or Glass Box testing [28, 29]. This
type of testing requires knowledge of the code, and most of it is done by the developers.
It is more concerned with how the system works, rather than the function of the
system. It provides more coverage for testing. For example, to test certain error
messages in an application, we need to test the trigger conditions for them, but
there must be many trigger conditions. When testing the requirements drafted in the
software requirements specification, one may be missed. However, with structural
testing, since it aims to cover all nodes and paths in the code structure, it is most
likely to cover all trigger conditions.

Structural Testing is complementary to functional testing. Using this technique
the test data drafted according to system requirements can be first analyzed and
then more test data can be added to increase the coverage. While it can be used on
different levels such as unit testing, component testing, integration testing, system
testing, it is usually done at the unit testing. It helps in performing a thorough testing
on software and it is mostly automated.

There are different criteria that are used to perform such testing. Before moving

on to those, it is important to understand some terms.
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Control Flow Graph: It is a graphical representation of the program depicting all
the paths that may be transverse during the execution. It contains,

(1) Basic Block or Node: It is a sequence of statements such that control can only
have one entry point and can exit the block only when all the statements have been
executed.

(2) Edge: It shows the control flow.

For example, Figure 1.1 is a control flow graph. Ny, Na, N3, N4, N5 and Ng repre-
sents Basic Blocks or Nodes and F., s, E3, Ey, E5 and Ng represents Edges. We can
also observe that Ny, N3, Ny, N5 and Ny together represent an IF structure.

Figure 1.1: An example of control flow graph.

(3) Adequacy Criterion: This term refers to the coverage provided by a test suite.
Such as, Statement Coverage (It aims to test all the statements present in the pro-
gram.), Branch Coverage (It aims to test all the branches or edges at least once in
the test suite or to test each branch from a decision point at least once.), Condition
Coverage (It aims to test individual conditions with possible different combination
of boolean input for the expression.) and Path Coverage (It aims to test the differ-
ent path from entry to the exit of the program, which is a combination of different
decisions taken in the sequence.).

As a general software testing method, Structural Testing has some advantages
over other methods, such as it can (a) force test developer to reason carefully about
implementation; (b) reveal errors in “hidden” code; (c¢) spot the dead code or other

issues with respect to best programming practices.
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In general, there are four methods developed in Structural Testing, such as path
testing, data flow testing, slice-based testing and mutation testing. Among them, path
testing is most commonly used, which searches suitable test data that covers every
possible path in the software under test. A program may contain an infinite number
of paths when the program has loops [30]. Although a loop can be tested by executing
it only once [31], the number of paths in a program is exponential to the number of
branches in it [32]. Moreover, the number of test data is too large, since each path
can be covered by several test data [33]. For these reasons, test data generation
is much more complicated, so the test data generation problem in path testing is
an NP-complete problem [33, 34, 35]. Other types of structural testing methods all
have to find test data to cover the paths and hence they face the same problems as
path testing [36, 37, 38]. Consequently, the problem of test data generation is an
NP-complete problem.

Although the problem of test data generation in Structural Testing cannot be com-
pletely solved due to its NP-completeness, many techniques have been developed to
generate test data, such as (1) random testing technique [39]; (2) intelligent optimiza-
tion algorithm [40]; (3) model-based testing method [41]; and (4) search-based testing
method [42]; To decrease the computation time, many techniques have also been de-
veloped to decompose a system model into suitable subsystem models [43, 44]. This
dissertation tries to propose a new method to approach test data generation problem
by using the method of structural testing. Our method is to apply program nets to
test data generation, which not only includes data flow and control flow, but also
directly simulates paths’ execution of a given program. It includes the benefits of the
four structural testing methods and is expected to solve a variety of other problems
in software testing.

B) Program Nets

A data-flow computer is based on the principle of data-driven processing and runs
data-flow program nets (program net or net for short) as machine codes, which explic-
itly express data dependency existing in a program in graph form so that parallelism
can be maximally exploited and hence high speed computation may be realized if
message communication overhead is manageable [45].

In the past decade, experimental data-flow computers have been investigated:
Dennis [46, 47] and Rumbaugh [48] proposed data-flow architectures, Gurd and Wat-
son [49] and Terada and Nishikawa [50] designed experimental machines, and the
ETL group of Japan [51, 52|, headed by Shimada and Yuba, constructed a prototype

machine SIGMA-1, which is currently under run-tests for performance evaluation and
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developing language DFCII and its compiler [53]. With increasing maturity of data-
flow computer technology, modelling and analysis of a data-flow program net have
become ever more important.

A data-flow program net of Rodriguez [54], Dennis [46, 47] and Davis and Keller
[55], which is radically different from a flow chart, is a variation of the Petri nets of
Petri [56], especially tuned to flows of data through arithmetic and logical operations.
It can be seen as a simple case of GAN and GERT of Elmaphraby [57] and Pritsker
and Happ [58] in operations research.

Graphs can capture complex data dependencies and be widely used to model and
analyze data-flow programs [59]. As a kind of graphs, data-flow program net [60] is
an important way to study data-flow program.

In a data-flow program net, a node represents an operation of a fixed single valued
function. An edge represents a transmission channel of tokens between nodes and
serves also as a FIFO queue of holding tokens. A token represents a single datum
[61]. An execution of a program is expressed by a flow of tokens through the net where
tokens are transferred across a node from input edges to output edges by node firing,
which takes tokens from its input edges and places tokens onto its output edges. A
data-flow program net has an equivalent transformation into a Petri net [56]. Program
net is radically different from the data-flow chart and specially tuned to data-flows
through arithmetic and logical operations. A program net can be expressed by a
directed graph, as shown in Figure 1.2.

Treating a program as a program net, we try to apply program nets to software
testing problem theoretically in such a way that, (i) to divide a program net into
subnets, of which each can be entirely executed when some specific input data is
given; (ii) for each subnet, to find out input data through analysis of the structure
of the subnet. So that all the paths of a program can be tested if executing it under

the obtained input data in turns.



1.2. DISSERTATION OVERVIEW 7

Figure 1.2: An example of program net to calculate the area wr? of circle: r is the
radius of circle, s is the start node and t is the end node.

1.2 Dissertation Overview

The rest of this dissertation is organized as follows.

Chapter 2 starts with a review on the definitions of Program Nets. The chapter
then moves on introducing some properties about Program Nets.

Chapter 3 presents a method of generating subnets for a given program net in
order to finally find a set of test data used in software testing. A subnet will be
such that all the nodes can fire for certain given input test data, which means the
test data can cover the subnet. Owing to generating subnets, acyclic program net
are constructed and then a series of polynomial algorithms are proposed to generate
subnets based on acyclic program net.

Chapter 4 presents a method to find a specific test input data for such subnets
that may possess input data based on the analysis result of the behaviours of all the

subnets. Firstly, a brief introduction is given to Satisfiability Modulo Theories (SMT
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for short) that can be used to find test input data. Then, discussion is done on how
to equivalently transform the subnets obtained in Chapter 3 into exhaustive subnets.
After that, an algorithm is designed to obtain all constraint conditions from a given
exhaustive subnet. Finally, we introduce an SMT solver, Z3 Prover, which can find
the specific test input data according to the constraint conditions.

Chapter 5 gives an example to show how to find subnets by using the proposed
algorithms, as well as to indicate how to find the input test data of the program net
in order to do the related software testing.

Finally, Chapter 6 summarizes this dissertation’s works and shows our future

works on solving software testing problem by using program nets.



Chapter 2

Program Nets and Software
Testing

This chapter presents the basic definitions of General Program Nets, such as three
types of nodes in program nets, and their firing rules. Simultaneously, in order to
describe the dynamic behavior information of program nets, the definition of exhaus-
tive program network as a extension of general program nets is also introduced. Then
the basic properties of program nets used in this dissertation are also given, such as
self-cleanness. In addition, the problems of software testing and the whole process of

applying program nets to software testing will also be introduced.
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2.1 Definitions and Properties of Program Nets

2.1.1 General Program Nets

A program net [62] is denoted by PN=(V, E, «v, ), where V is a set of nodes consisting
of AND-node (), OR-node (A or a semicircle) and SWITCH-node (°57). The three
types of nodes are shown in Table 2.1. FE is a set of directed edges consisting of
data-flow edge and control-flow edge written in solid arrow (—) and dotted arrow
(--») respectively. The token (e) represents a single datum and token distribution
d"=(d} ,df,,---, ;El) expresses token numbers on each edge e; at time 7. «a is token

threshold of node firing on the input edges, (8 is token threshold of node firing on the

output edges.

Table 2.1: Three Node types and their shapes, where n,, is the number of input edges.

Node types Shapes
AND-node O
Ne, =2 A
OR-node
Ne,>2 £
SWITCH-node ;

A node v; represents an operation specified by a fixed single-valued function of
data (called tokens) on the input edges entering into v;. An edge e; represents a
transmission channel of data and serves as a FIFO queue. A SWITCH-node is always
accompanied by a control-flow edge while others are not.

If a program net PN is given with an initial token distribution d° onto edges, then
it is called marked program net and denoted by M PN=(PN, d°).

Three types of nodes and their firing rules are categorized into following classes:

(i) AND-node: The class of AND-nodes includes start, termination, data-base,
logical-operation, predicate-evaluation, basic arithmetic-operation including vector-
operation, duplication, synchronization, buffer, joint and distributor. An AND-node
becomes firable if each input edge x possesses no less tokens than the individually
prescribed number o, >0. If a firable node is fired, a, tokens are removed from each
input edge x and 3,>0 tokens are placed on each output edge y. Especially, start

node s fires only once.

10
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(ii) OR-node: An OR-node represents a merging of two token flows and becomes
firable if one of its input edge x possesses more tokens than the prescribed number .
In general data-flow program graphs [46, 47, 55], an OR-node is always accompanied
by a control-flow edge while it is not in this paper. Hence an OR-node is less restricted
here. An OR-node is fired, a,, >0 tokens are removed from an arbitrarily selected input
edge x but not from the other and ,>0 tokens are placed on the output edge y.

(iii) SWITCH-node: A SWITCH-node represents an decision condition clause and
becomes firable if the data input and control input have at least one token on each.
If the value of the control token is True (or False), then the token on the data input
is directed to the output terminal True (or False) and the control token is removed.
We actually have a=p=1.

The firing rules just mentioned are summarized (a«=p=1 for simplicity) in Figure
2.1. Note that a node without input edges is always firable. For simplicity we choose
to use as the net elements only those tabulated, since a node with multiple inputs or
multiple outputs can be constructed from those tabulated.

The program nets dealt with in this dissertation are based on the assumptions that
(1) there is only one start node s (without input edge), and one termination node ¢
(without output edge), and (2) for any node v;, there exists at least one directed path

from start node s to termination node ¢ that passes v;.

[Definition 2.1] A node sequence o=v,v,- - v} of length k is called a firing sequence

of length %k with respect to a given token distribution d° on edges if:

(i) the first node v; is the start node s which appears only once in o.
(ii) node v;(i = 1,2, -+, k) is firable with respect to token distribution d"~!, where
d' is the token distribution resulted from d*~! by firing node v;. O

[Definition 2.2] Let MPN=(PN,d") be a marked program net. A finite firing
sequence o of M PN is called terminating if it satisfies the criterion that: any node

x is not firable with respect to the final token distribution d*. U

[Definition 2.3] A marked program net M PN is called terminating if and only if
(iff for short) all of its firing sequences are of finite length k<oo. U
[Definition 2.4] A program net PN is d°-terminating iff M PN=(PN, d°) is ter-
minating. PN is called structurally terminating if and only if for any initial token
distribution d, PN is d-terminating. O

11
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Node types Before fire After fire

operator

decider

AND
fork

general

merge
(n,=2)

merge
(n,>2)

switch
(d_,istrue)

SWITCH

switch
(dctrl iS false)

Figure 2.1: Node types and firing rules, where n,, is the number of input edges and
der s the token value of control-flow.

[Definition 2.5] An AND-node-path is a directed path consisting of edges and AND-
nodes. The most simple AND-node-path consists of a single edge or a single AND-
node. U

[Definition 2.6] PN is called SWITCH-less or OR-less iff there is no SWITCH-node
or OR-node respectively. O

[Definition 2.7] Let v be a node, e;, and e, be its data-flow input edges and output
edges respectively. If the required operand of node v is satisfied, v can fire, that is to

say v is firable.

(i) An AND-node vapnp is firable with respect to d7 if its each input edge e;, satisfies

12
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de, >0, If a firable node is fired, a,, tokens are removed from each input edge
eip and ., >0 tokens are placed on each output edge e,,. Especially, start node
s fires only once.

(ii) An OR-node vpg is firable with respect to d” if one input edge e;, satisfies
de, >ae,,- An OR-node is fired, a.,, tokens are removed from an arbitrarily
selected input edge e, but not from the other and f3,,, tokens are placed on the
output edge egp.

(ili) A SWITCH-node vgw is firable with respect to d” if its input data-flow edge e;,
satisfies d;pZaeip and its control-flow edge €., satisfies df | >1. If the value of
the control token is True (or False), then the token on the data input is directed

to the output terminal True (or False) and the control token is removed. U

[Definition 2.8] An M PN is token self-cleaning (or self-cleaning for short) iff the

following two conditions hold.

(i) MPN is terminating.
(ii) There is no token remaining on the edges after execution of any terminating

firing sequence. O

2.1.2 Exhaustive Program Nets

In the general program net, the operation at an AND node v4np can be regarded as
one of three operation forms: (a) handling logical-operation; (b) executing arithmetic-

operation; (c) duplicating its input data. Logical and arithmetic operators are gener-

ally those included in the list, O=(<, >, <, >, 1, 1= &&, ||, &, |, *, =+, —. , /, %, <, >
,++, ——), as shown in Table 2.2. This operator list can be further divided into logical
and arithmetic operator sublists, O,=(<, >, <, >, ==, 1= &&, ||) and O,=(&, |,”, =

4, —x, /[, %, <, >, ++, ——) respectively.

[Definition 2.9] A program net is called Exhaustive Program Net and denoted by
EN=(V,E,g,0,r,«, 3) if each AND-node possesses at most two input edges and

further the following conditions are satisfied:

(i) V is a set of nodes consisting of AND-node, OR-node and SWITCH-node.
(ii) E is a set of directed edges between nodes. The solid arrow (—) represents
data-flow edge and the hidden arrow (--+) shows control-flow edge.

(iii) g(v) expresses the operation result at node wv.

13
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Table 2.2: Common operator list O.

Index | Operator Description
< less than
> greater than
< less than or equal to
> greater than or equal to

== equal to
! logical not
1= not equal to
&& logical and
I logical or
& bitwise and
| bitwise or
" bitwise xor
= assignment
_|_
*
/
%

addition
subtraction
multiplication
division
modulus

< left shift

> right shift
++ increment
—— decrement

DO D[ = =] = =] =] = = =] =] =
=S| wo| ||| ut| | w| | | o ©|R| | | Y B W o= O

(iv) o(v) expresses the operator at node v as follows:

ope0, v is AND-node with logical
o(v)= or arithmetic operator;

NULL, otherwise.
(v) r(e) is marked on an input edge e of v as follows:

@ or 2) , v is AND-node with logical
r(e)= or arithmetic operator;

NULL, otherwise.

Suppose e=(v',v) and g(v") be the operation result of v' flowing through e to
v. (i) If r(e)=@Q), g(v') is placed before o(v) (i.e., “g(v")o(v)” is operated at v);
(i) If r(e)=®), g(v') is placed after o(v); (iii) If r(e)=NULL, g(v') just passes
through v.

(vi) «v is token threshold of node firing on the input edges and § is token threshold
of node firing on the output edges. OJ

Figure 2.2 shows the exhaustive program net of Figure 1.2.

14
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Figure 2.2: The exhaustive program net KN of Figure 1.2.

2.1.3 Basic Properties of Program Nets

In this dissertation, we assume that all marked program nets are self-cleaning net with
d’=0. PN is called acyclic if there is no directed circuit. If there exists a directed
circuit consisting of AND-nodes and OR-nodes only (or AND-nodes and SWITCH-
nodes only, or AND-nodes only), then token will never go out of the circuit once a
token entered the circuit (or never enter the circuit), which implies tokens will remain
inside the circuit (or at the entrances of the circuit) [63].

Figure 2.3 (a) shows a circuit which contains AND-node and OR-node only, Figure
2.3 (b) shows a circuit which contains AND-node only, Figure 2.3 (c) shows a circuit
which contains AND-node and SWITCH-node only and Figure 2.3 (d) shows a circuit
which contains OR-node and SWITCH-node. The following propositions are satisfied
[63].

[Proposition 1] A self-cleaning SWITCH-less program net contains no directed cir-
cuits. U

[Proposition 2] A self-cleaning OR-less program net contains no directed circuits.
O

15
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[Proposition 3] Each directed circuit of a self-cleaning program net contains at least

one OR-node and one SWITCH-node. O
®
7 7
(a) (b)
5@’? | ‘\.
-~ '
(c) (d)

Figure 2.3: Four types of directed circuit.

[Definition 2.10] Let v; and v, be two nodes of PN.

(i) If there is a directed path from v; to vy, then vy is predecessor of vy and vq is
successor of vi. The sets of predecessor and successor of node v are denoted by
Pre(v) and Suc(v), respectively.

(ii) If (v1, v2)€E, then vy is immediate predecessor of vy and v is immediate successor
of v;. The sets of immediate predecessor and immediate successor of node v are
denoted by I P(v) and 1.5(v), respectively.

(iii) If a directed circuit includes e=(vy, v2)€E and vy is an OR-node, e is called back
edge (i.e. e in Figure 2.3 (d)). O

16
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2.2 Software Testing

2.2.1 Data Flow Chart

As described in Introduction, structural testing is widely adopted as a type of software
testing in reality. Because program graphs can visually view structure of a program,
researchers usually convert a program under test into a program graph in structural
testing, and then directly test the program graph.

Data flow testing method can be considered as a structural testing technique,
which uses program graphs to represent programs under test. A program graph
is usually called a Data Flow Chart (DFC for short) [64]. DFC not only contains
control-flow but also data-flow. Figure 2.4 (a) is an example program that calculates
Greatest Common Divisor and Lowest Common Multiple. Figure 2.4 (b) shows a

DFC of the example program.

begin

intm, n, r, p, q,s;

input(m, n)

if(m==0 || n==0)
output(“error”);

else{

if(m<n){ (n
s=m;

m=n;
; - m,n
i {m,n}

defs={m,n,r,p,q,s}
p-use={m,n}
(n!=0 and m!=0)

}
p=m*n;
r=m%n;
while(r!=0)X
m=n;
n=r;
r=m%n;

defs={s,m,n}

(r:o) C_use:{m,n,s}

}
q=p/n;

output(n);
output(q);
}

end

defs={q}
C_usez{piniq}

c-use={m,n,r}

@ (b)

Figure 2.4: A program and transfered to data-flow chart.

The nodes in DFC possess the information of variable definition (“def” for short)
and reference (denoted by “use”) except start node and end node. There are two

major types of use nodes as follows:

e P-use: represents predicate use and this variable is used when making a decision
(e.g. if b>6).

17
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e C-use: represents computation use and this variable is used in a computation
(e.g. b=3+d with respect to the variable d).

In software testing, a testing path of DFC is a directed path that represents the
interaction between variable definition and the reference in a program. Therefore, we

have the following Definition.

[Definition 2.11] A path p=<wvy, v, -, v;,v:> in DFC is a DU-path with respect

to a variable v, if v is defined at node v; and either:

(i) there is a c-use of v at node v, and v has no variable re-definition at any other
node in p, or
(ii) there is a p-use of v at edge (v;,v;) and v has no variable re-definition at any

other node in p with no loop. U

In data flow testing, test data have to be generated according to the test adequacy
criterion, which is considered to be a stopping rule that determines whether sufficient
testing has been done and provides measurements of test quality. Several dataflow-
based test adequacy criteria have been proposed, the most popular family of test
adequacy criterion is Rapps and Weyuker’s test adequacy criteria system architecture

[65], which is shown in Figure 2.5.

| ALL-DU-PATHS |

I . 1 < 3
1y

. ALDUpATHS|
Iyl

ALL-C-USES/SOME-P-USES | [ALL-P-USES/SOME-C-USES

ALL-C-USES | | ALL-DEES | | ALL-P-USES |

Figure 2.5: Rapps and Weyuker’s test adequacy criteria system architecture [65].

18
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The test adequacy criteria system architecture is clearly derived from a set of
criteria defined for the control flow graphs introduced in Chapter 1 and originates
from ALL-PATHS, ALL-EDGES and ALL-NODES criteria. Rapps and Weyuker ex-
tended the set of criteria by defining ALL-DEFS, ALL-USES, ALL-C-USES/SOME-
P-USES, ALL-P-USES/SOME-C-USES, ALL-P-USES and finally All-DU-PATHS.
Single ALL-C-USES (not including SOME-P-USES) criterion was added later on in
the list of the after mentioned criteria. The whole set is based on definitions and
uses of variables and uses are distinguished by two terms, c-uses and p-uses. The
first term is used to define a use in a computation (e.g. the right side z+y of assign-
ment z=x+y) and the second to define the use of the variable as a predicate in a
Boolean calculation. Data flow criteria were examined by different researchers from
time to time, aiming at defining a partial order between all the criteria or revealing
the weaknesses and strengths of each criterion. Rapps and Weyuker also provided the
“hierarchy” of the criteria with a robust proof in Figure 2.5 and have defined their
strongest criterion, ALL-DU-PATHS [66].

2.2.2 Software Testing Problem

One of software testing problems is to find a set of test data that can cover all
the DU-paths. This means generating DU-paths is an important problem in soft-
ware testing. In fact, if a DFC contains loop, then the number of DU-paths would
become infinite. The loop problem can be dealt by executing it once in software
testing [31], but the number of paths in a program is exponential to the number
of branches in it, which makes the problem of testing path generation much com-
plex. In Figure 2.4, variable m is defined at vy, vs,v;, then DU-paths set of m is
P(m)={<wvy, v9>,<vy,v3>,<vy, v3, V4>, <U1, V3, U5>,<Vs, V4>, <Vs, Uy, U7>,<U7, V4> }.
In fact <wi,v3> and <ws,vy> are included in other paths, and hence only P’(m)=
{<vy,v9>, <v1,v3,04>, <v1,v3,05>, <vUs, V4, V7>, <v7,v4>} need to be checked in
software testing.

In this dissertation, instead of DU-paths, we are to generate a set of subnets for a
given program net. The reasons are that (i) a program net is equivalent to a data-flow
chart in the sense of expressing the data-flow of a program and each DU-path of a
data-flow chart is also included in the program net; (ii) if a set of subnets cover all
nodes as well as T and F' terminals of all SWITCH-nodes then all the DU-paths to
be checked can be investigated by individually giving input data for each subnet; (iii)
finding a set of input test data for a subnet is rather easier than that for a whole

program net and hence the total computational time can be decreased.
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2.3 Symbolic Execution

In computer science, symbolic execution is a means of analyzing a program to de-
termine which input data can make each part of the program executable. Symbolic
execution technique was originally proposed by King in Reference [67] in 1976, and
has attracted people’s interest since then. The main reasons are that constraint
solver on which the symbolic execution technique depends has been improved and
the performance of computers has also been improved.

Symbolic execution is a well-known program analysis technique that uses symbolic
values (such as a, b and ¢ in Figure 2.6) instead of concrete data when initializing pro-
gram variables, and also it expresses logical expressions with symbolic values [68]. As
a result, the output calculated by a program is expressed as an expression composed
of symbol values. A symbolic execution tree represents execution paths followed dur-
ing the symbolic execution of a program, in which nodes represent program states and
arcs represent transitions between states [69]. Figure 2.6 shows a program fragment
and its symbolic execution tree. Fj~Fjy are boolean formulas over the symbolic values

of input variables.

X=0,y=0,2z=0
int a, b, c; ¥
//symbolic value a
int x=0,y=0,2z=0; T =
if (a){ —
y X=-2; X=-2 b<5
T = F
if (b<5){ L L TR
if (la8&c){ b<5 ARG | | manb=s) |
y=1; I/‘* _'_L'f _____ . L — F.
§=2- z=2 i an(b=5) : y=1 z=2
’ c¥o R, I S
assert(x+y+z!=3) |! an(b<5) iF, z=2 |i -an(b<5)A-c :
N AT
F3} -an(b<5)Ac
(a) (b)

Figure 2.6: A program fragment and its symbolic execution tree.
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2.3.1 SMT Problem Description

The earliest development of Satisfiability Modulus Theory (SMT for short) can be
traced back to Nielsen’s doctoral dissertation [70] from the late 1970s to the early
1980s. In the past few years, we have witnessed important improvements in this
technology, and SMT is still very popular even now. It is used in various fields, such
as hardware design, software verification, model checking, symbolic execution, test
case generation, etc.

The SMT issue is one of the central issues of theoretical and practical interest in
computer science, which is a problem to determine whether the formula expressing
constraint conditions has a solution [71].

A formula ¢; (?¢€ N) can be a propositional variable p, a negation =gy, a conjunc-
tion ¢gA¢1, a disjunction ¢gVe¢q, or a logical implication ¢y=-¢;. When there is only
one letter, it is either a propositional variable p or its negation —p. Then the negation
of a letter p is —p, and the negation of —p is just p. ¢1A---Ad, is a conjunctive normal
form, where each element ¢; (1<¢<n) is a formula, and this conjunctive normal form
is true or satisfiable only if every element is true. ¢;V---V@,, is a disjunction normal
form, in which each element ¢; (1<i<m) is a formula, and this disjunction normal
form is true or satisfiable as long as one of all elements is true. For convenience, we
call disjunction normal form and disjunction normal form constraint conditions in
this dissertation. A normal form has solution if and only if the normal form is true,
and therefore a normal form may have many solutions, and we only need one of them.

For instance, a solution of the following constraint conditions is a set of variable

values, e.g. (z,y,2)=(1,2,1), which makes the constraint conditions satisfiable.
I': z4+y>0A(r=2=>2+2>1) A= (2>y)V2< 0

2.3.2 SMT Solvers

An SMT solver is a powerful type of automatic theorem prover that can solve SMT
problems. In addition, it has been used in a variety of other application domains
including verification of deep neural networks, program synthesis, static analysis,
scheduling, etc. [72, 73].

To efficiently solve complex real world problems, many state-of-the-art SMT solvers
such as Z3 [74], Yices [75], CVC4 [76], MathSAT5 [77], Boolector [78], are developed.
These SMT solvers have been developed using different methods including manual

heuristic combination methods, satisfiability search techniques, or other methods.
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Table 2.3 summarizes some of features of several available SMT solvers. The

column “SMT-LIB” indicates compatibility with SMT-LIB language. Many systems

marked “yes” may support only older versions of SMT-LIB, or offer only partial

support for SMT-LIB language.

Table 2.3: SMT solvers.
Platform Features
Name (ON) License| SMT-LIB | Built in theories API SMT-COMP
Boolector | Linux MIT v1.2 bitvectors, arrays C 2009
CvC4 Linux, BSD Yes rational and integer | C++ 2010
Mac OS, linear arithmetic, ar-
Windows, rays, tuples, records,
FreeBSD inductive data types,
bitvectors, strings, and
equality over uninter-
preted function sym-
bols
MathSAT | Linux, Propr- Yes empty theory, linear | C/C++, 2010
Mac OS, | ietary arithmetic, nonlinear | Python,
Windows arithmetic, bitvectors, | Java
arrays
Yices Linux, GPLv3 v2.0 rational and integer | C 2014
Mac OS, linear arithmetic,
Windows, bitvectors, arrays,
FreeBSD and  equality over
uninterpreted function
symbols
73 Linux, MIT v2.0 empty theory, linear | C/C++, 2011
Mac OS, arithmetic, nonlinear | .NET,
Windows, arithmetic, bitvectors, | OCaml,
FreeBSD arrays, datatypes, | Python,
quantifiers, strings Java,
Haskell
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2.4 Overview of Applying Program Nets to Soft-
ware Testing

Treating a program as a program net, we are to apply program nets to software testing
problem theoretically. Figure 2.7 shows the entire process of applying a program net
to address software testing problems based on the above description, in which steps

(a) - (d) are to be discussed in the following chapters.

I | '
| Program Nets Theory ! | SMT Theory Method ! i
Program Nets »| Constraint ;
5 ¥ Conditions 5
L o i ! ¥ @ | toolize O
P g : H Y S
P & Acyclic > |
: O | Program Nets SMT Solver 3
; .. =
(b) | decomposition output :

L4 © v

€ Test

Shnets i Input Data

Figure 2.7: The procedures of generating test input data.

Concretely, steps (a) and (b) are approached in Chapter 3 by dividing a program
net into subnets, of which each can be entirely executed when some specific input
data is given. Steps (c¢) and (d) are dealt with in Chapter 4 by finding out input data

for each subnet through analysis of its structure.
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Chapter 3

Subnets Generation of Program
Nets

In this chapter, we are to propose a method of generating subnets for a given program
net in order to finally find a set of test data used in software testing. A subnet will
be such that all the nodes can fire for certain given input test data, which means the
test data can cover the subnet. Furthermore, if a set of input test data can make all

the subnets firable, then this data set is what we want to find in software testing.
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3.1. BASIC CONSIDERATION 25

3.1 Basic Consideration

In data flow testing, the first important step is to generate test paths. According to
All-DU-PATHS test coverage criteria, the test paths here are DU-paths introduced in
Chapter 2. The general process of test path generation for a given program is shown
in Figure 3.1. Specifically, it consists of (1) dividing the program into basic blocks,
(2) constructing a data flow chart, and (3) obtaining all DU-paths.

System or Software

code transparent
visualization

Programs

¢code block

Blocks

Data-flow Chart

Test Paths Generation

variables and
structure analysis

All DU-Paths

¢add control flow :

Figure 3.1: Test paths generation in data flow testing.

As mentioned in Chapter 2, if the number of branches of a program increases
exponentially, it will lead to an explosive increase in the number of test paths. It will
undoubtedly consume a lot of time and cost to obtain all test paths. Therefore, we
hope to use a method of generating subnets from a given program net to solve the
explosive growth problem of the number of test paths. Moreover, the given program

net retains a program’s data flow and control flow information.
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As the first major step of using program nets to solve the software testing problem,
the process of subnets generation is shown in Figure 3.2. The concrete steps for subnet

generation are as follows:

System or Software

visualization

lcode transparent

Programs

ecode analysis
*net definition

Program Net

nodes and edges
analysis

Layer Net

detect and delete
back edges

Acyclic Program Net

*SWITCH-node analysis
adopt algorithms

Subnets

Subnets Generation

Figure 3.2: Subnets generation in program nets.

(1) To transform a program to a program net according to general definition of
program nets;

(2) To construct a layer net of the program based on different firing rules and
firing order of nodes, in which each layer contains one or more nodes with same firing
order;

(3) To analyze the layer net to detect whether there are directed circuits in the

program net, and if the program net contains directed circuit then delete some back
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3.1. BASIC CONSIDERATION 27

edges to construct an acyclic program net.

(4) For the acyclic program net, to generate an initial subnet and then generate
other subnets.

In generating subnets, the following two important problems are mainly to be
solved:

(i) Generally, a large scale program net may contains directed circuits. Since in
software testing, any loop (directed circuit) needs only to be executed once [31], it is
the first problem how to find and delete some back edges to make a given program
net acyclic.

(ii) For the acyclic program net, how to divide it into a set of subnets that cover
all the nodes of the original program net PN. Since each SWITCH-node of PN has
the behaviors that its input tokens may flow to both its 7" and F' terminals, the set
of subnets should also include both 7" and F' terminals of all the SWITCH-nodes.

27



3.2. ACYCLIC PROGRAM NET CONSTRUCTION 28

3.2 Acyclic Program Net Construction

As mentioned in Basic Consideration, the first problem to be solved in generation of
subnets is construction of an acyclic program net. In this section, we are to design
algorithms to delete back edges in order to make a given program net acyclic by the
following steps: (1) construct a layer net to possibly find back edges; (2) delete certain

back edges to construct an acyclic program net.

3.2.1 Construction of Layer Net

A program net is a variant of petri net, it possess three types of nodes, namely AND-
node, OR-node and SWITCH-node. Each type of nodes can fire under different firing
rules showed in Figure 2.1. And also they have different firing order in execution of
a program net. For example, in Figure 3.3, based on the firing rules of three types of

nodes we know that SWITCH-node vs must fire after v; and v,.

Figure 3.3: An example of program net.
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In a program net, due to the number of input edges and the type of nodes, there
is always a situation that firing of a node may depend on other nodes. In order to
express such situation concretely, we summarized firing dependencies of three types
of nodes as shown in Figure 3.4.

In Figure 3.4, assuming that nodes v, v4 and v; have been fired and two tokens
are placed on their output edges, respectively. According to the type of nodes vs, vg
and vy, we can find out that vz should fire after vy firing and vg should fire after vs.
However, vg can fire directly after v; because of the firing rules of OR-node. Thus, we
put the nodes with same firing order into a same layer. Figure 3.5 shows the layers

of these nodes.

Figure 3.4: Firing dependencies of three types of nodes.

Based on the above discussion, we define layer nets in the following definition.
[Definition 3.1] A layer net Lpy=(V, E, «, 3,1) is a program net that has its vertexes
partitioned into a sequence of layers, and its edges connect vertexes between layers,
where V' is the node set, E is the edge set and [ expresses the number of layers for

the nodes obtained by < Algorithm 1 Construction of Layer Net>>. O

Algorithm 1 Construction of Layer Net
Require: A program net PN = (V, E, «, )
Ensure: A layer net Lpy = (V, E, o, 5,1)

1: G+ PN

2: queue ) < ¢

3: level =1
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30

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Figure 3.5: Layered diagrams of three types of nodes.

mark each v € V' “unvisited”

let p be a virtual node

enqueue s (start node) and p to @
while true do

dequeue an element w from @)

if w = p then
if ) = ¢ then
break

else if ()#¢ then
enqueue p to )
do level = level + 1
end if
else if w # p then
do l(w) = level
for each “unvisited” output node ¢ of w do
if ¢ is AND-node or SWITCH-node then
if all input nodes of s are “visited” then
enqueue ¢ to ()
mark ¢ “visited”
end if
else if ¢ is OR-node then
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25: enqueue ¢ to )
26: mark ¢ “visited”
27: end if

28: end for

29: end if

30: end while
31: make Lpy from PN and [

Algorithm 1 can output not only layer numbers of nodes but also a layer net Lpy
for a given program net PN and its computational time complexity is O(|V|+|E|).
Figure 3.6 shows a simple layer net constructed by Algorithm 1 for the program net

shown in Figure 3.3.

Figure 3.6: The layer net of Figure 3.3.
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3.2.2 Properties of Layer Nets

In the following discussions, we use L; to express Lpy’s i-th layer consisting of a set
of nodes, in which each node v of L; satisfies [(v)=i. Figure 3.7 is an example of layer

net which contains directed circuits.

Figure 3.7: A layer net that calculates the sum of integer additions from 0 to a, where
the red edges are back edges.

Proposition 4: Let (v,u) be a directed edge in Lpy. If [(u)<I(v), u is an OR-node.

O
Proof: Figures 3.8 (a) and (b) show the case of I(u)<I(v), from which it is obvious
that u contains at least two input edges. If u is an AND-node or a SWITCH-node, u

must be included in the layer with level greater than [(v) according to the lines 19~23
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3.2. ACYCLIC PROGRAM NET CONSTRUCTION 33

in the Algorithm 1. This means [(u)>[(v) and contradicts the condition “I(u)<l(v)”,
and thus v must be an OR-node. OJ

Figure 3.8: Three types of edges in layer net.

Proposition 5: Let (v,u) be a directed edge in Lpy. If [(u)>Il(v)+1, u is AND-node
or SWITCH-node. U
Proof: From Fig.3.8 (c), if u is an OR-node, then /(u)=[(v)+1 must hold according
to the lines 24~27 in the Algorithm 1. Therefore, v must be AND-node or one
SWITCH-node when I(u)>1(v)+1. O
Proposition 6: Let MPN=(PN,d°) be a self-cleaning marked program net and
Lpy be a layer net obtained from PN. If any two nodes v, u€V with (v, u)€E satisfy
l(u)>I(v), then there exists no directed circuit in PN. O
Proof: This proposition obviously holds if there exist no such two nodes v,ucV
with {(u)=I(v) and further with both (v, u)€E and (u,v)€FE that compose a directed
circuit. If such v, u€V exist, then both v and u must be OR-nodes from Proposition
4, which contradicts Proposition 3 (since M PN is self-cleaning). O

It is obviously that, if Lpy contains directed circuits, there must exist v, u€V
with (v, u)€FE and [(u)<I(v) from Proposition 6; and such u must be OR-node from
Proposition 4. That is, (v, u) is a back edge if a path from u to v exists, like the node
vs and vg in the Figure 3.7, the edges (v14, v5) and (v1g, vg) are back edges. Therefore,
to obtain an acyclic net Lpy, we need to (1) find the OR-node u with (v,u)€FE and
l(u)<l(v); (2) check if there is a directed path from u to v; (3) if there is ((v,u) is
a back edge) delete it. Note that, such edges (vs,u13), (v11,u13), (v12,u13) shown in

Figure 3.6 are not back edges, since there is no path from w3 to vg, v1; and vys.
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3.2.3 Construction of Acyclic Program Net

Usually, users of software or system sometimes need to repeat an action or a function,
such as delete, join, and so on. This makes software developers inevitably adopt a
loop structure when designing a software, which increases the complexity of software
testing. As mentioned before, a loop needs only to be tested once, and hence for
a program net with directed circuits, we can delete these directed circuits through
removing back edges to make the program net acyclic according to Propositions 4~6
discussed in the previous section.

Since any directed circuit in a self-cleaning program net must contain at least one
OR-node in accordance with Propositions 1~3, if we delete certain related back edges
then a program net becomes acyclic. Therefore, the method of deleting back edges
to make a program net with directed circuit acyclic is feasible.

Consequently, we design the following algorithm to construct an acyclic program

net (to be denoted by PN ) from layer net Lpy according to above discussion.

Algorithm 2 Construction of Acyclic Program Net
Require: A layer net Lpy = (V) FE, «, 3,1)

Ensure: PN
1: G+ Lpy
2: let Ly, Lo, -+, Lipae be the layers of Lpy
3:1=1
4: while 7 # mar do
o: E, <+ ¢
6: for each v € L; do
7 if u is OR-node then
8: E, <+ {(v,u) | (v,u) € E,l(u)<l(v)}
9: end if
10: end for
11: for each e = (v,u) € F, do
12: if there exists a directed path from v to v in G then
13: delete edge e from G
14: end if
15: end for
16: i=i+1
17: end while
18: PN « G
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From Propositions 2-6, we have the following theorem.

Theorem 1: Let MPN=(PN,d’) be a marked self-cleaning program net and PN
be a program net obtained by < Algorithm 2 Construction of Acyclic Program Net>>.
(1) PN is acyclic and connected.

(2) The computational time complexity of < Algorithm 2 Construction of Acyclic
Program Net>> is O(|E|(|V|+|E|)). O
Proof: (1) Any directed circuit possesses at least one OR-node u from Proposition 3
and its input edge (v, u) included in the circuit satisfies {(u)<l(v) from Propositions
4-6. Thus, (v, u) is an back edge, and further deleting all such edges as done in the
lines 5~15 in Algorithm 2 makes a program net acyclic and meanwhile keeps the
connection of v and v since there is a path from u to v. Therefore the obtained PN
is acyclic and connected.

(2) Finding a directed path in the lines 11~15 takes computational time O(|V'|+|E|)
and this operation would be iteratively executed O(|E|) times. Therefore the com-
putational time complexity is totally O(|E|(|V']|+|E])). O

Figure 3.9 shows the acyclic program net constructed by Algorithm 2 to delete
two back edges ((v14,vs) and (vye,vs)) of the layer net in Figure 3.7.
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Figure 3.9: The acyclic program net of Figure 3.7.

We construct a program net PN from the program shown in Figure 2.4 (a). Then
we apply Algorithms 1 and 2 to the program net PN shown in Figure 3.10 (a). As a
result, its acyclic program net without displaying layer information is shown in Figure
3.10 (b). Hereafter, for convenience, all acyclic program nets no longer display layer

information, just like Figure 3.10 (b).
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@ (v,,u,)and(v,,u,)to be deleted (b) Acyclic program net

Figure 3.10: A program net and its acyclic program net according to the program of
Figure 2.4 (a).
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3.3 Subnets Generation

In this section, we are to propose a method of generating subnets for the acyclic
program net constructed in last section in order to finally find a set of test data used
in software testing. A subnet will be such that all the nodes can fire for certain given
input test data, which means the test data can cover the subnet. Further, if a set of
input test data can make all the subnets firable, then this data set is what we want
to find in software testing.

Further for the acyclic program net PN , we divide it into a set of subnets that
include all the nodes of the original program net PN. Since each SWITCH-node of
PN has the behaviors that the input tokens may flow to both its 7' (True) and F
(False) terminals, the set of subnets should also include both 7" and F' terminals of
all the SWITCH-nodes.

3.3.1 Analysis of Acyclic Program Net

In a program net, there exists a possible situation that some SWITCH-nodes work
under the same predicated condition. Such SWITCH-nodes are called synchronous
nodes.

[Definition 3.2] Let SSW={sw, swy,---} be a set of SWITCH-nodes. The nodes
in SSW are called synchronous nodes, iff their control-flow edges are connected to a
same node. U

In Figure 3.11, the control-flow edges of SWITCH-nodes sw; and sws are con-
nected to the same node v, and hence they are synchronous nodes. In the behavioral
analysis of program net, these two synchronous nodes can be summarized into a group,
SSW={swy, sws}, so that the variations of a program net caused by SWITCH-nodes
can be decreased.

Suppose a program net PN contains £ SWITCH-nodes and has no synchronous
SWITCH-nodes, W={swy, swa, - - -, swy}. Since a SWITCH-node transfers an input
token to its T (say its state is ¢=1) or F' (¢=0) terminal depending on the value
of the control token, it produces two nets and all nodes in each net can be firable.
So there are 2¥ topology variations PN 1,15]\\/ PRE -,]5]\\/ o of the original program net
PN such that each ﬁ]\\/j (j=1,2,--- 2%) is a program net with determinate state of
all SWITCH-nodes and binary expression ¢;=(cy, ¢z, -+, ¢i) is related to state ¢; of
SWITCH-node sw;.
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Figure 3.11: Synchronous SWITCH-nodes.

It is obviously that each topology variations can be as a switchless program net be-
cause of the determinate state of all SWITCH-nodes in it. Therefore, each SWITCH-
node can be replaced by an AND-node and the state of each SWITCH-node is pre-
served. We can replace the branch node with and-node directly, but in order to
facilitate the subsequent subnets generation and test data generation, we did not
replace the branch nodes in the specific implementation.

Here we only analyze the nature of acyclic program net. The trajectory ©=(Ty, I'y,

-+) of the program execution is a description of fire ordering, such that I'; is a
set of nodes simultaneously firable with respect to the token distribution resulted
from prefix trajectory (I'g, Ty, -+, T_1). In the presence of SWITCH-nodes, the tra-
jectories of the program execution are expressed by a concatenation of trajectories
B0 --0,,, such that O is a trajectory on marked program net ]\IPNiO:(ﬁ]\ViO, d®)
where d° is a starting initial token distribution, O is a trajectory on marked program
net M PN;,=(PN;,,d") where d* is the final token distribution resulted from 6, on
MPN;, and so on. We must note that each M PN;, consists only of AND-nodes and
OR-nodes but no SWITCH-nodes.

The following result is immediate and used as our basic principle of termination
verification for a program net that includes SWITCH-nodes [79].

Proposition 7: Let 15]\V1,15]\V2,- e ]5]\\72k be the switchless nets derived from a pro-
gram net PN with & SWITCH-nodes. If each of the switchless nets is structurally
terminating, then PN is structurally terminating.

Given a program net, we usually find that several SWITCH-nodes are synchro-
nized or controlled by a single predicate so that certain T-F' combinations never take

place when the program net PN is executed.
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Proposition 8: Suppose there are m sets of synchronized SWITCH-nodes, SSW7,
SSWsy, .-+, SSW,, in a program net PN with £ SWITCH-nodes. The number of
possible switchless nets is 26~ (2%~1 where SSVV,-:{swj(-i) l7=1.2,---, v}

According to Definition 3.2, a large scale program net always possess synchronous
SWITCH-nodes, we divided all SWITCH-nodes into m synchronous groups, conse-
quently, there are at most 2" topology variations. According to Proposition 8, if
there are two synchronized SWITCH-nodes, then half of 2* switchless nets can be
omitted from our discussion. Synchronized SWITCH-nodes can be found by trac-
ing each predicate-evaluation node in such that it provides control tokens to several
SWITCH-nodes. Figure 3.12 shows an example that the program net of Figure 1.2
has two switchless nets instead of four (there are two SWITCH-nodes).

The program net of Figure 1.2 is acyclic and contains two synchronized SWITCH-
nodes, SSW={wv4,vs}. Hence it possesses two states, 1;=(0,0) and ¢o=(1,1), and
two topology variations instead of four (there are two SWITCH-nodes) respectively,
15]\\71 and 15]\\/2, as shown in Figure 3.12.

(a) PN,

Figure 3.12: Two topology variations of Figure 1.2.

Another approach to structural analysis of termination is that, given a program
net PN, we simply transform each SWITCH-node of PN into an AND-node so that
the resultant net PN is switchless. The following proposition is immediate from the

transformation.
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Proposition 9: Let PN be a program net including SWITCH-nodes and PN be the
switchless net obtained from PN by transforming each SWITCH-node of PN into
an AND-node. PN is structurally terminating if PN is structurally terminating.

As stated before, a subnet PN ; should be firable, and then PN ; is connected and
non-firable nodes need to be deleted, which can be done by iterating the following

operations (i) and (ii):

(i) For a SWITCH-node sw with ¢, if c=1 (or 0), deleting all its F' (or T) terminal’s
successor nodes until reaching at OR-nodes;
(ii) If an OR-node becomes a source (with no input edges), deleting this OR-node

and further its successor nodes until reaching at other OR-nodes.

Let U={11, s, - - -, am } be the set of SWITCH-nodes’ states and WPN:{Ig]\ViWi
€ U} be the set of all subnets. In each subnet PN;, a SWITCH-node contains only
T terminal or F' terminal. If sw; does not exist in PN i, its state is marked by c;=x.

According to the above discussions, it seems that we need only to find W PN and
pick up some of them that can cover all nodes of PN. Nevertheless, m is generally
a large number and the computational time complexity is proportional to O(2™).
Therefore, we are to design a polynomial algorithm to find subnets covering PN.
There are many possible combinations in selecting subnets and the better selection is
to have the number of subnets as less as possible. Hence, we need to avoid duplicate
selection of T" and F' terminals of SWITCH-nodes in selecting subnets. Concretely, we
first find an initial subnet and then iteratively choose the others in which the T or F
terminals of SWITCH-nodes have not been included in obtained subnets as possible.

There are techniques to discover subgraphs (expressing elements or units) in a
graph (expressing a program or a system), such as finding a group of interacting
program elements in control flow graphs of a program [80] and selecting custom
function units to meet the demands of an application in a system [81]. However these
techniques cannot be applied, since we have to choose the necessary 7" or F' terminals
for each SWITCH-node in order to make a whole subnet executable for some specific

input test data.

3.3.2 Initial Subnet Generation

We have pointed out previously that it is not feasible to (a) first generate all the
subnets of a given program net, and then (b) select a part of them to cover all nodes

of the net, since the processing of (a) will take a huge amount of time. Therefore,
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we try to directly generate a set of subnets that can cover all nodes as well as T

and F' terminals of all SWITCH-nodes through (i) generating an initial subnet; (ii)

generating other subnets based on the initial subnet.

In the following discussions, we firstly generate an initial subnet from PN by the
following algorithm that sets states for all the SWITCH-nodes and deletes a part of

their successors that may not be fired.

Algorithm 3 Generation of an Initial Subnet PN,

Require: ﬁj\\f, Lpy’s layers: Ly, Lo, -+, Liags
Ensure: 15]\\/'0, (N
1: ISJ\V/ — ﬁ]\\[
2: VroBepel < @
3: for each synchronous SWITCH-node set SSW of PN do

set ¢ =0 or ¢ = 1 randomly
for each sw; € SSW do

set state ¢; = ¢

vToBeDel — VToBeDel U {Swi}

end for
end for
. procedure DELNODE(?]\V/, VroBeDel)
while Vropeper # ¢ do

take out a node z with I(z) = min{l(2) | 2 € Viropeper }
if x is SWITCH-node then
if sw; has ¢; =0 (or 1) then
find its T'(or F') terminal output node set CH
delete T' (or F') terminal edge
else if sw; has ¢; = * then
find its output node set C'H
delete z
end if
else if = is AND-node or OR-node then
find its output node set CH
delete x
end if
for each node y in CH do
if y is a SWITCH-node sw; then
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27: set ¢; = *

28: VroBepet = Vropeper U {y}
29: end if

30: set state ¢; = ¢

31: VroBenel < Vropeper U {sw;}
32: end for

33: end while

34: end procedure

35. PNy PN’

36: Output PN, and its v, = (c1, ¢y, Ck)

The computational time complexity of the above algorithm is O(|V|?*+|E|). We
apply Algorithm 3 to Figure 3.3 to explain the full process of initial subnet generation.

Firstly, the inputs of Algorithm 3 are the program net PN shown in Figure 3.3 and
its corresponding layer net Lpy shown in Figure 3.6. Because PN is acyclic and pos-
sesses two synchronous nodes group SSWi={swy, sws, sws} and SSW;={swy, sws},
we can set c;=co=c3=1, cy=c5=0 for each SWITCH-node in synchronous nodes group.
As the result, an initial subnet PNy of PN is generated as shown in Figure 3.13 and
its state 19=(0,0,1,1,0,0) is obtained.

Figure 3.13: The initial subnet of Figure 3.3.

43



3.3. SUBNETS GENERATION 44

3.3.3 Subnets Set Generation

So far, we have generated an initial subnet PN o with SWITCH-nodes state 1)g. The
initial subnet can only cover a part of nodes and SWITCH-nodes state in the original
program net PN. Therefore, we need to generate other subnets so that the obtained
subnets set including the initial subnet can cover all the nodes of the original program
net and also include both 7" and F' terminals of all SWITCH-nodes.

Based on the obtained PN 0, We propose an algorithm to generate other subnets
that (including ]5]\\70) can cover all possible states of SWITCH-nodes. Before ex-
plaining the algorithm, in order to avoid duplicate selection of 7" and F' terminals
of SWITCH-nodes, we introduce a new expression QE:(CL Gy, , (), in which each
element ¢; may have the values “0”, “17, “2” and “x”. =0 (1, 2, ) means SWITCH-
node sw;’s “F Terminal” (“7T Terminal”, “both F' and T Terminals”, “neither F nor
T Terminals”) has appeared in the subnets obtained so far. The following algorithm
is to find such a set of subnets that all the SWITCH-nodes finally have ¢=2. An
operator ® for ¢ and v is defined as follows:

@ZM_?ZJQQ/J:(CH@CM 526027 Tt C~k®0k)
0 (Ge{0,*}, ¢;e{0, %}, except ¢;=c;=x)
~ 1 (Ge{l,*}, ce{l, *}, except ¢;=c;=x)
CiOC=
2 ((Ciaci)e{(o:1)7(170)a(2a 0)7(271)a(27*)})
x  (Gi=c;=)

Initially, ;/;:(*, *,+ -+ %) is set. After obtaining JSJ\VO with o, ¥ is updated ac-

cording to the above equations. In fact, =t at the time when PNy is obtained.

Algorithm 4 Generation of Coverable Subnets C'SN
Require: ]5]\\7, ]5]\\/0, zﬁ =1, Lpn’s layers: Ly, Lo, -+, Lipas
Ensure: C'SN
. CSN « {PN,}
: VioBepel < ¢
W= (Crca, oy 0p) = (%, %, -+, %)
. let W be the set of all SWITCH-nodes in the PN
while true do
PN « PN
Let SSW be a set of synchronous SWITCH-nodes.
if sw; € SSW with ¢ # 2 exists then

D IR A o S e
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9: W'+ W — SSW

10: else

11: break

12: end if

13: for each sw; of SSW do

14: if ¢, =0 (or 1) then

15: set ¢; =1 (or 0)

16: else if ¢ = * then

17: set ¢; =0 (or 1) randomly
18: end if

19: VIoBener < Vropeper U {sw;}
20: end for

21: dO])ELN(H)E(FﬁVQ VToBeDel)

22: Y PpOY

23: PREgssw = {v|v € Pre(sw),sw € SSW}
24: SUCssw = {v|v € Suc(sw), sw € SSW}
25: for each sw; € W' N PREgsy do

26: if sw; is a predecessor of any SWITCH-node in SSW through its T" (or
F') terminal then

27 set ¢; =1 (or 0)

28: else if sw; is a predecessor of one or more SWITCH-nodes in SSW through
both of its T" and F' terminals then

29: set ¢; =1 (or 0) randomly

30: end if

31 VioBener < Viopeper U {sw;}

32: end for

33: for each sw; € W/ N SUCssy do

34: if ¢, =0 (or 1) then

35: set ¢; =1 (or 0)

36: else

3T: set ¢; = 0 (or 1) randomly

38: end if

39: VroBenel < Vropeper U {sw;}

40: end for

41: dO])ELN(H)E(ﬁﬁVQ VIoBeDel)

12 P POY
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43 CSN + CSNU{PN'}
44: end while
45: Output CSN

Theorem 2: Let PN =(V, F) be an acyclic program net, C'SN be a set of subnets
generated by < Algorithm 4 Generation of Coverable Subnets CSN>>.

(1) CSN can cover all nodes in PN, i.e., each node of PN is included at least in one
subnet of C'SN.

(2) The computational time complexity is O(k(]V|*+|E|)), where k is the number of
SWITCH-nodes. U
Proof: (1) When the algorithm stops, every SWITCH-node sw; satisfies ¢;=2, which
means its T and F terminals are individually included at least one subnet of C'SN.
Let v be an AND-node. If there is only one or no SWITCH-node included in Pre(v),
then obviously v appears at least in one subnet, and hence we need only to consider
the case that v has more than one SWITCH-node included in Pre(v). Suppose v
has two input nodes, of which one is a SWITCH-node sw, connecting to v through
its T' (or F) terminal and the other is any node z. From the deletion operations in
< Algorithm 3 Generation of an Initial Subnet P/]\Vo>>, the possible case for v not
to appear in any subnets is, (i) z has at least one SWITCH-nodes sw, (included
in Pre(z)) connecting to z through its 7' (or F)) terminal; and (ii) sw, and sw,
never simultaneously switch to their 7' (or ) states, which means sw, and sw, are
synchronous. Such existence of synchronous SWITCH-nodes obviously contradicts
our precondition of self-cleanness, since there always remain tokens on edge (sw,,v)
or (z,v).

(2) The number of iterations from the lines 5~44 is at most k. In the steps from
the lines 5~44, the most time consuming steps are 4° and 8°, which takes O(|V|*+|E|)
from Theorem 1. Therefore total time complexity is O(k(|V [*+|E|)). O

We apply Algorithms 3 and 4 to the net of Figure 3.10 (b), which contains three
synchronous groups of SWITCH-nodes SSWi={swy, swy}, SSWo={sws, sws} and
SSWi={sws, swe}.

Firstly, setting c;=c2=0, c3=c4,=1 and c5=cg=0 respectively for the SWITCH-
nodes in SSWy, SSW;y and SSW3, and further applying < Algorithm 3 Generation
of an Initial Subnet PNy>>, we get an initial subnet PNy shown in Figure 3.14 (a).
The state of SWITCH-node in PNy is 1p=(0,0,1,1,0,0).

Secondly, based on PN 0, we use < Algorithm 4 Generation of Coverable Subnets
CSN> to generate new subnet PN,. Referring Y=10=(0,0,1,1,0,0), we choose
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SSWy and set ¢; for each sw; with ¢#2 to possibly let ¢;©é¢=2. As the result,
c1=co=1 is set and a subnet PNj is obtained as shown in Figure 3.14 (b), which
has 1;=(1, 1, %, %, %, %). Thus current 1) and C'SN are ¢1pep=(2,2,1,1,0,0) and
CSN={PN,, PN,}.

Finally, we choose SSW5 and set ¢; for each its sw; with ¢#2. c3=c4=0 is set and
PN, is obtained as shown in Figure 3.14 (c). Resultantly, the SWITCH-node states of
PN, is 1»=(0,0,0,0,1,1), Dt@thr=(2,2,2,2,2,2) and CSN={PN,, PN, PN,}
hold. Since no SWITCH-node has ¢;#2, C'S'N is the required subnets set. Obviously

all the nodes of PN are included in at least one of the subnets.

(9) (C)

Figure 3.14: Generated subnets set C'SN of Figure 3.10 (b).
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Chapter 4

Test Data Generation for Subnets

In Chapter 3, we have structurally constructed a set of subnets that can cover all
nodes for a given program net. This chapter will pay much attention to the detailed
behaviour of nodes in subnets. Therefore, as the final goal, we are to propose a
method of generating test input data for a given subnet through analyzing its dynamic

behaviour and using SMT solver.

48



4.1. BASIC CONSIDERATION 49

4.1 Basic Consideration

Software testing consists of a series of activities including quality assurance, verifi-
cation and validation, reliability estimation and so on. Test data generation is an
important testing activity aimed at finding errors of a software program. Currently,
many test data generation techniques have been developed. As a code-based testing
method, data flow testing is a white box technique, which uses data-flow relations in
a program as test requirement, and the test goal is to select proper test data to cover
the requirement.

In data flow testing, almost all researchers select All-DU-PATHS as the test ade-
quacy criteria to guide the generation of test data generation, because All-DU-PATHS
is one of the top data flow criteria in the test adequacy criteria system architecture
proposed by Rapps and Weyuker. Therefore, general data flow testing technique con-
tains two aspects: one is DU-paths generation introduced in Section 2.2; the other is
the generation of test data that cover as much DU-paths as possible. The former has
been introduced in Section 2.1. The latter is generating test data based on DU-paths

and the generation process is shown in Figure 4.1.

i * Genetic Algorithm '
E « Random testing method :
Generate Test Data (::I. * Model-based method .

Y

: * Dynamic multi-objective
1 *» Other methods

Programs

False

DU-Paths

A

Cover all True

DU-paths?

Output Test Data

Figure 4.1: The processes of generating test data based on All-DU-Paths.

Corresponding to using program nets to approach software testing problem, we
have already generated subnets that can cover all nodes of a given program net in

Chapter 3. In this chapter, we mainly introduce how to generate test data for each
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4.1. BASIC CONSIDERATION 20

subnet. The processes of test data generation are shown in Figure 4.3 and concretely
include the following steps:

(1) According to the definition of exhaustive program nets in Section 2.1, we can
add some dynamic behaviour information to a subnet and express it as an exhaustive
subnet.

(2) Design a kind of adjacency matrix to express the static structure and dynamic
behaviour information of an exhaustive subnet.

(3) Based on the adjacency matrix, design an algorithm to obtain all constraint
conditions of the exhaustive subnet.

(4) Use an SMT solver to solve the constraint conditions and obtain a feasible
solution. The solution is such test input data that we want to find for the exhaustive
subnet.

In order to generate test data for a subnet, we need to mainly solve two important
problems:

(i) How to represent dynamic behavior information of a subnet and how to design
an adjacency matrix to express an exhaustive subnet.

(ii) How to design a polynomial algorithm to obtain all constraint conditions of

an exhaustive subnet based on its adjacency matrix.

';Test Data Generation

Subnets
eadd information
«dynamic analysis
. |
Exhaustive Subnets

algorithm

Constraint Conditions

SMT solver

SMT solver

epython platform

Symbolic Execution

Figure 4.2: The processes of generating test data for subnets.
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4.2 Constraint Conditions Generation

In this section, we propose algorithms to generate constraint conditions for the subnets

obtained in Chapter 3 through analyzing the nets.

4.2.1 Analysis of Exhaustive Subnets

We have structurally constructed a set of subnets that can cover all nodes for a
given program net in Chapter 3. The program nets have been represented around
the structure so far without paying much attention to the detailed behavior of the
nodes. However, in order to generate test input data, we must mine how the data is
concretely operated and how it flows in the subnet. Since OR-nodes and SWITCH-
nodes function as fixed operations, merging input data and switching data to True
or False terminals respectively, we need only to clarify the detailed description of the
operations for the AND-nodes.

To obtain constraint conditions, we need to express operation results for all the
AND-nodes. Hence it is essential to (i) indicate from which input edge the input data
comes; and (ii) clearly specify whether the input data should be placed before or after
the operator at the AND-node. Although an AND-node generally may contain three
or more input edges, we limit any AND-node to such one that possesses at most two
input edges in this paper in order to conveniently express constraint conditions. We
can do so due to that any AND-node with three or more input edges can be simply

transformed to ones with two input edges as shown in Figure 4.3.

Figure 4.3: Transform operation from (a) to (b).

Based on the above discussions, we extend a general program net to an exhaus-
tive program net introduced in the section 2.2. For example, Figure 4.4 shows an

exhaustive program net transformed from the general program net in Figure 3.3.
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Figure 4.4: The exhaustive program net EN of Figure 3.3.

Hereafter, a set of subnets {]5]\\7 i} obtained in Chapter 3 is expressed by a set of
exhaustive subnets and denoted by {E]\V .}. Figure 4.5 shows the exhaustive subnets
of Figure 4.4, EN 1, EN, and EN;. In the following discussions, we say choiceless
exhaustive subnet or choiceless net denoted by EN; (i€N), we mean an exhaustive

subnet.
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—

—

Figure 4.5: Exhaustive subnets E]\\/l, ENy and ENj3 of Figure 4.4.
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Let’s see how to use o(v) and r(e) to express operation results of the nodes in
Figure 4.6. v3 has two input edges, e; and e; marked with (1) and (2) respectively, and
hence the operation result of v is g(v3)=g(v1)o(vs)g(va)=g(v1)>g(v2) according to
Definition 2.9 (v). For Figure 4.6, g(vs)= g(v4)o(vs)=g(v4)++ holds, since r(e3)=0Q.
Also g(vr)=o0(v7)g(vs)=!g(ve) due to r(eq)=@. In this way, it is possible to get a
series of expressions of operation results that are what we want to find, the constraint
conditions. Particularly, constraint conditions for a choiceless net are the expressions
of operation results of control-flow input nodes, which must meet T" or F state of each
related SWITCH-nodes in a choiceless net. For ENj, shown in F igure 4.5 (b), the
operation results of control-flow input nodes, vy, are g(vs)=g(v1)o(v4)g(ve)=(a>0).
Since all the SWITCH-nodes, vs, vg and vz, have only F' terminals, (—a>0) is the

constraint condition.

v, Ve
O @] e
Vs \%/

(b) (€)

Figure 4.6: Example AND-nodes for expression of operation result.

Choiceless nets have the properties shown in the following propositions.
Proposition 10: Let EN o be a choiceless net. If all the SWITCH-nodes fire and
further output data to their terminals that exist in EN o under a set of input data,
then all the nodes of EN o can fire. O
Proof: Since each SWITCH-node fires and outputs data to its T or F terminal that
is included in ENy, then we can fire each node in such a way: (i) firing the start node
and deleting it; (ii) recursively firing the source nodes and deleting them. Finally all
the nodes will be deleted, i.e., all the nodes can fire, since there is no directed circuit
in EN 0- ]
Proposition 11: Let vgy be a SWITCH-node in a choiceless net EN o and Suc(vsw)
be a set of its successor nodes. If Suc(vsy ) contains no SWITCH-nodes, then there
exit no constraint conditions in the subnet induced by Suc(vsw ). O

This proposition obviously holds and hence we can simply delete such subnet

induced by Suc(vg,) in generating constraint conditions.
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4.2.2 Expression of Exhaustive Subnets

From the above discussions, we know that each SWITCH-node corresponds to one
constraint condition, and hence our next work is to obtain such all constraint condi-
tions for each SWITCH-node existing in a choiceless net EN,. In order to facilitate
the generation of constraint conditions, we construct an adjacency matrix A to ex-
press all the information of a choiceless net EN,. The following adjacency matrix A

is constructed to represent the net EN, of Figure 4.5 (a).

1 1110 0 O O O O O O O O
o100 1 1 0 0 0O O 0 0 0 0
o010 2 0 1 0 0 00 0 00
0O0001 0 0 O 1 0 0 0 0 0 0
0000 -1 -1 -1 -1 0 0 0 0 0 0
0O0000 O 3 0O 0 1 0 0 0 00
4_l0000 00 0 3 0 0 20 0 00
0000 O O O 3 0 0 1 0 0 0
O000 0O O O 0O 3 0 0 0 100
o000 O O O O -1 —-10 -1 0 0
o000 O O O O O 1 1 1 0 0
Oo000 O O O O O 0 0 3 100
o000 0O 0O O 0 O 0 0 0 2 1
oooo0o o0 0O 0O 0O O O 0 0 0 1

We are to give detailed explanation how to construct the adjacent matrix A.
Suppose i#£j holds below. Firstly, diagonal values {a;;} of A express the types and

operations of nodes as follows:

a;;<0, v; is AND-node with logical or arithmetic
operator and o(v;)=0[—a;];

a;;=1, v; is other AND-node;

a; =2, v; is OR-node;

a;=3, v; is SWITCH-node.

Then non-diagonal values {a;;} express the types of edges between nodes.

{aij:_l7 edge (v;,v;) is control-flow edge:

a;;>0,  edge (v;,v;) is data-flow edge.

Further, when a;;>0: (i) if a;;<0, a;; expresses the operation of the node v;; (ii)
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if a;;>0, a;; means that there is an edge (v;, v;).

{aij:r(e), edge e=(v;, Uj) and a;;<0;

ai;=1,  edge e=(v;,v;) exists and a;;>0.

Finally, we represent the state of SWITCH-node (7" or F') in A. The following
rule is applied only when node v; is a SWITCH-node (a;=3).

{a,-]-:r(e)xlo, edge e=(v;,v,) is F' terminal of v;;

a;;=r(e), edge e=(v;,v;) is T terminal of v;.

Note that, the values of r(e), @ and (2), are replaced by 1 and 2 in the matrix A.

4.2.3 Constraint Conditions Generation

According to the above description, what we need to do next is obtaining constraint
conditions and finding test input data. Since each SWITCH-node corresponds one
constraint condition in a choiceless net, we can find a way to obtain such all constraint
conditions by doing two steps: (1) determining boolean value of the corresponding
constraint condition of each SWITCH-node, and then deleting sink nodes iteratively
until all the sink nodes become SWITCH-nodes, which can be done according to
Proposition 11; (2) designing algorithms to obtain constraint conditions from the net

obtained in step (1). The following Algorithm is for step (1).

Algorithm 5 Construction of Simplified Program Net

Require: A choiceless net E/]\Voz(V, E,o0,g9,7,a, ), adjacency matrix A of E]\Vo
Ensure: Simplified Program Net EN,, adjacency matrix B
1: while V#¢ do

2: take out a node v, from V

3: if v, is a SWITCH-node (a,,=3) then
4: if a,,<10 where z#y then

5: q(vj)<true where a;,=—1

6: else

7: q(vj)<false where a;,=—1

8: end if

9: end if

10: end while
11: matrix B<A
12: ﬁVo(-E]\VQ
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13: while a sink node v, that is not a SWITCH-node (b,,#3) exists in EN, do
14:  ENg—EN;—{v,}

15: update B (delete v,-related row and column)

16: end while

17: Output EANO

Theorem 3: Let EN o be a choiceless net and EN o be the simplified net obtained
by Algorithm 5.
(1) All sink nodes in EN, are SWITCH-nodes.
(2) The computational time complexity is O(|V]?). O
Proof: (1) It is obvious from lines 13~16 of the algorithm. (2) The execution of
lines 1~10 takes O(|V|?), since lines 1~10 execute |V| iterations and each iteration
takes |V/| times to search for A. Lines 13~16 execute at most |V| iterations and each
iteration takes at most |V| times to search a sink node and 2|V| times to delete the
row and the column, i.e., the execution of lines 13~16 also takes O(|V|?). Therefore,
the total computational time complexity is O(|]V]?). O
The simplified program nets EN 1, EN, and EN 3 of Figure 4.7 shows the result
of applying Algorithm 5 to the choiceless nets of Figure 4.5 respectively through
deleting sink nodes iteratively until all the sink nodes become SWITCH-nodes. The
corresponding adjacency matrix B of EN; showed in Figure 4.7 (a) is also obtained

by updating the adjacency matrix A of EN; showed in Figure 4.5 (a).

1111 0 0 0 0 0 0 0 0
0100 1 1 0 0 0 0 0 0
0010 2 0 1 0 0 0 0 0
0001 0 0 0 1 0 0 0 0
0000 -1 -1 -1 -1 0 0 0 0
40000 0 3 0 0 1 0 00
0000 0 0O 3 0 0 2 0 0
0000 0 0O 0O 3 0 0 1 0
0000 0 0O 0O 0O 3 0 0 0
0000 0 0 0 0 -1 -1 0 -1
o000 0 0O O O 0 1 1 1
o000 0 O 0O 0O 0O 0 0 3]
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Figure 4.7: The simplified program net £EN;, ENs and ENj3 of Figure 4.5.
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The following Algorithm 6 is for step (2).

Algorithm 6 Generation of Constraint Conditions

Require: A simplified program net EN 0, adjacency matrix B of EN,
Ensure: Constraint conditions set CC'S

1: mark all nodes “unused”

2: queue Q¢

3: enqueue s (start node of ENp) to Q

4: while Q+#¢ do

5: dequeue an element v; from @)

6: if there exists an output “unused” node v; from v; then

7: if b;; > 0 then

8: if v; is AND-node without an operation description (b;;=1) then
9: if v; has no “unused” input node then

10 g(vy) « g(v7)

11: mark v; “used”

12: enqueue v; to @

13: end if

14: else if v; is OR-node (b;;=2) then

15: if v; is “unused” then

16 g(vy) < g(1x)

17 mark v; “used”

18: enqueue v; to @

19: end if

20: else if v; is SWITCH-node (b;;=3) then

21: if v; is “unused” then

22: 9(vj) < g(v,) where b,; =1

23: mark v; “used”

24: enqueue v; to @

25: end if

26: end if

27 else if v; is AND-node with an operation description (b;;<0) then
28: if v; has no “unused” input node then

29: if v; has only one input edge (v;,v;) (b;;=1) then

30 9(vy) < g(v)O[~by]

31: else if v; has only one input edge (v;,v;) (b;;=2) then
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32: 9(v;) < O[=bjslg(vi)

33: else if v; has two input edges (b;;=1 and b,;=2) then
" 9(vy) < g(e)O[—byla(v.)

35: else if v; has two input edges (b;;=2 and b,;=1) then
36: 9(v;) = g(v2)O[—bj;]g(vi)

37 end if

38: enqueue v; to @

39: if v; has control output edge (bj,=—1) then

40: if ¢(v;) = true then

41: CCS + COSU{g(v))}

42: else if ¢(v;) = false then

43: CCS «+ CcCSU{~g(v))}

44: end if

45: end if

46: end if

AT: end if

48: end if
49: end while
50: Output CCS

Theorem 4: Let E]\VO be a choiceless program net, Efvo be the simplified net
constructed from EN, by Algorithm 5 and C'C'S be the set of constraint conditions
obtained by Algorithm 6.
(1) If there exists a set of test input data satisfying CC'S, then all the nodes of EN,
can fire;
(2) The computational time complexity is O(|V[?). O
Proof: (1) If there exists a set of test input data satisfying CC'S, then each SWITCH-
node fires to outputs data to its 7" or F' terminal included in EN,. According to
Proposition 1, all the nodes can fire. (2) The execution of lines 4~49 takes O(|V|?),
since lines 4~49 execute at most |V'| iterations and each iteration takes at most |V/|
times to calculate the operation result at lines 6~26. And further it takes at most 2|V/|
times to generate constraint condition at lines 27~37 in searching in B. Therefore,
the computational time complexity is O(|V]?). O
By using Algorithm 6, we can obtain all constraint conditions of the exhaustive
subnet EN; in Figure 4.5 (a). As the result, the constraint conditions can be synthe-

sized as F': (a > 0)A(—=(b > 0)). The constraint conditions of other two exhaustive
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subnets in Figure 4.5 are shown in Table 4.1 respectively. In the following discussions,

we are to find a solution satisfying such F.

Table 4.1: Constraint conditions of the program net in Figure 4.5.

Exhaustive Subnets | Simplified Subnets | Obtained Constraint Conditions
EN, EN, (a > 0)A(=(b > 0))
EN 9 EN, —(a > 0)
EN, EN, (a > 0)A(b > 0)
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4.3 Test Data Generation

In this section, we aim to concretely generate test input data based on the constraint

conditions obtained in Section 4.2.

4.3.1 The Platform of SMT solver 73

SMT solvers can be used in extended static checking, predicate abstraction, test case
generation, bounded model checking over infinite domains and so on. Till now, many
SMT solvers have been developed to find a solution satisfying a constraint condition.
The SMT solvers include Z3 prover, Yices, SMT-RAT and so on, which are introduced
in Chapter 2. Among these SMT solvers Z3 prover is a high performance theorem
prover developed by Microsoft Research and can be used to check the satisfiability of
logical formulas over one or more theories [74, 82].

Z3 prover is a so useful and convenient tool that, (i) it can handle decimals; (ii)
it can handle multiplication and division between variables; (iii) one needs only to
write constraint conditions without solving the equation; (iv) it has been developed
as a package used in Python programing language and can be used conveniently.
Therefore, we choose to use Z3 prover in generating test input data for choiceless
nets.

We will use Z3 prover to generate test data in such a way that, (a) to construct a
Python compilation environment; (b) to install Z3 Application Programming Inter-
face in Python. Because Z3 is unstable when used with Python 2, we apply Python
3. As of now, the latest version of Python 3 is Python 3.8.0. The following steps are
for step (a).

(1) Go to “https://www.python.org/”, which is Python’s official website as shown
in Figure 4.8. Move cursor onto “Downloads”, and click on “Python 3.8.0”, then
Python should start download automatically.

(2) Go to “Downloads” directory in your computer. One can see a file named
python—3.8.0—amd64.exe. Note that the filename extension may vary depending on
the OS of your computer. Then open the file.

(3) An installation window like the one in Figure 4.9 should be found. It is
recommended to use default settings in the installation. When the installation is
complete, exit the installer.

(4) Open the Integrated Development and Learning Environment (IDLE) for
Python in the computer. After successfully installing Python 3.8.0, one will see

the Python welcome screen as shown in Figure 4.10.
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Figure 4.8: Download the latest version of Python.

Install Python 3.8.0 (64-bit)

Figure 4.9: Install Python 3.8.0.

Figure 4.10: Open IDLE (Python 3.8.0 64-bit).

In order to generate test data based on constraint conditions, we will use z3py,
which is an Application Programming Interface of Z3 prover in Python. The following

steps will demonstrate how to install z3py on Windows platform.
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(1) Go to “https://github.com/Z3Prover/bin” and click on “releases” Then select
a zip file that matches corresponding Python’s version and OS’s version. When an

interface as shown in Figure 4.11 appears, then click on “View Raw” to download Z3.

VP ——

Figure 4.11: Download Z3 prover.

(2) Go to the directory you stored Z3 in the computer, and unzip the file you just
downloaded. Then add two directory paths “bin” and “build” to the environmental

variables as shown in Figure 4.12.

Figure 4.12: Add Z3 to the environmental variable.

(3) Opening the unzipped file and go to the “bin/python” directory, a file ezample.py

can be found. Then right-click on example.py and select “open with IDLE”, an in-
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terface as shown in Figure 4.13 appears. We will create Python files in “bin/python”

directory to generate test data.

Figure 4.13: Open an example Z3 file in Python.

(4) Open example.py with IDLE and click “Run” — “Run Module” as shown in
Figure 4.13. If a solution pops up onto the Python console as shown in Figure 4.14,

it means Z3 has been successfully installed.

Figure 4.14: Run a constraint condition of Z3 file in Python.
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4.3.2 The Implement of Test Data Generation

Now we can use 73 prover and Python to generate test input data based on constraint
conditions.

Firstly, we write a Python program for all the obtained constraint conditions as
shown in Table 4.1 and import Z3 package in the program header. The whole program

is shown in Figure 4.15.

Figure 4.15: A program of solving the constraint conditions shown in the three column
of Table 4.1 using Z3 prover in Python.

Then, click “Run” and “Run Module” in turn, the solutions of solving this three
constraint conditions are shown in Figure 4.16. As an implement of test data gener-

ation, the test data of all three subnets in Figure 4.5 are shown in Table 4.2.

Table 4.2: Test input data of the program net in Figure 4.5.

Subnets | Simplified Subnets | Obtained Constraint Conditions | Test Input Data
EN, EN, (a > 0)A(=(b > 0)) (a=1,b=0)
EN, EN, ~(a > 0) (a=0,Yb e Z)
EN, EN, (a > 0)A(b > 0) (a=1,b=1)

As the result, the test input data set “(a,b) € TD={(1,0),(0,VZ),(1,1)}” can
cover all nodes and can be used to check all possible paths of the original net shown

in Figure 3.3.
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Figure 4.16: The solutions of solving the constraint conditions shown in the three
column of Table 4.1 using Z3 prover in Python.
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Chapter 5

Case Studies

In Chapters 3 and 4, we have introduced the method of applying program nets to
software testing detailedly including subnets generation and test data generation. In
this chapter, we will use three actual examples to illustrate the entire processes of

our method and its effectiveness.
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5.1 Basic Consideration

Till now, we proposed a method of applying program nets to approach a complex NP-
complete problem of software testing. This method is mainly divided into two major
steps: (1) subnets generation for a given program net; and (2) test data generation for
these subnets. Here, three actual Java programs are used to verify the effectiveness
of our method.

Because actual software testing is inseparable from a computer’s support, we also
need to make certain choices for computer configuration requirements. Since Python
and Z3 prover do not have much requirements for memory and processing ability,
a computer with more than 2G of memory can be used to conduct this experiment.

Our computer configuration is shown in Table 5.1.

Table 5.1: The configuration of the computer.

Ttems Configuration
1. Sensor resolution 1920 x 1080 pixels with gray 256 levels
2. Memory 8.00 GB RAM
3. CPU Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80GHz
4. Software Python 3.8 with Z3
5. System Type | 64-bit operating system, x64-based processor

Three actual Java programs are shown in Figures 5.1~5.3, respectively. Among
these three programs, program 1 and program 3 contain loop structure (for and while)
and all programs possess branch structure (if). Further, programs 2 and 3 include

nested branch structure.
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java.util.Scanner;
Prime_factor_decomposition {
main(String[]
Scanner = Scanner(System.
System. .println(
= s.nextInt();
System. .println(
=2;i<=Math.sqgrt( )s;i++) {
(numki == @) {
System. .print(i+ )s
/=13

J
System. .println(

Figure 5.1: Program 1: decomposes a positive integer as prime factors.

java.util.Scanner;
Bissextile{
main(String[] M
System. .print( )
J)
Scanner = Scanner(System. );
= .nextInt();
( > 0) {
(( %4==0)8&&( %1001=0) | | ( %400==0)) {
System. .println( + );

} {
~ System. .println( + )5

System. .println(

Figure 5.2: Program 2: determine if a year is a leap year.

5.2 Empirical Studies

5.2.1 Subnets Generation

We apply the algorithms proposed in Chapter 3 to Programs 1~3 to show the possible

usage of finding test input data in software testing. The program nets PN'~PN3

constructed from Programs 1~3 are shown in Figures 5.4~5.6, respectively.

The detailed information of three program nets PN'~PN? is shown in Table 5.2.

In PN, synchronous nodes are grouped by SSW/} = {sw;, swq, sws} and SSW.}

{sw,}. Similarly, PN? contains synchronous nodes groups SSW? = {sw;, swy, sws,

swy, sws}, SSWE = {swg}, SSWE = {swr}, and SSW? = {swg}. Among three
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java.util.Scanner;
Convention_number_and_common_multiple {
main(String[] ) Ao
Scanner = Scanner(System. );

3 3

) )
System. .println(
=sc.nextInt();
System. .println(
=sc.nextInt();
(a<=0 || b<=0) {
System. .println(

(a==b)

=%

System. .6rint1n(
System. .println(

Figure 5.3: Program 3: Calculate the greatest common divisor and the least common
multiple of two positive integers.

program nets, PN? is the most complex and it contains 5 synchronous nodes groups,
SSWP = {swy, swa, swz}, SSW3 = {swy, sws, swe}, SSW3 = {swy, swg, swe}, SSW}
={swig, swy1 } and SSW2={swya, swi3}. The following steps are to generate subnets
for PN'~PN?3.

Table 5.2: The basic information of three program nets PN'~PN3.

Program Nets Figures NO. of SWITCH-nodes | NO. of Synchronous Nodes Groups
PN! Figure 5.4 4 2
PN? Figure 5.5 8 4
PN3 Figure 5.6 13 5
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Figure 5.4: The program net PN! constructed from the program in Figure 5.1.
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Figure 5.5: The program net PN? constructed from the program in Figure 5.2.
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SWa¥ A e X mmmm T DaRb L SWg
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sw,
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SWyg
T

out(gcd) out (Icm)

Figure 5.6: The program net PN? constructed from the program in Figure 5.3.
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(1) Constructing layer nets of PN'~PN? by applying Algorithm 1, we can get
three layer nets, Lpyi~Lpys, as shown in Figures 5.7~5.9, respectively. We can easily
find all back edges (uy,v1), (ug,v2), (us,vs), (u4,v4), (us,vs), which are represented

by bold black arrows in the two layer nets, Lpyt and Lpys, respectively. Because

Lpy2 does not contain back edge, PN? contains no directed circuit and is acyclic.

S
Ve
A

Figure 5.7: The constructed layer net Lpy1 of PN*.
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Figure 5.8: The constructed layer net Lpy2 of PN2.
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Figure 5.9: The constructed layer net Lpys of PN3.
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(2) To construct acyclic program nets of PN'~PN? by applying Algorithm 2.
Because program nets PN! and PN? contain directed circuits, their acyclic program
nets can be constructed by deleting all back edges in Lpyt and Lpys respectively.
As the result, acyclic program nets PN' and PN’ of PN' and PN? are obtained as
shown in Figure 5.10 and Figure 5.11. Because PN? is acyclic, its acyclic program

net PN” is itself as shown in Figure 5.12.

Figure 5.10: The acyclic program net PN' of PN*.
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Figure 5.11: The acyclic program net PN’ of PN3.
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Figure 5.12: The acyclic program net PN’ of PN2.
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(3) This step is to apply Algorithm 3 to generate initial subnets for PN 1,\,]5]\\[ 3,
respectively. Firstly, we set c;=co=c3=1, cy=c5=c=0, cr=cs=cy9=1, c1p=c11=0 and
c1a=c13=1 respectively for the SWITCH-nodes in SSW?3, SSW3, SSW3, SSW? and
SSW2. Then all unfirable nodes of PN’ are deleted according to the states initially
set for all SWITCH-nodes. Finally, the remaining parts of PN’ is the initial subnet
JBJ\V:; as shown in Figure 5.13 (a) and its state is ¥3=(1, 1, 1, %, %, %, *, %, %, *, %, *, *).

Similarly, the initial subnets PN 1 and PN f can be generated as shown in Figure 5.14

(a) and Figure 5.15 (a), respectively.
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(d) Subnet PN? (e) Subnet PN

Figure 5.13: The subnets set C'SN? of PN,
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Figure 5.14: The subnets set CSN' of PN'.
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(c) Subnet PN (d) Subnet PN’

Figure 5.15: The subnets set C'SN? of PN,
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(4) This is the final step to generate other subnets through applying Algorithm 4
based on the obtained initial subnets in (3). For example, generate remaining sub-
nets for PN’ based on ]5]\V:1)) and 3=(1,1,1, , %, %, %, %, %, %, % %, ). Firstly, by re-
ferring 13 =13=(1, 1, 1, %, *, %, %, *, %, *, %, %, ¥) and the SWITCH-nodes in SSTW} that
are located in the lowest layer among all SWITCH-nodes, we set ¢; for each sw; in
SSW} with ¢;#2 to possibly let ¢;®¢=2. As the result, ¢;=cy=c3=0 is set and a
subnet PN 2 shown in Figure 5.13 (b) is obtained by using Algorithm 4, which has
state 13=(0,0,0,1,1, 1, %, %, %, %, %, %). Thus current ¢* and CSN? are such that
PPtPOp3=(2,2,2, 1, 1,1, %, %, %, %, %, %, %) and C’S’]\f?’:{lj]\\/?7 ]5]\\/2}

Next, we choose SSW3 and set ¢; for each its sw; with ¢#2 according to the
layer number of SWITCH-nodes in SSW3. cy=cs=cs=0 is set and ﬁ?vi is ob-
tained as shown in Figure 5.13 (c). Resultantly, the SWITCH-node states of PN ;
is 3 = (0,0,0,0,0,0, 1,1, 1, %, %, %, %), h—tpOh3 = (2,2,2,2,2,2,1,1, 1, %, *, %, *) and
CSN*={PN, PN, PN3} hold.

Continuously, we choose SSW3 and set ¢; for each its sw; with ¢#2. cr=cg=co=0
is set and PN i is obtained as shown in Figure 5.13 (d). The SWITCH-node states of
ISJ\Vi is 13=(0,0,0,0,0,0,0,0,0,0,0,0,0), and consequently +pO3=(2,2,2,2,2,
2,2,2,2,0,0,0,0) and CSN*={PN:, PNy, PNy, PN},

Finally, we choose SSW} and set ¢; for each its sw; with ¢;#2. ¢,0=c;;=1 is set
and PN 2 is obtained as shown in Figure 5.13 (). The SWITCH-node states of PN ;’ is
¥2=(0,0,0,0,0,0,0,0.0,1,1, 1, 1), and consequently Pe—poP3=(2,2,2,2,2,2,2,2,2,
2,2,2,2) and CSN3= {PNl,PNQ,PNS,PN4,PN }. Since no SWITCH- node has
¢;#2, C'SN? is the required subnets set of PN’ Obviously all the nodes of PN’ are
included in at least one of the subnets included in C'SN3.

Similarly, applying Algorithm 4 to PN' and PN 2, we can get subnets set C'SN?
and C'SN? shown in Figure 5.14 and Figure 5.15, respectively.
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5.2.2 Test Data Generation

We apply the algorithms proposed in Chapter 4 and Z3 prover to find a test input
data for each subnet in CSN* (i = 1,2,3) shown in Figures 5.14~5.13.

(1) To make an exhaustive subnet for each subnet by adding dynamic behavior in-
formation to it as stated in 4.2.1. As the result, the corresponding exhaustive subnets
set CESN' of CSN' (i = 1,2,3) can be obtained as shown in Figures 5.16~5.18.

1
3

-

(c) Exhaustive subnet EN

1
2

o~

(b) Exhaustive subnet EN

1
1

s

(a) Exhaustive subnet EN

Figure 5.16: The exhaustive subnets set CESN?! of PN
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0,
~— 0\ ok
ear % 100)

(c) Exhaustive subnet EN? (d) Exhaustive subnet EN2

Figure 5.17: The exhaustive subnets set CESN? of PN’
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(d) Exhaustive subnet EN2 (e) Exhaustive subnet EN

Figure 5.18: The exhaustive subnets set CESN? of PN’
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(2) To make an adjacency matrix for each exhaustive subnet in order to facilitate
the generation of constraint conditions. For example, the following adjacency matrix

A3 is made for EN i and contains all information of EN i as shown in Figure 5.18 (e).

1111 0 0 0 0 0 0 O 00
0100 1 1 0 0 0 0 0 00
0010 2 0 00 0 0 0 00
0001 0 O 1 0 0 0 0 00
0000 -1 -1 -10 0 0 0 00
0000 O 3 0 1 0 0 0 00

AA=10 000 0O 0 3 0 2 0 0 00
0000 O O O 1 1 1 0 00
0000 O O O 0 —140 2 00
0000 O O O 0O O 1 1 00
0000 O O O O O 0 —14 10
0000 O O O O 0O 0 0 21
oo0oo0oo0 0 0 0 0 O 0 0 0 1]

(3) Next, to apply Algorithm 5 to determine boolean value of the corresponding
constraint condition for each SWITCH-node and delete sink nodes iteratively until
all the sink nodes become SWITCH-nodes to get a simplified exhaustive subnet. For
example, the simplified subnet EN i as shown in Figure 5.19 (d) is constructed from
EN i. As the result, all the simplified nets in CSNI~CSN? are shown in Figures
5.19~5.21, respectively.
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(d) Simplified subnet EN? (e) Simplified subnet EN:

—~~—— 3
Figure 5.19: The simplified exhaustive subnets set CESN of C'SN3.
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(c) Simplified subnet EN

1
2

—

(b) Simplified subnet EN

1
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(a) Simplified subnet EN

—_ — 1
Figure 5.20: The simplified exhaustive subnets set CESN of CSN'.
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(a) Simplified subnet EN? (b) Simplified subnet EN?
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(c) Simplified subnet EN? (d) Simplified subnet EN?

—_—~— 2
Figure 5.21: The simplified exhaustive subnets set CESN of CSN2.
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(4) This step is to apply Algorithm 6 to obtain constraint conditions for each sim-
plified exhaustive subnet in C’/ES’?V 1NC'/E\S/N 3. For example, from simplified exhaus-
tive subnet EN i and its adjacency matrix flg obtained by Algorithm 5, we can get its
constraint conditions CCS2={-(a<0), —~(b<0), =(a==b), ~(a>b), ~(b%a! =0)} and
these constraint conditions can be expressed as a conjunctive normal form F} :
=(a<0)A=(b<0)A=(a==b)A =(a>b)A—(b%a! =0). Similarly, all the constraint condi-
tions of other simplified exhaustive subnets are obtained and shown in Tables 5.3~5.5,

respectively.

S N = O
S O = O
_ o O O

|
—_
|
—_
|
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O O O O O O o Ww
O O O O O O w o
o O O O

(e}

Table 5.3: Constraint conditions of exhaustive subnets set CESN!.

Exhaustive Subnets | Simplified Subnets Constraint Conditions
Ej\\fi E\’J/Vi —(2<sqrt(num))
E]\V; ﬁ\i (2<sgrt(num))A(—(num%2==0))
E]\V; E\]/Vi (2<sgrt(num))A(num%2==0)

(5) Finally, to generate test input data for all the exhaustive subnets based on
the obtained constraint conditions so far by using Z3 prover. Importing Z3 prover
to Python and coding three short programs shown in Figures 5.22~5.24 for finding
test input data, three sets of test input data for three sets of exhaustive subnets are

obtained and shown in Tables 5.6~5.8, respectively.
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Table 5.4: Constraint

conditions of exhaustive subnets set CESN?.

Exhaustive Nets | Simplified Nets Constraint Conditions
—2 —2
EN, EN, —(year>0)
—2 —2
EN, EN, (year>0)A(—(year%4d==0))A(—(year%400==0))
9 s (year>0)A((year%4==0))A(—(year%100!=0))
EN, EN,
A((year%400==0))
9 s (year>0)A((year%4==0))A((year%100!=0))
EN, EN,
A= (year%400==0))

Table 5.5: Constraint conditions of exhaustive subnets set CESN?3.

Exhaustive Subnets | Simplified Subnets Constraint Conditions
EN, EN, (a<0)
EN, EN, (~(a<0))A(b<0)
EN, EN, (+(a<0))A(~(b<0))A(a==b)
EN, EN, ~(a<0)A=(b<0)A—~(a==b) A—(a>b) A~ (b%al=0)}
EN, EN.: ~(a<0)A(b<0)A—(a==b) A(a>b)A(a%b!=0)}

—_ — 1
Figure 5.22: The short program to find a set of test data for CESN .
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—_ — 2
Figure 5.23: The short program to find a set of test data for CESN .

Table 5.6: Test Input Data of exhaustive subnets set CESN?!.

Exhaustive Subnets | Simplified Subnets | Test Input Data
EN 1 EN 1 num=3
EN ; EN 1 num=>y
EN ; EN 1 num=4

Table 5.7: Test Input Data of exhaustive subnets set C'ESN?2.

Exhaustive Subnets | Simplified Subnets | Test Input Data
EN f EN f year=0
EN Z EN i year=»s
EN ; EN ; year=400
EN i EN i year=4
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—~~—— 3
Figure 5.24: The short program to find a set of test data for CESN .

Table 5.8: Test Input Data of exhaustive subnets set CESN?.

Exhaustive Subnets | Simplified Subnets | Test Input Data
EN, EN, (a=0,Vbe Z)
EN, EN, (a=1,b=0)
EN, EN, (a=1,b=1)
EN, EN, (a=1,b=2)
EN. EN. (a=3,b=2)
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5.3 Discussion

We have shown case studies of the three simple program nets, but our algorithms can
be applied to any self-cleaning program nets, no matter how complex the program
nets are. Moreover, although the programs used in our experiments are relatively
small, our theoretical method is also applicable to large-scale programs. It should be
noticed that (i) test data generation problem is generally NP-complete, and (ii) our
test data generation uses only polynomial algorithms and Z3, which means Z3 would
take much time when it is applied to large-scale programs. Therefore, it is a key issue
to examine the relationship between the scale of a program and the execution time
of test data generation, which is also one of our future works.

As introduced in Section 1.1, many techniques have been developed to gener-
ate test data, such as random testing technique, intelligent optimization algorithm,
model-based testing method and search-based testing method. However, these tech-
niques all have some shortcomings more or less. Random testing technique is not
realistic and it will spend more time analysing results [83]. The technique of using
intelligent optimization algorithms is a quick method to generate test data, neverthe-
less, the analysis required for various programs may be quite complex and algorithms
may fall into a local optimum, which will result in the inability to obtain the opti-
mal solution [84]. In the model-based testing method, modeling is a challenging task
and requires a deep understanding of the application architecture and a wrong model
may lead to inaccurate test data and wrong test execution [85]. Search-based testing
technique has large search spaces and its fitness functions are an important factor in
speed and efficiency, in addition, the technique suffers from prematurity, which may
causes the convergence problem that effects on speed and direction [86]. Therefore,
we proposed a method of applying program net to test data generation in order to
overcome these shortcomings and strive to reduce the complexity. As a result, it is
possible to minimize the time required to generate test data. Our method is divided
into two steps: one is to generate subnets for an original program net; the other is to
generate test data for the subnets.

For the first step, we have done the approach by designing four algorithms. For a
given program net, Algorithm 1 is to generate its layer net, Algorithm 2 is to construct
an acyclic net, Algorithm 3 is to generate an initial subnet, and Algorithm 4 is to
generate a set of subnets that can covering all the nodes of the given net. All these

algorithms are of polynomial computation time.
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It is ideal to find minimum subnets to cover all the nodes, but that takes much
computation time. This is because, the total number of subnets is exponentially
proportional to the number of SWITCH-nodes and finding the minimum subnets
from the total will be of exponential computation time. Therefore, we have tried to
find a set of subnets as few as possible, as can be found at lines 8~20 of Algorithm
4 by setting ¢;=1 (or 0) if ¢;=0 (or 1) for each SWITCH-node sw; to avoid duplicate
selection of its 7" or F. As the result, the maximum number of subnets is 2k (k is
SWITCH-nodes’ number). Even if devising this way, the number of obtained subnets
is not necessarily the smallest. This is because, generally the 2nd subnet is dependent
on the 1st, the 3rd is dependent on the 1st and the 2nd and so on. Incidentally, the
numbers of generated subnets of three example program nets in our experiments are
all the smallest. We have to mention that although our algorithms generate a set
of subnets in polynomial computation time, this does not means software testing
problem can also be solved in polynomial time since the second step to find test data
for each subnet is also a fairly complex problem.

The second step is to test input data generation for such subnets that have test
input data. We also have designed two algorithms to do that. Algorithm 5 is to
construct a simplified exhaustive subnet and Algorithm 6 is to obtain all constraint
conditions. These two algorithms are also of polynomial computation time.

From the results of 4.3.2, it is obvious that we can certainly find test input data
for each subnet, which can make all the parts of each subnet executed. As men-
tioned in Chapter 2, software testing takes much computational time due to its NP-
completeness and generating test input data is an effective way to approach it. That
is why we apply program nets to find proper test input data. Although these input
data are generated by the SMT solver that may take computational time, our algo-
rithms are all polynomial. This means that our method is feasible and effective to
practically approach the software testing problem.

In summary, our method was successfully applied to the test data generation for
three actual programs and finally we got the accurate test data, which implies our
method can be considered feasible and effective. Although our method used Z3 prover
to generate test data at the end, all algorithms, which are designed for a series of pre-
operations in generating test data such as acyclic program net construction, subnets
generation and constraint conditions generation, are of polynomial computation time.
Therefore, our approach can save a lot of pre-operation time in actual test data

generation, and it will definitely contribute significantly to software testing.
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Chapter 6

Conclusions

Nowadays, software products are becoming more and more widely used in people’s
lives, and software testing is more important than ever. As introduced in Chapter
1, as an important testing activity, test data generation is an NP-complete problem
and various methods have been proposed to approach this problem. As a tool to
express programs, program nets can not only describe control flow and data flow but
also simulate dynamic behaviours of programs. It is suitable for computer parallel
processing and is also specially tuned to flows of data through arithmetic and logical
operations. Therefore, it is appropriate to apply program nets to approach software
testing problem.

This dissertation has presented a new method of applying program nets to generate
test data for software testing.

In Chapter 2, we have given definitions of general program nets, such as three types
of nodes, structural representation and firing rules of nodes. The basic properties of
general program nets are also given. Then, based on the definition of general program
nets, we have extended general program nets to exhaustive program nets, which
can describe dynamic behavior information of a program net to obtain constraint
conditions. We have also introduced an important concept of token self-cleanness,
which is a property that there is no token remaining in the program net when its
execution terminates, and this concept is the foundation of this dissertation. Finally,
we have introduced software testing problem and symbolic execution technique, which
is the guide of our method to test data generation.

In Chapter 3, we have designed a series of algorithms with polynomial computation
time to generate a set of subnets which can cover all nodes of a given program net and
all the nodes of each subnet can fire for certain given input test data. The subnets set
can be generated by (i) treating a program as a original program net PN according

to the basic definition of general program nets; (ii) constructing the layer net Lpy of
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the original program net PN in order to find all back edges of PN on the basis of
firing rules and firing order of three types of nodes; (iii) deleting all back edges to cut
off all directed circuits for constructing the acyclic program net PN of the original
program net PN with directed circuits; (iv) designing algorithm to generate an initial
subnet PN, and obtain its SWITCH-nodes’ states 11 through setting the state of
each synchronous SWITCH-nodes set of PN ; (v) using a symbol ® to represent the
operation between states ¢ of SWITCH-nodes in the current obtained subnets set and
states v; of SWITCH-nodes in the newly generated subnet PN ; and then designing
an algorithm to generate remaining subnets until the obtained subnets set C'SN can
cover all nodes of the original program net as well as all the states of SWITCH-nodes.

In Chapter 4, we have proposed a method to solve the remaining task, which is
to find specific test input data for the subnets obtained in Chapter 3. This method
can be implemented by (i) constructing the corresponding exhaustive subnet EN; of
subnet PN, generated in Chapter 3 according to definition of exhaustive program
net, which can represent dynamic behavior of programs and describe the concrete
expression of constraint conditions in EN i; (ii) designing an adjacency matrix A;
used to represent all information contained in exhaustive subnet EN ; such as state of
each SWITCH-node and the operator at node; (iii) designing an algorithm to delete
all sink nodes that are not SWITCH-nodes to obtain a simplified subnet EN ; and
update the corresponding adjacency matrix, and further record each SWITCH-node’s
state; (iv) designing an algorithm to obtain all constraint conditions from simplified
subnets; (v) using Z3 prover with Python to treat all constraint conditions as its
input and the output is the required test input data of exhaustive subnets.

In Chapter 5, we have applied our method to three actual Java programs. Firstly,
their corresponding original program nets were constructed; then, we applied the
designed six algorithms to them to generate subnets set and obtain all constraint
conditions; next, Z3 prover was used to obtain specific test input data for each
exhaustive subnet; finally, we discussed feasibility, effectiveness and applicability for
our proposed method.

Program net theory includes mathematical semantics, graphical representation,
executable representation, and many analysis techniques. It is a powerful tool for
test input data generation in order to approach software testing problem. Except
adopting Z3 prover, all algorithms designed in this dissertation are of polynomial
computation time, which is supposed to greatly improve the efficiency of test data
generation technology. Hence these proposed algorithms contribute to the field of

software testing. Today is an era of rapid development of information technology.
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All walks of life are becoming informationalized and intelligent, and various software
technology products are emerging in an endless stream, such as mobile phone quick
payment apps, cloud services, Internet of Things, artificial intelligence, etc.. Espe-
cially in Asia, with the vigorous development of the software technology industry,
many software products have made people’s lives more convenient and comfortable,
such as Alipay, Nintendo games, driverless car and so on. These products without ex-
ception contain a large number of programs and it is necessary to test these large-scale
programs to improve their quality and safety. Our approach is expected to further
promote the development of the software industry and contribute to the economic
development of Asia.

The following problems related to this dissertation are to be resolved in the near

future.

(i) To improve our proposed algorithms to find an optimal set of subnets that

definitely have some specific input data to make all the SWITCH-nodes firable;

(ii) To implement such a system that automatically construct a program net from
a given program and finally uses Z3 prover to obtain test data; and

(iii) To develop an effective SMT solver that can efficiently acquire test data of actual

large-scale programs.
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Appendix A

Abbreviation of Substances

PN :

MPN :
FIFO

LPN :
PN :

[(v) :

SSW -

PN,
EN :
EN; :
EN; :
(U

WPN :

(R

Program net

Marked program net

First input first output

Layer net

Acyclic program net

The i-th layer of Lpy

The layer number of node v

Synchronous nodes set

The states of SWITCH-nodes in one subnet
Subnet

Exhaustive program net

Exhaustive subnet

Simplified exhaustive subnet

The set of states of SWITCH-nodes in all subnets
The set of all subnets

The states of SWITCH-nodes in subnets set
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