AL Em L EF

AL SO B A Study on Test Data Generation for Software Testing by Applying
Program Nets
Tul T ARy VALY T N =TT AT 4 T DD
T A T R BT 25

H

e K4 A

&

Along with the development of information technology, more and more software
products have been applied to most aspects of society and facilitated people’ s lives.
Consequently, the problems of software quality and security have been paid more
attention. Software testing is an important means to ensure software quality and
reliability, which is to find bugs, defects, or errors in a software program and is
indispensable for all software development since it is a critical element of software
quality assurance and represents the final review of specification, design, and
coding.

Path testing is an important measure of general software testing, which searches
specific test input data that covers every possible path in the software program.
Among testing activities, test data generation is one of the most intellectually
demanding tasks and also one of the most critical ones, since it has a strong impact
on the effectiveness and efficiency of the whole testing process. However, with the
increasing of complexity and scale of software, a software program may contain an
infinite number of paths when the program has loops. In addition, the number of paths
is also exponential to the number of branches of the program. As a result, test input
data generation takes much computational time and is an NP-complete problem, which
makes input data generation more complex.

Graphs can capture complex data dependencies and be widely used to model and analyze
data—flow programs. As a kind of graph, data—flow program net (program net or net
for short) is an important way to study data—flow programs. Program net is specially
tuned to data—flows through arithmetic and logical operations. This dissertation
discusses how to apply program nets to generate test input data for approaching the
software testing problem theoretically. This dissertation is organized as follows:
Chapter 1 gives an introduction of the research background and presents the motivation
and the target of this dissertation.

Chapter 2 presents the basic definitions of program nets and proposes a necessary
extension of program nets so—called exhaustive program nets to describe the dynamic
behaviour information of program nets. The known basic properties and the whole
process of applying program nets to test input data generation are also given.

Chapter 3 presents a proposal to generate such required subnets’ set that can cover
all nodes of a given program net and gives its corresponding algorithms to (1)
construct the layer net of the given program net, (2) construct the acyclic program
net from the given program net with directed circuits, (3) obtain the initial subnet,
and (4) generate the remaining subnets so that the obtained subnets set containing
the initial subnet can cover all nodes of the given program net in order to finally
find a specific test data used in software testing.



Chapter 4 presents a method to find a specific test input data for such subnets
that may possess input data based on the analysis result of the behaviours of all
the subnets. Firstly, a brief introduction is given to Satisfiability Modulo Theories
(SMT for short) that can be used to find test input data. Then, discussion is done
on how to equivalently transform the subnets obtained in Chapter 3 into exhaustive
subnets. After that, an algorithm is designed to obtain all constraint conditions
from a given exhaustive subnet. Finally, we introduce an SMT solver, Z3 Prover, which
can Tind the specific test input data according to the constraint conditions.

Chapter 5 gives a case study that shows how to generate required subnets for three
actual Java programs by using the algorithms proposed in Chapter 3, as well as to
indicate how to find a set of test input data for the subnets by using the SMT solver
introduced in Chapter 4. Also, the experimental results are shown and discussed for
the Java programs.

Chapter 6 concludes the results obtained in this dissertation and discusses future
research works remaining to be solved.

3)
1. BAREFRLEFEZBICEKYMERLTLIEEL,

2. BAFEDHEF2 000FEE, REDOSSF0FEREETEEEZRALTIESL,



.
o
o~

1 est







