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ABSTRACT 

Since the 2000s, the practice of running has consistently increased worldwide. Development of new pavement 

especially designed for distance runners is a new promising field in pavement engineering so that city runners at all 

ages continue the practice of running comfortably without injuries. Although many researchers in biomechanics and 

sports sciences have studied runners' comfort associated with running injury etiology, running economy and running 

performance, there is still few in the literature regarding the biomechanical effects of different types of running 

surfaces on foot-pavement interaction.  

The aim of this study is to clarify the influence of running on different types of asphalt pavements on runners' 

impact during foot strike. 

In Chapter 1, Introduction, describes the social background and the purpose of this research. This study takes 

interest in the interactions between runners' foot and pavement surfaces as they affect runners' comfort in running. 

Focusing on the runners' impact during foot strike, the study aims to identify, quantify, measure and model the factors 

influencing the interactions. 

In Chapter 2, Literature review on interactions between runners' foot and pavement surfaces, reviews 

earlier studies mainly from biomechanics and sports science field, including statistics of runners' preference to running 

surfaces in the practice of running and its reasons, measurement methods of runners' footstrike impact and so on. 

Based on the review, this chapter highlights the problems to be solved in this study. 

In Chapter 3, Field test on runners' sensory to types of pavement, ten adult athlete runners ran for 55 m on 

four different asphalt pavement surfaces. After the test running, the runners answered the questionnaires regarding 

degree of impact during foot strike. The results showed that the runners are sensitive to the type of asphalt pavements. 

Many runners felt smaller footstrike impact on rougher pavement surface, namely, open-graded asphalt concrete, than 

that on flatter/smoother pavement surface, namely, dense-graded asphalt concrete. The result implies that runners' 

footstrike impact largely depends on roughness of pavement surface rather than the material stiffness. 

In Chapter 4, Measurement of foot acceleration during running on pavement types with wearable motion 

sensor, developed in-situ measurement method of runners' footstrike impact. Utilizing a wearable 9-axis motion 

sensor with logger, this chapter measured the acceleration of the runners' foot to investigate the effect of pavement 

materials on the foot strike while running. The results of sensor calibration test showed that the 3-axial accelerations 

measured by the motion sensor agreed well with those by the video analysis. The sensor posture was also correctly 

measured. The results of the field tests on five types of pavement materials showed that the acceleration measured at 

the ankle showed a clear difference according to the road material. Mechanical properties of pavement surface such 

as stiffness and frictional resistance are manifested as the acceleration on the longitudinal direction while running. 

In Chapter 5, Laboratory experiment on mechanical interactions between foot/shoes and pavement surfaces, 

carried out two types of laboratory experiments. The one is normal loading test to rubber sheet on different types of 

asphalt pavement surfaces in order to investigate deformation characteristics of rubber-pavement interface depending 



on the surface roughness. The other is skid-friction test on the asphalt pavement surfaces. The roughness data, namely, 

digital elevation data of the pavement surfaces were obtained using the 3D-laser profilometer. The test results showed 

that rubber-pavement interface showed larger deformation in the case of rougher pavement surface. The magnitude of 

deformation is largely correlated to the parameter of material ratio curve. It means that the deformation characteristics 

of rubber-pavement surface interface can be modelled using the material ratio curve.  

In Chapter 6, Modeling of runners' footstrike impact using material ratio curve and its validation, conducted 

verification experiment for the modeling method proposed in the previous chapter. Fifty-three adult city runners ran 

twice for 10 meters on all 6 different types of asphalt pavements and evaluated their footstrike impact. According to 

the runners' evaluation, the pavements of Porous (5) and SMA (5) had the lowest footstrike impact, while their 

parameter values of the material ratio curve are moderate among the six types of pavements. The parameter value of 

the material ratio curve indicates not only deformation but also friction at the contact interface of shoes and pavement 

surface. Large friction may lead to disagreeable footstrike impact. The running test result, therefore, implies that the 

footstrike impact becomes lowest on the surface roughness with balancing of deformation effect and friction effect. 

In Chapter 7, Conclusions, summarizes the achievements of this research and describes future challenges and 

prospects. 
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FWD
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MPD (13)

(13) (13) 2

MPD

=0

(13) (13)

4 MPD (13)

(13)

MPD Rsk

Rku
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4

(13) (13)

(13) (13)

3

(13) 4.8

(13)

3.1 3.2 (13)

2 (13) (13)

(13)

(13)

2

(13)
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2

(13) (13) 312 MPa 31 298 MPa 54 2

242 MPa 46 176 MPa 64

(13) MPD

(13) MPD

3

2 (13) (13) 2

2 300 MPa
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18 27 21 5 10

CS

140.5 13.8 g

13.6 2.3 mm 51 7

63 5

20 km/h

(13) (13) 22.2 

33.8 4 4

2

4

1 1 3
7)

4 4

1

2 (13)

6 (13)

1 9

2 (13)

(13)

2 4

5 6

2 2

(13) 2

(13) (13) 2

(13) (13) (13)

4 (13)

8 4
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(13) 3 4

(13)

8 (13)

(13)

10
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8) 9)

1 0 1
10) +1 0 1

10)

(13) 0.6 

(13) 0.3 

 0.3 

 0.4 

1

MPD

100 mm 1 2

MPD

3

MPD MPD 1

0

3 1
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MPD Rsk

Rku

1

FWD

1
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1) 2 2 (13)

(13)

2) 2 2

3) (13)

(13) (13)

(13)

4)

5) 1
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3

1) , 29 1 5 1 pp.1.5.21-1.5.22

2) PRMS 1 2012

3) 10 2013

4) ASTM Standerds: E1845-09 Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth ASTM 2010

5) KEYENCE

https://www.keyence.co.jp/ss/products/microscope/roughness/line/parameters/ 2019.9.5

6) 14 

p.34 2015

7) 3 5 Vol.15

No.1 pp.11-18 2014

8) THPI Vol.2 No.1

pp.41-53 1974

9) No.4 pp.205-

212 1986

10) pp.138-139 1987
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9

2 3

3

MEMS

200 G

1 kHz

24.0 g 

38 53 11 mm 

1000 Hz 

±200 G 

±6000 dps 

±10 Gauss 

XSensor YSensor

ZSensor XGlobal  YGlobal ZGlobal
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(aX, aY,aZ) (AX, AY, AZ)
1) 4.1

3

AX

AY

AZ

=R
aX

aY

aZ

R11 R12 R13

R21 R22 R23

R31 R32 R33

aX

aY

aZ

(4.1)

R11= qW
2 +qX

2 qY
2 qZ

2

R12= 2(qXqY qWqZ)

R13= 2(qXqZ+qWqY)

R21= 2(qXqY+qWqZ)

R22= qW
2 qX

2 +qY
2 qZ

2

R23= 2(qYqZ qWqX)

R31= 2(qXqZ qWqY)

R32= 2(qYqZ+qWqX) 

R33= qW
2 qX

2 qY
2 +qZ

2

AX, AY, AZ 

qW, qX, qY, qZ

aX, aY, aZ

YSensor

XSensor

ZSensor

ZGlobal

YGlobal

XGlobal
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10

Y Z

X 4

X

Y Z

YGlobal

ZGlobal

XGlobal =South

=East

Global

ForeBack

YSensor

ZSensor

XSensor

YSensor

ZSensor

XSensorYSensor

ZSensor
XSensor
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LED

Y Z

iPhone SE, Apple

720p 240 fps 2.3 m

1 m

ImageJ 2.2 mm

4.2 ms

2 3

(1)

Y
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Z

X
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YGlobal

ZGlobal

XGlobal =South

=East

Global

ForeBack
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40 20 2

5 m

3 3

12 mm 300 mm 300 mm

4 G 1600 Hz

iPhone SE, Apple

720p 240 fps

2

1

2
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+1 G

300

mm

aX

aY

aZ AX

AZAY
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2

4

2 A

B

A

B

(a) (b) (c) (d) 

+
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A

0.1542 s

[3] 

0.2459 s

[4]

0.0000 s 0.0292 s

[2][1] 

Peak

Peak

Peak

Peak
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B

0.1626 s 0.3001 s0.0000 s 0.0208 s

[1] [3] [4] [2] 

Peak

Peak

Peak

Peak
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5

FWD

100 mm 10 kg 500 mm 2)

21) 0.40

2 1 2 m/s 2 3m/s

3 4 m/s 3

10 m 20 m 5 20 m

3 1

15 5

5 9

5 %

3),4)

5

 [mm] 
[ ] 

2) 

[MPa]

ILB) 60 35 283

As  50 32 371

Sand  50 38 128

Grass
30 

37 18

Wood  30 44 13
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B ILB

ILB) As

Sand Grass

Wood

0.0 0.2 0.4 0.6 0.8 1.0
-40

-20

0

20

40

Time(s)

1 2
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A

0.7 s

0.6 s

B

0.7 s

3 0.6 s
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Coefficient of acceleration variation

 ILB As Sand Grass Wood 

Low 0.11 0.30 0.50 0.11 0.09 

Nomal 0.06 0.43 1.00 0.06 0.23 

High 0.10 0.16 0.18 0.10 0.17 

Coefficient of acceleration variation

 ILB As Sand Grass Wood 

Low 0.04 0.10 0.10 0.04 0.09 

Nomal 0.06 0.12 0.17 0.06 0.06 

High 0.03 0.10 0.15 0.03 0.15 

A

Speed
Pavement 

PavementSpeed 
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Coefficient of acceleration variation

 ILB As Sand Grass Wood 

Low 0.10 0.03 0.05 0.30 0.17 

Nomal 0.09 0.06 0.08 0.20 0.12 

High 0.10 0.18 0.13 0.64 0.42 

Coefficient of acceleration variation

 ILB As Sand Grass Wood 

Low 0.08 0.09 0.10 0.19 0.11 

Nomal 0.17 0.13 0.14 0.24 0.07 

High 0.20 0.26 0.06 0.23 0.20 

B

Pavement 
Speed 

Pavement 
Speed 
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A

B

B

A

B
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5

B

5 t=50 mm

FWD 100 mm

10 kg 500 mm 2)

0.40

17.5

2 20 C 30 D

2 2

1 2 m/s 2 3m/s 3 4 m/s 3

10 m 20 m 10 m

5 20 m 3 1

10 m

5 4

2 3 2

2 2 4

2

 [mm] 
2) 

[MPa] 

(13) 50 1040 0.48 

SMA(5) 50 903 0.52 

(5)-1 50 869 0.52 

(5)-2 50 846 0.52 

(13) 50 631 0.53 

 50 311 0.58 
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(13) SMA(5)

(5) (13)
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C SMA(5) (5)-1

D

A B C



66 

Coefficient of acceleration variation

(13) 
SMA(5) 

(5)-1 (5)-2 (13) 

 0.05 0.09 0.37 0.23 0.30 0.08

 0.34 0.10 0.13 0.09 0.11 0.25

 0.20 0.22 0.18 0.25 0.33 0.33

Coefficient of acceleration variation

(13) 
SMA(5) 

(5)-1 (5)-2 (13) 

 0.54 0.05 0.20 0.29 0.36 0.12

 0.34 0.30 0.21 0.20 0.52 0.15

 0.24 0.26 0.14 0.14 0.21 0.22

C
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Coefficient of acceleration variation

(13) 
SMA(5) 

(5)-1 (5)-2 (13) 

 0.12 0.08 0.11 0.24 0.07 0.08

 0.35 0.06 0.13 0.14 0.12 0.16

 0.06 0.13 0.38 0.19 0.07 0.09

Coefficient of acceleration variation

(13) 
SMA(5) 

(5)-1 (5)-2 (13) 

 0.06 0.04 0.13 0.05 0.03 0.09

 0.07 0.11 0.17 0.10 0.06 0.35

 0.11 0.15 0.13 0.14 0.08 0.08

D
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C

D

C

D

C

C

D
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D

2

C

D
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9

1)

2) 9

3)

4)

5)

6)
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4

1) MSS Vol. 18, 2007. 

2) 14 

p. 34, 2015. 

3) 100m

Vol. 43, No. 5-6, pp. 260-273, 1998. 

4) Kerdok, A. E., Biewener, A. A., Mcmhon, T. A., Weynd, P. G. and Herr, H. M.: Energetics and mechanics of 

human running on surfaces of different stiffnesses, Journal of Applied Physiology, Vol. 92, No. 2, pp. 469-478, 

2000. 
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3 (13) (13)

3

7

10
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3

3 MPD ASTM E1845-01

JIS

JIS B 0601 2001 JIS B 0651 3 JIS B 

0601 2001

3 MRP

(13) (13) SMA(5)

(5) (13) (13) 6

2 4

3D
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(13) 

(13) 
(13) 60/80 (13)

SMA(5) 
(5) 

(5) 

(5) 
H

(13) 
(13) 

(13) 
(13) H

(13) 

(20) 
20 mm

()
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(13) (13) SMA(5) 

(5) (13) (13) 
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(13) (13) SMA(5) 

(5) (13) (13) 

3D
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(13) (13) SMA(5) 
(5) 

(13) 
(13) 

6  39.4  35.5   69.7  86.0  

7  17.1  24.5  66.0  85.5  8.3  

 8.2  24.5  15.0   17.0  4.5  

 24.8  9.0  7.0 9.0 4.5 

 10.5  6.5  12.0  5.5  5.0  5.0  

 5.8  5.0  6.2  5.6  4.5  5.2  

19.0 mm 100.0  100.0  100.0  100.0  100.0  100.0  

13.2 mm 98.5  97.2  100.0  100.0  97.8  99.9  

4.75 mm 64.4  59.9  100.0  96.1  34.0  18.1  

2.36 mm 46.9  42.5  38.2  22.6  22.5  14.7  

0.60 mm 34.0  23.7  24.4  13.0  11.8  12.3  

0.30 mm 23.3  16.7  19.2  9.9  8.7  9.5  

0.15 mm 12.1  9.5  13.2  6.0  6.1  6.1  

0.075 mm 9.2  6.4  10.1  5.0  4.8  4.4  

g/cm3  2.373  2.424  2.370  2.058  2.053  1.999  

 3.3  2.7  3.5  17.0  17.8  20.2  

1)

 [kg/m3] 

[mm] [cm] [%] W/C [%] 

20 4 5.5 44 0.735 145 330 644 1193 0.825

2.36 mm 2.36 mm

(13) (13) SMA(5) 40 %

(13) SMA(5) 10 %

(5) (13) 80 % 20 %

(13) 70 % (13)

2.36 mm

(13) SMA(5) 2.36 mm

(5) SMA(5) 2.36 mm SMA(5)

(5) (13) (5) 2.36 mm

2.36 mm

(13) 6 (13) 6 2.36 mm

(13) (13) SMA(5) (5) (13) (13)
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2.36 mm
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3 MPD

300 mm 300 mm 50 mm

4

4

MRP 50 mm

3 100 mm ISO 13473-2:2002

ASTM E1845-09

=0 MPD

0.3 mm  0.03 

mm 0.5 mm 300 mm

50 mm 200 mm

(13)

(13) (13) (13)

 SMA(5) (5)

5 mm 13 mm (13)

(13)
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(13) (13) 

SMA(5) (5) 

(13) (13) 

No.1 )
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MPD MPD 100 

m 50 mm (13) (13)

2.0 mm (13) (13) 1.0 mm

SMA(5) (5)

(5) SMA(5)

6 8

(13) 1.6 6

7

3 (13) SMA(5) (13) (13) Rku=3.9

4.4

(5) 3.0

(13) (13) MPD

MPD
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Rsk

Rku
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100 mm

3D

VR-5000 KEYENCE 3D LED

400 C-MOS

csv

3 47.116 m

0.1 m 100 mm

=0

0.1 %

(13) (13) 0.3 mm 0.5 

mm (13) (13)

(13) (13) 0.5 mm 1 mm

0.6 mm (13) (13)

0.8 mm

0.8 mm

1.5 mm 1.5 mm
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10

(13) 7850 mm2

20 % 20 %

20 % 20 %

(a)

(b)

(c)

20 %
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10

(13) (13) SMA(5)

(5) (13)

(13) 2

0.8 mm 10 %

20 %

6 4

(13) 0.28 mm

(13) SMA(5) 0.35 mm 0.36 mm (5) (13)

(13) 0.78 mm 6 1.1 mm

(13) (5) (13)

10 2.20 mm

20 %
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MPD

(13) (13) MPD

20 %

(13) (13) SMA(5)

(5) (13)
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3

4

2

4
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 5

5 5 1 N

0.01 0.03 s

0.045 0.165 MPa2)

4

0.025 0.102 MPa 200 400 600 800N

600 12,000 MPa3) 28,000 MPa 3)

4

0.102 MPa 800 N 0.076 MPa 600 N 0.051 MPa 400 

N 0.025 MPa 200 N

20 25 

7 7.9

26.5

AG-50kN X-Plus

d1- d2

d1-

d2 d1 d2

d1 d2 iPhone7

Image J Fiji

d3

3D
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Creator Pro FLASHFORGE 3D 2

3D

6

3D 3D

0.26 0.55

3D 10 PLA

3D

10 20 mm

3D

4)

5) NR

53

3 mm 65

100 mm

800 200 N
(0.102 0.025 MPa)

155 10 (s)0

7800 mm2

0.025 0.102 MPa
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(mm)O

800 N 200 N

=

Di

d2

d0
d1
d2
d3
d1 d2

d1

d3

d1

d3

(b) (a) 

d0 d0
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A 65 JIS K 6253  A

 Mpa 3.9 JIS K 6251 

 % 250 JIS K 6251 

 % 34 ] 

10 ] 

 % 10  

 % 24  

0.102 MPa(800 N)

6

(13) (13) 0.102 MPa

3

0.05 0.2 MPa 0.2 0.6 MPa

0.5 2.5 MPa 25

3 1

1

20 3 4 240

GT-X830  FPD-

8010J csv Image 

J Fiji



95 

 [MPa] 

1  0.05  0.2 

2  0.2  0.6 

3  0.5  2.5 

6)

0.02 0.03 s

0.02 0.03 s EX-F1 CASIO 336 96 px

1200 fps

25.5 mm 65 mm

65 mm

0.0200 0.0225 s 0.02125 s

3 Acc Stick
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0.51 m

86 

3.159 m/s

0.02125 s

100

20 25 

5 4

6.35 mm 25.5 mm 76.5 mm 1

65

24 g
38 mm 53 mm 11 mm
800 Hz

100 mm
65 mm

76 mm 25.5 mm 6 mm

76 mm

1580 g
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3D

3D

0.102 MPa 0.076 MPa

0.051 MPa 0.025 MPa 3D

(13)

(13) (13) (13)

(13) (13) (13) SMA(5) (5)

3D

3D

0.102 MPa 800 N

3D

(13) (13) SMA(5)

(5) (13) (13) 3D

65 mm
Va=3.159[m/s]

Vb [m/s]

L=0.51 m

= 86

Va=
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3D

 0.102 MPa  800 N

3D

 0.076 MPa  600 N

3D

 0.051 MPa  400 N

3D

 0.025 MPa  200 N
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3D

 0.102 MPa  800 N



100 

3D

0.2 mm (13)

(13) SMA(5) (5) 3D

0.3 mm (13) (13) 3D

3D

2

1.5 GPa SMA

3.0 GPa7),8) 3D PLA

3.5 GPa9) 3D

3D

3D PLA

0.1 mm

3D

3D
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3D

0.102 MPa

5.1 0.876

D0.102MPa = 0.3482 x - 0.0151 (0.276 x 0.816) (5.1)

D0.102 MPa 0.102 MPa  [mm] 

x  [mm] 
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(5)

0.102 MPa

(5)

(13) (13) (13) (13)

(13) (13)

(13) (13)

 0.025 MPa  0.076 MPa 

 0.051 MPa  0.025 MPa

(5)
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(13) (13)

SMA(5) (5)

(13) (13)

 0.102 MPa
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0.125 mm 1 0.015625 mm2

7850 mm2 6

3D

3D 3D

3D

(13) (13) 3D

1:1 (13) (13) SMA(5) (5) 10 %
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3D
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3D
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3D

5.2 5.5 0.102 MPa

0.917 0.076 MPa 0.902 0.051MPa 0.894 0.025 

MPa 0.860

A0.102MPa = 26.4 x + 41.9 (0.276 x 0.816) (5.2)

A0.076MPa = 23.6 x + 36.0 (0.276 x 0.816) (5.3)

A0.051MPa = 16.7 x + 25.6 (0.276 x 0.816) (5.4)

A0.025MPa =  7.7 x + 13.6 (0.276 x 0.816) (5.5)

A0.102 MPa 0.102 MPa  [%] 

A0.076MPa 0.076 MPa  [%] 

A0.051MPa 0.051 MPa  [%] 

A0.025MPa 0.025 MPa  [%] 

x  [mm] 
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3D
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0.102 MPa 0.0 MPa

3.1 MPa (13)

9

(13) (13) SMA(5) (5) (13)

(13) (13)

SMA(5) (5)
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(13) (13)

SMA(5) (5)

(13) (13)

 0.102 MPa
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0.102 

MPa 800 N 800 N 500 N

800 N 63 % 0.025 MPa 200 N

m m 1

3D

0.0763 MPa 3D

3D 3D
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3D
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3D

0.102 MPa 800 N

(13) (13) SMA(5)

(5) 70 % (13) 60 % (13) 55 %

(13) 6 15 %

(13) 2 %

3D

(13) (5) 3D

3D

3D

3D

3D
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3D
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3D

3D

5.6 0.903

P0.102MPa = 24.4 x  4.19 (0.276 x 0.816) (5.6)

P0.102 MPa 0.102 MPa  [%] 

x  [mm] 
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3D

3D
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d3

d3

1

3D

2 3

2 200 N 800 N

0.8 80 %

0.8 d3

d3
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0.102 MPa 800 N 200 N

0.8 d3 d3

d3

200 N (13) (13) 0.11 mm 0.13 mm SMA(5) (5)

(13) 0.17 mm (13) 0.27 mm

(13) (13) SMA(5) (5) (13) 0.04 0.06 mm

800 N (13) 0.21 mm (13) 0.51 

mm
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(13) (13)

SMA(5) (5)

(13) (13)
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(13) (13)

SMA(5) (5)

(13) (13)
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d3 d3

0.102 MPa

5.7

0.904

d 0.102MPa = 0.66 d3 - 0.067 (0.211 x 0.508) (5.7)

d 0.102 MPa 0.102 MPa  [mm] 

d3  [mm] 
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1

(13) (13) 

(13) (13)

(13) (13)
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(13)

(13)

1
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1

(13) 2.94 m/s (13)

2.90 m/s 3D

6.6 7.0 % (13) (13)

(13) 3D

3D 5.8 7.1 m/s

3D

5.49 (13) (13) (13) (13)

3D

3D

3D
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3D

1

Va=3.159[m/s] Vb

Va=3.159[m/s] Vb
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3D

3D
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3D

5.8 0.819

S = 0.74 x  6.483 (0.211 x 0.508) (5.8)

S  [%]

x  [mm] 
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65

3D
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10) 582 kN/m

2 1.5 GPa 3.0 GPa8),9)

28 GPa3)

2
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3D

3D

0.102 MPa 0.076 MPa

0.051 MPa 0.025 MPa 3D

4

400 N 400 N 800 

N 3

3D 4
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3D

 0.102 MPa  800 N

3D

 0.076 MPa  600 N

3D

 0.051 MPa  400 N

3D

 0.025 MPa  200 N
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0.102 MPa 800 N 3D

4

400 N 400 N 800 N

3

3D

4

3

3D

3D

3D

3D

3D

3D

28 GPa 3) 3D

PLA 3.5 MPa9)

3D

1 mm

1 mm

1 mm

11)

2.4 mm 3.0 mm

1 mm

1 mm

3D

1 mm 1 mm

1 mm
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3D

 0.102 MPa  800 N
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3D
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0.102 MPa 800 N

3D

(13) (13)

3D

1 mm
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 0.102 MPa
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3D  0.102 MPa
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3D

3D

0.102 MPa 800 N 1690 mm2 2340 mm2

3D 3D

3D

3D



143 

3D
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3D
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0.102 MPa 800 N

3D

0.0 MPa 3.1 MPa

3D

3D
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 0.102 MPa
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3D  0.102 MPa
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0.102 MPa 800 N

3D

4

55 % 13 %

4 0.8 %

3D 55 %

13 % 48 %

15 %

15 % 12 %

3D

3D

1 %

3D 10 15 %
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3D



150 

1

6.20 m/s

7.53 m/s

2

3D

3D

3D
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3D

1

Va=3.159[m/s] Vb

Va=3.159[m/s] Vb
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3D

0.44 mm 0.11 mm 0.46 mm

0.75 mm 0.3 mm

1 %

2
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3D

20 %

65
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