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General Introduction 

Mammalian platelets vary widely in their responses to catecholamines and other -

adrenergic agents.29,60,66 In humans, adrenaline- and noradrenaline-induced platelet aggregation 

is mediated by 2-adrenoceptors; this aggregation is blocked by 2-adrenoceptor antagonists but 

not by 1-adrenoceptor antagonists.20,26,32,53 Radioligand binding studies have revealed the 

existence of 2-adrenoceptors on platelet membranes of dogs, cats, rabbits,24 and humans.31,40, 

41,59 However, there is a lack of 2-adrenoceptors on platelet membranes of rats, cattle, and 

horses.24 Adrenaline is considered a rather weak platelet agonist, the function of which is 

primarily to sensitize platelets to other activating agents in humans.3,25 In dogs,23 cats,22,69 and 

rabbits,75 adrenaline alone does not induce platelet aggregation but it does potentiate platelet 

aggregation stimulated by other platelet agonists including adenosine diphosphate (ADP), 

collagen, and thrombin. This adrenaline-potentiated platelet aggregation is also mediated by 2-

adrenoceptors in dogs23 and rabbits.75 In contrast to humans, dogs, and rabbits, adrenaline in 

cattle and horses does not potentiate platelet aggregation induced by other platelet agonists such 

as ADP, collagen, thrombin, or platelet-activating factor.7,61,64,76

Some adrenoceptor agents have imidazoline-like chemical structures. Clonidine, an 

imidazole 2-adrenoceptor agonist, has a complex effect on platelets. For example, clonidine 

binds with a high affinity to 2-adrenoceptors on platelets but induces only limited platelet 

aggregation, in contrast to the effect of endogenous agonists such as adrenaline.20,26 Moreover, 

clonidine potentiates ADP-induced aggregation of human platelets but has inhibitory activity for 

adrenaline- and noradrenaline-induced platelet aggregation.59,63 Although the mechanism 

underlying these conflicting actions of clonidine is unclear, imidazoline agents may interact with 
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non� 2-adrenoceptor binding sites on platelets.5,11,12 Nonadrenergic Imidazoline-preferring 

binding site 1(I1) and Imidazoline-preferring binding site 2(I2) receptors that are 

pharmacologically distinct from 2-adrenoceptors have been detected in human,39,51,52,78 canine, 

feline, bovine, and equine platelets.24 Furthermore, canine, feline, bovine, and equine platelets 

have I1 receptors that are defined by binding to tritiated clonidine, but murine and leporine 

platelets do not have I1 receptors. Conversely, platelets of all species have I2 receptors that are 

defined by binding to tritiated idazoxan.24 In addition, the density of I1 and I2 receptors and 2-

adrenoceptors differs among animal species.24 These variations for receptors may reflect 

differences among animal species regarding the platelet aggregation response. However, there is 

no information available concerning the platelet aggregatory effects of -adrenergic agents in 

cats. Comparative studies on the effects of imidazolines on aggregation of feline platelets may be 

important for the characterization of platelet receptors and may be useful to elucidate the 

function of imidazoline receptors.  

In cats, 2-adrenoceptor agonists such as xylazine, medetomidine, and dexmedetomidine are 

widely used as sedative, analgesic, and muscle relaxant agents, whereas 2-adrenoceptor 

antagonists such as atipamezole and yohimbine are often used for to reverse the effects of the 

aforementioned agonists. These drugs differ in that medetomidine, dexmedetomidine, and 

atipamezole have imidazoline-like chemical structures, whereas xylazine and yohimbine do not. 

It also may be important to determine whether imidazoline structures affect the response of 

platelets.  

In cats, overactivity of the sympathetic nervous system and increased catecholamine 

concentrations are induced in conditions such as pheochromocytoma72 endotoxin shock17 and 

acute stress56. Hypercatecholaminemia reportedly has an influence on hemostasis such as 
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disseminated intravascular coagulation6 and thromboembolism10,14,62 by acting on platelets. 

Because both medetomidine and xylazine reduce plasma concentrations of adrenaline and 

noradrenaline in cats27 it may be important on blood homeostasis to examine the platelet 

response in cats administered systemically with medetomidine or xylazine. However, to the best 

of our knowledge, there are no published reports on the blood platelet aggregation in cats that 

were administered xylazine or medetomidine systemically.  

Therefore, this study was conducted to investigate the effects of imidazoline and 

nonimidazoline -adrenoceptor agonists and antagonists including medetomidine, 

dexmedetomidine, xylazine, atipamezole, and yohimbine on platelet aggregation in cats. In 

chapter 1, the study was aimed to investigate the effects of various imidazoline or 

nonimidazoline -adrenergic agents on ·² ª·¬®± platelet aggregation and antiaggregation in 

healthy cats. In chapter 2, the study aimed to investigate and compare the effects of 

medetomidine and xylazine administered systemically on »¨ ª·ª± platelet aggregation in healthy 

cats. 
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Chapter 1 

and antagonists, including xylazine, medetomidine, 

dexmedetomidine, yohimbine, and atipamezole, on aggregation of 

feline platelets 
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Introduction 

 Platelet responses to catecholamines and other -adrenergic agents differ widely among 

animal species.29,60,66 In humans, adrenaline- and noradrenaline-induced platelet aggregation is 

mediated by 2-adrenoceptors; this aggregation is blocked by 2-adrenoceptor antagonists but 

not by 1-adrenoceptor antagonists.20,26,32,53 Radioligand binding studies have revealed the 

existence of 2-adrenoceptors on platelet membranes of dogs, cats, rabbits,24 and 

humans;31,40,41,59 however, there is a lack of 2-adrenoceptors on platelet membranes of rats, 

cattle, and horses.24 Adrenaline is considered a rather weak platelet agonist, the function of 

which is primarily to sensitize platelets to other activating agents in humans.3,25 Adrenaline alone 

does not induce platelet aggregation in dogs,23 cats,22,69 and rabbits,75 but it does potentiate 

platelet aggregation stimulated by other platelet agonists including ADP, collagen, and thrombin. 

Adrenaline-potentiated platelet aggregation is also mediated by 2-adrenoceptors in dogs23 and 

rabbits.75 Conversely, in contrast to humans, dogs, and rabbits, adrenaline in cattle and horses 

does not potentiate platelet aggregation induced by other platelet agonists such as ADP, collagen, 

thrombin, or platelet-activating factor.7,61,64,76 Physiologic concentrations of adrenaline enhance 

shear-dependent platelet aggregation and platelet-to-platelet interactions on collagen.19,45

Overactivity of the sympathetic nervous system and increased catecholamine concentrations 

are induced in conditions such as pheochromocytoma,72 endotoxin shock,16,21 and acute stress56

in cats. Hypercatecholaminemia reportedly has an influence on hemostasis (eg, disseminated 

intravascular coagulation6 and thromboembolism10,13,62) through actions on platelets. Information 

about drugs that inhibit platelet aggregation stimulated by catecholamines may also be useful for 
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the control and management of hemostasis in diseases or conditions associated with 

hypercatecholaminemia in small animals. 

The imidazoline chemical structure is found in many pharmaceutical drugs with a variety of 

biological activities, including antifungal (eg, miconazole), antihypertensive (eg, losartan), 

antiulcer (eg, cimetidine), and antiplatelet agents that inhibit thromboxane A2 synthesis (eg, 

ozagrel). Some adrenoceptor agents have imidazoline-like chemical structures. Clonidine, an 

imidazole 2-adrenoceptor agonist, has a complex effect on platelets. For example, clonidine 

binds with a high affinity to 2-adrenoceptors on platelets but induces only limited platelet 

aggregation, in contrast to the effect of endogenous agonists such as adrenaline.20,26 Moreover, 

clonidine potentiates ADP-induced aggregation of human platelets but has inhibitory activity for 

adrenaline- and noradrenaline-induced platelet aggregation.59,63 Although the mechanism 

underlying these conflicting actions of clonidine is unclear, imidazoline agents may interact with 

non� 2-adrenoceptor binding sites on platelets.5,11,12 Two clonidine-related drugs reportedly 

inhibit platelet adenylate cyclase through non� 2-adrenoceptor mechanisms because their effects 

are not blocked by yohimbine.16 In addition, a clonidine-displacing substance extracted from 

bovine brain tissue4 is recognized as a noncatecholamine endogenous ligand and interacts with 

nonadrenoceptor sites in the brainstem, which was determined via the use of tritiated °-

aminoclonidine.38 Nonadrenergic I1 and I2 receptors that are pharmacologically distinct from 2-

adrenoceptors have been detected in human,39,51,52,78 canine, feline, bovine, and equine 

platelets.24 Furthermore, canine, feline, bovine, and equine platelets have I1 receptors that are 

defined by binding to tritiated clonidine, but murine and leporine platelets do not have I1

receptors. Conversely, platelets of all species have I2 receptors that are defined by binding to 

tritiated idazoxan.24 In addition, the density of I1 and I2 receptors and 2-adrenoceptors differs 
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among animal species.24 These variations for receptors may reflect differences among animal 

species regarding the platelet aggregation response. However, there is no information available 

concerning the platelet aggregatory effects of -adrenergic agents in cats. Comparative studies 

on the effects of imidazolines on aggregation of feline platelets may be important for the 

characterization of platelet receptors and may be useful to elucidate the function of imidazoline 

receptors.  

In cats, 2-adrenoceptor agonists such as xylazine, medetomidine, and dexmedetomidine are 

widely used as sedative, analgesic, and muscle relaxant agents, whereas 2-adrenoceptor 

antagonists such as atipamezole and yohimbine are often used for to reverse the effects of the 

aforementioned agonists. These drugs differ in that medetomidine, dexmedetomidine, and 

atipamezole have imidazoline-like chemical structures, whereas xylazine and yohimbine do not. 

It also may be important to determine whether imidazoline structures affect the response of 

platelets. Therefore, the objective of the study reported here was to investigate effects of various 

imidazoline or nonimidazoline -adrenergic agents on in vitro aggregation and antiaggregation 

of feline platelets. 

Materials and methods 

Sample

Blood was collected from 12 healthy adult mixed-breed cats. Cats were from 2 to 7 years of 

age and comprised 8 males and 4 females; body weight ranged from 3.2 to 5.0 kg. Cats were 

housed in a laboratory with appropriate animal management facilities and fed a standard 

commercial dry food; water was available ad libitum. Blood was repeatedly collected from each 

cat at intervals of   2 weeks. Cats were examined (physical examination and hematologic 
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analysis) prior to each blood collection to ensure that they were healthy. The study protocol was 

approved by the Animal Research Committee of Tottori University.  

Preparation of citrated platelet plasma

Blood was collected for use in platelet aggregation experiments. Food was withheld from 

cats for at least 6 hours before blood collection. Jugular blood samples (9 mL) were collected 

with a 21-gauge needle into a 10-mL plastic syringe containing 3.8% sodium citrate solution 

(ratio, 1 part anticoagulant to 9 parts blood). Citrated platelet plasma was prepared in accordance 

with a modification of methods described elsewhere.22,23 Blood was centrifuged at 90 to 110 × ¹

for 10 to 15 minutes to obtain Platelet-rich plasma (PRP). The Platelet-poor plasma (PPP) then 

was obtained by centrifuging PRP at 1,500 × ¹ for 15 minutes. The final platelet count was 

adjusted to 25 to 30 × 104 platelets/µL via dilution with autologous PPP. 

Aggregation experiments

The study consisted of 7 platelet aggregation experiments; aggregation experiments were 

performed as previously described.23,26,75,76 Briefly, a turbidimetric method was used. An aliquot 

(200 µL) of PRP was placed in an aggregometer (MCM Hema tracer 804, LMS Co Ltd, Tokyo, 

Japan) at 37°C, and an aliquot (22 µL) of test agent was added to the PRP 1 minute later. The 

percentage aggregation was standardized via the assumption that PPP and PRP represented 100% 

and 0% light transmission, respectively. 

Drugs used in the study included L-adrenaline, L-noradrenaline, and phenoxybenzamine HCl 

(Tokyo Kasei Industries Co, Tokyo, Japan); °-aminoclonidine HCl, antazoline HCl, clonidine 

HCl, idazoxan HCl, methoxamine HCl, moxonidine HCl, naphazoline HCl, oxymetazoline HCl,
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phentolamine HCl, L-phenylephrine HCl, prazosin HCl, tolazoline HCl, xylazine HCl, 

xylometazoline HCl, and yohimbine HCl (Sigma Chemical Co, St Louis, Mo); tramazoline HCl 

(Boehringer-Ingelheim Corp, Hyogo, Japan); atipamezole HCl, detomidine HCl, and 

medetomidine HCl (Farmos Group Ltd, Turku, Finland); dexmedetomidine HCl (Maruishi 

Pharmaceutical Co Ltd, Osaka, Japan); and  ADP and collagen (LMS Co Ltd, Tokyo, Japan).

 Adrenaline and noradrenaline were dissolved in 0.04M HCl solution and then diluted with 

sterile saline (0.9% NaCl) solution. Prazosin and phenoxybenzamine were dissolved in sterile 

distilled water and then diluted with sterile saline solution. All other drugs were dissolved in 

sterile saline solution. In addition, sterile saline solution was used as a negative control agent 

throughout the experiments.  

Both prazosin and phenoxybenzamine could be dissolved in sterile distilled water at 

concentrations up to 100 µmol/L, but both agents at higher concentrations (1 mmol/L) became 

cloudy and could not be completely dissolved in distilled water. Because cloudy solutions 

influence the percentage aggregation on the basis of light transmission, we did not determine 

percentage aggregation of both agents at 1 mmol/L. In addition, we did not determine percent 

aggregation of higher concentrations of 1 mmol/L medetomidine and 0.1 to 1 mmol/L 

dexmedetomidine, because we used the drug solution products rather than drug powders for both 

agents. 

The drugs were categorized as -adrenoceptor agonists (adrenaline, noradrenaline, 

clonidine, °-aminoclonidine, xylazine, medetomidine, detomidine, dexmedetomidine, 

oxymetazoline, xylometazoline, moxonidine, tramazoline, naphazoline, phenylephrine, and 

methoxamine), -adrenoceptor antagonists (yohimbine, phentolamine, atipamezole, idazoxan, 

tolazoline, phenoxybenzamine, and prazosin), imidazoline -adrenoceptor agonists (clonidine, °-
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aminoclonidine, medetomidine, detomidine, dexmedetomidine, oxymetazoline, xylometazoline, 

moxonidine, tramazoline, and naphazoline), imidazoline -adrenoceptor antagonists 

(phentolamine, atipamezole, idazoxan, and tolazoline), nonimidazoline -adrenoceptor agonists 

(adrenaline, noradrenaline, xylazine, phenylephrine, and methoxamine), nonimidazoline -

adrenoceptor antagonists (yohimbine, phenoxybenzamine, and prazosin), and imidazoline non�

-adrenoceptor agonists (antazoline). 

The protocol of each experiment is summarized in Figure 1. In experiment 1, platelet 

aggregation effects of -adrenergic agents alone were evaluated. An aliquot of PRP was placed 

in the aggregometer; 1 minute later, 21 -adrenoceptor agonists or antagonists (Adrenaline, 

noradrenaline, clonidine, xylazine, medetomidine, detomidine, dexmedetomidine, 

oxymetazoline, xylometazoline, moxonidine, tramazoline, naphazoline, phenylephrine, 

methoxamine, antazoline, yohimbine, phentolamine, atipamezole, idazoxan, tolazoline, and 

prazosin) at final concentrations of 0.1 nmol/L to 1 mmol/L (except for medetomidine at 1 

mmol/L, dexmedetomidine at 0.1 to 1 mmol/L, and prazosin at 1 mmol/L) were added to the 

PRP (time 0), and the maximum percentage aggregation was recorded during the subsequent 10-

minute interval. 

In experiment 2, aggregation effects of ADP or collagen were examined. An aliquot of 

PRP was placed in the aggregometer; 1 minute later, ADP (0 to 10 µmol/L) or collagen (0 to 10 

µg/mL) was added to the PRP (time 0), and the maximum percentage aggregation was recorded 

during the subsequent 10-minute interval. 

In experiment 3, the stimulatory or inhibitory effects of -adrenergic agents on ADP- or 

collagen-induced aggregation were examined. An aliquot of PRP was placed in the 

aggregometer; 1 minute later, 12 -adrenergic agents (adrenaline, noradrenaline, oxymetazoline, 
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xylometazoline, clonidine, medetomidine, detomidine, xylazine, naphazoline, tramazoline, 

phenylephrine, and methoxamine) at final concentrations of 1 nmol/L to 1 mmol/L, except for 

medetomidine at 1 mmol/L, were added and 1 minute after that, ADP (0.5 µmol/L) or collagen 

(0.5 or 1 µg/mL) was added (time 0). In addition, dose-dependent effects of ADP on platelet 

aggregation were evaluated. Adrenaline (100 µmol/L), noradrenaline (100 µmol/L), 

oxymetazoline (10 µmol/L), or xylometazoline (10 µmol/L) were added to PRP; 1 minute later, 

ADP (0.1 to 10 µmol/L) was added (time 0). The maximum percentage aggregation during the 

10-minute interval after the addition of ADP or collagen was recorded.  

In experiment 4, inhibitory effects of imidazoline and nonimidazoline -adrenergic agents 

on platelet aggregation induced by adrenaline and ADP were examined. An aliquot of PRP was 

placed in the aggregometer; 1 minute later, 19 agents (yohimbine, atipamezole, idazoxan, 

phentolamine, tolazoline, phenoxybenzamine, prazosin, naphazoline, tramazoline, 

xylometazoline, antazoline, clonidine, medetomidine, oxymetazoline, detomidine, °-

aminoclonidine, phenylephrine, xylazine, and methoxamine) at final concentrations of 1 nmol/L 

to 1 mmol/L (except for medetomidine, phenoxybenzamine, and prazosin at 1 mmol/L) were 

added. Then 0.5 minutes later, adrenaline (100 µmol/L) was added, and 0.5 minutes after that, 

ADP (1 µmol/L) was added (time 0). The maximum percentage aggregation was determined 

during the 10-minute interval after the addition of ADP. 

In experiment 5, inhibitory effects of imidazoline and nonimidazoline -adrenergic agents 

on platelet aggregation induced by adrenaline and collagen were examined. An aliquot of PRP 

was placed in the aggregometer; 1 minute later, 14 agents (yohimbine, atipamezole, idazoxan, 

phentolamine, tolazoline, prazosin, naphazoline, antazoline, clonidine, medetomidine, 

oxymetazoline, dexmedetomidine, moxonidine, and xylazine) at final concentrations of 1 nmol/L 
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to 100 µmol/L, except for dexmedetomidine at 100 µmol/L, were added. Adrenaline (10 µmol/L) 

was added 0.5 minute later, and collagen (1, 2, or 3 µg/mL) was added 0.5 minutes after that 

(time 0). The maximum percentage aggregation was determined during the 10-minute interval 

after the addition of collagen. 

In experiment 6, effects of a combination of 2-adrenoceptor agonists and antagonists on 

platelet aggregation induced by adrenaline and collagen were examined. An aliquot of PRP was 

placed in the aggregometer; 1 minute later, 2 agonists (yohimbine and atipamezole), 2 

antagonists (xylazine and medetomidine), and their combinations were added (final 

concentrations, 1 nmol/L to 100 µmol/L). Adrenaline (10 µmol/L) was added 0.5 minutes later, 

and collagen (1, 2, or 3 µg/mL) was added 0.5 minutes after that (time 0). The maximum 

percentage aggregation was determined during the 10-minute interval after the addition of 

collagen.  

In experiment 7, effects of -adrenoceptor antagonists on platelet aggregation induced by 

ADP were examined. An aliquot of PRP was placed in the aggregometer; 1 minute later, 3 

antagonists (phentolamine, atipamezole, and yohimbine) at final concentrations of 1 nmol/L to 

100 µmol/L were added. Then, 1 minute later, ADP (10 µmol/L) was added (time 0). The 

maximum percentage aggregation was determined during the 10-minute interval after the 

addition of ADP. 

Examples of representative recorder tracings of feline platelet aggregation in 7 experiments 

are shown in Figure 2. 

Statistical analysis
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The statistical analysis was performed with commercially available software (Prism, version 

7.0, GraphPad Software Inc, San Diego, Calif). Data were reported as the mean ± SE.  

To determine the inhibitory effect of the agents on platelet aggregation, the concentration of 

an agent at which the response is inhibited by half (IC50) was obtained from the concentration�

response curve. The IC50, Concentration of an agent that caused a half-maximal response (ED50),

and percentage aggregation data were assessed for normality of distribution with the Shapiro-

Wilk test. When the data were normally distributed, the Student ¬ test was used for comparisons 

between agents. When the data were not normally distributed, the Wilcoxon�Mann�Whitney test 

was used to determine significant differences. The paired ¬ test was used to determine significant 

differences for change in percentage aggregation that were expressed as a percentage of the value 

for the control agent, which was assigned a value of 100%. For all tests, differences were 

considered significant at values of Ð < 0.05. 



16 

Figure 1. Graphical flow diagram for the protocol of 7 aggregation experiments performed in this 
study. Exp = experiment. 
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Figure 2. An example of representative recorder tracings of feline platelet aggregation induced 
by adrenaline alone

phentolamine + adrenaline + collagen (F; experiment 5; 10 and 100 nmol/L, and 1 and 10 
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Results 

None of the 21 agents tested at concentrations ranging from 0.1 nmol/L to 1 mmol/L elicited 

aggregation in feline platelets (data not shown). 

Both ADP and collagen induced aggregation of feline platelets in a dose-dependent manner 

(Figure 3). The aggregatory effects of ADP at concentrations exceeding 0.5 mol/L or of 

collagen at concentrations exceeding 0.5 g/mL were significantly different from those of the 

control agent (saline solution). On the basis of these results, the concentration close to the 

submaximal amount of aggregation (< 25%) of ADP (0.5 mol/L) or collagen (0.5 to 1 g/mL) 

was chosen to examine the stimulatory effects of -adrenergic agents on ADP- or collagen-

induced platelet aggregation. By contrast, an ADP concentration (10 mol/L) that induced 

almost complete platelet aggregation (> 70% aggregation) was chosen to examine the inhibitory 

effects of -adrenergic agents on ADP-induced platelet aggregation. 

(experiment 3)

Adrenaline and noradrenaline at concentrations of 1 mol/L to 1 mmol/L potentiated in a 

dose-dependent manner the platelet aggregation stimulated by a low dose (0.5 mol/L) of ADP 

(Figure 4). The maximum and full aggregatory effect for the mean percentage aggregation was 

observed with adrenaline and noradrenaline at a concentration of 1 mmol/L. However, there was 

no significant difference in mean aggregation values between adrenaline concentrations of 100 
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mol/L and 1 mmol/L and between noradrenaline concentrations of 100 mol/L and 1 mmol/L. 

The mean percentage aggregation for adrenaline concentrations of 100 mol and 1 mmol/L was 

significantly greater than for adrenaline at a concentration of 10 mol/L. A small but 

significantly different potentiation of the ADP-stimulated platelet aggregation was also observed 

in response to oxymetazoline and xylometazoline at concentrations of 1 to 100 mol/L, and the 

maximum aggregatory effect was observed at an oxymetazoline concentration of 1 mol/L and a 

xylometazoline concentration of 10 mol/L. There were no significant differences between 

oxymetazoline and adrenaline and between xylometazoline and adrenaline at concentrations of 1 

or 10 mol/L. Oxymetazoline and xylometazoline at higher concentrations (100 mol/L to 1 

mmol/L) had an inhibitory effect.  

Incubation of platelets with adrenaline (100 mol/L), noradrenaline (100 mol/L), 

oxymetazoline (10 mol/L), or xylometazoline (10 mol/L) before the addition of ADP resulted 

in dose-dependent leftward shifts of the concentration-effect curve for ADP, compared with 

result for incubation with saline solution before the addition of ADP (Figure 4). The mean ± SE 

ED50 of ADP that caused 50% aggregation was 0.66 ± 0.16 mol/L after incubation with 

adrenaline, 0.94 ± 0.17 mol/L after incubation with noradrenaline, 0.55 ± 0.1 mol/L after 

incubation with in oxymetazoline, 0.43 ± 0.1 mol/L after incubation with xylometazoline, and 

1.89 ± 0.18 mol/L after incubation with the control agent. The ED50 values of ADP for these 4 

agents were significantly lower than for the control agent. Conversely, clonidine, medetomidine, 

detomidine, xylazine, naphazoline, tramazoline, phenylephrine, and methoxamine did not 

potentiate the ADP-stimulated platelet aggregation at concentrations of 1 nmol/L to 1 mmol/L. 
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Adrenaline potentiated in a dose-dependent manner the platelet aggregation stimulated by 

collagen (0.5 to 1 mg/mL; Figure 4). The maximum and full aggregatory effect was observed 

with adrenaline at a concentration of 100 mol/L. 

-

(experiment 4)

The 2-adrenoceptor antagonist yohimbine and 4 imidazoline 2-adrenoceptor antagonists 

(phentolamine, atipamezole, idazoxan, and tolazoline) at concentrations of 1 mol/L to 1 

mmol/L inhibited in a dose-dependent manner the full platelet aggregation induced by the 

combination of adrenaline at a concentration of 100 mol/L and ADP at a concentration of 1 

mol/L (Figure 5). By contrast, the nonimidazoline 1-adrenoceptor antagonist 

phenoxybenzamine significantly inhibited platelet aggregation induced by adrenaline and ADP 

only at a high phenoxybenzamine concentration of 100 mol/L, but the inhibition was less (by 

approx 65%). Another nonimidazoline -adrenoceptor antagonist (prazosin) at concentrations up 

to 100 mol/L was not effective at inhibiting the adrenaline-ADP induced aggregation. 

Conversely, 8 imidazoline -adrenoceptor agonists (oxymetazoline, naphazoline, tramazoline, 

clonidine, °-aminoclonidine, xylometazoline, medetomidine, and detomidine) at concentrations 

of 1 mol/L to 1 mmol/L also inhibited in a dose-dependent manner the adrenaline-ADP induced 

platelet aggregation. Antazoline, an imidazoline devoid of 2-adrenergic activity, at 

concentrations of 1 mol/L to 1 mmol/L also inhibited in a dose-dependent manner the 

adrenaline-ADP induced platelet aggregation. By contrast, 2 nonimidazoline -adrenoceptor 

agonists (xylazine and phenylephrine) significantly inhibited the adrenaline-ADP induced 
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aggregation at a high concentration of xylazine or phenylephrine of 1 mmol/L, but the inhibition 

was less (by approx 40%). Another nonimidazoline -adrenoceptor agonist (methoxamine) at all 

concentrations was not effective at inhibiting the adrenaline-ADP induced aggregation. 

The IC50 values obtained for the inhibition of adrenaline-ADP�induced platelet aggregation 

were summarized (Table 1). The order of potencies determined on the basis of the IC50 values 

was as follows: phentolamine > atipamezole > idazoxan > naphazoline > antazoline > 

xylometazoline, yohimbine, tramazoline, oxymetazoline, and clonidine > medetomidine > 

tolazoline > detomidine > °-aminoclonicine >> phenoxybenzamine. The potencies of 

atipamezole, idazoxan, and naphazoline for inhibiting aggregation were not significantly 

different from that of phentolamine. The potencies of yohimbine, oxymetazoline, clonidine, and 

medetomidine were significantly less (9- to 17-fold difference) from that of phentolamine. The 

potency of detomidine, °-aminoclonidine, and phenoxybenzamine were significantly less (36- to 

91-fold difference) from that of phentolamine. The IC50 value was not obtained for xylazine, 

phenylephrine, methoxamine, and prazosin. 

-

(experiment 5)

The 2-adrenoceptor antagonist yohimbine and 4 imidazoline 2-adrenoceptor antagonists 

(phentolamine, idazoxan, atipamezole, and tolazoline) at concentrations of 0.1 or 10 mol/L to 

100 mol/L inhibited in a dose-dependent manner the full platelet aggregation induced by the 

combination of adrenaline at a concentration of 10 mol/L and collagen at a concentration of 1 

to 3 g/mL (Figure 6). By contrast, the nonimidazoline 1-adrenoceptor antagonist prazosin at 

all concentrations was not effective at inhibiting platelet aggregation induced by adrenaline and 
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collagen. Conversely, 5 imidazoline -adrenoceptor agonists (oxymetazoline, naphazoline, 

clonidine, medetomidine, and dexmedetomidine) at concentrations of 1 mol/L to 100 µmol/L 

also inhibited in a dose-dependent manner the adrenaline-collagen�induced aggregation. 

Antazoline, an imidazoline devoid of 2-adrenergic activity, at concentrations of 1 mol/L to 

100 µmol/L also inhibited in a dose-dependent manner the adrenaline-collagen�induced platelet 

aggregation. By contrast, the nonimidazoline -adrenoceptor agonist xylazine was not effective 

at inhibiting the platelet aggregation induced by adrenaline and collagen. Similarly, the 

imidazoline 2-adrenoceptor agonist moxonidine was not effective at inhibiting the adrenaline-

collagen�induced platelet aggregation. 

The IC50 values obtained for the inhibition of adrenaline-collagen�induced platelet 

aggregation were summarized (Table 2). The order of potencies determined on the basis of the 

IC50 values was as follows: phentolamine > idazoxan, oxymetazoline, and yohimbine >> 

naphazoline and clonidine > atipamezole and tolazoline > antazoline > medetomidine and 

dexmedetomidine. The potencies of idazoxan and oxymetazoline at inhibiting aggregation were 

not significantly different from that of phentolamine. The potencies of yohimbine, naphazoline, 

and clonidine were significantly less (5-, 40- and 49-fold difference, respectively) than that of 

phentolamine. The potencies of atipamezole, tolazoline, and antazoline were significantly less 

(126- to 458-fold difference) than that of phentolamine. The potencies of medetomidine and 

dexmedetomidine were significantly less (1,286- and 1,300-fold difference) than that of 

phentolamine. The IC50 value was not obtained for xylazine, moxonidine, and prazosin. 

2

(experiment 6)
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Concentration-effect curves of 2-adrenoceptor antagonists and agonists alone and in 

combination on adrenaline-collagen�induced aggregation of feline platelets were plotted (Figure 

7). Mean ± SE IC50 values for yohimbine, atipamezole, medetomidine, yohimbine plus xylazine, 

atipamezole plus xylazine, yohimbine plus medetomidine, and atipamezole plus medetomidine 

were 3.11 ± 0.24 × 10 6 mol/L, 73.4 ± 47.7 × 10 6 mol/L, 420 ± 409 × 10 6 mol/L, 6.41 ± 2.82 × 

10 6 mol/L, 71.7 ± 61.3 × 10 6 mol/L, 3.60 ± 0.25 × 10 6 mol/L, and 257 ± 160 × 10 6 mol/L, 

respectively; the IC50 value was not obtained for xylazine. There were no significant differences 

in IC50 values among yohimbine, yohimbine plus xylazine, or yohimbine plus medetomidine or 

among atipamezole, atipamezole plus xylazine, and atipamezole plus medetomidine. Therefore, 

the 2-adrenoceptor agonists xylazine and medetomidine did not reverse the inhibitory effects of 

the 2-adrenoceptor antagonists yohimbine and atipamezole for adrenaline-collagen�induced 

platelet aggregation. 

Ûºº»½¬ ±º °¸»²¬±´¿³·²»ô ¿¬·°¿³»¦±´»ô ¿²¼ §±¸·³¾·²» ±² º«´´ ¿¹¹®»¹¿¬·±² ±º º»´·²» °´¿¬»´»¬ 

·²¼«½»¼ ¾§ ßÜÐ ¿´±²» ø»¨°»®·³»²¬ é÷

Phentolamine, atipamezole, and yohimbine, which effectively inhibited the full platelet 

aggregation induced by adrenaline-ADP, were not effective or were less effective at inhibiting 

the full platelet aggregation induced by ADP (10 mol/L) alone øFigure 8÷. The IC50 value was 

not obtained for these agents. 
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Table 1. Mean ± SE potency of imidazoline and nonimidazoline -adrenergic agents for the 

inhibition of aggregation of feline platelets induced by adrenaline (100 µM) and ADP (1 

µmol/L). 

Drug IC50 IC50 ratio*

(×10 6 mol/L) 

Phentolamine 2.1  0.4 1 

Atipamezole 4.6  0.7 2.2 

Idazoxan 6.8  2.0 3.3 

Naphazoline 10.4  2.1 5.0 

Antazoline 15.9  2.0 7.6 

Xylometazoline 18.5  2.8 8.9 

Yohimbine 18.6  4.6 8.9 

Tramazoline 18.7  3.3 9.0 

Oxymetazoline 22.4  6.1 10.7 

Clonidine 26.1  4.2 12.5 

Medetomidine 36.4  4.0 17.4 

Tolazoline 59.7  17.1 28.6 

Detomidine 76.0  12.2 36.3 

°-Aminoclonidine 90.4  13.1 43.2 

Phenoxybenzamine 189.0  24.8 90.6 

Xylazine ND ND 

Phenylephrine ND ND 

Methoxamine ND ND 

Prazosin ND ND 

Each value represents the results for six animals. 

* Ratios are in relation to the value for phentolamine, which was assigned a value of 1.0. 

ND = Not determined. 
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Table 2. Mean ± SE potency of imidazoline and nonimidazoline -adrenergic agents for the 

inhibition of aggregation of feline platelets induced by adrenaline (10 µmol/L) and collagen (1 to 

3 µg/mL). 

Drug IC50 IC50 ratio*

 (×10 6 mol/L) 

Phentolamine 0.69 ± 0.51  1 

Idazoxan 1.86 ± 1.08 2.7 

Oxymetazoline 2.14 ± 1.94 3.1 

Yohimbine 3.23 ± 0.23 4.7 

Naphazoline 27.6 ± 16.7 40.0 

Clonidine 33.6 ± 21.6 48.7 

Atipamezole 87.2 ± 35.0 126 

Tolazoline 87.7 ± 36.2 127 

Antazoline 316 ± 243 458 

Medetomidine 887 ± 565 1286 

Dexmedetomidine 897 ± 570 1300 

Prazosin ND ND 

Xylazine ND ND 

Moxonidine ND ND 

Each value represents results for blood obtained from 4 or 5 cats. 

See Table 1 for the remainder of the key.  



26 

Figure 3. Mean ± SE percentage aggregation of feline platelets induced by ADP (A) and collagen 

(B). Each value represents results for blood obtained from 6 cats. In each panel, saline (0.9% 

NaCl) solution was included as a negative control agent. *Value differs significantly (Ð < 0.05) 

from the value for the control agent. 
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Figure 4. Mean ± SE percentage aggregation of feline platelets. Each value represents results for 

blood obtained from 6 cats. A�Citrated feline plasma was incubated with various 

concentrations of adrenaline, noradrenaline, oxymetazoline, xylometazoline, or saline (0.9% 

NaCl) solution (negative control agent) for 1 minute before the addition of ADP (0.5 mol/L). 

B�Citrated feline plasma was incubated with adrenaline (100 mol/L), noradrenaline (100 

mol/L), oxymetazoline (10 mol/L), xylometazoline (10 mol/L), or saline solution for 1 

minute before the addition of various concentrations of ADP (0.1 to 10 mol/L. C�Citrated 

feline plasma was incubated with various concentrations of -adrenoceptor agonists for 1 minute 

before the addition of ADP (0.5 mol/L). D�Citrated feline plasma was incubated with various 

concentrations of adrenaline and saline solution for 1 minute before the addition of collagen (0.5 

to 1.0 g/mL). In panels A, C, and D, the value for the negative control solution is 6.2 ± 1.2 to 

8.9 ± 1.7 %, 5.5 ± 1.1 to 10.0 ± 3.0 %, and 14.3 ±1.1 %, respectively. Notice that the scale on the 

y-axis of panel A differs from that of panels B, C, and D. See Figure 3 for remainder of key. 
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Figure 5. Mean ± SE percentage aggregation for imidazoline and nonimidazoline -adrenoceptor 

antagonists (A and B) and agonists (C and D) for feline platelets induced by adrenaline (100 

mol/L) and ADP (1 mol/L). Each value represents results for blood obtained from 6 cats. Each 

agent was added to citrated feline plasma; adrenaline was added 0.5 minutes later, and ADP was 

added 0.5 minutes after that. Values are reported as a percentage of the value for the control 

agent (percentage aggregation of adrenaline-ADP with saline solution was assigned a value of 

100%). See Figure 3 for remainder of key. 
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Figure 6. Mean ± SE percentage aggregation for imidazoline and nonimidazoline -adrenoceptor 

antagonists (A and B) and agonists (C and D) for feline platelets induced by adrenaline (10 

mol/L) and collagen (1 to 3 g/mL). Each value represents results of blood obtained from 4 or 

5 cats. Each agent was added to citrated feline plasma. adrenaline was added 0.5 minutes later, 

and collagen was added 0.5 minutes after that. Values are reported as a percentage of the value 

for the control agent (percentage aggregation of adrenaline-collagen with saline solution was 

assigned a value of 100%). See Figure 3 for remainder of key. 
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Figure 7. Mean ± SE percentage aggregation for 2-adrenoceptor agonists and antagonists (A) 

and the combination of agonists and antagonists (B) for feline platelets induced by adrenaline (10 

mol/L) and collagen (1 to 3 g/mL). Each value represents results for blood obtained from 4 or 

5 cats. Each agent was added to citrated feline plasma. adrenaline was added 0.5 minutes later, 

and collagen was added 0.5 minutes after that. Values are reported as a percentage of the value 

for the control agent (percentage aggregation of adrenaline-collagen with saline solution was 

assigned a value of 100%). See Figure 3 for remainder of key. 
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Figure 8. Mean ± SE percentage aggregation for phentolamine, atipamezole, and yohimbine for 

feline platelets induced by ADP (10 mol/L) alone. Each value represents results for blood 

obtained from 6 cats. Each agent was added 1 minute before the addition of ADP. Values are 

reported as a percentage of the value for the control agent (percentage aggregation of ADP with 

saline solution was assigned a value of 100%). See Figure 3 for remainder of key. 



32 

Ü·½«·±² 

Results of the study reported here confirmed those of previous investigations22,69 that 

indicated that adrenaline alone did not induce a change in aggregation of feline platelets and 

instead potentiated platelet aggregation stimulated by other platelet agonists including ADP and 

collagen. In addition, results of the present study indicated that noradrenaline potentiated ADP-

stimulated platelet aggregation in a dose-dependent manner, and both oxymetazoline and 

xylometazoline (within limited concentrations, 1 to 100 mol/L) induced a small potentiation of 

the ADP-stimulated platelet aggregation in feline platelets. However, other -adrenoceptor 

agonists (clonidine, medetomidine, detomidine, xylazine, naphazoline, tramazoline, 

phenylephrine, and methoxamine) did not induce this potentiating effect. These findings were 

similar to those for canine platelets.23 Clonidine reportedly can induce aggregation in human 

platelets to a limited degree20,26,48-50,63 and can potentiate ADP-induced platelet aggregation in 

humans59 and rabbits.74 However, the present study found that clonidine did not potentiate ADP-

induced aggregation in feline platelets, whereas oxymetazoline and xylometazoline caused a 

small potentiation of the ADP-induced platelet aggregation, which is in agreement with results 

with reports of dogs23 and cattle.76 The present results, in combination with results of the 

aforementioned report,20,23,26,48-50,59,63,75,76 highlight species-specific variations in the potentiation 

of platelet aggregation. 

Platelet -adrenoceptors in humans have been characterized pharmacologically as Gi-

coupled 2-adrenoceptors of the 2A-subtype, although a decrease in cAMP alone may not be the 

only cause of aggregation.8,9,46,57,64,71,74 In domestic animals, binding experiments with 

radiolabeled adrenoceptor agonists and antagonists have revealed the expression of 2-
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adrenoceptors on canine, feline, leporine, and murine platelets but not on bovine or equine 

platelets.24 The density of platelet 2-adrenoceptors evaluated by the use of specific tritiated 

yohimbine binding is reportedly lower in cats than in dogs24 and humans.8 In the present study, 

adrenaline-potentiated aggregation of feline platelets stimulated by low concentrations of ADP 

or collagen was inhibited in a dose-dependent manner by the 2-adrenoceptor antagonists 

atipamezole, yohimbine, phentolamine, idazoxan, and tolazoline, whereas the 1-adrenoceptor 

antagonists phenoxybenzamine and prazosin were not effective or were less effective at 

inhibiting the adrenaline-potentiated aggregation. In previous reports,15,35,47 the order of affinity 

of antagonists for 2-adrenoceptors is atipamezole > yohimbine > idazoxan > phentolamine > 

tolazoline > prazosin. In the study reported here, the order of potency of 2-adrenoceptor agents 

for the inhibition of adrenaline-potentiated platelet aggregation was not in agreement with the 

order of affinity values for 2-adrenoceptors. However, although the mechanism for adrenaline-

induced intraplatelet signaling is unclear, adrenaline is known to increase the release of 

arachidonic acid from platelet membranes via the phosphorylation of p38 mitogen-activated 

protein kinase and cytosolic phospholipase A2 via the 2A-adrenoceptors and its Na+-effector 

sites.46 In addition, adrenaline-potentiated platelet aggregation is not mediated by -

adrenoceptors because the -adrenoceptor antagonist propranolol is less effective at inhibiting 

adrenaline-ADP�induced aggregation.29 Therefore, results of the present study suggested a 

partial involvement of the 2-adrenoceptor mediated-cascade in aggregation of feline platelets 

and the simultaneous involvement of other pathways in addition to the involvement of 2-

adrenoceptors. Furthermore, in the present study, certain imidazoline or 2-adrenoceptor 

antagonists (or both) were able to completely inhibit the full platelet aggregation induced by 

adrenaline-ADP or adrenaline-collagen but were not effective or were less effective at inhibiting 
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full platelet aggregation induced by ADP alone. These findings suggested that the inhibitory 

effect of imidazoline agents on feline platelet aggregation is more specific for the action of 

adrenaline via 2-adrenoceptors rather than the action of ADP as a inducer of platelet 

aggregation. 

In the present study, imidazoline or 2-adrenoceptor agonists including naphazoline, 

antazoline, xylometazoline, tramazoline, oxymetazoline, clonidine, medetomidine, 

dexmedetomidine, detomidine, and °-aminoclonidine, but not moxonidine, caused dose-

dependent inhibition of adrenaline-ADP� or adrenaline-collagen�induced aggregation of feline 

platelets. These results in feline platelets were extremely similar to results in canine platelets, 

except for a different order for 2-adrenoceptor activity,23 and to results in human platelets.53

The imidazoline agent antazoline, which lacks 2-adrenoceptor activity, inhibited adrenaline-

potentiated platelet aggregation, which suggested that it interacts with non� 2-adrenoceptor sites 

on feline platelets. Furthermore, in the present study, neither xylazine nor medetomidine 

2-adrenoceptor antagonists yohimbine and atipamezole for 

adrenaline-collagen�induced platelet aggregation, which suggested that both yohimbine and 

atipamezole also interacted with non� 2-adrenoceptor sites on feline platelets. On the basis of 

these results, it would be difficult to envisage how the 2-adrenoceptors could be the mediator of 

the observed responses. Both feline platelets and canine platelets have nonadrenergic I1 receptor 

sites (as determined by the use of labeled tritiated clonidine) and I2 receptor sites (as determined 

by the use of labeled tritiated idazoxan).24 The order of potency of imidazoline agents for the 

inhibition of adrenaline-potentiated platelet aggregation in the present study appeared to be in 

agreement with the order of affinity values for platelet I1 receptors or I2 receptors.49 In a 

comparative study77 of the effects of imidazoline -adrenergic agents on intraplatelet cAMP and 
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thromboxane B2 that involved the use of canine platelets with both I1 and I2 receptors and 

leporine platelets that lacked I1 receptors, it was suggested that imidazoline 2-adrenergic agents 

suppress cAMP production via the 2-adrenoceptor while exerting a negative effect on 

generation of thromboxane B2 via the arachidonic acid�thromboxane A2 pathway. Therefore, it 

would seem logical to conclude that imidazoline agents inhibit platelet aggregation via 

nonadrenoceptor binding sites, including I1 and I2 receptors, on feline platelets. 

Yohimbine and idazoxan exhibit only modest selectivity for rat 2-receptors, compared with 

selectivity for 5-Hydroxytryptamine(5HT)1A receptors.28,73 Oxymetazoline also stimulates 5HT 

receptors, including 5HT1A, and can mobilize a second signaling system.44,58 Furthermore, 

noradrenaline induces heterologous desensitization of the 5HT1 receptors in human platelets 

through activation of protein kinase C.68 Therefore, it is also possible that the effect of 

imidazoline or -adrenergic agents on platelet aggregation may be partially mediated by 

serotonin receptors, including 5HT1A. In the present study, both oxymetazoline and 

xylometazoline induced a small potentiation of the ADP-induced platelet aggregation, but both 

agents at higher concentrations had an inhibitory effect on potentiation of the ADP-induced 

platelet aggregation. Although the precise mechanism for this effect was unknown, it may have 

been attributable to the complicated actions via 5HT receptors, 2-adrenoceptors, and I1 and I2

receptors on feline platelets.13,24

Several drugs with 2-adrenoceptor activity are clinically available. For felids, the 2-

adrenoceptor agonists xylazine, medetomidine, and dexmedetomidine are used for sedation and 

analgesia and as a premedication for general anesthesia, whereas the antagonists atipamezole and 

yohimbine are used to reverse the effects of the aforementioned 2-adrenoceptor agonists. On the 

basis of the pharmacokinetic data for xylazine, medetomidine, and dexmedetomidine, which 
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have typically been administered systemically at clinically recommended doses to cats and 

dogs,18,30,54 results for the present study indicated that the 2-adrenoceptor agonists xylazine, 

medetomidine, and dexmedetomidine may be used in cats with minimal concern for adverse 

effects on platelet function and hemostasis because xylazine did not inhibit platelet aggregation 

and both medetomidine and dexmedetomidine did not inhibit in vitro platelet aggregation at the 

estimated blood concentrations of both agents in clinical use. However, the 2-adrenoceptor 

antagonists phentolamine, yohimbine, and atipamezole may also have inhibitory effects on feline 

hemostasis during certain events (eg, blood vessel damage and collagen exposure). The study 

reported here represented results of in vitro experiments. Therefore, it will be necessary to 

investigate the effects of various agents on aggregation of feline platelets in vivo or ex vivo. 

It has been suggested that overactivity of the sympathetic nervous system and increased 

catecholamine concentrations may have influence hemostasis via actions on platelets, 

coagulation and fibrinolytic factors, and endogenous anticoagulants, thereby leading to activation 

of both the coagulation and fibrinolytic systems.62 Hypercatecholaminemia occurs in conditions 

such as pheochromocytoma,72 endotoxin shock,16,21 and acute stress56 in cats. Risk factors for 

poor short-term survival in dogs with pheochromocytoma involve disseminated intravascular 

coagulation.6 Fatal thromboembolism has been also reported in a cat with pheochromocytoma.10

In addition, low-dose endotoxin infusion induces platelet aggregation,14 and intravascular 

coagulation is manifested during endotoxin shock in cats.34 Therefore, the results of the study 

reported here suggested that imidazoline -adrenergic agents may have clinical benefits for the 

hypercoagulatory state that accompanies hypercatecholaminemia or for the conditions in which 

there is platelet reactivity to adrenaline because catecholamines have a stimulatory effect on 

platelet aggregation. However, further studies will be required to examine the effects of -
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adrenergic agents on in vivo or ex vivo platelet aggregation under various pathological 

conditions in cats. 

In the present study, both adrenaline and noradrenaline potentiated in a dose-dependent 

manner aggregation of feline platelets induced by ADP or collagen, but other -adrenoceptor 

agonists, except for oxymetazoline and xylometazoline, did not potentiate platelet aggregation 

induced by ADP. Furthermore, results indicated that the 2-adrenoceptor antagonists or certain 

imidazoline -adrenergic agents (or both) inhibited, in a dose-dependent manner, adrenaline-

potentiated aggregation induced by ADP or collagen, whereas 1-adrenoceptor antagonists and 

nonimidazoline -adrenergic agents were ineffective or less effective at inhibiting adrenaline-

potentiated aggregation and that the 2-adrenoceptor agonists medetomidine and xylazine did not 

reverse the inhibitory effects of the 2-adrenoceptor antagonists atipamezole and yohimbine on 

adrenaline-potentiated aggregation. Furthermore, the results suggested that adrenaline-

potentiated aggregation was mediated by 2-adrenoceptors, whereas imidazoline agents inhibited 

platelet aggregation via imidazoline receptors in cats. Results of the present study also suggested 

that clinically recommended doses of xylazine, medetomidine, and dexmedetomidine may be 

used in feline practice with minimal concern for adverse effects on platelet function, although 

further in vivo or ex vivo studies will be required to examine the effects of these agents on 

platelet aggregation. 
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2-adrenoceptor agonists medetomidine (MED) and xylazine (XYL) are 

widely used to produce reliable sedation, analgesia, and muscle relaxation in cats.33 Although 

both drugs are used similarly in practice, there are differences between them. MED is a more 

2 2-

1-adrenoceptor selectivity of MED (1,620:1) is approximately 10-

fold as great as that of XYL (160:1).70 In addition, MED, in contrast to XYL, has an imidazole 

(I) ring that has an affinity for I-receptors.43

In cats, overactivity of the sympathetic nervous system and increased catecholamine 

concentrations are induced in conditions such as pheochromocytoma,72 endotoxin shock,17 and 

acute stress.56 Hypercatecholaminemia reportedly has an influence on hemostasis, including 

disseminated intravascular coagulation6 and thromboembolism10,14,62 by acting on platelets. 

Because both MED and XYL reduce plasma concentrations of adrenaline and noradrenaline in 

cats27 it may be important on blood homeostasis to examine the platelet response in cats 

administered systemically with MED or XYL. 

Regarding in vitro platelet responses to catecholamines in small animals, adrenaline alone 

does not induce platelet aggregation; however, it potentiates platelet aggregation stimulated by 

other platelet agonists including ADP, collagen, and thrombin in dogs,23 cats22,36 and rabbits.75 It 

2-

2 1-

adrenoceptor antagonists in dogs,23 cats36 and rabbits75 as well as in humans.53 However, it has 

2-adrenoceptor agents inhibit adrenaline-potentiated platelet 
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aggregation in dogs,23 cats36 and rabbits.75 Nonadrenergic I1 and I2 receptors that are 

2-adrenoceptors have been expressed in canine and feline 

platelets24 as well as in human platelets.51,52 In addition, the densities of I1 and I2 receptors and 

2-adrenoceptors differed among animal species.24 MED binds to I1 and I2 receptors on feline 

platelets, whereas XYL does not have an affinity for I1 and I2 receptors.24 A recent in vitro study 

has reported that medetomidine inhibited adrenaline-potentiated platelet aggregation induced by 

ADP or collagen in a dose-dependent manner, but XYL was ineffective in inhibiting adrenaline-

potentiated aggregation.36 However, to the best of our knowledge, there are no published reports 

on the blood platelet aggregation in cats that were administered XYL or MED systemically. 

Therefore, this study was conducted to compare the effects of MED and XYL administered 

intramuscularly (IM) on »¨ ª·ª± platelet aggregation in healthy cats.  

Ó¿¬»®·¿´ ¿²¼ ³»¬¸±¼ 

ß²·³¿´ 

Two healthy male (2 neutered) and 3 healthy female (2 neutered) adult mixed-breed cats 

with a mean age of 9.2 years (standard deviation [SD] = 3.3) and a mean weight of 3.8 kg (SD = 

0.56) were used in this study. They were fed a standard commercial dry food formulated for cats 

and raised in a laboratory with appropriate animal management facilities. Physical examination 

and hematologic analysis prior to the experiments revealed that all cats were clinically normal. 

The animals� signalments, some hematologic and blood biochemical profiles are summarized in 

Table 3. The study protocol was approved by the Animal Research Committee of Tottori 

University. 
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Table 3. Summary of signalments, hematologic and blood biochemical profiles in 5 cats used in 

this study. 

Û¨°»®·³»²¬¿´ °®±½»¼«®» 

Five cats were used repeatedly for 7 treatment groups (5 cats per each group) in a modified 

randomized design. In group 1, each cat was administered a physiological saline solution (0.1 

mL/kg) IM as the nonmedicated control. In group 2, 3, 4, 5, 6, and 7, each cat received IM 0.5, 

2.0, and 4.0 mg/kg XYL hydrochloride (Sigma-Aldrich Japan K.K., Tokyo, Japan), and 20, 80, 

Seven groups were denoted as control, XYL-0.5, XYL-2, XYL-4, MED-20, MED-80, and MED-

160. Cat-1 was treated with control, XYL-0.5, MED-20, XYL-2, MED-80, XYL-4, and MED-

160 in that order. Cat-2 was treated in the order of XYL-0.5, MED-20, XYL-2, MED-80, XYL-
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4, MED-160, and control. Cat-3 was treated in the order of MED-20, XYL-2, MED-80, XYL-4, 

MED-160, control, and XYL-0.5. Cat-4 was treated in the order of XYL-2, MED-80, XYL-4, 

MED-160, control, XYL-0.5, and MED-20. Cat-5 was treated in the order of MED-80, XYL-4, 

MED-160, control, XYL-0.5, MED-20, and XYL-2. 

Intervals between treatments ranged from 1 to 4 weeks for each cat in this study. The 

intervals were 1 to 2 weeks after control, lowest and middle-dose MED or XYL treatments, and 

2 to 4 weeks after highest-dose MED or XYL treatments. The washout period (mean ± SD, 

week) between treatments was 2.3 ± 1.0 in Cat-1, 2.5 ± 0.8 in Cat-2, 2.3 ± 1.0 in Cat-3, 2.5 ± 1.2 

in Cat-4, 2.3 ± 0.5 in Cat-5, respectively. The interval of 1 week between treatments was set 

three times only, once in 3 cats in this study. In each case, the 1-week interval was only between 

the control and XYL-0.5 treatments.   

Food and water were withheld for 12 h before the start of each experiment. Food and water 

were provided after sample collection at 8 h after injection. The experiments were done in a 

room where the room temperature was maintained at 25°C. 

Þ´±±¼ ¿³°´·²¹ ¿²¼ °®»°¿®¿¬·±² ±º ½·¬®¿¬»¼ °´¿¬»´»¬ °´¿³¿ 

Jugular blood samples (4.5 mL) were collected in plastic syringes containing 3.2% sodium 

citrate solution at a ratio of 1 part anticoagulant to 9 parts blood, 4 times (immediately before 

injection of the treatment [0 h; baseline] and 2, 4, and 7 h after injection) from each cat. The 

citrated blood was centrifuged at 90 to 110 × ¹ for 10 to 15 min to obtain platelet-rich plasma 

(PRP). The platelet-poor plasma (PPP) was obtained by centrifuging the remaining citrated blood 

after collecting PRP at 1,500 × ¹ for 15 min. The final platelet count in PRP was adjusted to 25 

to 30 × 104
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The determination of time points of measurement is involved the technical aspects of 

measuring platelet aggregation, since the aggregation test must be performed immediately after 

blood sampling. It takes approximately 1 to 1.5 h to complete the preparation of citrated platelet 

plasma and the platelet aggregation experiment after one blood sampling. So, we chose an 

interval of at least 2 h before the next blood sampling. In addition, after administration of the 

highest doses of MED and XYL, the cat was deeply sedated at 2 h, and sedation was continued 

for 4 h, and disappeared at 7 h. For these reasons, we decided 4 time points of the measurement 

at 0, 2, 4, and 7 h after injection. 

ß¹¹®»¹¿¬·±² »¨°»®·³»²¬ 

The platelet aggregation experiments were performed as previously described.23,75 Briefly, a 

turbidimetric method was used. The percent aggregation was determined after adding the 

aggregation agent and was standardized via the assumption that PPP and PRP represented 100% 

and 0% light transmission, respectively. In each PRP sample, the aggregation effects of ADP and 

(MCM Hema Tracer 804, LMS Co Ltd, Tokyo, Japan) at 37ºC, and 1 min later, an aliquot (22 

the maximum percentage aggregation was recorded during the subsequent 10-min interval. 

Í¬¿¬·¬·½¿´ ¿²¿´§· 

Statistical analysis was performed using commercially available statistical programs (Prism 

7.0, GraphPad Software Inc, San Diego, CA). Data were reported as the mean ± standard error 

(SE). To determine the potency of the platelet aggregatory effect of ADP or collagen, the mean 
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effective dose (ED) 50 that caused 50% aggregation was obtained from the concentration-response 

curve on platelet aggregation. The ED50 and percent aggregation data were assessed for normality 

of distribution with the Shapiro-Wilk test. When the data were normally distributed, the paired ¬ 

test was used for comparisons between the groups at 0, 2, 4, and 7 h after injection of XYL or 

MED. When the data were not normally distributed, the Wilcoxon-Mann-Whitney test was used 

to determine significant differences. The paired ¬ test was used to determine significant differences 

for change in percentage aggregation that were expressed as a percentage of the value for the time 

0 h (baseline), which was assigned a value of 100%. For all tests, differences were considered 

significant at values of Ð < 0.05.

Î»«´¬ 

ßÜÐó·²¼«½»¼ °´¿¬»´»¬ ¿¹¹®»¹¿¬·±² ®»°±²» 

In the control, XYL-0.5, XYL-2, XYL-4, MED-20, MED-80, and MED-160 groups, 3 

5.1%, 79.6 ± 0.9%, 78.0 ± 3.5%, 81.8 ± 2.4%, and 79.4 ± 3.1% before XYL or MED injection (0 

h; baseline), respectively. There were no significant differences in the maximum aggregation 

between the groups at the baseline. In the control and all of the XYL groups, no significant 

differences for change in percentage aggregation, which was expressed as a percentage of the 

value for the baseline, were observed at 2, 4, and 7 h after saline or XYL injection (Figure 9A). 

In addition, there were no significant differences in percentage aggregation between XYL and 

control groups at 2, 4, and 7 h. In contrast, a significant decrease in the percentage aggregation 

was observed at 2, 4, and 7 h compared with the baseline in the MED-80 group, but not in the 
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MED-20 and MED-160 groups (Figure 9B). The percentage aggregation was significantly lower 

in the MED-80 group than in control group at 2, 4, and 7 h. There were no significant differences 

in percentage aggregation between MED-20 and control groups and between MED-160 and 

control groups at any time. 

3.8%, 86.8 ± 2.0%, 81.2 ± 1.0%, 79.2 ± 2.6%, 83.2 ± 2.0%, and 82.6 ± 3.8% at the baseline in 

the control, XYL-0.5, XYL-2, XYL-4, MED-20, MED-80 and MED-160 groups, respectively. 

There were no significant differences in the maximum aggregation between the groups at the 

changes in percentage aggregation were observed at any time after saline or XYL injection 

4, and 7 h compared with the baseline after MED injection (Figure 10B). The percentage 

aggregation was significantly lower in the MED-80 group than in the control group at 2, 4, and 7 

significantly decrease at 2�7 h compared with the baseline after MED injection (Figure 10B). 

The ED50 values of ADP that caused 50% platelet aggregation in all groups are summarized 

in Table 4. The ED50 of ADP in the MED-80 group was significantly higher at 2�7 h than at the 

baseline. In addition, the ED50 value of ADP in the MED-80 group at 2 h was significantly 

higher than that of the control, XYL-2, and XYL-4 groups. There were no significant differences 

in ED50 values between the other groups, although the ED50 value in MED-20 and MED-160 

tended to be higher than that of the control at 2 h and 7 h, respectively. 
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In the control, XYL-0.5, XYL-2, XYL-4, MED-20, MED-80, and MED-160 groups, 3 

3.8%, 81.8 ± 5.9%, 84.0 ± 2.0%, 81.6 ± 4.7%, 83.4 ± 2.9%, and 84.0 ± 3.2%, respectively. There 

were no significant differences in the aggregations between the groups at the baseline. In the 

change at 2, 4, and 7 h after saline or XYL injection compared with the baseline (Figure 11A). In 

contrast, a significant decrease in the percentage aggregation was observed at 2 and 4 h 

compared with the baseline in the MED-80 group, but not in the MED-20 and MED-160 groups 

(Figure 11B). The percentage aggregation was significantly lower in MED-80 than in control at 

2 h, but there were no significant differences between XYL and control groups or and between 

MED-20 or MED-160 and control groups at any time. 

In the control, XYL-0.5, XYL-2, XYL-4, MED-20, MED-80, and MED-160 groups, 5 

3.9%, 83.4 ± 5.7%, 84.2 ± 2.3%, 80.8 ± 4.1%, 84.8 ± 3.3%, and 84.0 ± 4.4%, respectively. There 

were no significant differences in the aggregations between the groups at the baseline. In the 

change at 2, 4, and 7 h after saline or XYL injection compared with the baseline (Figure 12A). In 

contrast, a significant decrease in the percentage aggregation was observed at 2 and 4 h 

compared with the baseline in the MED-80 group but not in the MED-20 and MED-160 groups 

(Figure 12B). The percentage aggregation was significantly lower in MED-80 than control at 2 h, 

but there were no significant differences between XYL and control groups and between MED-20 

or MED-160 and control groups at any time. 
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The ED50 values of collagen that caused 50% platelet aggregation in all groups are 

summarized in Table 5. The ED50 of collagen in the MED-80 group was significantly higher at 

2 and 4 h than at the baseline. In addition, the ED50 value of collagen in the MED-80 group at 2 

h was significantly higher than that of the control and the MED-160 groups. There were no 

significant differences in ED50 value between the other groups, although ED50 value in XYL-4 

tended to be higher than that of the control at 2 h. 
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Table 4. Mean ± standard error (SE) mean effective dose (ED) 50 (ED50) of adenosine diphosphate 

»¨ ª·ª± platelet aggregation in 5 cats administered 

xylazine or medetomidine intramuscularly.  

Group Time (h) 

  0 2                                   4                               7 

Control 1.65 ± 0.25 1.63 ± 0.20 1.63 ± 0.21 1.43 ± 0.17 

XYL-0.5 1.87 ± 0.20 1.66 ± 0.21 1.72 ± 0.15 1.70 ± 0.14 

XYL-2 1.81 ± 0.29 1.47 ± 0.28 1.68 ± 0.16 1.50 ± 0.22 

XYL-4 1.26 ± 0.33 1.49 ± 0.23 1.42 ± 0.29 1.60 ± 0.22 

MED-20 1.92 ± 0.17 2.24 ± 0.34 1.52 ± 0.22 1.81 ± 0.12 

MED-80 1.70 ± 0.13 2.45 ± 0.25*�§� 2.07 ± 0.18* 2.22 ± 0.15* 

MED-160 1.42 ± 0.30 1.52 ± 0.15 1.77 ± 0.17 1.86 ± 0.11 

* Ð < 0.05, significantly different from 0 h (baseline).  

� Ð < 0.05, significantly different from control.  

§ Ð < 0.05, significantly different from XYL-2. 

� Ð < 0.05, significantly different from XYL-4. 



49 

that caused 50% aggregation on ex vivo platelet aggregation in 5 cats administered xylazine or 

medetomidine intramuscularly. 

Group Time (h) 

 0 2 4   7 

Control 1.61 ± 0.37 1.86 ± 0.11 2.20 ± 0.38 2.00 ± 0.30 

XYL-0.5 1.69 ± 0.38 2.03 ± 0.07 1.90 ± 0.11 1.88 ± 0.10 

XYL-2 1.99 ± 0.35 1.89 ± 0.18 1.84 ± 0.16 1.53 ± 0.32 

XYL-4 1.53 ± 0.28 2.13 ± 0.25 2.09 ± 0.22 1.66 ± 0.27 

MED-20 1.42 ± 0.40 1.72 ± 0.60 1.47 ± 0.44 1.43 ± 0.39 

MED-80 1.83 ± 0.11 2.48 ± 0.23*�§ 2.27 ± 0.21* 2.14 ± 0.28 

MED-160 1.50 ± 0.19 1.60 ± 0.16 1.54 ± 0.33 1.89 ± 0.17 

* P < 0.05, significantly different from 0 h (baseline). 

� P < 0.05, significantly different from control. 

§ P < 0.05, significantly different from MED-160. 
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Figure 9. Mean ± standard error (SE) percentage changes of ex vivo platelet aggregation induced 

(A) and medetomidine (B) in 5 cats. Values are reported as a percentage of the value for the 0 h 

(percentage aggregation of ADP at 0 h was assigned a value of 100%). Control, XYL-0.5, XYL-

2, XYL-4, MED-20, MED-80, and MED-160 groups showed physiological saline solution, 0.5, 

significantly (Ð < 0.05) from the value for the 0 h. �Value differs significantly (Ð < 0.05) from 

the value for the control group. 
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Figure 10. Mean ± standard error (SE) percentage changes of ex vivo platelet aggregation 

xylazine (A) and medetomidine (B) in 5 cats. Values are reported as a percentage of the value for 

the 0 h (percentage aggregation of ADP at 0 h was assigned a value of 100%). *Value differs 

significantly (Ð < 0.05) from the value for the 0 h. See Figure 9 for remainder of key. 



52 

Figure 11 Mean ± standard error (SE) percentage changes of ex vivo platelet aggregation 

medetomidine (B) in 5 cats. Values are reported as a percentage of the value for the 0 h 

(percentage aggregation of collagen at 0 h was assigned a value of 100%). *Value differs 

significantly (Ð < 0.05) from the value for the 0 h. �Value differs significantly (Ð < 0.05) from 

the value for the control group. See Figure 9 for remainder of key. 
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Figure 12. Mean ± standard error (SE) percentage changes of ex vivo platelet aggregation 

medetomidine (B) in 5 cats. Values are reported as a percentage of the value for the 0 h 

(percentage aggregation of collagen at 0 h was assigned a value of 100%). *Value differs 

significantly (Ð < 0.05) from the value for the 0 h. �Value differs significantly (Ð < 0.05) from 

the value for the control group. See Figure 9 for remainder of key. 
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healthy cats; however, the inhibitory effects of MED were not dose-dependent within the tested 

doses. In addition, this study revealed that IM administrations of 0.5�4 mg/kg XYL did not 

significantly affect »¨ ª·ª± platelet aggregation induced by both ADP and collagen. To the best 

of our knowledge, these findings are the first report outlining the »¨ ª·ª± platelet aggregatory 

responses in cats that received MED and XYL systemically, and this is the first study comparing 

these 2 drugs.  

These differences in platelet responses between MED and XYL administrations may be due 

to differences in receptor selectivity and specificity between the 2 drugs. In a previous ·² ª·¬®±

study, it was reported that MED inhibited adrenaline-potentiated aggregation induced by ADP or 

collagen, whereas XYL was ineffective in inhibiting the adrenaline-potentiated aggregation in 

feline platelets.36 It has been demonstrated that both feline and canine platelets have 

nonadrenergic I1-receptors labeled by tritiated clonidine and I2-receptors that had been labeled by 

2-adrenoceptors.24 Furthermore, the affinities of MED to canine 

platelet I1- and I2-receptors have been reported to be approximately 16- and 55-fold, respectively, 

greater than those of XYL,24 although in cats the affinities of both drugs to platelet I1- and I2-

intraplatelet cyclic adenosine monophosphate (cAMP) and thromboxane B2 (TXB2) in canine 

2-adrenergic agents suppress cAMP production via the 

2-adrenoceptor, while exerting a negative control on TXB2 generation via the arachidonic acid�

thromboxane A2 pathway.77 2-adrenoceptors 
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are expressed on canine, and feline platelets but not on bovine and equine platelets, and that all 

of 4 animal species platelets have both I1- and I2-receptor subtypes.24 It has been also reported 

agents inhibit bovine and equine platelet aggregation induced by ADP or collagen.76 These 

receptors including I-receptors. Therefore, the decrease of »¨ ª·ª± ADP and collagen-induced 

platelet aggregation via the nonadrenoceptor binding sites including I1- and I2-receptors on feline 

platelets.  

tended to reduce »¨ ª·ª± collagen- or ADP-induced platelet aggregation at 2 h after 

administration. Both adrenaline and noradrenaline are reported to enhance the platelet 

aggregation induced by other stimulants, including ADP and collagen in cats.22,36

Administrations of MED and XYL at the tested dosages in this study have been reported to 

reduce plasma concentrations of adrenaline and noradrenaline in cats.27 These reports suggest 

that the decrease or the declining trend of platelet aggregation following administration of MED 

and XYL in this study may be partially related to the inhibition of endogenous catecholamine 

2-adrenoceptors, accompanied with the sedative effects of both agents. However, 

this reason alone cannot explain the difference in the effects of MED and XYL on ex vivo 

platelet aggregation. 

dose-dependent platelet aggregation induced by ADP and collagen. Similar dose-independent 
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hypocatecholaminemia, and diuresis induced by MED in cats27,42 and dogs.2,67 Clonidine and 

related I drugs may be able to not only inhibit noradrenaline release in rat cerebral cortex through 

2-adrenoceptor-mediated mechanism, but they may also induce a paradoxical noradrenaline 

release through an indirect mechanism related to a functional activity on I-receptors.37 It has 

been also shown that noradrenaline release is reduced by I1 2-

adrenoceptors in pithed hypertensive rats55 while I2-receptor selective ligands elevated 

extrasynaptic noradrenaline release in a rat brain microdialysis study.1 These results suggest that 

2-adrenergic agents at higher concentrations exert complex effects on catecholamine secretion 

2-adrenoceptors, I1-receptors, and I2-receptors. The precise mechanisms by which the higher 

doses of MED do not further reduce platelet aggregation are not clear. However, as MED has an 

affinity for both I1- and I2-receptors on feline platelets24 the dose-independency of MED on the 

inhibitory effect of platelet aggregation may be due to the complicated effects via the I1- and I2-

receptors or other I-receptor subtypes at a higher concentration of MED.  

Both XYL and MED are often used for sedation and analgesia and as a premedication for 

general anesthesia. The results in this study indicated that XYL may be used in cats with 

minimal concern for adverse effects on platelet function and hemostasis, because in clinical use, 

administrations of XYL at recommended doses (0.5�2 mg/kg) do not significantly affect platelet 

on feline platelet aggregation during certain events such as blood vessel damage and collagen 

exposure. On the other hand, it has been suggested that the sympathetic overactivity and 

hypercatecholaminemia may influence hemostasis via actions on platelets, coagulation and 

fibrinolytic factors, and endogenous anticoagulants.62 In cats, hypercatecholaminemia occurs in 

conditions such as pheochromocytoma72 endotoxin shock17 and acute stress.56 Fatal 
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thromboembolism was reported in a cat with pheochromocytoma.10 A low-dose endotoxin 

infusion induces platelet aggregation14 and intravascular coagulation is manifested during 

endotoxin shock in cats.34 Therefore, the results of the study reported here suggest that MED 

may have clinical benefits for the hypercoagulatory state with hypercatecholaminemia, because 

catecholamines have a stimulatory effect on feline platelet aggregation.36 However, further 

studies will be required to examine the effects of MED on platelet aggregation under various 

pathological conditions in cats. 

induced by both ADP and collagen compared with the control in this study. Administrations of 

XYL and MED at other dosages did not significantly affect the aggregation induced by ADP and 

vivo collagen- or ADP-induced platelet aggregation. These findings may be partially related to the 

2-adrenoceptors, accompanied with the 

sedative effects of both agents. However, the difference in the effects of MED and XYL on ex 

vivo platelet aggregation could not be explained only by the inhibition of catecholamine secretion. 

The present results suggest that the I structure, in part, plays a role in the inhibition of platelet 

aggregation. It was also found that the MED-induced inhibition of platelet aggregation was not 

dose-dependent in cats. These results indicated that systemic administration of XYL could be used 

in feline practice without concern for adverse effects on platelet function, although if MED is used, 

even in limited dosages, it may inhibit platelet aggregation. 
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In chapter 1, the effects of various imidazoline or nonimidazoline -adrenergic agents on ·² 

ª·¬®± aggregation and antiaggregation of feline platelets were examined.  Both adrenaline and 

noradrenaline potentiated in a dose-dependent manner aggregation of feline platelets induced by 

ADP or collagen, but other -adrenoceptor agonists, except for oxymetazoline and 

xylometazoline, did not potentiate platelet aggregation induced by ADP. Furthermore, results 

indicated that the 2-adrenoceptor antagonists or certain imidazoline -adrenergic agents (or 

both) inhibited, in a dose-dependent manner, adrenaline-potentiated aggregation induced by ADP 

or collagen, whereas 1-adrenoceptor antagonists and nonimidazoline -adrenergic agents were 

ineffective or less effective at inhibiting adrenaline-potentiated aggregation and that the 2-

adrenoceptor agonists medetomidine and xylazine did not reverse the inhibitory effects of the 2-

adrenoceptor antagonists atipamezole and yohimbine on adrenaline-potentiated aggregation. 

Furthermore, the results suggested that adrenaline-potentiated aggregation was mediated by 2-

adrenoceptors, whereas imidazoline agents inhibited platelet aggregation via imidazoline 

receptors in cats. Results of the present study also suggested that clinically recommended doses 

of xylazine may be used in feline practice with minimal concern for adverse effects on platelet 

function, although further ·² ª·ª± or »¨ ª·ª± studies will be required to examine the effects of 

these agents on platelet aggregation. 

4.0 mg/kg) administered intramuscularly (IM) on »¨ ª·ª± platelet aggregation were compared in 

»¨ ª·ª± platelet aggregation 
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induced by both ADP and collagen compared with the control in this study. Administrations of 

xylazine and medetomidine at other dosages did not significantly affect the aggregation induced 

insignificantly tended to reduce ex vivo collagen- or ADP-induced platelet aggregation. These 

2-

adrenoceptors, accompanied with the sedative effects of both agents. However, the difference in 

the effects of medetomidine and xylazine on »¨ ª·ª± platelet aggregation could not be explained 

only by the inhibition of catecholamine secretion. The present results suggest that the I structure, 

in part, plays a role in the inhibition of platelet aggregation. It was also found that the 

medetomidine-induced inhibition of platelet aggregation was not dose-dependent in cats. These 

results indicated that systemic administration of xylazine could be used in feline practice without 

concern for adverse effects on platelet function, although if medetomidine is used, even in 

limited dosages, it may inhibit platelet aggregation.  
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     In chapter 1, the study was aimed to investigate the effects of imidazoline or nonimidazoline 

-adrenergic agents on aggregation of feline platelets. Blood obtained from 12 healthy adult cats. 

In 7 experiments, the effects of 23 imidazoline and nonimidazoline -adrenoceptor agonists or 

antagonists on aggregation and antiaggregation of feline platelets were determined via a 

turbidimetric method. Collagen and ADP were used to initiate aggregation. Platelet aggregation 

was not induced by -adrenoceptor agonists alone. Adrenaline and noradrenaline induced a 

dose-dependent potentiation of ADP- or collagen-induced aggregation. Oxymetazoline and 

xylometazoline also induced a small potentiation of ADP-stimulated aggregation, but other -

adrenoceptor agonists did not induce potentiation. The 2-adrenoceptor antagonists or certain 

imidazoline -adrenergic agents including phentolamine, yohimbine, atipamezole, clonidine, 

medetomidine, and dexmedetomidine inhibited adrenaline-potentiated aggregation induced by 

ADP or collagen in a dose-dependent manner. The imidazoline compound antazoline inhibited 

adrenaline-potentiated aggregation in a dose-dependent manner. Conversely, -adrenoceptor 

antagonists and nonimidazoline -adrenergic agents including xylazine and prazosin were 

ineffective or less effective for inhibiting adrenaline-potentiated aggregation. Moxonidine also 

was ineffective for inhibiting adrenaline-potentiated aggregation induced by collagen. 

Medetomidine and xylazine did not reverse the inhibitory effect of atipamezole and yohimbine 

on adrenaline-potentiated aggregation. In conclusion, adrenaline-potentiated aggregation in 

feline platelets may be mediated by 2-adrenoceptors, whereas imidazoline agents may inhibit in 

vitro platelet aggregation via imidazoline receptors. Imidazoline -adrenergic agents may have 
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clinical use for conditions in which there is platelet reactivity to adrenaline. Doses of xylazine 

may be used clinically in cats with minimal concerns for adverse effects on platelet function. 

     In chapter 2, this study aimed to investigate and compare the effects of systemic 

administration of medetomidine and xylazine on »¨ ª·ª± platelet aggregation in clinically normal 

cats. Five cats were repeatedly used in each of 7 groups. The cats received saline as the 

medetomidine intramuscularly. Venous blood was collected 4 times (0, 2, 4, and 7 h) after 

injection of both agents, and platelet-rich plasma was prepared. Û¨ ª·ª± percent platelet 

aggregation was determined via a turbidimetric method. Collagen and ADP were used to initiate 

aggregation. Administrations of xylazine at all dosages did not significantly change the platelet 

aggregation induced by ADP and collagen compared with the control. In contrast, administration 

and collagen compared with the control, whereas medetomidine at the other dosages did not 

significantly change the platelet aggregation induced by ADP and collagen. These results 

indicate that systemic administration of xylazine can be used in feline practice without concern 

for adverse effects on platelet function, although if medetomidine is used, even in limited 

dosages, it may inhibit platelet aggregation. 
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