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GENERAL INTRODUCTION 

The importance of Salmonella on Veterinary Public Health  

The World Health Organization (WHO) defines veterinary public health 

-

being of humans through an understanding and application of veterinary medical 

[WHO, 2002]. With definition every veterinary surgeon contributes to 

public health, whether through provision of health care for pets, protection of animal 

welfare, biomedical research, or ensuring adequate food animal production and food 

safety. 

Food contamination caused by pathogens has attracted increasing attention 

worldwide. Although the study of food contaminant detection has made some 

progress, contamination with pathogenic organisms is still a common health problem 

worldwide [Gil et al., 2015]. Emerging and re-emerging infectious diseases are 

recognized as a global problem, and 75% of these are potentially zoonotic [Taylor et 

al., 2001]. According to the report of WHO [WHO, 2020], an estimated 600 million 

people (almost 1 in 10 people in the world) fall ill after eating contamination food 

and 420.000 die every year. Salmonella, Campylobacter, and Enterohaemorrhagic
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Escherichia coli are among the most common foodborne pathogens that affect 

millions of people annually  sometimes with severe and fatal outcomes. The 

symptoms are fever, headache, nausea, vomiting, abdominal pain and diarrhea. 

Besides that, foodborne salmonellosis is the most relevant disease with a high global 

impact in human health. It was estimated that non-typhoidal Salmonella causes

around 93.8 million illnesses and 155.000 deaths each year worldwide [Majowicz et 

al., 2010]. 

In addition, human infections caused by S. enterica are commonly considered 

to be associated with food of animal origins, mainly poultry meat and eggs [Foley et 

al., 2008]. Some research reports indicate possible transmission of S. enterica from 

chicken and eggs to humans [Best et al., 2007; Kim et al., 2008].  A study in South 

Korea in 2017 also suggested the high potential for transmission of S. enterica

between humans and chickens, supporting significant risks to public health posed by 

S. enterica [Kang et al., 2017]. Salmonellosis is an important global public health 

problem causing substantial morbidity and thus also has a significant economic 

impact. Although most infections cause mild to moderate self-limited disease, serious 

infections leading to deaths do occur [de Jong et al., 2006]. Foodborne diseases still 

dominate as the most important public health problem in most countries. Globally, 
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despite the institution of several control measures, Salmonella infections continue to 

be problematic with millions of cases occurring annually, both in humans and animals 

[Hoelzer et al., 2011].  

Contamination of Salmonella on poultry production 

Salmonella is named after an American bacteriologist, D. E. Salmon, who first 

isolated Salmonella choleraesuis from porcine intestine in 1884 [Smith, 1894].

Salmonella is a Gram-negative, facultative intracellular pathogen belonging to the 

Enterobacteriaceae family. The genus Salmonella is composed of two taxonomical 

species, S. bongori, and S.  enterica, with all medically relevant salmonellae apart of 

the latter [CDC, 2018]. S. enterica is the type species and it further divided into six 

subspecies [Su et al., 2007] that includes over 2.600 serotypes [Gal-Mor et al., 2014].

Salmonella species are non-spore-forming predominantly motile enterobacteria with 

flagella (all around the cell body) [Fabrega A, and Vila J., 2013]. The antigenic 

classification system of various Salmonella serovars used today has accumulated for 

many years of studies on antibody interactions with surface antigens of Salmonella 

organisms established by Kauffman and White more than a century ago. All antigenic 
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formulae of recognized Salmonella serotypes are listed in a document called the 

Kauffmann-White scheme. [Popoff, and Le Minor L., 2001].  

The taxonomy and classification of Salmonella was Kingdom: Bacteria, 

Phylum: Proteobacteria, Class: Gamaproteobacteria, Order: Enterobacteriales, 

Family: Enterobacteriaceae, Genus: Salmonella, Species: Salmonella bongori, and 

Salmonella enterica consists of six subspecies: S. enterica subsp. enterica, S. enterica 

subsp. salamae, S. enterica subsp. arizonae, S. enterica subsp. diarizone, S. enterica 

subsp. houtenae, and S. enterica subsp. indica. 

Salmonella bacteria live in the intestines of people, animals, and birds. Most 

people are infected with Salmonella by eating contaminated foods i.e. poultry meat, 

eggs, fruits and vegetables. Some of 2,600 Salmonella serovars identified were 

responsible for human illness and diseases in a wide variety of animals [Gast, 2008]. 

In addition to the risks to public health, Salmonella spp. infections impose economic 

losses to both healthcare systems and the poultry industry [Collard et al., 2008]. 

In spite of significant improvement in technology and hygienic practices at all 

stages of poultry production accompanied with advanced improvement in public 

sanitation, salmonellosis and Salmonella infection remain a persistent threat to human 

and animal health. In many countries high incidence of salmonellosis in man appears 
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to be caused by infection derived from contaminated eggs, poultry meat, and meat-

products. The contaminated products cause disease as a results of inadequate cooking 

or cross contamination of working surfaces in kitchen environment [Hafez, 2001, 

Thorns, 2000, and Omwandho et al., 2010].  

The risk factors associated with Salmonella infection and contamination in 

broiler chickens include contaminated chicks, size of the farm and contaminated feed 

[Marin et al., 2011, Arsenault et al., 2007]. It also depends on age of the chicken, 

animal health, survival of organism in the gastric barrier, diet and genetic constitution 

of the chicken could also affect the colonization ability of Salmonella spp. in poultry 

[Cosby et al., 2015].

Many Salmonella serovars have been associated with poultry meat and eggs. 

Because some of serovars can colonize and infect live birds, Salmonella 

contamination has been a continuous problem in the poultry industry. Therefore, 

many countries have national programs to monitor and control Salmonella in poultry. 

[Wegener et al., 2003]. In order to manage the risk to public health, it is essential to 

investigate the prevalence of Salmonella infections at the farm level and counteract 

this problem to reduce the amount of cross contamination which can occur throughout 

the food chain process.  
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Prevalence of Salmonella species varies considerably depending on countries 

and types of production as well as the detection methods applied. In developing 

countries, the wet markets or poultry cottages serve as important supply sources of 

chickens. At the outlets, prevalence rate for Salmonella spp. in raw dressed chicken 

can vary among countries and between outlets as documented in Korea was 42.7% 

[Bae et al., 2013], in Vietnam 45.9% [Ta et al., 2012], in India 65.0% [Badhe et al.,

2013], and in Malaysia, 100% [Nidaullah et al., 2017].

Antimicrobial resistance of Salmonella enterica 

Antimicrobial resistance (AR) which defined as the ability of an organism to 

resist the killing effects of an antimicrobial to which it was normally susceptible 

[Madigan et al., 2014] and it has become an issue of global interest [WHO, 2014].

In recent years, enough evidence highlighting a link between excessive use of 

antimicrobial agents. AR from animals as a contributing factor to the overall burden 

of AR has emerged [Marshall et al., 2011]. The extent of usage is expected to 

increase markedly over coming years due to intensification of farming practices in 

most of the developing countries [Van Boeckel et al., 2015]. The main reasons for 

the use of antimicrobials in food-producing animals include prevention of infections, 
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treatment of infections, promotion of growth and improvement in production in the 

farm animals [Mathew et al., 2009, and Castanon, 2007]. 

AR is a global phenomenon resulting in the emergence of pathogens with 

resistance to clinically important antimicrobials [Bell et al., 2014]. AR bacteria cause 

life-threatening illness in humans and pose a significant threat to health and well-

being. AR in foodborne pathogens such as Salmonella is a major concern for public 

health. More focus is required to target them in the animals food supply [CDC, 2013]. 

Salmonella is difficult to eliminate from its reservoir hosts, and food animals often 

serve as reservoirs of the pathogen. Non-typhoidal Salmonella causes the high 

number of illness, hospitalizations, and deaths associated with foodborne illness 

[Scallan et al., 2011].

Foodborne pathogens such as Salmonella enter a farm from different sources, 

such as water, litter, personnel, equipment, vehicles, rodents, insects, and pets. In 

addition, the movement of portable equipment and vehicles can act as a vector for 

carrying the pathogen to the farm environment or slaughterhouses [Heyndrickx et 

al., 2002]. Similarly AR bacteria also spread through truck-washing systems, barn 

floor, barn flush, and holding pens, and potentially and up in animal carcasses during 

slaughter [Dorr et al., 2009].  
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Poultry is one of the most widespread food industries worldwide. Chicken is 

the most common farmed species, with over 90 billion tons of chicken meat produced 

per year [FAO, 2017]. A large diversity of antimicrobials are used to raise poultry in 

many countries [Landers et al., 2012, Sahoo et al., 2010, and Boamah et al., 2010], 

and a large number of such antimicrobials are considered to be essential in human 

medicine [WHO, 2010]. In addition, there are also human health concerns about the 

presence of antimicrobial residues in meat, eggs, and other animal products 

[Aalipour et al., 2013, Darwish et al., 2013, Goetting et al., 2011].  

Recently, Salmonella Heidelberg and, Salmonella Kentuckey isolated from 

broiler farms in Brazil was resistant to multiple antimicrobials, including 

streptomycin, Gentamycin, sulfadimethoxine, tetracycline and trimethoprim-

sulfamethoxazole combination. [Lijiebjelke et al., 2017]. Salmonella Enteritidis 

were reported to be resistant to multiples drugs including ampicillin, nalidixic acid, 

and tetracycline [Al-Zenki et al., 2007]. The high resistant of Salmonella serovars 

such as: S. Enteritidis, S. Infatis, S. Typhimurium, and S. Heidelberg isolated from 

broiler carcasses towards ceftriaxone (75%) and ceftiofur (44%) [Medeiros et al., 

2011]. Duffy et al. revealed a high prevalence of AR Salmonella in poultry meat 

compared to beef and lamb samples [Duffy et al., 1999]. And, they observed 
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Salmonella  Bredeney, S. Kentuckey, and S. Enteritidis as the major serotypes. These 

serotypes showed high resistance to antimicrobials such as rifampicin, tetracycline, 

oxytetracycline, and sulphamethoxazole. A study about Salmonella isolated from 

retail meats showed high resistance to common antimicrobials such as: tetracycline, 

streptomycin, sulfamethoxazole, and ampicillin [Chen et al., 2004]. Paveen et al. 

reported that Salmonella spp. isolated from poultry chiller water and carcasses were 

resistant to antimicrobials including tetracycline, ampicillin, amoxicillin-clavulanic 

acid, ceftiofur, streptomycin, and sulfamethoxazole [Parveen et al., 2007].  

Generally, when an antimicrobial is used in any setting, it eliminates the 

susceptible bacterial strains leaving behind those with traits that can resist the drug. 

These resistant bacteria then multiply and become the dominating population and as 

such, are able to transfer (both horizontally and vertically) the genes responsible for 

their resistance to other bacteria. Once these pathogens are in the human system, they 

could colonize the intestines and the resistant genes could be shared or transferred to 

the endogenous intestinal flora [De Leener et al., 2005, Hall et al., 2011, and 

Jakobsen et al., 2010]. In addition, farm environments are the reservoirs of pathogens, 

including AR bacteria [Kelley et al., 1998, and Chen et al., 2014].
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Inappropriate antimicrobial usage in animal production is one of the reasons 

that makes AR. Some countries have withdrawn the use of some classes of 

antimicrobials or set up structures that regulate the use of selected antimicrobials in 

animal production [Chock, 2001]. Despite these developments, it is currently 

estimated that over 60% of all antimicrobials produced are used in livestock 

production, including poultry [Van Boeckel et al., 2014]. The use of antimicrobials 

in poultry and livestock production is favorable to farmers and the economy as well, 

because it has generally improved poultry performance effectively and economically. 

But, at the same time, the likely dissemination of AR strains of pathogenic and non-

pathogenic organisms into the environment and their further transmission to humans 

via the food chain could also lead to serious consequences on public health [Apata, 

2009]. 

 The horizontal transmission of resistance genes plays a vital role in the 

dissemination of antimicrobial resistance in Salmonella enterica species. These 

resistance genes can be found in the resistant plasmids or within the chromosome of 

bacteria [Carattoli, 2003]. The resistant genes that are acquired by plasmids, 

integrons, or transposons are capable of transferring resistance to other strains or 

other species [Domingues et al., 2012]. 
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Salmonella spp. showing resistance to extended-spectrum cephalosporins is a 

-

lactam antimicrobials in bacteria is the direct inactivation of antimicrobials by 

enzymes hydrolysis [Blair et al., 2015]. The production of extended spectrum -

lactamases (ESBLs) is a major mechanism conferring resistance in most of the 

Enterobacteriaceae. Many types of ESBLs are present based on the substrates and 

inhibitor mechanisms [Shaikh et al., 2015]. 

 Aminoglycoside-modifying enzymes (aminoglycoside acetyltransferases) 

mainly mediate resistance to aminoglycoside antimicrobials. The genes encoding 

aminoglycoside resistance are named as aac, and are the typically located in 

Salmonella genomic islands, integrons, and plasmids. The acetyltransferases provide 

resistance to major antimicrobials such as gentamycin and kanamycin. In addition, 

aminoglycoside hydroxyl group phosphorylating enzymes, namely aminoglycoside 

phosphotransferases, are involved in resistance against aminoglycoside 

antimicrobials in Salmonella. These enzymes are encoded by the genes strA, strB, 

aph3-Ib, and aph6-Id providing resistance to streptomycin. Some of the 

aminoglycoside phosphotransferases also provide resistance to kanamycin and 

neomycin. Among the different varieties of aminoglycoside adenylyltranferases 
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encoding genes, aadA provides resistance to streptomycin whereas aadB provides 

resistance to gentamicin and tobramycin in Salmonella [Alcaine et al., 2007].  

 Tetracycline resistance is mainly developed in Salmonella due to the 

acquisition of genes that code for energy-dependent efflux mechanisms [Alcaine et 

al., 2007]. Mainly tet genes are involved in efflux mechanisms, and confer resistance 

to chlortetracycline, doxycycline, oxytetracycline, and tetracycline [Roberts et al., 

2016]. Among these, tetA is common. However, others such as tetB, tetC, tetD, tetG, 

and tetH have been reported in Salmonella enterica from clinical or retail meat 

isolates [Alcaine et al., 2007, McDermott et al., 2016]. The tetA genes have been 

found in plasmids, integrons, and genomic island 1.  

 The resistance development in microorganisms against phenicol 

antimicrobials including chloramphenicol and florfenicol is mainly by two 

mechanisms involving efflux pumps or enzymatic inactivation of antimicrobials by 

chloramphenicol O-acetyltrasferase. The genes encoding chloramphenicol O-

acetyltrasferase are referred to as cat genes and are often associated with plasmids 

[Schwarz et al., 2004]. The floR genes are widely distributed among the Salmonella 

serovars and are found to be associated with transferable plasmids and Salmonella 

genomic islands [Alcaine et al., 2007]. 
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The sulfonamide resistance in Salmonella is due to the presence of sul gene, 

which causes the expression of an insensitive from dihydropteroate synthetase that 

cannot be inhibited by sulfonamides. The sul genes like sul1, sul2, and sul3 have been 

identified frequently from major Salmonella serovars, including S. Enteritidis, S. 

Typhimurium, S. Heidelberg, and S. Hadar [Alcaine et al., 2007, Huovinen et al., 

1995]. These genes are present in integrons, Salmonella genomic islands, or 

transferrable plasmids. 
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Objectives 

The objectives of these studies were to determine the prevalence of Salmonella 

amongst broiler chickens to establish the actual status of Salmonella infections, to 

investigate the change of serovars and antimicrobial resistance profiles, and to 

provide the relationship between them in eight years from 2009 to 2016.  

In Chapter 1, the prevalence, serovars, and antimicrobial resistance of 

Salmonella isolated from broiler chickens in the period from 2009 to 2012 were 

investigated. In particular, the multidrug resistance, and the third-generation 

cephalosporin resistance were focused.  

In chapter 2, Salmonella serovars and antimicrobial resistance were 

investigated in the period from 2013 to 2016 and compared to the previous period. In 

particular, the increase of kanamycin resistance and the decrease of the third-

generation cephalosporin resistance were focused on.  
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CHAPTER 1 

PREVALENCE OF SALMONELLA IN BROILER CHICKENS IN KAGOSHIMA, 

JAPAN IN 2009 TO 2012 AND THE RELATIONSHIP BETWEEN SEROVARS 

CHANGING AND ANTIMICROBIAL RESISTANCE 

Introduction  

Salmonella is a major foodborne pathogen that causes an estimated 153 million 

enteric infections and 56,969 diarrheal deaths each year worldwide [Kirk et al., 2015]. 

Chicken meat and eggs have been reported as a major source of Salmonella 

contamination. Therefore, it is important to control Salmonella in chicken- and egg-

containing food products [Hope et al., 2002, Hedican et al., 2009].

Despite significant improvements in technology and hygienic practices at all 

stages of chicken production, salmonellosis and Salmonella infections remain an 

intransigent threat to human and animal health. In many countries the high incidence 

of salmonellosis in humans appears to be caused by infection derived from 

contaminated eggs, poultry meat and meat-containing products. The contaminated 

products cause disease as a result of inadequate cooking or cross contamination of 

working surfaces in the kitchen environment [Hafez 2001, Omwandho et al., 2010].
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According to food poisoning statistics from the Infectious Disease Surveillance 

Center in Japan, there were 93,444 bacterial foodborne illnesses between 1999 and 

2002, and 32% of these cases were salmonellosis 

[http://idsc.nih.go.jp/iasr/index.html]. According to another survey in Japan, 

Salmonella is the second most common (after Campylobacter infection) cause of 

bacterial foodborne outbreaks [Ministry of Health, Labour and Welfare of Japan. 

2015].

Poultry, especially broiler chickens, are well known reservoirs of various 

Salmonella serovars, many of which are able to infect humans and Salmonella

Infantis has been the most prevalent serovar isolated from fresh poultry meat and 

broiler flocks all over in Europe [Nógrády et al., 2012]. Nine serovars of Salmonella

were detected in Japan from retail chicken meat in 2012, S. Infantis (33%), S.

Schwarzengrund (12%), and S. Manhattan (9%) were the most frequent [Furukawa 

et al., 2017]. Beside, Salmonella Schwarengrund is one of the Salmonella serovars 

responsible for human and poultry infections in some countries, for sample, the 

United States, Denmark and Thailand [Aarestrup et al., 2007; Silva et al., 2013].  

Antimicrobial resistance is becoming an increasingly important issue in 

salmonellosis in both animals and human [Su et al., 2004]. In poultry production, 
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antimicrobial agents are widely used for growth promotion, or treatment purposes 

[Gyles, 2008]. As a consequence, chicken and chicken meat can harbor antimicrobial 

resistant strains and function as a vehicle for dissemination of these to human. Today, 

antimicrobial resistant of Salmonella strains are frequently encountered in most of 

the world and the proportion of antimicrobial resistant dramatically increased over 

the past decade [WHO, 2018].  

Research on the epidemiology of Salmonella throughout the food chain is 

important for determining the specific distribution patterns of antimicrobial resistance 

for this pathogen. In this study, we analyzed the prevalence, serovars, and 

antimicrobial resistance profiles of Salmonella isolates from broiler chickens in 

Kagoshima, Japan. This knowledge will help to understand the relationship between 

changes in the serovar and antimicrobial resistance patterns of Salmonella, and define 

guidelines for improved salmonellosis control which in turn might lead to fever 

human foodborne salmonellosis cases.  

Materials and Methods 

Sampling 

We analyzed a total of 3071 cecal specimens derived from 192 broiler flocks 

(ca. 10.000 birds per flock) collected by prefectural officials at an accredited poultry 
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processing plant during the period of 2009-2012. The processing plant released these 

samples (which would otherwise have been disposed of a waste material) with the 

approval of prefectural officials and sent them to our laboratory. Typically, 16 

randomly selected samples per flocks were collected fortnightly [Chuma et al., 2013].

Salmonella Isolation and identification

Samples were collected using sterile techniques, placed in sterile plastic 

sampling bags, and chilled with ice blocks during transport. Samples were delivered 

to the Laboratory of Veterinary Public Health, Kagoshima University, and cultured 

on the day of arrival. Approximately 1 g of cecal contents was aseptically mixed with 

5 mL of sterilized distilled water and homogenized by vortexing. Then, 1 mL of the 

suspension was pre-enriched in 5 mL of Hajna tetrathionate broth (Eiken Chemical 

Co., Ltd., Tokyo, Japan) and incubated in a water-bath at 42°C. After 24 h incubation, 

a loopful of the culture was streaked onto a selective Rambach agar plate, which was 

incubated at 37°C for 24 h [Shahada et al., 2006]. 

Suspected pink colonies were selected from each plate and streaked on nutrient 

fermentation of glucose, lactose and sucrose, hydrogen sulfide production, citrate 

utilization, lysine decarboxylation, methyl red and indole tests. Serotyping of isolated 
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Salmonella strains was performed with reliable commercial antisera (Difco, Detroit, 

MI, USA), and the results were interpreted according to the Kaufmann-White scheme 

[Popoff et al., 1992]. 

Determination of minimum inhibitory concentrations (MICs) 

The antimicrobial susceptibility of the Salmonella isolates was assessed by the 

agar dilution method on Mueller-Hinton agar (Oxoid Ltd., Basingstoke, UK) plates 

according to the guidelines of the Clinical and Laboratory Standards Institute 

(formerly the National Committee for Clinical Laboratory Standards [NCCLS]) 

[Shahada et al., 2007]. Strains were tested for sensitivity to ampicillin, 

chloramphenicol, streptomycin, sulfamethoxazole, oxytetracycline, kanamycin, 

ofloxacin, cefotaxime, cefoxitin, ceftiofur. The MIC range was set at 0.25-512 µg/mL 

for all tested antimicrobial agents. MIC breakpoints were interpreted according to the 

new criteria established by the Clinical and Laboratory Standards Institute (2012) 

and Clinical and Laboratory Standards Institute (2013). Escherichia coli (E. coli) 

ATCC 25922 and Staphylococcus aureus ATCC 29213 were used as quality control 

strains.  
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Statistical analysis 

The prevalence of antimicrobial-resistant isolates across three study periods 

was compared by using multiple comparisons. A chi-square test was first performed 

to detect significant differences for each antimicrobial agent. When the result was 

significant, a test for multiple comparisons of proportions [Ryan, 1960] was then 

performed.  

Results  

Prevalence and serovars of Salmonella isolated from broiler chickens in 

Kagoshima, Japan, in 2009-2012

The prevalence of Salmonella in broiler chickens in 2009-2012 in Kagoshima, 

Japan is presented in Table 1.1. The prevalence of Salmonella-positive flocks varied 

slightly from year to year during the study period, and the overall percentage of 

positive flocks was 49.0% (94/192). The same number of flocks (48 flocks) was 

collected each year. The percentage of positive flocks was 50.0% in 2009, which 

decreased dramatically to 39.6% in 2010. However, the trend then changed, and the 

percentage increased in the next two years to 45.8% in 2011 and 60.4% in 2012. 

However, there was no significant difference year by year from 2010 to 2012. 
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The prevalence of Salmonella among all tested samples was 7.9% (243/3071), 

and is was highest in 2012, at 8.6%, followed by 8.3% in 2011, 7.8% in 2010, and 

6.9% in 2009. These differences were not significant. 

The year-to-year changes in the serovars of the Salmonella isolates were 

investigated, and the results are presented in Figure 1.1. The strains of Salmonella 

isolated from broiler chickens in Kagoshima, Japan (n = 243) in the four year period 

in 2009-2012 belonged to three serovars, S. Infantis 57.6% (140/243), S. Manhattan 

40.3% (98/243), and S. Schwarzengrund 2.1% (5/243). 

Figure 1.1 shows a contrasting trend in the number of S. Manhattan and S. 

Infantis isolates detected from 2009 to 2012. The percentage of S. Infantis isolates 

decreased gradually, from 66.0% in 2009 to 50.0% in 2011, but increased to 57.6% 

in 2012, whereas the percentage of S. Manhattan isolates significantly increased from 

26.4% in 2009 to 50.0% in 2011 after decreased moderately to 40.9% in 2012.  

The highest percentage of S. Schwarzengrund isolates was observed in 2009 

(7.6%; 4/53). This serovar was not detected in 2010 or 2011; however 1 isolate (1/66; 

1.5%) was detected in 2012. 
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Antimicrobial resistance phenotypes 

The results of the MIC analysis of 243 Salmonella isolates are summarized in Table 

1.2. All 243 strains were susceptible to chloramphenicol, with a MIC µg/mL. 

The rates of resistance were the highest for streptomycin, sulfamethoxazole, and 

oxytetracycline, and >90% of strains were resistant to these antimicrobials; 231 

(95.1%) were resistant to streptomycin (MIC 16 µg/mL), 221 (91.0%) were 

resistant to sulfamethoxazole (MIC 512 µg/mL), and 222 (91.4%) were resistant to 

oxytetracycline (MIC 16 µg/mL). Many isolates were also resistant to ampicillin 

(55.1%) and cefotaxime (52.7%). The three antimicrobials with the lowest resistance 

rates were kanamycin (6.6%), cefoxitin (6.2%), and ofloxacin (1.6%).  

Each serovar of Salmonella showed a different resistance prevalence to 

antimicrobial used in the study (Table 1.3). Serovar S. Infantis and S. Manhattan 

exhibited resistance to streptomycin, sulfamethoxazole and oxytetracycline, ranging 

from 84.6% (resistance of S. Infantis to sulfamethoxazole) to 96.9% (resistance of S. 

Manhattan to streptomycin and oxytetracycline), while they were sensitive ofloxacin 

with a resistance rate of 1.0% and 2.1% in S. Manhattan and S. Infantis, respectively. 

We also found a significant difference in the antimicrobial resistance rates of the two 

serovars to four other antimicrobials. Resistance to cefoxitin, ceftiofur, cefotaxime 
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and ampicillin was 0.0%, 92.9%, 93.9% and 94.9%, respectively, for S. Manhattan, 

and 10.7%, 25.0%, 25.7% and 29.3%, respectively, for S. Infantis. S. 

Schwarzengrund showed high sensitivity to seven antimicrobials with 0% resistance, 

but exhibited a high resistance (100%) to streptomycin, sulfamethoxazole and 

oxytetracycline (Table 1.3).  

Table 1.4 shows the prevalence and distribution of different multidrug 

resistance on each serovar: On overall, 231 Salmonella strains investigated were 

resistant or intermediately resistant to three or more of the 10 antimicrobial agents 

tested. Resistance to three antimicrobials was detected in 91 (37.4%) of the isolates. 

Resistance to four, five and six antimicrobials were detected 18 (7.4%), 9 (3.7%) and 

104 (42.8%), respectively. 

 S. Infantis has a variety of resistance to antimicrobials agent examined from 

sensitive to resistance to eight antimicrobials: 5 strains were sensitive, resistance to 

three antimicrobials was highest 78 (55.7%), followed by resistance to six, four and 

five antimicrobials agent at 19 (13.6%); 17 (12.1%) and 8 (5.7%) strains, respectively. 

Multidrug resistance to more than six antimicrobials was detected in 113 (46.5%) of 

the isolates, and most of them were S. Manhattan (88/113), all 5 strains of S. 

Schwarzengrund have three resistance pattern (SSuT).  



24 

In Table 1.5, we have described the resistance proportion of S. Infantis and S.

Manhattan to ampicillin, cefotaxime, ceftiofur and cefoxitin for each year during the 

period 2009 - 2012. In the course of the four years of study, resistance proportion of 

S. Manhattan to ampicillin, cefotaxime and ceftiofur (from 76.0% for ceftiofur in 

2009 to 100% for three different antimicrobials in 2012) was much higher than in S. 

Infantis (7.9% for ceftiofur in 2012 to 52.3% for ampicillin in 2010). On the other 

hand, all the strains of S. Manhattan (98) were sensitive to cefoxitin, while 10.7% 

(15/140) of S. Infantis were resistant to cefoxitin in the period of study.   

To understand the changes in the antimicrobial resistance of the Salmonella 

isolate over time, we compared our results to data obtained in two previous studies 

[Chuma et al., 2013, Shahada et al., 2010]. The comparison is shown in Table 1.6. 

In all three studies, all Salmonella strains were susceptible to chloramphenicol, with 

a MIC 32 µg/mL. The percentage of antimicrobial-resistant strains was also high 

for three other antimicrobials, streptomycin, sulfamethoxazole, and oxytetracycline, 

although rates of resistance decreased significantly over time (p < 0.05). 

In all three studies, we observed a significant increase in the rates of 

antimicrobial resistance for two antimicrobials, ampicillin and cefotaxime (p < 0.05). 

For ampicillin, the resistance rate was 22.4% in 2004-2006, 36.5% in 2007, and 
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55.1% in the present study period (2009-2012). A similar trend was observed for 

cefotaxime resistance, with 9.1% in the first study period, 35.5% in the second study 

period, and 52.7% in 2009-2012. 

In contrast, the percentage of ofloxacin-resistant strains decreased dramatically 

(and significantly) with time across the three study periods, from 20.8% in 2004-2006 

to 11.8% in 2007 and 2008, and 1.6% in the present study (p < 0.05). 

Discussion  

The overall percentages of Salmonella-positive flocks (70.6%) and samples 

(14%) detected in 1998-2003 [Shahada et al., 2006] were higher than the 

corresponding percentages in 2004-2012, which is clearly demonstrated in the studies 

by [Shahada et al., 2010] and [Chuma et al., 2013] as well as the present study 

(Table 1.1). In 2004-2006, the percentage of positive flocks was 39.2% and the 

percentage of positive samples was 5.2% [Shahada et al., 2010]. In 2007 and 2008, 

the respective positive rates were 58.7% and 6.3% [Chuma et al., 2013]. This decline 

in the percentages of positive flocks and samples described above may be due to the 

use of certain antimicrobials in chicken production in Kagoshima, Japan in 2004-

2012. 
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The prevalence of Salmonella in Kagoshima, Japan observed in the present 

study (shown in Table 1.1) was similar to that reported in the Kyushu region of Japan, 

where 88.0% of cecal samples from broiler flocks were positive for Salmonella 

[Yamazaki et al., 2016]. This same rate of positivity for Salmonella infection in the 

flock in the two studies may be because the studies were conducted in the regions 

with the same climatic conditions.  

The serovar changes among Salmonella isolates were very clear when the 

present serovars were compared to those in previous studies. In 1998-2003, 93.4% 

(526/563) of isolates originating from 135 flocks were S. Infantis [Shahada et al.,

2006]. In 2004-2006, 100% (193/193) of Salmonella isolates were S. Infantis, 

whereas in 2007 and 2008, 97.4% (113/116) of Salmonella isolates were S. Infantis, 

and 2.6% (3/116) were S. Manhattan [Chuma et al., 2013]. 

Our result demonstrated the same predominant Salmonella serovars (as shown 

in Figure 1.1) as in the other previous studies conducted in Kyushu, Japan. However, 

there were some differences; for instance, of the 184 Salmonella strains isolated from 

broiler chickens, 123 were S. Schwarzengrund (O4:d:1,7), 41 were S. Infantis 

(O7:r:1,5), 9 were S. Manhattan (O6,8:d:1,5), 3 were S. Yovokome (O8:d:1,5), 5 were 

OUT:d:1,7, and 4 were OUT:r:1,5 [Yamazaki et al., 2016].
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To our knowledge, this is the first study examining serovar changes in 

Salmonella isolates from broiler chickens over time in Japan. In this study, only three 

serovars, S. Manhattan, S. Infantis, and S. Schwarzengrund (Figure 1.1), were 

detected. This result is similar to those reported in other countries in Asia [Park et 

al., 2015, Rahmani et al., 2013], with S. Infantis as the main serovar. Although, the 

main serovar in some European countries was S. Typhimurium [Terentjeva et al.,

2017; El-Sharkawy et al., 2017 and Wierup et al., 2017]. The different Salmonella 

serovars present in broilers may depend on the region or country due to variations in 

climate, geographical regions and chicken husbandry practices among countries. 

This is also first study to report the relationship between serovar and 

antimicrobial resistance in Salmonella isolates from broiler chickens in Kagoshima, 

Japan. In the previous studies, these results were not clearly presented. In China, 457 

Salmonella isolates from chickens, pigs, and dairy cows were most commonly 

resistant to nalidixic acid (39.17%), sulfamethoxazole-trimethoprim (39.61%), 

doxycycline (28.22%), and tetracycline (27.58%) [Kuang et al., 2015]. A study in 

Serbia showed that 100% of S. Infantis isolates were resistant to ciprofloxacin and 

anlidixic acid [Velhner et al., 2014]. In Kagoshima (2007-2008) most Salmonella 

isolates were S. Infantis; however, the rate of resistance to ofloxacin was only 11.8% 
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[Chuma et al., 2013]. In addition, a study in Iran reported high fluoroquinolone 

resistance in both S. Infantis and S. Enteritidis isolates [Rahmani et al., 2013]. The 

low fluoroquinolone resistance rates in our study may be explained by the differences 

in the serovars of Salmonella isolates. There appeared to be a relationship between 

the serovars of the Salmonella isolates and antimicrobial resistance, especially for 

ampicillin, cefotaxime, and ofloxacin.  

Increased multidrug resistant (MDR) has been reported in Salmonella isolates 

in many countries. In the study the high level of MDR observed among Salmonella

serovars (table 1.4) were in agreement with several studies from different countries 

[Rahmani et al., 2013; Kuang et al., 2015; Nógrády et al., 2008]. Special S. Infantis 

has wide resistance pattern from zero to eight in total 10 antimicrobials agent were 

tested. 

From Table 1.3, Table 1.5 and Fugure 1.1. It can be inferred that the resistance 

rate of Salmonella to certain antimicrobials (streptomycin, sulfamethozaxole, 

oxytetracycline, chloramphenicol and ofloxacin) remained unchanged each year 

during the period 2009-2012. However, the proportion of serovars isolated each year 

varied. All three isolated serovars were sensitive to chloramphenicol and ofloxacin 

but resistance to streptomycin, sulfamethozaxole, and oxytetracycline. Since, the 
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number isolated strains of S. Schwarzengrund was very small (5 strains isolated 

during 2009-2012), it might not be expected to show changes in antimicrobial 

resistance rate with each year.   

In the present study, the percentage of resistance to ampicillin, cefotaxime and 

ceftiofur showed a huge difference between S. Manhattan and S. Infantis. The 

resistance of S. Manhattan to the three antimicrobials mentioned above was more than 

3 times higher than in S. Infantis in the hold period. In particular, during 2010-2012, 

the resistance rate of S. Infantis decreased while an opposite trend was observed for 

S. Manhattan; the resistance rate of S. Manhattan increased eventually to 100%. This 

indicates a great influence of serovar change on the resistance to the three 

antimicrobials (ampicillin, cefotaxime and ceftiofur).  

In Kagoshima, Japan, certain antimicrobials, such as: ampicillin, enrofloxacin, 

amoxicillin and doxycycline are used in the treatment of broiler ascites caused by 

E.coli infection in broiler chicken. That might have affected to the rate of 

antimicrobial re -lactam, tetracycline, in 

case of Salmonella. 

In the previous reports from 2007-2008, the prevalence rates of S. Infantis and 

S. Manhattan were 97.4% and 2.6%, respectively, and the rates of penicillin, 
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cefotaxime, and ofloxacin resistance were 36.5%, 35.5%, and 11.8%, respectively. In 

2004-2006, when all isolates were S. Infantis (100%), the rates of penicillin, 

cefotaxime, and ofloxacin resistance were 22.4%, 9.1%, and 20.8%, respectively 

[Chuma et al., 2013]. In our survey, the percentage of S. Manhattan isolates resistant 

to ampicillin and cefotaxime was higher than in S. Infantis. From these results, it 

seems that the increase in the proportion of the S. Manhattan serovar leads to the 

increase in resistance to ampicillin, cefotaxime and ceftiofur with each passing year; 

this observation is supported by data from the present study and from previous studies. 

Conclusion  

Taken together, our data show that there was no significant change in the 

prevalence of Salmonella in broiler chickens in Kagoshima, Japan in 2009-2012 

when compared to the prevalence in previously surveyed time periods. We have not 

yet found a definitive pattern in the prevalence of Salmonella and the rates of 

resistance to some antimicrobials. However, when the proportion of S. Manhattan 

isolates increased, the percentage of penicillin-, cefotaxime- and ceftifour-resistant 

isolates showed a similar increasing trend. Furthermore, the percentage of ofloxacin-

resistant strains decreased when the percentage of S. Infantis isolated decreased. 
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Continuous research on the relationship between Salmonella isolates serovars 

and the antimicrobial resistance profiles of each serovar will help reduce the risk of 

antimicrobial resistant organisms. 
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Table 1.1. Prevalence of Salmonella in broilers in Kagoshima, Japan  

in 2009-2012

Year  No. of flocks 
No. of positive 

flocks (%) 
No. of samples 

No. of positive 

samples (%) 

2009 48 24 (50.0) 768 53 (6.9) 

2010 48 19 (39.6) 768 60 (7.8) 

2011 48 22 (45.8) 767 64 (8.3) 

2012 48 29 (60.4) 768 66 (8.6) 

Total 192 94 (49.0) 3071 243 (7.9) 
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Table 1.2. Antimicrobial susceptibility profiles of 243 Salmonella isolates from 2009 to 2012 

Antimicrobial 
agent 

No. of isolates at the MIC (µg/mL) MIC  
break-point 

(µg/ml)

Resistance 
no. (%) 0.25 0.5 1 2 4 8 16 32 64 128 256 512 

SM 0 0 0 0 3 9 7 124 100 0 0 0 16 231 (95.1)

OTC 0 2 12 7 0 0 0 0 2 114 106 0 16 222 (91.4)

SUL 0 0 2 1 3 9 6 1 0 0 0 221 512 221 (91.0)

AMP 0 33 70 6 1 0 0 0 5 8 1 120 32 134 (55.1)

CTX 112 0 1 2 9 13 87 17 1 1 0 0 4 128 (52.7)

CTF 2 50 62 1 3 11 25 8 64 10 7 0 8 125 (51.4)

KM 15 0 17 144 53 0 0 0 0 0 0 16 64 16 (6.6)

CFX 0 2 45 114 60 2 5 10 5 0 0 0 32 15 (6.2)

OFLX 228 2 7 4 0 0 0 0 0 0 0 0 2 4 (1.6)

CP 0 32 95 110 4 0 0 0 0 0 0 0 32 0 (0.0)

AMP, ampicillin; CTX, cefotaxime; CFX, cefoxitin; CP, chloramphenicol; SM, streptomycin; SUL, sulfamethoxazole; OTC, 
oxytetracycline; KM, kanamycin; OFLX, ofloxacin; CTF, ceftiofur. 
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Table 1.3. Distribution of antimicrobial resistance of Salmonella isolated from 2009 to 2012 according to the serovar 

Salmonella 

serovars 

(No. Isolates) 

SM 

(%) 

OTC 

(%) 

SUL 

(%) 

AMP 

(%) 

CTX 

(%) 

CTF 

(%) 

KM 

(%) 

CFX 

(%) 

OFLX 

(%) 

CP 

(%) 

Infantis  

(n = 140) 

132  

(94.3) 

122  

(87.9) 

121  

(86.4) 

41  

(29.3) 

36  

(25.7) 

34  

(25.0) 

13  

(8.6) 

15  

(10.7) 

3  

(2.1) 

0  

(0.0) 

Manhattan  

(n = 98) 

94  

(95.9) 

95  

(96.9) 

95  

(96.9) 

93  

(94.9) 

92  

(93.9) 

91 

 (92.9) 

3  

(2.0) 

0  

(0.0) 

1  

(1.0) 

0  

(0.0) 

Schwarzengrund 

(n = 5) 

5  

(100) 

5  

(100) 

5  

(100) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

Total  

( n = 243)

231 

(95.1) 

222 

(91.4) 

221 

(91.0) 

134 

(55.1) 

128 

(52.7) 

125 

(51.4) 

16  

(6.6) 

15  

(6.2) 

4  

(1.6) 

0  

(0.0) 

AMP, ampicillin; CTX, cefotaxime; CFX, cefoxitin; CP, chloramphenicol; SM, streptomycin; SUL, sulfamethoxazole; OTC, 

oxytetracycline; KM, kanamycin; OFLX, ofloxacin; CTF, ceftiofur.
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Table 1.4. Prevalence and distribution of different multidrug resistance 

phenotypes among three serovars isolated 

Serovars 
Resistance pattern 

Total 
0 1 2 3 4 5 6 7 8 

S. Infantis 5 3 4 78 17 8 19 5 1 140 

S. Manhattan - - - 8 1 1 85 3 - 98 

S. Schwarzengrund - - - 5 - - - - - 5 

Total 5 3 4 91 18 9 104 8 1 243 

Resistance pattern of 3: SSuT. 

Resistance pattern of 4: ASSuT.  

Resistance pattern of 6: ASSuT-CT, CF and ASSuT-CT, CX  

S: Streptomycin, Su: Sulfamethoxazole, T: Oxytetracycline, A: Ampicillin, CT: 

cefotaxime, CF: Ceftiofur, CX: Cefoxitin. 
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Table 1.5. The proportion of S. Infantis and S.  Manhattan resistance to ampicillin, cefotaxime and ceftiofur in each year 

from 2009 to 2012 

Year 

(No. isolated) 

S. Infantis Year 

(No. isolated) 

 S. Manhattan

AMP (%) CTX (%) CTF (%) CFX (%) AMP (%) CTX (%) CTF (%) CFX (%) 

2009 (35) 13 (37.1) 12 (34.3) 12 (34.3) 4 (11.4) 2009 (14) 14 (100) 13 (92.9) 13 (92.9) 0(0.0) 

2010 (35) 19 (52.3) 16 (45.7) 15 (42.9) 6 (17.1) 2010 (25) 20 (80.0) 20 (80.0) 19 (76.0) 0(0.0) 

2011 (32) 5 (15.6) 5 (15.6) 5 (15.6) 3 (9.4) 2011 (32) 32 (100) 32 (100) 32 (100) 0(0.0) 

2012 (38) 4 (10.5) 3 (7.9) 3 (7.9) 2 (5.3) 2012 (27) 27 (100) 27 (100) 27 (100) 0 (0.0) 

Total (140) 41 (29.3) 36 (25.7) 35 (25.0) 15(10.7) Total (98) 93 (94.9) 92 (93.9) 91 (92.9) 0 (0.0) 

AMP, ampicillin; CTX, cefotaxime; CTF, ceftiofur; CFX, Cefoxitin
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Table 1.6. Antimicrobial susceptibility profiles in this study and previous studies of Salmonella isolates from broiler

chickens in Kagoshima, Japan 

Antimicrobial agent 
MIC  

break-point 
(µg/mL)

 No. of resistant isolates (%) 

Previous studies  This study 

2004  2006 
(n = 120)a 

2007  2008 
(n = 93)b

 2009  2012 
(n = 243)c 

SM 16 120 (100) 86 (92.5) 231 (95.1)

OTC 16 120 (100) 86 (92.5) 222 (91.4)

SUL 512 120 (100) 86 (92.5) 221 (91.0)

AMP 32 29 (22.4) * 34 (36.5) # 134 (55.1)

CTX 4 11 (9.1) 33 (35.5) 128 (52.7)

KM 64 9 (7.5) 12 (12.9) 16 (6.6)

CFX 32 0 (0.0) 8 (8.6) 15 (6.2)

OFLX 2 25 (20.8) $ 11 (11.8) 4 (1.6)

CP 32 0 (0.0) 0 (0.0) 0 (0.0)
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AMP, ampicillin; CTX, cefotaxime; CFX, cefoxitin; CP, chloramphenicol; SM, streptomycin; SUL, sulfamethoxazole; OTC, 

oxytetracycline; KM, kanamycin; OFLX, ofloxacin. 

a Cited from Shahada et al., 2010 

b Cited from Chuma et al., 2013

c This study. 

* Significantly increased from the period of 2004 2006 (p < 0.05) 

# Significantly increased from the period of 2007 2008 (p < 0.05) 

$ Significantly decreased from the period of 2004 2006 (p < 0.05) 
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Figure 1.1. Change of distribution of Salmonella serovars isolates from broiler 

in Kagoshima, Japan in the period from 2009 to 2012 
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CHAPTER 2 

INCREASED SALMONELLA SCHWARZENGRUND PREVALENCE AND 

ANTIMICROBIAL SUSCEPTIBILITY OF SALMONELLA ENTERICA 

ISOLATED FROM BROILER CHICKENS IN KAGOSHIMA PREFECTURE IN 

JAPAN BETWEEN 2013 AND 2016 

Introduction  

Salmonellosis, one of the most important diseases in both humans and animals, 

has been described as the second most commonly caused foodborne bacterial disease 

worldwide [Gast, 2008]. Salmonella is one of the four key global causes of diarrheal 

diseases, with 2579 serovars identified till date [Patrick et al., 2007].  Antimicrobial 

agents are widely used during poultry production for growth promotion, or treatment 

purposes [Gyles et al., 2008]. Resistance to antimicrobial agents in bacteria is 

mediated by several mechanisms including changes in bacterial cell wall permeability, 

energy-dependent removal of antimicrobials via membrane-bound efflux pumps, 

modification of the site of drug action, and destruction or inactivation of the drug 

[Barbosa et al., 2000, and Schwarz et al., 2001].  Bacteria can acquire resistance 

genes through mobile elements, such as plasmids, which provide flexibility to the 
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host bacteria and promote the spread and distribution of these genes across the diverse 

bacterial population [Blair et al., 2015].  

Notably, we recently reported an increase in the prevalence of Salmonella in 

broiler chickens in Japan including the first report of Salmonella Schwarzengrund 

detection in 2012, which is the main serovar detected in Kagoshima Prefecture, Japan 

presently [Chapter 1]. S. Schwarzengrund has been reported as an emerging 

pathogen in Asia, Denmark, the United States of America and Brazil [Aarestrup et 

al., 2007, Asai et al., 2009, and Luisa et al., 2019]. In this study, we analyze the

Salmonella serovars, measure the minimal inhibitory concentration (MIC) of 

antimicrobials, and examine the resistance genes in order to describe the recent 

fluctuations of antimicrobial susceptibility of Salmonella in broiler chickens and 

investigate its mechanism. 

Materials and methods  

During 2013 to 2016, we analyzed 3069 cecal specimens from 192 broiler flocks 

(approximately 10,000 birds per flock) collected by the prefectural officials at an 

accredited poultry processing plant in Kagoshima Prefecture, Japan. Samples were 

delivered to the Laboratory of Veterinary Public Health, Kagoshima University, and 
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cultured on the day of arrival. [Chuma et al., 2013, and chapter 1]. The 

antimicrobial susceptibility of the Salmonella isolates was ascertained by the agar 

dilution method using Mueller Hinton agar (Oxoid Ltd.; Basingstoke, UK) [Shahara 

et al., 2007, Shahara et al., 2010, and NARMS, 2009]. Two kanamycin resistance 

genes aphA1, and kn were detected by using PCR [Chen et al., 2004, Frana et al., 

2001, and Gebreyes et al., 2005].  

Results and discussion  

Salmonella prevalence in broiler chickens from 2013 to 2016 in Kagoshima 

Prefecture, Japan is shown in Table 2.1. Overall, the prevalence of Salmonella- 

positive flocks exhibited a dramatic increase during the last three years in the study 

period compared to that during the first year. In general, the incidence of Salmonella

in the flocks was 78.6% (151/192; 48 flocks per year for four years) and the 

proportion of Salmonella-positive samples in the total number of samples from 

broiler chickens was 17.8% (546/3069). As shown in Table 2.1, Salmonella 

prevalence at both the flock and individual broiler chicken levels in the present study 

(78.6%) is much higher than that in our previous study (49.0%) [Chapter 1]. Our 

report was similar to the Salmonella prevalence in Japan reported by Yamazaki et al. 
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[Yamazaki et al., 2016], and Sasaki et al. [Sasaki et al., 2012]. Alternatively, 

Salmonella prevalence was reported to vary considerably across different geographic 

regions worldwide. In Sweden, a study from 2007 to 2015 on housed broilers and 

laying hens reported that the percentage of Salmonella-positive broiler flocks was 

2.0% [Wierup et al., 2017]. A study in Egypt reported that 41.0% of tested broiler 

flocks were positive for Salmonella along with 1.09% of tested samples [El-

Sharkawy et al., 2017]. 

The Salmonella isolates from broiler chickens in Kagoshima Prefecture, Japan 

belongs to three serovars: Infantis, Manhattan, and Schwarzengrund across the four 

years of the present study, as also reported in chapter 1, although the relative 

proportions differed as shown in Table 2.2. The largest differences were observed in 

Infantis and Schwarzengrund serovars. Across both studies, S. Infantis proportion 

exhibited a dramatic decrease. In contrast, S. Schwarzengrund and S. Manhattan 

percentage steadily increased from 2.1 and 40.3%, respectively, in 2009-2012 to 21.3 

and 51.8%, respectively, in 2013-2016.  

In Japan, S. Schwarzengrund proportion of broiler chicken origin increased 

from 0% in 2000 2003 to 28.1% in 2005 2007 and was resistant to streptomycin, 

oxytetracyclin and kanamycin [Barbosa et al., 2000]; a high incidence of S. 
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Schwarzengrund was also detected in Kyushu region, Japan with 123 positive 

samples from 184 Salmonella strains (66.8%) isolated from broiler chickens 

[Yamazaki et al., 2016]. Moreover, a study conducted in Taiwan from 2004 to 2006 

indicated S. Schwarzengrund contamination prevalence in raw chicken meat samples 

as 30.5% [Chen et al., 2010]. In our present study, the number of S. Schwarzengrund 

strains isolated increased dramatically from 5 to 116 (Table 2.2). Together, these 

studies support that S. Schwarzengrund has become one of the most prevalent 

serovars in broiler chickens in East Asia.  

Table 2.3 describes that the proportion of Salmonella antimicrobial resistance 

slightly changed across the previous (2009-2012) [Chapter 1] and current (2013-

2016) study periods. Ampicillin, cefotaxime, and ceftiofur resistance was 

concurrently and markedly decreases.  Conversely, kanamycin-resistant Salmonella 

proportion increased from 6.6% in 2009-2012 to 13.7% in 2013-3016. The majority 

of S. Schwarzengrund were sensitive to ampicillin, cefotaxime, cefoxitin, and 

ceftiofur (zero percent resistance).  

As shown in table 2.4, almost all Salmonella strains of the three serovars were 

sensitive to chloramphenicol and ofloxacin, whereas over 80% of each serovar 

exhibited resistance to streptomycin, sulfamethoxazole, and oxytetracycline. In our 
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survey from 2009 to 2012 in chapter 1, the increased proportion of the S. Manhattan 

serovar led to an annual increase in resistance to ampicillin, cefotaxime, and ceftiofur. 

In the present study, although S. Manhattan percentage was 51.8% (Table 2.2) the 

resistance rate of all Salmonella serovars decreased compared to that in chapter 1 

from 2009 to 2012. This may be due to the decrease in the number of S. Infantis and 

increase in S. Schwarzengrund from 2013 to 2016, as all isolated S. Schwarzengrund 

(109 isolates) were sensitive to ampicillin, cefotaxime, and ceftiofur (Table 2.4). The 

-lactam antimicrobial resistance rate of S. Manhattan was higher than those of S. 

Infantis and S. Schwarzengrund. In addition, considerable differences in kanamycin 

resistance were detected among the three serovars. While the majority of S. 

Manhattan was susceptible to kanamycin, S. Infantis exhibited a resistance rate at 

10.8% and S. Schwarzengrund showed the maximum rate, with 47.7% resistance to 

-lactam resistance proportion in our study may be the 

same as reported by Mauro et al [Mauro et al., 2018], where the authors indicated 

that the off- -

term increase in ESBL-producing Escherichia coli in the gut of broiler chickens. In 

Japan, the same situation appeared following the cessation of ceftiofur use by the 

Japanese poultry industry [Shigemura et al., 2018].   
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Figure 2.1 shows a comparison of the specific antimicrobial resistance rates 

for S. Infantis (Fig. 2.1a) and S. Manhattan (Fig. 2.1b) between the current (2013-

2016) and in chapter 1 (2009-2012) study periods. However, as only five strains of S.

Schwarzengrund were isolated in chapter 1, we did not perform the comparison for 

this serovar. S. Infantis proportion exhibiting antimicrobial resistance to ampicillin, 

cefotaxime, streptomycin, sulfamethoxazole, and oxytetracycline slightly decreased 

in the current study period compared to that in the previous study period (Fig. 2.1a). 

No change was observed in cefoxitin, chloramphenicol, and ofloxacin resistance, 

whereas kanamycin and ceftiofur resistance was slightly increased. In comparison, 

the resistance rate of S. Manhattan to streptomycin, sulfamethoxazole, 

oxytetracycline, chloramphenicol, kanamycin, and ofloxacin minimally fluctuated 

between the two periods. The percentage of resistance to three antimicrobials 

decreased in the present period: ampicillin (from 94.9% to 45.2%), cefotaxime (from 

93.9% to 41.4%), and ceftiofur (from 74.5% to 30.0%). In contrast, cefoxitin-resistant

S. Manhattan resistance increased from 0 to 10.3% between the previous and current 

study periods.   

We further evaluated 68 kanamycin-resistant S. enterica isolates from 

Kagoshima Prefecture, Japan during the present study period (2013 2016) (13 S. 



47 

Infantis, 3 S. Manhattan, and 52 S. Schwarzengrund) for kanamycin resistance genes 

(kn and aphA1) by PCR. None of the 68 isolates carried kn, whereas 65/68 (95.6%) 

carried aphA1 (Table 2.5). All the 13 S. Infantis isolates (MIC: 512 g/ml) carried 

aphA1. Of the three S. Manhattan isolates, one (MIC: 512 g/ml) carried aphA1 

whereas two others (MIC: 256 and 128 g/ml) did not. The 51 S. Schwarzengrund 

isolates with MIC of 512 g/ml carried aphA1; that with MIC of 256 g/ml did not. 

aph gene was found in almost kanamycin-resistant of S. enterica serovars 

isolated in some regions of the United states of America in 2005 [Chen et al., 2010]. 

A study in the United States of America and China [Chen et al., 2004] found aph in 

S. Enteritidis, S. Haardt, and an unidentified serovar from chicken meat and S. Derby 

from pork. In comparison, we found the aph gene (but not kn) in three serovars: S.

Infantis, S. Manhattan, and S. Schwarzengrund. This may suggest that this gene 

commonly serves to provide kanamycin resistance in numerous Salmonella serovars.  

Conclusion  

Together, our findings revealed that there has been a recent increase in the 

population of the S. Schwarzengrund-strain, making it the main serovar of Salmonella 

isolated from broiler chickens in Kagoshima Prefecture in Japan, followed by S.
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Manhattan. In turn, the increase of S. Schwarzengrund, which exhibited a high level 

of kanamycin resistance, led to a decrease in the rate of antimicrobial resistance to 

ampicillin, cefotaxime, and ceftiofur among all Salmonella isolates and affected the 

increase in the percentage of kanamycin-resistant isolates. In addition, the resistance 

rate of S. -lactams in this study slightly decreased compared to that in 

chapter 1 -lactams. Moreover, 

we demonstrated that aphA1 is the main antimicrobial resistance gene in Salmonella 

isolates. These changing profiles indicate the need for continual evaluation and 

research regarding the molecular characteristics of Salmonella in broiler chickens. 
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Table 2.1. Prevalence of Salmonella in broiler chickens during 2013-2016 in 

Kagoshima, Japan 

Year  No. of flocks
No. of positive 

flocks (%) 
No. of samples 

No. of positive 

samples (%) 

2013 48 31 (64.6) 767 82 (10.7) 

2014 48 41 (85.4) 767 153 (19.9) 

2015 48 40 (83.3) 768 157 (20.4) 

2016 48 39 (81.3) 767 154 (20.1) 

Total 192 151 (78.6) 3069 546 (17.8) 
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Table 2.2. Incidence of Salmonella serovars in broiler chickens in 

Kagoshima, Japan during two periods (2009-2012 and 2013-2016) 

Serovar  
Survey period 

2009  2012a 2013-2016b

No. of S. Infantis 140 147 

(%) (57.6) (26.9) 

No. of S. Manhattan 98 283 

(%) (40.3) (51.8) 

No. of S. Schwarzengrund  5 116 

(%) (2.1) (21.3) 

Total 243 546 

a Cited from chapter 1 

b This study
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Table 2.3. Antimicrobial susceptibility profiles from the current study and 

study in chapter 1 of Salmonella isolates from broiler chickens in 

Kagoshima, Japan 

Antimicrobial 

agent 

MIC  

break-point 

(µg/ml)

No. of resistant isolates (%) 

Previous studya Current studyb

2009 2012 2013 2016 

n = 243a n = 511*b

AMP  134 (55.1) 148 (29.0)

CTX  128 (52.7) 132 (25.8)

CFX  15 (6.2) 42 (8.2)

CP  0 (0.0) 0 (0.0)

SM  231 (95.1) 484 (94.7)

SUL  221 (91.0) 463 (90.6)

OTC  222 (91.4) 451 (88.3)

KM  16 (6.6) 70 (13.7)

OFLX  4 (1.6) 3 (0.59)

CTF  124 (51.0)b 112 (22.0)

a Cited from chapter 1 

b This study 
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* The number of strains (511) differs from the total given in Table 2.2 (546) because 

at the time of MIC testing, some strains were dried and not suitable for use. 

AMP, ampicillin; CTX, cefotaxime; CFX, cefoxitin; CP, chloramphenicol; SM, 

streptomycin; SUL, sulfamethoxazole; OTC, oxytetracycline; KM, kanamycin; 

OFLX, ofloxacin; CTF, ceftiofur. 
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Table 2.4. Comparison of antimicrobial resistance of Salmonella 

Schwarzengrund, S. Manhattan and S. Infantis during 2013 to 2016 

Antimicrobial 

agent  

No. of resistant isolates (%) 

S. Schwarzengrund S. Manhattan S. Infantis

n = 109 n = 263 n = 139 

AMP 0 (0.0) 119 (45.2) 29 (20.9)

CTX 0 (0.0) 116 (44.1) 21 (15.1)

CFX 0 (0.0) 0 (0.0) 15 (10.8)

CP 0 (0.0) 0 (0.0) 0 (0.0)

SM 109 (100) 257 (97.7) 118 (84.9)

SUL 102 (93.6) 244 (92.8) 117 (84.2)

OTC 101 (92.7) 238 (90.5) 121 (87.1)

KM 52 (47.7) 3 (1.1) 15 (10.8)

OFLX 0 (0.0) 0 (0.0) 3 (2.2)

CTF 0 (0.0) 116 (44.1) 22 (15.8)

AMP, ampicillin; CTX, cefotaxime; CFX, cefoxitin; CP, chloramphenicol; SM, 

streptomycin; SUL, sulfamethoxazole; OTC, oxytetracycline; KM, kanamycin; 

OFLX, ofloxacin; CTF, ceftiofur.
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Table 2.5. Distribution of the aphA1 kanamycin resistance gene from 

Salmonella serovars isolated from broiler chickens during the study period 

from 2013 to 2016  

Serovar (no. of 

isolates) 

MIC of 

kanamycin 
No. of isolates 

tested  

No. of isolates 

positive for aphA1

resistant gene (%) 

S. Infantis (13)

512 13 13 (100) 

256 - - 

128 - - 

S. Manhattan (3)

512 1 1 (100) 

256 1 0 (0.0) 

128 1 0 (0.0) 

S. Schwazengrund 

(52)

512 51 51 (100) 

256 1 0 (0.0) 

128 - - 

Total   68 65 (95.6) 

MIC, minimal inhibitory concentration
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Fig. 2.1. Change of antimicrobial resistance from 2009 2012 to 2013 2016 among 

(a) Salmonella. Infantis and (b) S. Manhattan.  
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GENERAL CONCLUSION 

Salmonella serovars during the phase of our research from 2009 to 2016 

belonged to three serovars: S. Infantis S. Manhattan, and S. Schwarzengrund. But, 

from 2009 to 2012, the main serovars isolated were S. Manhattan and S. Infantis. 

However, from 2013 to 2016 S. Schwarzengrund increased drastically.  

In all the period of the study, most of the isolates were resistant to 

streptomycin, sulfamethoxazole, and oxytetracycline. In contrast, most of isolates 

were sensitive to chloramphenicol and ofloxacin. Antimicrobial resistance proportion 

of beta-lactam group (ampicillin, cefotaxime, cefoxitin and ceftiofur) was high in the 

period from 2009 to 2012, but decresed in the period from 2013 to 2016. In opposite, 

kanamycin-resistant percentage was very low in the first study (2009 - 2012), but 

increase in the next period (2013  2016). Among the kanamycin-resistant 

Salmonella isolates, aphA1 constituted the main resistance gene detected. 

It was revealed that around 2012, there was a significant change in the serovar 

and antimicrobial resistance of Salmonella isolated from broiler chickens in 

Kagoshima, Japan. 
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ABSTRACT 

Salmonella is an enteric pathogen that can infect almost all animals and 

humans. Foodborne salmonellosis is the most relevant source with a high global 

impact on human health. It was estimated that non-typhoidal Salmonella causes

around 93.8 million illnesses and 155.000 deaths each year all over the world. There 

are two species in this genus, enterica, and bongori. Salmonella enterica is the main 

serovars implicated in Salmonella infections in both humans and poultry worldwide.  

Nowadays, Salmonella contamination has been a continuous problem in the 

poultry industry. Therefore, many countries have a national program to monitor and 

control Salmonella on poultry. In this thesis we present studies on prevalence, 

serovars changing, and antimicrobial resistance to continue research on Salmonella 

in broiler chickens in Kagoshima Prefecture, Japan.  

 In the period from 2009 to 2012, we conducted research about the prevalence, 

serovars, and antimicrobial resistance of Salmonella isolates from 192 broiler flocks 

and 3071 cecal samples. Among the tested farms, 49.0% of flocks were positive for

Salmonella, and 243 isolates were obtained from samples 7.9%. All the Salmonella 

isolates were one of three serovars: S. Infantis (57.6%); (140/243), S. Manhattan 
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(40.3%; 98/243 and S. Schwarzengrund (2.1%; 5/243). The proportion of S. Infantis 

isolates decreased from 66.0% in 2009 to 50.0% in 2011 but increased to 57.6% in 

2012, while the proportion of S. Manhattan isolates significantly increased from 

26.4% to 50% from 2009 to 2011, and decreased moderately to 40.9% in 2012. Most 

of the recovered Salmonella isolates were resistant to three antimicrobials, i.e., 

streptomycin (95.1%), sulfamethoxazole (91.0%) and oxytetracycline (91.4%). In 

contrast, all Salmonella strains were susceptible to chloramphenicol. Comparison of 

this study to previous studies of the antimicrobial susceptibility of Salmonella isolates 

showed that: the percentage of antibiotic-resistance isolates increased dramatically 

for two antibiotics, ampicillin (from 22.4% to 55.1%) and cefotaxime (from 9.1% to 

52.7%). In contrast, the percentage of ofloxacin-resistant isolates decreased across 

the three survey periods, from 20.8% in 2004-2006 to 1.6% in the present study 

period (2009-2012). In addition, S. Infantis exhibited a variety of resistance to 

antimicrobials examined from sensitivity to resistance to eight antimicrobials. 

Multidrug resistance to more than 6 six antimicrobials was detected in 113 (46.5%) 

of the isolates, and most of them were S. Manhattan. 

In the period between 2013 and 2016, we analyze the Salmonella serovars, 

measure the minimum inhibitory concentration of antimicrobials, and examine the 
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antimicrobial resistance genes of Salmonella isolated from 192 broiler flocks and 

3069 cecal samples. The result showed that S. Schwarzengrund prevalence had 

increased annually from 2.1% in (2009-2012) to 21.3% in (2013  2016).  Compared 

to the result of chapter 1, ampicillin-, cefotaxime-, and ceftiofur-resistance showed a 

dramatic decrease trend. But the proportion of kanamycin-resistance increased 

sharply.  

Most of the recovered Salmonella isolates in this study were resistant highly 

to three antimicrobials, i.e., streptomycin, sulfamethoxazole, and oxytetracycline. In 

contrast, all Salmonella strains were susceptible to chloramphenicol and ofloxacin. 

In detail, different resistance characteristics were observed for each serovar. S. 

Schwarzengrund were sensitive to ampicillin, cefotaxime, and cefoxitin but resistant 

to kanamycin at 47.7%.  On the other hand, S. Manhattan and S. Infantis, were 

resistant to the first three kinds of antibiotics listed above (from 10.3% to 45.2%),

and sensitive to kanamycin at 1.1% and 10.8%, respectively. Among a total of 68 

Salmonella strains were resistant to kanamycin, 65 strains which showed MIC value 

aphA1 gene, with the. However, 3 strains that showed 

MIC value at 2 the aphA1 gene.
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In conclusion, Salmonella serovars during the phase of our research from 2009 

to 2016 belonged to three serovars: S. Infantis S. Manhattan, and S. Schwarzengrund. 

But, from 2009 to 2012, the main serovars isolated were S. Manhattan and S. Infantis. 

However, from 2013 to 2016 S. Schwarzengrund increased drastically. 

In all the period of the study, most of the isolates were resistant to 

streptomycin, sulfamethoxazole, and oxytetracycline. In contrast, most of the isolates 

were sensitive to chloramphenicol and ofloxacin. Antimicrobial resistance proportion 

of beta-lactam group (ampicillin, cefotaxime, cefoxitin, and ceftiofur) was high in the 

period from 2009 to 2012 but decreased in the period from 2013 to 2016. In opposite, 

the kanamycin-resistant percentage was very low in the first study (2009 - 2012) but 

increased in the next period (2013  2016). Among the kanamycin-resistant 

Salmonella isolates, aphA1 constituted the main resistance gene detected. It was 

revealed that the serovar and antimicrobial resistance changed significantly around 

2012 in Salmonella isolated from broiler chickens in Kagoshima, Japan. 

Keywords: Salmonella, antimicrobial resistance, serovar, prevalence, 

broiler, beta-lactam, cephalosporin, fluoroquinolone, kanamycin resistance 

gene, Salmonella, S. Schwarzengrund.
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