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We introduce the concept of deformed zero-determinant strategies
in repeated games. We then show that the Tit-for-Tat strategy in the
repeated prisoner’s dilemma game is a deformed zero-determinant
strategy, which unilaterally equalizes the probability distribution
functions of payoffs of two players.

The Tit-for-Tat (TFT) strategy is a strategy in the iterated
prisoner’s dilemma game which chooses the opponent’s pre-
vious action.1) It has been known that TFT forms the Nash
equilibrium, where both players are cooperative. Although
the strategy is simple, it attained the highest average score
in computer tournaments.2) Its role in evolutionary game the-
ory has substantially been investigated.3–5) Furthermore, it
was recently pointed out that TFT is contained in a class of
memory-one strategies called zero-determinant (ZD) strate-
gies,6) which unilaterally enforce linear relations between av-
erage payoffs of players. Although TFT is not robust against
implementation errors, TFT was used to construct a longer-
memory strategy which is successful even if implementation
errors exist.7) It has also been known that TFT cannot be
beaten in several situations.8)

In this paper, we introduce the concept of deformed zero-
determinant (DZD) strategies in repeated games. We then
show that the TFT strategy is a DZD strategy which unilater-
ally enforces linear relations between all moments of payoffs
of two players, which implies that the probability distribution
functions of payoffs of two players are equal to each other.
This result provides a fresh perspective on the TFT strategy.

We consider the iterated prisoner’s dilemma game.6) There
are two players (1 and 2) in the game. Each player takes co-
operation (described as C) or defection (described as D) in
a one-shot game. The action of player a is written as σa ∈
{C,D}. We collectively write σ := (σ1, σ2). The payoff of
player a ∈ {1, 2}when the state isσ is described as sa (σ). The
payoffs in the prisoner’s dilemma game are defined as s1 :=
(s1 (C,C) , s1 (C,D) , s1 (D,C) , s1 (D,D)) = (R, S ,T, P) and
s2 := (s2 (C,C) , s2 (C,D) , s2 (D,C) , s2 (D,D)) = (R,T, S , P)
with T > R > P > S and 2R > T + S . The memory-one
strategy of player a is described as the conditional probability
Ta (σa|σ′) of taking action σa when the state in the previous
round is σ′. Then, the time evolution of this system is de-
scribed as the Markov chain

P (σ, t + 1) =
∑
σ′

T
(
σ|σ′) P (σ′, t) (1)

with the transition probability

T
(
σ|σ′) :=

2∏
a=1

Ta
(
σa|σ′

)
, (2)

where P (σ′, t) is the probability distribution of a state σ′ at

∗m.ueda@yamaguchi-u.ac.jp

time t. We consider the case that there is no discounting of
future payoffs.

We now introduce the concept of deformed zero-
determinant (DZD) strategies. The original ZD strategies of
player a are strategies which can be written in the form∑

σa

cσa T̂a
(
σa|σ′

)
=

2∑
b=0

αbsb
(
σ′
)

(3)

with some coefficients {αb} and
{
cσa

}
, where we have defined

T̂a
(
σa|σ′

)
:= Ta

(
σa|σ′

) − δσa,σ
′
a (4)

and s0 (σ) := 1. The term δσ,σ′ is the Kronecker delta. (It
should be noted that

∑
σa

T̂a (σa|σ′) = 0 for any σ′, due
to the normalization condition of probability.) The quantity
T̂a (σa|σ′) is called as a Press-Dyson vector. Since the aver-
age of T̂a (σa|σ′) with respect to the stationary distribution
P(st) (σ′) is zero9, 10)

0 =
∑
σ′

T̂a
(
σa|σ′

)
P(st) (σ′) , (5)

ZD strategies unilaterally enforce a linear relation between
average payoffs:

0 =

2∑
b=0

αb ⟨sb⟩(st) , (6)

where ⟨· · · ⟩(st) represents the average with respect to the sta-
tionary distribution P(st) (σ′). Now, we introduce DZD strate-
gies as ones satisfying∑
σa

cσa T̂a
(
σa|σ′

)
=

∞∑
k1=0

∞∑
k2=0

α(k1,k2)s1
(
σ′
)k1 s2

(
σ′
)k2(7)

with some coefficients
{
α(k1,k2)

}
and
{
cσa

}
. Then, DZD strate-

gies unilaterally enforce a linear relation between moments of
payoffs:

0 =

∞∑
k1=0

∞∑
k2=0

α(k1,k2)
⟨
sk1

1 sk2
2

⟩(st)
(8)

Even if payoff vectors s1 and s2 and the vector of all ones
1 := (1, 1, 1, 1) do not form a basis that spans the space of all
Press-Dyson vectors, this extension of the basis generally en-
ables any Press-Dyson vectors to be represented by the basis
vectors. Although we introduced the concept of DZD strate-
gies for the repeated prisoner’s dilemma game, extension to
general multi-player multi-action games is straightforward.

Concretely, we consider the TFT strategy of player 1:

T1(C) :=


T1 (C|C,C)
T1 (C|C,D)
T1 (C|D,C)
T1 (C|D,D)

 =


1
0
1
0

 . (9)

(Although the TFT strategy is not a ZD strategy in general
under observation errors,11) it is a ZD strategy enforcing 0 =
⟨s1⟩(st) − ⟨s2⟩(st) when there are no errors.6)) Then, her Press-
Dyson vector is written as

T̂1(C) :=


T̂1 (C|C,C)
T̂1 (C|C,D)
T̂1 (C|D,C)
T̂1 (C|D,D)

 =


0
−1
1
0

 (10)
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and we find

T̂1(C) =
1

T k − S k

[
sk

1 − sk
2

]
(11)

for arbitrary k ≥ 1, where we have introduced the notation
sk

a :=
(
sa (C,C)k , sa (C,D)k , sa (D,C)k , sa (D,D)k

)
. There-

fore, the TFT strategy is contained in DZD strategies, and we
obtain a linear relation

0 =
⟨
sk

1

⟩(st) −
⟨
sk

2

⟩(st)
. (12)

In other words, the TFT strategy unilaterally enforces linear
relations between all moments of payoffs of two players. Al-
though the case of k = 1 was known in Ref.,6) we find that
Eq. (12) holds for any k ≥ 1. We remark that the strategy of
player 2 is arbitrary.

From another point of view, when we introduce the quantity
Φa(h) :=

(
ehsa(C,C), ehsa(C,D), ehsa(D,C), ehsa(D,D)

)
, the TFT strat-

egy satisfies

T̂1(C) =
1

ehT − ehS [Φ1(h) −Φ2(h)] (13)

for h , 0. Therefore, we obtain a linear relation

0 =
⟨
ehs1
⟩(st) −

⟨
ehs2
⟩(st)
, (14)

which means that the moment generating functions of payoffs
of two players are equal to each other under the TFT strategy.
This is the main result of this paper. Because the equality of
two moment generating functions implies the equality of two
probability distribution functions, we conclude that TFT uni-
laterally enforces equality of the probability distributions of
payoffs of two players.

We finally remark that, although all memory-one strategies
are not necessarily ZD strategies, they are DZD strategies in
general. For instance, it is known that the win-stay lose-shift
(WSLS) strategy4)

T1(C) =


1
0
0
1

 (15)

is not contained in the class of ZD strategies. However, it is
generally contained in the class of DZD strategies. For exam-
ple, its Press-Dyson vector is described as

T̂1(C) = α1s1 + α2s2 + α1,2r1,2 + γ1 (16)

with the appropriate coefficients
(
α1, α2, α1,2, γ

)
, where we

have introduced the notation

r1,2 :=


s1 (C,C) s2 (C,C)
s1 (C,D) s2 (C,D)
s1 (D,C) s2 (D,C)
s1 (D,D) s2 (D,D)

 , (17)

because the dimension of the space of Press-Dyson vectors
T̂1(C) is four and the vectors

(
s1, s2, r1,2, 1

)
are linearly in-

dependent in general. Then, the WSLS strategy unilaterally
enforces

0 = α1 ⟨s1⟩(st) + α2 ⟨s2⟩(st) + α1,2 ⟨s1s2⟩(st) + γ. (18)

However, this linear relation is nonsense because the coeffi-
cients

(
α1, α2, α1,2, γ

)
depend on the concrete values of pay-

offs (R, S ,T, P). Moreover, similarly as the case of the TFT

strategy, DZD strategies generally enforce multiple linear re-
lations between moments of payoffs simultaneously.

In this paper, we introduced the concept of DZD strategies
in repeated games. We then proved that the TFT strategy is a
DZD strategy which unilaterally equalizes the moment gener-
ating functions of payoffs of two players. We believe that this
result deepens the understanding of the TFT strategy. Con-
structing useful examples of DZD strategies is an important
future problem.
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