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Neural Watermarking Method Including an Attack Simulator
against Rotation and Compression Attacks
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SUMMARY We have developed a digital watermarking method that
use neural networks to learn embedding and extraction processes that are
robust against rotation and JPEG compression. The proposed neural net-
works consist of a stego-image generator, a watermark extractor, a stego-
image discriminator, and an attack simulator. The attack simulator consists
of a rotation layer and an additive noise layer, which simulate the rotation
attack and the JPEG compression attack, respectively. The stego-image
generator can learn embedding that is robust against these attacks, and also,
the watermark extractor can extract watermarks without rotation synchro-
nization. The quality of the stego-images can be improved by using the
stego-image discriminator, which is a type of adversarial network. We eval-
uated the robustness of the watermarks and image quality and found that,
using the proposed method, high-quality stego-images could be generated
and the neural networks could be trained to embed and extract watermarks
that are robust against rotation and JPEG compression attacks. We also
showed that the robustness and image quality can be adjusted by changing
the noise strength in the noise layer.
key words: digital watermarking, neural networks, CNN, rotation, JPEG
compression

1. Introduction

Digital watermarking is used to prevent individuals from il-
legally using digital content, e.g., images, movies, and au-
dio data, and also to identify unauthorized users [1]. Water-
marking works by embedding secret information into con-
tents imperceptibly [2]. In the case of image watermarking,
the host image is called an original image and the marked
image is called a stego-image. Methods that require the
original image in order to extract the watermark are called
non-blind type, and ones that do not require it are called
blind type. In commercial use, the blind-type watermarking
methods are required, since the original contents are typi-
cally unavailable.

Digital images can be easily modified by compression,
clipping, scaling, and rotation. Once such image process-
ing is applied, the location of watermarks may be missing
or a part of the watermarks may be lost. Therefore, image
processing is regarded as an attack against the watermarks.
Geometric attacks, which include clipping, scaling, and ro-
tating images, modify the coordinates of pixels, while non-
geometric attacks, which include compression and additive
noise, modify pixel values. It is necessary for a watermark
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to be extracted from a stego-image, even if the image has
been attacked illegally or modified legally.

When a stego-image is distorted by geometric attacks,
it is necessary to synchronize the marked position in order to
extract watermarks. In the case of the non-blind type, since
the methods can use the original images, they can match the
position [3], [4]. In the case of the blind type, the feature
detector by Scale Invariant Feature Transform (SIFT) [5] is
effective to find the position. The SIFT feature detector can
detect feature points that are robust against geometric trans-
form from an attacked image. By using the SIFT feature
points, the marked position can be synchronized. Many wa-
termarking methods using SIFT [6]–[9] have been proposed.
In these methods, marked regions are normalized to be equal
in size. Both the SIFT feature points and the normalization
make it easy to extract watermarks. However, they cannot
synchronize the rotation angle of the image. The Fourier-
Mellin transform domain is effective for rotation, scaling,
and translation (RST) [10]. Tone and Hamada’s method [11]
uses the Harris-Affine detector and log-polar mapping as the
invariant feature detector. While it can extract scaling and
rotation invariant features, the log-polar mapping causes dis-
tortion of watermarks.

Methods using a marker or synchronization code [6],
[7] and ones using moment of image [8], [9] have also
been proposed. In Kawamura and Uchida’s method [7], the
marked regions are selected around the SIFT feature points
and then markers and watermarks are embedded into the re-
gions. In the first process of extraction, a possible marker
is extracted by rotating and then its similarity is calculated.
The angle that gives the highest similarity is regarded as the
estimated angle. In the method of Li et al. [9], the moment
of region, which is invariant against rotation, is calculated.
However, these methods are sensitive to estimation errors or
inaccuracy. Since the stego-images are usually distorted by
attacks, the angle estimation often fails. Therefore, methods
that have robust angle estimation or methods that eliminate
the need of angle estimation are required.

Neural networks are a promising approach because
they can be used for adjusting the embedding strength [12],
[13] and for calculating the correlation between an original
image and a watermark [14], [15]. In these methods, the
neural networks are a part of the watermarking process. The
robustness against attacks is usually acquired while train-
ing by attacked images provided in advance [16]. Recently,
the embedding and extracting processes have been totally
modeled by the networks. The neural networks can learn
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the embedding and extracting processes by end-to-end train-
ing [17], [18]. Zhu et al. [18] proposed a method using neu-
ral networks that consist of a stego-image generator, an at-
tack simulator, and a watermark extractor. A Gaussian filter,
JPEG compression, and clipping are modeled in the attack
simulator. Their method is robust against these noises be-
cause the network is trained by the simulator. It is a distinct
advantage that the neural network includes the noise simu-
lator inside itself.

Information hiding criteria (IHC) are criteria for water-
marking methods provided by the committee of information
hiding and its criteria for evaluation, IEICE [19]. The IHC
defines the type of attacks, the image quality, and the bit
error rate of watermarks to be accomplished. Our ultimate
objective in our study is to develop a watermarking method
that can fulfill IHC. As described above, a good number of
watermarking methods, e.g., the SIFT-based ones [6]–[9],
are robust against all geometric attacks except the rotation
attack and accomplish good PSNR and BER. Therefore, our
objective in the present study is to develop a method that is
robust against the rotation attack. We propose a method us-
ing neural networks that consist of a stego-image generator,
another attack simulator, and a watermark extractor. Our at-
tack simulator consists of a rotation layer and an additive
noise layer. As mentioned above, there is no blind-type
method that is robust against rotation. Since the proposed
neural networks can simulate the rotation attack in the ro-
tation layer, the watermark extractor can output robust wa-
termarks by training. That is, the proposed method requires
no angle estimation. The proposed neural networks acquire
robustness against the JPEG compression and the additive
noise by means of the additive noise layer. Therefore, the
proposed networks can embed and extract watermarks ro-
bustly.

In Sect. 2 of this paper, we briefly discuss related work
using a neural network proposed by Zhu et al. [18]. Sec-
tion 3 presents our neural networks. Computer simulations
in Sect. 4 demonstrate that our networks can extract water-
marks robustly. We conclude in Sect. 5 with a brief sum-
mary.

2. Related Work

Zhu et al. [18] proposed a method using neural networks
that can learn robust watermarks. The networks consist of
a stego-image generator Gψ, an attack simulator (a noise
layer), a watermark extractor Eϕ, and a stego-image dis-
criminator Dγ, where ψ, ϕ, and γ represent the parame-
ters, e.g., the synaptic connections between the neurons and
thresholds in these modules. The attack simulator is config-
ured to model Gaussian blur, JPEG compression, and clip-
ping. They showed that their neural networks can learn good
stego-images and can extract robust watermarks.

2.1 Watermarking Model

Figure 1 shows the structure of the watermarking model pro-

Fig. 1 Watermarking model by Zhu et al.

posed by Zhu et al. [18]. The notation W ×H×K represents
the image width W, height H, and number of channels K.
An L-bit watermark is embedded into W × H × K-size orig-
inal images, where K = 1 for gray scale images and K = 3
for color images. In the middle part of the neural networks,
the number of channels K can be larger than three.

The stego-image generator Gψ and the watermark ex-
tractor Eϕ are convolutional neural networks (CNNs). In the
stego-image generator, a W × H × K-size original image Ico

and an L-bit watermark ωin =
(
ωin

1 , ω
in
2 , . . . , ω

in
L

)� ∈ {0, 1}L
are fed into the network, and then, the network outputs a
W × H × K-size stego-image,

Ien
ψ = Gψ

(
Ico,ωin;ψ

)
, (1)

where Gψ(·) stands for the stego-image generator as a func-
tion of the original image Ico and the watermark ωin. ψ de-
notes all parameters of synaptic connections between neu-
rons and thresholds in the generator. Next, the stego-image
Ien
ψ is fed into the attack simulator. The image is transformed

by the Gaussian blur, the JPEG compression, and clipping.
The degraded image Ĩ

en
ψ is then fed into the watermark ex-

tractor Eϕ. The extractor outputs an L-dimension vector,

Eψϕ =
(
Eψϕ

1 , Eψϕ
2 , . . . , Eψϕ

L

)�
(2)

= Eϕ

(
Ĩ

en
ψ ;ψ,ϕ

)
, (3)

where Eϕ stands for the watermark extractor as a function of
the image Ĩ

en
ψ . ϕ denotes all parameters of synaptic connec-

tions between neurons and thresholds in the extractor. The
L-bit estimated watermarkωout =

(
ωout

1 , ωout
2 , . . . , ωout

L

)�
can

be generated from the output Eψϕ.
The stego-image discriminator Dγ is a generative ad-

versarial network (GAN). Either a stego-image Ien
ψ or an

original image Ico is fed into the discriminator, which then
outputs the probability Dγ

(
Î
)
∈ (0, 1) that the input Î ∈{

Ico, Ien
ψ

}
is the stego-image,

Dγ

(
Î;γ

)
=

{
0, Î = Ico

1, Î = Ien
ψ

. (4)
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2.2 Training Embedding and Extraction Robust against
Noise

In the training phase, several training images are generated
from original images. The training images Ico of the same
size are clipped from the original image at random. The
watermark ωin is also generated in a random manner. The
stego-image generator Gψ, the watermark extractor Eϕ, and
the stego-image discriminator Dγ are trained by turns.

2.2.1 Training of the Generator and the Extractor

Zhu et al. define the error function Rω
ψϕ for estimated wa-

termarks as the mean square error (MSE) between the true
watermark ωin and the output Eψϕ of the watermark extrac-
tor Eϕ, that is,

Rω
ψϕ

(
ωin, Eψϕ;ψ,ϕ

)
=

1
L
‖ωin − Eψϕ‖22, (5)

where ‖ · ‖2 stands for 2-norm. It is better for the stego-
image Ien

ψ to be similar to the original image Ico. Therefore,
they define the error function RI

ψ as the MSE between the
stego-image and the original image, that is,

RI
ψ

(
Ico, Ien

ψ ;ψ
)
=

1
WHK

‖Ico − Ien
ψ ‖22. (6)

Next, it is important that watermarks not be detected
in stego-images. Both the watermark extractor Eϕ and the
stego-image discriminator Dγ are trained so as not to dis-
criminate between the stego-images and the original images.
Therefore, they define the error function RG

ψγ as unnatural-
ness of stego-images, which is given by

RG
ψγ

(
Ien
ψ ;ψ,γ

)
= − log

(
1 − Dγ

(
Ien
ψ

))
, (7)

where Dγ

(
Ien
ψ

)
is the output of the discriminator Dγ when

the stego-image Ien
ψ is fed into it.

Finally, the generator Gψ and the extractor Eϕ are
trained by minimizing the expectation of the weighted sum
of the errors RI

ψ, RG
ψγ, and Rω

ψϕ; that is, the parameters ψ and
ϕ, i.e., the values of synaptic connections and thresholds in
the networks, are calculated by

min
ψ,ϕ
EIco,ωin

[
Rω
ψϕ + λ

IRI
ψ + λ

GRG
ψγ

]
, (8)

where λI and λG are weight parameters. EIco,ωin represents
the expectation of original images Ico and watermarks ωin.

2.2.2 Training of the Discriminator

The stego-image discriminator Dγ attempts to distinguish
the stego-images from the original images. It outputs the
probability, Dγ(Ĩ) ∈ (0, 1), that an input image Î is a stego-
image. Therefore, they define the error function RD

ψγ for de-
cision errors as the cross-entropy given by

RD
ψγ

(
Ico, Ien

ψ ;ψ,γ
)

= − log Dγ

(
Ien
ψ

)
− log

(
1 − Dγ

(
Ico)) . (9)

The discriminator is trained by minimizing the expectation
of the cross-entropy. That is, the parameter γ is calculated
by

min
γ
EIco,ωin

[
λDRD

ψγ

(
Ico, Ien

ψ ;ψ,γ
)]
, (10)

where λD is the weight parameter. Zhu et al. showed that
the quality of stego-images could be improved by using the
discriminator.

3. Proposed Method

We propose a blind-type watermarking method using neu-
ral networks that acquire the ability to embed and extract
watermarks robust against rotation attack and JPEG com-
pression. The same as the method of Zhu et al. [18], the
proposed neural networks consist of a stego-image genera-
tor Gψ, an attack simulator, a watermark extractor Eϕ, and
a stego-image discriminator Dγ. However, our attack sim-
ulator differs in that we introduce a rotation layer and an
additive noise layer instead of the noise layer. The rotation
layer simulates the rotation of images, so the output of the
layer is rotated images. In the additive noise layer, addi-
tive white Gaussian noise (AWGN) is added to the rotated
images. Since the watermark extractor receives images that
have been distorted and rotated, the network is able to output
robust watermarks by training.

3.1 Watermarking Model

Figure 2 shows the proposed watermarking model. The re-
gions of W0×H0-pixels are clipped from the original images.
Since the regions are fed into the neural networks to train,
we call these regions teacher images. However, W × H-
pixel input images are fed into the neural networks to train,
where W0 ≥

√
2W and H0 ≥

√
2H (e.g. W0 = H0 = 96

and W = H = 64). When a W × H-pixel input image is

Fig. 2 Proposed watermarking model.
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rotated, we consider a bounding rectangle of the rotated im-
age. There are four triangular margins around the rotated
image. Therefore, a teacher image is at most

√
2 times larger

than the input images. The margins can be interpolated by
the input image. The pixel value for each channel of an input
image is normalized to the range of [0, 1]. An L-bit water-
mark is embedded into each region. Each region is the input
image Iin for the stego-image generator Gψ. The generator
outputs a stego-image Ien

ψ . The size of the input image and
the stego-image is W×H×1, (K = 1). That is, the watermark
is embedded into the luminosity value of the image.

The rotation layer simulates the rotation attack. The
stego-image Ien

ψ is rotated at θ radian around the center point
of the stego-image. The angle θ is selected in a random
manner. In the additive noise layer, AWGN is added to the
rotated stego-image Irot

ψ and a distorted stego-image Ĩ
rot
ψ is

output. It is fed into the watermark extractor Eϕ. In our
method, the output from the extractor, Eψϕ

i , is regarded as
the probability that the i-th watermark bit is 1. This is a
different point from the method of Zhu et al. [18], whose
output is the value of the watermark bit, 0 or 1.

3.2 Structure of Proposed Neural Networks

3.2.1 Convolution Layer

In the stego-image generator Gψ, the filter size of a convolu-
tion layer is 3 × 3 pixels, stride is S = 1 pixel, and padding
is P = 1 pixel. In the watermark extractor Eϕ and the stego-
image discriminator Dγ, the filter size is 4 × 4 pixels, stride
is S = 2 pixel, and padding is P = 1 pixel. We apply batch
normalization (BN) [20] to the output of each layer, and use
the leaky ReLU function as the activation function, unless
otherwise stated.

3.2.2 Structure of the Stego-Image Generator Gψ

Figure 3 shows the structure of the stego-image generator
Gψ. A W×H×1-size input image Iin and an L-bit watermark

Fig. 3 Structure of the stego-image generator Gψ.

ωin are fed into the generator. The W × H × 64-size feature
map IF can be obtained from the input image Iin by applying
four convolution layers. The number of channels in each
layer is 64. At the same time, the L-bit watermark ωin is
fed into a layered network and is converted to a W × H × L-
size feature map. These feature maps from the convolution
layers (64 channels), the watermark (L channels), and the
input image itself (1 channel) are joined together, thereby
generating a W × H × (64 + L + 1)-size feature map. After
that, the feature map is fed into two convolution layers. The
first layer is the default convolution layer with the number
of channels K = 64. The second layer is a different version
with the number of channels K = 1, filter size 1 × 1, stride
S = 1, and padding P = 0. The activation function is the
sigmoid function and BN is not applied. Finally, a stego-
image Ien

ψ is generated.

3.2.3 Structure of the Watermark Extractor Eϕ

Figure 4 shows the structure of the watermark extractor Eϕ.
The watermark extractor Eϕ receives the distorted, rotated
stego-image Ĩ

rot
ψ from the attack simulator. The feature map

is generated by four convolution layers from the distorted
image Ĩ

rot
ψ . Each layer has 64 channels. The feature map is

fed into two fully connected layers (FCL). The first layer has
128 output neurons, and their activation function is the leaky
ReLU function. The second layer has L output neurons, and
their activation function is the sigmoid function. Finally, the
L-dimensional output Eψϕ of the extractor is generated.

The output Eψϕ
i represents the probability that the i-th

watermark bit is one. Therefore, the i-th estimated water-
mark bit ωout

i is given by

ωout
i =

{
0, Eψϕ

i ≤ 0.5
1, Eψϕ

i > 0.5
. (11)

3.2.4 Structure of the Stego-Image Discriminator Dγ

The stego-image discriminator Dγ is a generative adversar-
ial network (GAN). The input image Î to the stego-image
discriminator Dγ is either a stego-image Ien

ψ or an original

image Iin. The image Î is fed into four convolution layers

Fig. 4 Structure of the watermark extractor Eϕ.
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with K = 8, and then a feature map is generated. The map
is fed into an FCL of one output neuron with the sigmoid
function. The output Dγ(Î) ∈ (0, 1) represents the probabil-
ity that the input image Î is a stego-image.

3.3 Structure of the Attack Simulator

The attack simulator consists of a rotation layer and an ad-
ditive noise layer. The rotation layer simulates the rotation
of the image from the stego-image generator. The rotation
angle is 0 ≤ θ < 2π radian. Let Ien

ψ (i, j), i = 0, 1, . . . ,W − 1,
j = 0, 1, . . . ,H − 1 be a pixel value at a lattice point (i, j) of
the stego-image Ien

ψ , and let Irot
ψ (rx, ry), rx = 0, 1, . . . ,W − 1,

ry = 0, 1, . . . ,H − 1 be a pixel value at a lattice point (rx, ry)
of the rotated stego-image Irot

ψ . As shown in Fig. 5, the coor-
dinate (Qx,Qy) is the point that is inversely rotated at θ ra-
dian from point R(rx, ry) around the center point c(cx, cy) of
the stego-image. That is, the coordinate Q(Qx,Qy) is given
by

Q =
(

cos θ − sin θ
sin θ cos θ

)−1

(R − c) + c. (12)

Since the values of Qx and Qy are real numbers, the pixel
value of Irot

ψ (rx, ry) is calculated from four neighboring lat-
tice points around (Qx,Qy). Let the coordinate (i, j) of the
upper-left point be

i = 	Qx
, (13)

j = 	Qy
. (14)

By using linear interpolation, the output Irot
ψ (rx, ry) is given

by

Irot
ψ (rx, ry)

= {(i + 1) − Qx}
{
( j + 1) − Qy

}
Ien
ψ (i, j)

+ {Qx − i}
{
( j + 1) − Qy

}
Ien
ψ (i + 1, j)

+ {(i + 1) − Qx}
{
Qy − j

}
Ien
ψ (i, j + 1)

+ {Qx − i}
{
Qy − j

}
Ien
ψ (i + 1, j + 1). (15)

As mentioned in Sect. 3.1, there are four margins around the
rotated image. These margins can be interpolated by the
input image. In this way, the rotated stego-image Irot

ψ is gen-
erated.

Fig. 5 Corresponding four neighboring lattice points.

In the additive noise layer, a noise is added to each pixel
of the rotated stego-image Irot

ψ (rx, ry) independently. The
noise ξxy is distributed according to the AWGN with aver-
age 0 and variance σ2. Therefore, the output of the attack
simulator, Ĩrot

ψ (rx, ry), is given by

Ĩrot
ψ (rx, ry) = Irot

ψ (rx, ry) + ξxy. (16)

3.4 Training against Rotation and Additive Noise

The error function RD
ψγ for the stego-image discriminator Dγ

is given by (9), the same as the method of Zhu et al. [18].
The parameter γ, i.e., the synaptic connections between neu-
rons and the thresholds in the discriminator, is given by min-
imizing (10). Note that here, we change the characteristic of
the output in the watermark extractor Eϕ. Zhu et al. regard
the output as the value of the watermark. In their case, it
is reasonable to use the MSE. However, the output takes a
real number in the range of [0, 1] by the sigmoid function,
so we regard the output as the probability that the water-
mark bit is 1. In this case, it is reasonable to use the cross-
entropy. While the error function Rω

ψϕ in the method of Zhu
et al. [18] is given by (5), the error function R̃ω

ψϕ in the pro-
posed method is given by

R̃ω
ψϕ

(
ωin, Eψϕ;ψ,ϕ

)

= − 1
L

L∑
i=1

{
ωin

i log Eψϕ
i +

(
1 − ωin

i

)
log

(
1 − Eψϕ

i

)}
.

(17)

Even though these concepts are slightly different, this dif-
ference does not affect the robustness of watermarks nor the
quality of images.

The stego-image generator Gψ and the watermark ex-
tractor Eϕ are trained by minimizing the expectation of the
weighted sum of the errors RI

ψ of (6), RG
ψγ of (7), and R̃ω

ψϕ.
The parameters ψ and ϕ are calculated by

min
ψ,ϕ
EIin,ωin

[
RI
ψ + λ

ωR̃ω
ψϕ + λ

GRG
ψγ

]
, (18)

where λω and λG are weight parameters.

4. Computer Simulations

In this section, we evaluate the effectiveness of the proposed
attack simulator by comparing it with the method of Zhu
et al. [18]. First, we compare the performances of the two
methods by bit error rate (BER) and image quality in a case
without rotation attack. Next, we calculate the suitable pa-
rameters of noise strength σ in the additive noise layer and
the weight parameter λω of the error function R̃θϕ

ω in a case
where both the rotation and additive noise attacks are pro-
cessed.

4.1 Experimental Conditions

Figure 6 shows the IHC standard images, which are pro-
vided by Information Hiding and its Criteria for evaluation,



38
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Fig. 6 IHC standard images.

IEICE [19]. The size of these images is 4608 × 3456 pixels.
Of the six images, one is used for testing and the others are
used for training of the neural networks as the teacher im-
ages. Specifically, the proposed neural networks are trained
by the teacher images, which are clipped from the original
images as described in Sect. 3.1, and then the networks are
evaluated against the test image.

4.1.1 Training conditions

The size of input images Iin is H = W = 64, and the size
of the training images is H0 = W0 = 96, as mentioned in
Sect. 3.1. The 1024 training images (regions) are randomly
clipped from a teacher image. Since we use five teacher
images, there are 5120 images for training. The neural net-
works are trained to embed an 8-bit watermark (L = 8) into
the central part of a teacher image.

The weight parameters λω, λG, and λD for the error
functions R̃θϕ

ω , Rθγ
G , and Rθγ

D are given by λω ∈ {0.001, 0.005,
0.01, 0.05, 0.1} and λG = λD = 0.0001. The mini-batch size
is 64 and the number of epochs is 300. The training algo-
rithm is Adam [21], where the learning rate is α = 0.0004
and the other parameters are Adam’s default. The networks
are implemented on TensorFlow [22]. Ten trials are per-
formed by changing the initial condition of synaptic connec-
tions in the neural networks. The results show the average
values.

4.1.2 Performance index

The image quality of a stego-image is evaluated by the peak
signal-to-noise ratio (PSNR), which is given by

PSNR = 10 log10

(
2552

MSE

)
[dB], (19)

MSE =
1

HW

H∑
i=1

W∑
j=1

(
Iin
i j − Ien

i j

)2
, (20)

where Iin and Ien are an input image and a stego-image, re-
spectively. The stego-image is generated from the trained
stego-image generator by using an 8-bit watermark and a
64 × 64-pixel test image. The embedding rate is 8

64×64 =

Table 1 PSNRs and BERs without rotation layer.

noise strength σ 0.0 0.02 0.04 0.06
PSNR [dB] 41.53 38.28 38.23 36.58

BER 0.43 0.33 0.20 0.08

Table 2 BERs and PSNRs for the proposed and Zhu et al.’s methods.

method of [18] Proposed method
(σ = 0.06)

Channel Y U V Y
PSNR [dB] 30.09 35.33 36.27 36.58

BER (Q = 50) 0.15 0.08

0.00195 bits per pixel (bpp).
The robustness of watermarks is evaluated by the bit

error rate (BER), which is given by

BER =
1
L

L∑
i=1

ωin
i ⊕ ωout

i , (21)

where ⊕ stands for the operation of exclusive OR. ωin
i and

ωout are the true watermark and a watermark extracted by
the watermark extractor, respectively.

4.2 Comparison with the Method of Zhu et al.

We compare the proposed method and the method of Zhu
et al. in terms of robustness against JPEG compression and
image quality. The proposed networks are trained on 10,000
images from the COCO [23] training set, the same as [18].
A 1000-image test set is utilized for testing. Since there is no
result for a rotation attack in [18], no training is performed
in the rotation layer in this section. The weight parameter
of the error function R̃θϕ

ω is λω = 0.01. Noise strength in the
additive noise layer is σ = 0.0, 0.02, 0.04, 0.06 while train-
ing. That is, four different neural networks are generated
by different noise strengths σ. After training the networks,
stego-images are generated by the trained stego-image gen-
erator Gψ. The second row in Table 1 shows the average
PSNRs of the generated stego-images. These PSNRs were
calculated inside a marked region of each image. We also in-
vestigated the robustness of watermarks against JPEG com-
pression. The stego-images were compressed with the Q-
value of Q = 50. The compressed stego-images were fed
into the watermark extractors Eϕ. The third row of Table 1
shows the average BERs. As shown, the robust embedding
and extraction can learn by using the additive noise layer
with σ = 0.06. When the noise strength σ is large, the
stego-images are distorted, but the robustness against JPEG
compression is improved.

Table 2 shows the results of Zhu et al.’s method and
our own, where the noise strength is σ = 0.06. In the case of
Zhu et al., a 30-bit watermark is embedded into a 128×128-
pixel YUV-image. The embedding rate is 30

128×128 = 0.00183
bpp, which is smaller than our rate of 0.00195 bpp. These
results indicate that the proposed method has good image
quality comparable to that of Zhu et al.’s and also that it is
more robust against JPEG compression than theirs.
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4.3 Effect of the Rotation Layer

We next examine the effect of the rotation layer in the attack
simulator. That is, the rotation layer is also trained. The net-
works are trained by using the IHC standard images as de-
scribed in Sect. 4.1. The weight parameter λω for the error
function R̃θϕ

ω is λω = 0.01. The rotation angle in the rotation
layer is 0 ≤ θ ≤ 2π radian, and the noise strength in the ad-
ditive noise layer is σ = 0.0, 0.02, 0.04 while training. Af-
ter training the networks, we evaluate the image quality and
the robustness. Table 3 lists the average PSNRs of stego-
images generated from different stego-image generators Gψ

trained with σ = 0.0, 0.02, 0.04. All PSNRs were over 35
dB. Even if the rotation layer simulates a rotation attack
while training, the proposed method can learn high-quality
images. Figure 7 shows (a) the original images, (b) stego-
images, and (c) difference images, where the noise strength
is σ = 0.04. Note that we examine a large noise case here in
order to check the effect of the rotation layer. The difference
images are generated from the difference between the origi-
nal images and the stego-images. As shown, the brightness
is ten times as large as the absolute value of the difference.
Due to the rotation layer, a circular artifact appears in the
stego-images.

Next, we evaluate the BERs for a rotation attack. The
stego-images are rotated by an attacker and then the rotated
images are fed into the trained watermark extractor Eϕ. Fig-
ure 8 shows the average BERs in the cases where the attack

Table 3 Image quality for noise strength.

noise strength σ 0.0 0.02 0.04
PSNR [dB] 39.0 37.6 35.9

Fig. 7 Examples of original images, stego-images and difference images
(σ = 0.04).

angles θ are 0◦, 10◦, 20◦, . . . , 360◦. The abscissa and ordi-
nate are the rotation angle θ and BER, respectively. The line
with σ = 0.0 denotes the average BER by using only the
rotation layer, i.e., no additive noise layer. The lines with
σ = 0.02, 0.04 denote the average BERs by trained wa-
termark extractors with σ = 0.02, 0.04. We can observe
peaks of BER at the angles of (45 + 90n)◦, n = 0, 1, 2, 3.
At these angles, large interpolation occurred in attacked im-
ages due to rotation by the attacker. This caused image dis-
tortion. Moreover, we can see that the watermark extractor
trained with the large noise strengthσ = 0.04 has robustness
against the rotation attack, since the average BERs are less
than 0.001. In the following sections, we use the watermark
extractor with σ = 0.04 to evaluate the proposed method.

4.4 Determination of Weight Parameter λω

Let us determine the weight parameter λω for the error func-
tion Rθϕ

ω in the proposed method. We want to select a param-
eter value that best meets the requirement of both a small
BER and a large PSNR. The noise strength is σ = 0.04
while training. Figure 9 shows the average BERs. The ab-

Fig. 8 Rotation angle θ vs. BER for different noise strengths.

Fig. 9 Rotation angle θ vs. BER for weight parameter λω.
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Table 4 Weight parameter λω and average of PSNR.

weight parameter λω 0.001 0.005 0.01 0.05 0.1
PSNR [dB] 42.6 40.1 35.9 33.3 31.5

Fig. 10 BER vs. attack angle θ.

Table 5 PSNR for stego-images.

test image 1 2 3 4 5 6 Ave.
PSNR [dB] 35.9 35.7 36.5 36.8 37.1 35.6 36.3

scissa and ordinate are the attack angle θ and BER. The
weight parameter is λω = 0.001, 0.005, 0.01, 0.05, 0.1. In
the cases of small λω = 0.001, 0.005, the networks cannot
embed and extract watermarks. In contrast, in the cases of
λω ≥ 0.01, we found that watermarks can be extracted with
low BERs. Therefore, the proposed method has robustness
against the rotation attack. The average PSNRs are listed
in Table 4. The larger the parameter λω is, the worse the
image quality is. Therefore, we use the weight parameter
λω = 0.01 in the following sections.

4.5 Performance Evaluation against Attack

We selected the noise strength σ = 0.04 and the weight pa-
rameter λω = 0.01 as the suitable parameters of the proposed
method. In this section, we evaluate the robustness against
rotation attack and JPEG compression. Figure 10 shows the
average BERs vs. attack angle θ for test images 1 to 6 in
Fig. 6. That is, one of the images is used for testing, and the
other five are used for training. Since the average BER over
six images is under 0.001, the proposed method has robust-
ness against the rotation attack. Figure 11 shows the average
BERs vs. Q-value of JPEG compression. When the Q-value
is over 50, the average BER is under 0.01. Therefore, the
proposed method has robustness against the JPEG compres-
sion. Table 5 lists the PSNRs for stego-images. We can see
that all PSNRs are over 35 dB. As a result, the proposed
method can produce high-quality stego-images with water-
marks robust against rotation attack and JPEG compression,
provided the suitable parameters are chosen.

Fig. 11 BER vs. Q-value.

5. Conclusion

Among watermarking methods, there are many that can re-
sist geometric attacks. However, there is no effective method
that can resist a rotation attack while simultaneously fulfill-
ing the IHC. Therefore, a method that is robust against rota-
tion attack is required. We focused on neural networks that
include an attack simulator to design attacks [18] and pro-
posed adding a rotation layer and an additive noise layer to
the attack simulator in order to resist the rotation attack and
the JPEG compression. The networks also include a stego-
image generator and a watermark extractor. Due to the at-
tack simulator, both the generator and the extractor could
learn robust embedding and extraction of watermarks. We
demonstrated through simulations that the proposed method
is robust against not only the JPEG compression but also the
rotation attack. The robustness and image quality could be
controlled by the noise strength in the additive noise layer
and by the weight parameters. We determined the suitable
parameters by computer simulations and showed that, by us-
ing these parameters, the proposed method could achieve
low BERs and a high-quality image. We conclude that the
proposed method can be utilized in prospective methods
against any geometric attacks including the rotation attack
by combining it with the SIFT-based watermarking meth-
ods [6]–[9] or the method of Zhu et al. [18]. This extension
is a future work.

The neural watermarking scheme that includes the
attack simulator is a promising approach. Both Zhu et
al.’s [18] method and our own have demonstrated robust wa-
termarking, so it may be possible to replace the attack sim-
ulator with another one that includes different attacks.
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