

Title	非零境界条件下での多成分Fokas-Lenells方程式の多重ソリトン公式 (非線形波動現象の数理とその応用)
Author(s)	Matsuno, Yoshimasa
Citation	数理解析研究所講究録 = RIMS Kokyuroku (2019), 2128: 156-163
Issue Date	2019-09
URL	http://hdl.handle.net/2433/252280
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

非零境界条件下での多成分 Fokas-Lenells 方程式の多重ソリトン公式

Multisoliton formulas for the multi-component Fokas-Lenells equation with nonzero boundary conditions

山口大学大学院創成科学研究科 松野 好雅 (Yoshimasa Matsuno)
Division of Applied Mathematical Science
Graduate School of Sciences and Technology for Innovation
Yamaguchi University

E-mail address: matsuno@yamaguchi-u.ac.jp

Abstract. The multi-component Fokas-Lenells equation is considered. In particular, we present the multisoliton formulas for the system with plane-wave boundary conditions, as well as with mixed zero and plane-wave boundary conditions. A direct approach is employed to construct solutions, showing that for both boundary conditions, the multisoliton solutions have compact determinantal expressions.

1. Introduction

The Lax pair of the integrable multi-component Fokas-Lenells system is given by

$$\Psi_x = U\Psi, \quad \Psi_t = V\Psi, \tag{1.1a}$$

$$U = \begin{pmatrix} \frac{i}{2}\zeta^2 & -i\zeta\mathbf{u}_x \\ i\zeta\mathbf{v}_x^T & -\frac{i}{2}\zeta^2I \end{pmatrix} = (u_{jk}), \quad V = \begin{pmatrix} -\frac{i}{2\zeta^2} - i\mathbf{u}\mathbf{v}^T & \frac{1}{\zeta}\mathbf{u} \\ \frac{1}{\zeta}\mathbf{v}^T & \frac{i}{2\zeta^2}I + i\mathbf{v}^T\mathbf{u} \end{pmatrix} = (v_{jk}), \quad (1.1b)$$

where ζ is the spectral parameter, and $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n), \mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ are *n*-component row vectors.

It follows from the compatibility condition of the Lax pair that $U_t - V_x + UV - VU = O$. This yields the system of nonlinear PDEs for **u** and **v**:

$$\mathbf{u}_{xt} - \mathbf{u} + \mathrm{i}(\mathbf{u}_x \mathbf{v}^T \mathbf{u} + \mathbf{u} \mathbf{v}^T \mathbf{u}_x) = \mathbf{0}, \tag{1.2a}$$

$$\mathbf{v}_{xt} - \mathbf{v} - \mathrm{i}(\mathbf{v}_x \mathbf{u}^T \mathbf{v} + \mathbf{v} \mathbf{u}^T \mathbf{v}_x) = \mathbf{0}. \tag{1.2b}$$

The system (1.2) can be reduced from the first negative flow of the matrix derivative NLS hierarchy [1-4]. There arise several integrable PDEs from the reductions of the system (1.2). Specifically, if we put $v_j = \sigma_j u_j^*$, $\sigma_j = \pm 1$ (j = 1, 2, ..., n), then the above system reduces to

$$u_{j,xt} = u_j - i \left\{ \left(\sum_{k=1}^n \sigma_k u_{k,x} u_k^* \right) u_j + \left(\sum_{k=1}^n \sigma_k u_k u_k^* \right) u_{j,x} \right\}, \quad (j = 1, 2, ..., n).$$
 (1.3)

The system of PDEs (1.3) is the basic equation that we consider here. The two special cases reducing from the system (1.3) are particularly important:

1) n = 1: FL equation [5, 6]

$$u_{xt} = u - 2i\sigma |u|^2 u_x, \ (u \equiv u_1, \sigma_1 = \sigma).$$
 (1.4)

2) n=2: two-component FL system [4, 7]

$$u_{1,xt} = u_1 - i \left\{ (2|u_1|^2 + \sigma |u_2|^2) u_{1,x} + i\sigma u_1 u_2^* u_{2,x} \right\}, \tag{1.5a}$$

$$u_{2,xt} = u_2 - i \left\{ (|u_1|^2 + 2\sigma |u_2|^2) u_{2,x} + i\sigma u_2 u_1^* u_{1,x} \right\},$$

$$(\sigma_1 = 1, \sigma_2 = \sigma).$$
(1.5b)

The N-soliton solutions of the FL equation have been constructed for both zero and plane-wave boundary conditions [8, 9] while for the general n-component system, we have obtained the bright N-soliton solution with zero boundary conditions [10]. The purpose of the current work is to present the N-soliton formulas of the system (1.3) with the following two types of the boundary conditions:

1) Plane-wave boundary conditions

$$u_j \sim \rho_j \exp i \left(k_j x - \omega_j t + \phi_j^{(\pm)} \right), \quad x \to \pm \infty, \quad (j = 1, 2, ..., n),$$
 (1.6a)

with the linear dispersion relation

$$k_j \omega_j = 1 + \sum_{s=1}^n \sigma_s k_s \rho_s^2 + \sum_{s=1}^n \sigma_s \rho_s^2 k_j, \quad (j = 1, 2, ..., n).$$
 (1.6b)

2) Mixed type boundary conditions

$$u_i \sim 0, \quad x \to \pm \infty, \quad (j = 1, 2, ..., m),$$
 (1.7a)

$$u_{m+j} \sim \rho_j \exp i \left(k_j x - \omega_j t + \phi_j^{(\pm)} \right), \quad x \to \pm \infty, \quad (j = 1, 2, ..., n - m),$$
 (1.7b)

with the linear dispersion relation

$$k_j \omega_j = 1 + \sum_{s=1}^{n-m} \sigma_s k_s \rho_s^2 + \sum_{s=1}^{n-m} \sigma_s \rho_s^2 k_j, \quad (j = 1, 2, ..., n - m).$$
 (1.7c)

In this short note, we provide the main results only, and the details will be reported elsewhere.

2. The N-soliton formula with plane-wave boundary conditions

2.1. Bilinearization

Here, we present the multisoliton solutions of the system (1.3) with plane-wave boundary conditions (1.6). The direct approach is used to obtain solutions. To this end, we start from the following proposition:

Proposition 1. Under the dependent variable transformations

$$u_j = \rho_j e^{i(k_j x - \omega_j t)} \frac{g_j}{f}, \ (j = 1, 2, ..., n),$$
 (2.1)

the multi-component FL system (1.3) can be decoupled into the system of equations

$$D_t f \cdot f^* = i \sum_{s=1}^n \sigma_s \rho_s^2 (g_s g_s^* - f f^*), \tag{2.2a}$$

(2.2c)

$$D_x D_t f \cdot f^* - i \sum_{s=1}^n \sigma_s \rho_s^2 D_x g_s \cdot g_s^* + i \sum_{s=1}^n \sigma_s \rho_s^2 D_x f \cdot f^* + 2 \sum_{s=1}^n \sigma_s k_s \rho_s^2 (g_s g_s^* - f f^*) = 0, \quad (2.2b)$$

$$f^* \left[g_{j,xt} f - (f_x - i k_j f) g_{j,t} - i \frac{1}{k_j} \left(1 + \sum_{s=1}^n \sigma_s k_s \rho_s^2 \right) D_x g_j \cdot f \right]$$

 $= f_t^*(g_{j,x}f - g_jf_x + ik_jg_jf), \ (j = 1, 2, ..., n),$ where f = f(x,t) and $g_i = g_i(x,t)$ are the complexed-valued functions of x and t, and the bilinear operators D_x and D_t are defined by

$$D_x^m D_t^n f \cdot g = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^m \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^n f(x, t) g(x', t') \Big|_{x' = x, t' = t}$$

with m and n being nonnegative integers.

Remark 1.

1) We can decouple the last equation into a system of bilinear equations

$$g_{j,xt}f - (f_x - ik_j f)g_{j,t} - i\frac{1}{k_j} \left(1 + \sum_{s=1}^n \sigma_s k_s \rho_s^2 \right) D_x g_j \cdot f = h_j f_t^*, \tag{2.3a}$$

$$g_{j,x}f - g_j f_x + ik_j f g_j = h_j f^*,$$
 (2.3b)

where $h_j = h_j(x, t)$ are the complexed-valued functions of x and t.

2) If we introduce the variables $q_j = u_{j,x}$, then

$$q_{j} = \left(\rho_{j} e^{i(k_{j}x - \hat{\omega}_{j}t)} \frac{g_{j}}{f}\right)_{x} = \rho_{j} e^{i(k_{j}x - \hat{\omega}_{j}t)} \frac{h_{j}f^{*}}{f^{2}}, \quad \hat{\omega}_{j} = k_{j}^{2} + 2\sum_{s=1}^{n} \sigma_{s} \rho_{s}^{2} k_{j}, \quad (j = 1, 2, ..., n),$$

$$(2.4)$$

solve the n-component derivative NLS system

$$iq_{j,t} + q_{j,xx} + 2i \left[\left(\sum_{s=1}^{n} \sigma_s |q_s|^2 \right) q_j \right]_x = 0, \quad (j = 1, 2, ..., n).$$
 (2.5)

2.2. N-soliton solution

Theorem 1. The N-soliton solution of the system of bilinear equations (2.2) is given in terms of the following determinants.

$$f = |D|, \quad g_s = |G_s|, \quad (s = 1, 2, ..., n),$$
 (2.6a)

$$D = (d_{jk})_{1 \le j,k \le N}, \quad d_{jk} = \delta_{jk} - \frac{ip_j}{p_j + p_k^*} z_j z_k^*, \tag{2.6b}$$

$$G_s = (g_{jk}^{(s)})_{1 \le j,k \le N}, \quad g_{jk}^{(s)} = \delta_{jk} - \frac{\mathrm{i}p_k^*}{p_j + p_k^*} \frac{p_j - \mathrm{i}k_s}{p_k^* + \mathrm{i}k_s} z_j z_k^*, \tag{2.6c}$$

$$z_j = \exp\left[p_j x + \frac{1}{p_j} \left(1 + \sum_{s=1}^n \sigma_s k_s \rho_s^2\right) t + \zeta_{j0}\right], \quad (j = 1, 2, ..., N).$$
 (2.6d)

Here, p_j and ζ_{j0} (j = 1, 2, ..., N) are arbitrary complex parameters. The former parameters are imposed on N constraints

$$\sum_{s=1}^{n} \sigma_s (k_s \rho_s)^2 \frac{i(p_j - p_j^*) + k_s}{(p_j - ik_s)(p_j^* + ik_s)} = -1, \quad (j = 1, 2, ..., N).$$
(2.7)

The expressions (2.1) with the tau-functions (2.6) give the dark soliton solutions with plane-wave boundary conditions. The analysis of the one-component system (i.e., FL equation) has been performed in [9] where the detailed description of the dark soliton solutions has been given.

Remark 2.

1) The proof of the N-soliton solution can be done by means of an elementary calculation using the basic formulas of determinants, i.e.,

$$\frac{\partial}{\partial x}|D| = \sum_{j,k=1}^{N} \frac{\partial d_{jk}}{\partial x} D_{jk}, \quad (D_{jk} : \text{cofactor of } d_{jk}),$$

$$\begin{vmatrix} D & \mathbf{a}^T \\ \mathbf{b} & z \end{vmatrix} = |D|z - \sum_{j,k=1}^N D_{jk} a_j b_k,$$

 $|D(\mathbf{a}, \mathbf{b}; \mathbf{c}, \mathbf{d})||D| = |D(\mathbf{a}; \mathbf{c})||D(\mathbf{b}; \mathbf{d})| - |D(\mathbf{a}; \mathbf{d})||D(\mathbf{b}; \mathbf{c})|,$ (Jacobi's identity),

with the notation

$$\begin{vmatrix} D & \mathbf{b}^T \\ \mathbf{a} & 0 \end{vmatrix} = |D(\mathbf{a}; \mathbf{b})|, \quad \begin{vmatrix} D & \mathbf{c}^T & \mathbf{d}^T \\ \mathbf{a} & 0 & 0 \\ \mathbf{b} & 0 & 0 \end{vmatrix} = |D(\mathbf{a}, \mathbf{b}; \mathbf{c}, \mathbf{d})|.$$

2) The tau-functions h_s are given by

$$h_s = ik_s|H_s|, \quad H_s = (h_{jk}^{(s)})_{1 \le j,k \le N}, \quad h_{jk}^{(s)} = \delta_{jk} + \frac{ip_j}{p_j + p_k^*} \frac{p_j - ik_s}{p_k^* + ik_s} z_j z_k^*.$$

2.3. Derivation of constraints (2.7)

In the case of plane-wave boundary conditions, the n constraints must be imposed among the complex parameters p_j (j = 1, 2, ..., N). We derive these constraints from the Lax pair (1.1) of the system. The spatial part of the Lax pair with seed solutions

$$u_j = \rho_j e^{i\theta_j}, \quad \theta_j = k_j x - \omega_j t, \quad (j = 1, 2, ..., n),$$

are given by

$$\Psi_{x} = U\Psi, \quad U = \begin{pmatrix} \frac{\mathrm{i}}{2}\zeta^{2} & k_{1}\rho_{1}\zeta\mathrm{e}^{\mathrm{i}\theta_{1}} & \cdots & k_{n}\rho_{n}\zeta\mathrm{e}^{\mathrm{i}\theta_{n}} \\ \sigma_{1}k_{1}\rho_{1}\zeta\mathrm{e}^{-\mathrm{i}\theta_{1}} & -\frac{\mathrm{i}}{2}\zeta^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n}k_{n}\rho_{n}\zeta\mathrm{e}^{-\mathrm{i}\theta_{n}} & 0 & \cdots & -\frac{\mathrm{i}}{2}\zeta^{2} \end{pmatrix}.$$
 (2.8)

Introduce a new wavefunction Ψ_0 by $\Psi = P\Psi_0$, where P is a diagonal matrix $P = \text{diag}(1, e^{i\theta_1}, ..., e^{i\theta_n})$. Then, Ψ_0 satisfies the matrix equation

$$\Psi_{0,x} = (P_x P^{-1} + P U P^{-1}) \Psi_0 \equiv U_0 \Psi_0, \quad U_0 = \begin{pmatrix} \frac{1}{2} \zeta^2 & k_1 \rho_1 \zeta & \cdots & k_n \rho_n \zeta \\ \sigma_1 k_1 \rho_1 \zeta & i k_1 - \frac{1}{2} \zeta^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n k_n \rho_n \zeta & 0 & \cdots & i k_n - \frac{1}{2} \zeta^2 \end{pmatrix}.$$
(2.9)

The characteristic equation of U_0 reads $|U_0 - I_{n+1}\mu| = 0$, i.e.,

$$\begin{vmatrix} \frac{1}{2}\zeta^{2} - \mu & k_{1}\rho_{1}\zeta & \cdots & k_{n}\rho_{n}\zeta \\ \sigma_{1}k_{1}\rho_{1}\zeta & ik_{1} - \frac{1}{2}\zeta^{2} - \mu & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n}k_{n}\rho_{n}\zeta & 0 & \cdots & ik_{n} - \frac{1}{2}\zeta^{2} - \mu \end{vmatrix} = 0.$$
 (2.10)

Expanding the above determinant in μ yields

$$\frac{i}{2}\zeta^2 - \mu = -\zeta^2 \sum_{s=1}^n \frac{\sigma_s(k_s \rho_s)^2}{\mu + \frac{i}{2}\zeta^2 - ik_s}.$$
 (2.11)

Let $\mu + \frac{\mathrm{i}}{2}\zeta^2 = p$ and assume ζ^2 be real and p be complex. Then

$$i\zeta^2 - p = -\zeta^2 \sum_{s=1}^n \frac{\sigma_s(k_s \rho_s)^2}{p - ik_s}, \quad -i\zeta^2 - p^* = -\zeta^2 \sum_{s=1}^n \frac{\sigma_s(k_s \rho_s)^2}{p^* + ik_s}.$$
 (2.12)

It follows from the above two relations that

$$\sum_{s=1}^{n} \sigma_s(k_s \rho_s)^2 \frac{\mathrm{i}(p-p^*) + k_s}{(p-\mathrm{i}k_s)(p^* + \mathrm{i}k_s)} = -1, \tag{2.13}$$

which yields (2.7) upon putting $p = p_j$.

3. The N-soliton formula with mixed type boundary conditions

3.1. Bilinearization

The bilinearization of the system (1.3) with mixed type boundary conditions (1.7) can be performed by the following proposition.

Proposition 2. Under the dependent variable transformations

$$u_j = e^{-i\hat{\lambda}t} \frac{h_j}{f}, \quad \left(j = 1, 2, ..., m, \ \hat{\lambda} = \sum_{s=1}^{n-m} \sigma_{m+s} \rho_s^2\right),$$
 (3.1a)

$$u_{m+j} = \rho_j e^{i(k_j x - \omega_j t)} \frac{g_j}{f}, \quad (j = 1, 2, ..., n - m),$$
 (3.1b)

the multi-component FL system (1.3) can be decoupled into the system of equations

$$D_t f \cdot f^* = i \sum_{s=1}^m \sigma_s h_s h_s^* + i \sum_{s=1}^{n-m} \sigma_{m+s} \rho_s^2 (g_s g_s^* - f f^*), \tag{3.2a}$$

$$D_x D_t f \cdot f^* - i \sum_{s=1}^m \sigma_s D_x h_s \cdot h_s^* - i \sum_{s=1}^{n-m} \sigma_s \rho_s^2 D_x g_s \cdot g_s^* + i \sum_{s=1}^{n-m} \sigma_{m+s} \rho_s^2 D_x f \cdot f^*$$

$$+2\sum_{s=1}^{n-m} \sigma_s k_s \rho_s^2 (g_s g_s^* - f f^*) = 0, \tag{3.2b}$$

$$f^*(h_{j,xx}f - h_{j,t}f_x - \lambda h_j f) = f_t^*(h_{j,x}f - h_j f_x), (j = 1, 2, ..., m),$$
(3.2c)

$$f^* \left\{ g_{j,xt} f - (f_x - ik_j f) g_{j,t} - \frac{i\lambda}{k_j} D_x g_j \cdot f \right\} = f_t^* (g_{j,x} f - g_j f_x + ik_j g_j f), \ (j = 1, 2, ..., n - m),$$
(3.2d)

where $\lambda = 1 + \sum_{s=1}^{n-m} \sigma_s k_s \rho_s^2$.

3.2. N-soliton solution

Theorem 2. The N-soliton solution of the system of bilinear equations (3.2) is given in terms of the following determinants.

$$f = |D|, \quad D = (d_{jk})_{1 \le j,k \le N}, \quad d_{jk} = \frac{z_j z_k^* - i p_k^* c_{jk}}{p_j + p_k^*}, \quad z_j = \exp\left(p_j x + \frac{\lambda}{p_j} t\right), \quad (3.3a)$$

$$h_j = -\frac{1}{\lambda} |D(\mathbf{a}_j^*; \mathbf{z}_t)|, \quad (j = 1, 2, ..., m),$$
 (3.3b)

$$g_j = |D| + \frac{i}{\lambda} |D(\mathbf{z}_j^*; \mathbf{z}_t)|, \quad (j = 1, 2, ..., n - m),$$
 (3.3c)

$$\mathbf{z} = (z_1, z_2, ..., z_N), \ \mathbf{z}_t = \left(\frac{\lambda}{p_1} z_1, \frac{\lambda}{p_2} z_2, ..., \frac{\lambda}{p_N} z_N\right),$$
 (3.3d)

$$\mathbf{a}_{j} = (\alpha_{j1}, \alpha_{j2}, ..., \alpha_{jN}), \quad (j = 1, 2, ..., m),$$
 (3.3e)

$$c_{jk} = \frac{\sum_{s=1}^{m} \sigma_s \alpha_{sj} \alpha_{sk}^*}{1 + \sum_{s=1}^{n-m} \sigma_s (k_s \rho_s)^2 \frac{i(p_j - p_k^*) + k_s}{(p_i - ik_s)(p_i^* + ik_s)}}, \quad (j, k = 1, 2, ..., N),$$
(3.3f)

where p_j (j = 1, 2, ..., N) and α_{jk} (j = 1, 2, ..., m; k = 1, 2, ..., N) are arbitrary complex parameters.

The components from (3.1a) take the form of the bright solitons with zero background whereas those of (3.1b) represent the dark solitons with plane-wave background. The properties of the bright soliton solutions of the FL equation have been explored in detail in [8]. It should be remarked that unlike purely plane-wave boundary conditions, no constraints are imposed on the parameters p_j . Consequently, the analysis of solutions becomes more easier than that of solutions for plane-wave boundary conditions.

Remark 3.

- 1) When compared with the soliton solutions with the pure plane-wave boundary conditions, the parameters p_j can be chosen arbitrary. Consequently, the explicit form of the N-soliton solution is available without solving algebraic equations like (2.7).
- 2) If we put $\rho_j = 0$, (j = 1, 2, ..., n m), then (3.1a) and (3.3) yield the bright N-soliton solution of the system (1.3) with the zero boundary conditions $u_j \to 0$, $|x| \to \infty$ [10].

Acknowledgement

This work was partially supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] A. P. Fordy, Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces, J. Phys. A: Math. Gen. 17 (1984) 1235-1245.
- [2] T. Tsuchida and M. Wadati, New integrable systems of derivative nonlinear Schrödinger equations with multiple components, *Phys. Lett. A* **257** (1999) 53-64.
- [3] T. Tsuchida, New reductions of integrable matrix partial differential equations: Sp(m)-invariant system, J. Math. Phys. **51** (2010) 053511.
- [4] B. Guo and L. Ling, Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys. **53** (2012) 073506.
- [5] A. S. Fokas, On a class of physically important integrable equations, *Physica D* 87 (1995) 145-150.
- [6] J. Lenells, Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math. 123 (2009) 215-232.
- [7] L. Ling, B.-F. Feng and Z. Zhu, General soliton solutions to a coupled Fokas-Lenells equation, *Nonlinear Anal.: Real World Applications* **40** (2018) 185-214.
- [8] Y. Matsuno, A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions, J. Phys. A: Math. Theor. 45 (2012) 235202.
- [9] Y. Matsuno, A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions, J. Phys. A: Math. Theor. 45 (2012) 475202.
- [10] Y. Matsuno, Multi-component generalization of the Fokas-Lenells equation, RIMS Kôkyûroku (2019), to appear.