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Multisoliton formulas for the multi-component Fokas-Lenells equation
with nonzero boundary conditions

IHETRAAR ARG ADIIERE B 4PHE (Yoshimasa Matsuno)
Division of Applied Mathematical Science

Graduate School of Sciences and Technology for Innovation
Yamaguchi University

E-mail address: matsuno@yamaguchi-u.ac.jp

Abstract. The multi-component Fokas-Lenells equation is considered. In particular, we
present the multisoliton formulas for the system with plane-wave boundary conditions, as
well as with mixed zero and plane-wave boundary conditions. A direct approach is em-
ployed to construct solutions, showing that for both boundary conditions, the multisoliton

solutions have compact determinantal expressions.

1. Introduction

The Lax pair of the integrable multi-component Fokas-Lenells system is given by

U, = UV, U, =V, (1.1a)
i2 —icu, —50 — iuv? 1lu
[ 2 : — (91, _ e . ¢ — (v,
U= <iCVf _%CQI (u]k)’ Vv %VT 252 I +ivTu (U]k), (11b)

where ( is the spectral parameter, and u = (uy, ug, ..., u,) and v = (v, vg, ..., v, ), u, v € C"
are n-component row vectors.

It follows from the compatibility condition of the Lax pair that U, —V,+UV -V U = O.
This yields the system of nonlinear PDEs for u and v:

u, — u+i(u,viu+uviu,) =0, (1.2a)
Vo — v —i(vyulv 4 vulv,) = 0. (1.20)

The system (1.2) can be reduced from the first negative flow of the matrix derivative
NLS hierarchy [1-4]. There arise several integrable PDEs from the reductions of the
system (1.2). Specifically, if we put v; = ojuj, 0; = +1 (j = 1,2,...,n), then the above
system reduces to

Uj ot = Uj — 1 { (Z okumu,’;> u; + <Z Ukuku,’;> Uj,x} ., (1=1,2,..,n). (1.3)
k=1 k=1



The system of PDEs (1.3) is the basic equation that we consider here. The two special
cases reducing from the system (1.3) are particularly important:

1) n =1: FL equation [5, 6]
Uy = u — 2i0|ul*uy, (u=u, 00 =0). (1.4)
2) n = 2: two-component FL system [4, 7]
Urge = uy — 1 { 2ua]” + oluo|*)ur e + iouruius, } (1.5a)
_ : 2 2 . *
Ug gt = Uy — 1 {(|u1| + 20 |ug|*)ug  + 10u2u1u1,1} , (1.5b)
(o1 =1,00 =0).

The N-soliton solutions of the FL equation have been constructed for both zero and
plane-wave boundary conditions [8, 9] while for the general n-component system, we have
obtained the bright N-soliton solution with zero boundary conditions [10]. The purpose
of the current work is to present the N-soliton formulas of the system (1.3) with the
following two types of the boundary conditions:

1) Plane-wave boundary conditions

uj ~ pjexpi (kj;z: —wjt + qb;-i)) , r—too, (j=1,2,..,n), (1.6a)

with the linear dispersion relation
kjwi =14 okp? +> ok, (G=12,..n). (1.6b)
s=1 s=1

2) Mixed type boundary conditions

u;~0, z—+oco, (j=1,2,..,m), (1.7a)
Umj ~ pjexpi (k:jx — wjt + (b;-i)) , x—doo, (j=1,2,...,n—m), (1.7b)
with the linear dispersion relation
kjw; =14+ Z oksp? + Z o2k, (j=1,2,...,n—m). (1.7¢)
s=1 s=1

In this short note, we provide the main results only, and the details will be reported
elsewhere.
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2. The N-soliton formula with plane-wave boundary conditions

2.1. Bilinearization

Here, we present the multisoliton solutions of the system (1.3) with plane-wave bound-
ary conditions (1.6). The direct approach is used to obtain solutions. To this end, we

start from the following proposition:

Proposition 1. Under the dependent variable transformations

uj = pielkie=est) q—]j (j=1,2,...,n), (2.1)

the multi-component FL system (1.3) can be decoupled into the system of equations

Dif - f*=1)_0upi(gs9; — [ 1), (2:2a)

s=1

DiDif - f* =1 0upiDage-gi+1Y 0upiDuf - f*+2>  0ukap(gag; — [F7) =0, (2.2D)
s=1 s=1 s=1

r lgmtf (e = kg i (1 3 Osks/)§> D.g; f]
J s=1

= ft*(gj,zf - g]fz + lk]g]f)7 (] = 17 27 seey n)a (220)

where f = f(x,t) and g; = g;(x,t) are the complezed-valued functions of x and t, and the
bilinear operators D, and D, are defined by

S B g_i m g_i n L

with m and n being nonnegative integers.

z'=x, t'=t

Remark 1.

1) We can decouple the last equation into a system of bilinear equations
. 1 g .
Gjaf — (fo — ik )G — - <1 + Zasks/i) D,g;- f =h;f/, (2.3a)
J s=1

Gjaf — 9ife +ikifg; = hif*, (2.3b)

where h; = hj(x,t) are the complexed-valued functions of  and ¢.



2) If we introduce the variables ¢; = u;, then
i(kjo—agt) 9i i(kjz—o;t) hjf* - 2 - 2 .
q; = | pje” ’ ? = pie ! ?7 w]:kj+2zaspskja (_7:1.‘27,..771)7
T s=1

solve the n-component derivative NLS system

<Zas|qs|2> qj] =0, (j=12..n). (2.5)

iqj,t + 4jza +2i

2.2. N-soliton solution

Theorem 1. The N-soliton solution of the system of bilinear equations (2.2) is given in
terms of the following determinants.

f=ID|, gs=1Gs, (s=1,2,....n), (2.6a)
D = (djk)1<j,k<N7 djk = 5jk — L* Z]'ZZ7 (26b)
- ’ p; + Dy,
. Y

Gs = (g) . , (g) = & — Py Pj 1 S 2ok 2.6¢
(gjk J1<jk<n 9jk ik D+t ik, ko (2.60)

1 = ‘
zj = exp |p;x + > (1 + ZoskS;f) t+Gol|, (=1,2,..,N). (2.6d)

J s=1

Here, p; and (o (j = 1,2, ..., N) are arbitrary complex parameters. The former parameters
are impozed on N constraints
i(pj —p}) + ks

Os ks S 2 N B - —1, | = 1,2,..‘,N . 27
; (Fap) (pj — iks) (P} + iks) g ) 27)

The expressions (2.1) with the tau-functions (2.6) give the dark soliton solutions with
plane-wave boundary conditions. The analysis of the one-component system (i.e., FL
equation) has been performed in [9] where the detailed description of the dark soliton
solutions has been given.

Remark 2.

1) The proof of the N-soliton solution can be done by means of an elementary calculation
using the basic formulas of determinants, i.e.,

N odj,
ox

k=1

%|D| = Djy, (Djy : cofactor of djy),
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’D a’

N
b = |D|Z — Z Djkajbk,

Jk=1

|D(a, bs e.d)||D] = [D(as )| D(b: d)] — | D(a: d)||D(bs )], (Jacobi's identity),

with the notation

T ar
T c d
D b 00
0 0

a 0 = |D(a;b)|7

= |D(a,b;c,d)|.

ol By

2) The tau-functions hy are given by

. ; p;  p; —iks
hy = iko|Hy|, H,= (b)) 1cipen, B =8, + L1 BT s
| H| (g h<jimens  hyy = djk ot Pt ik,

2.3. Derivation of constraints (2.7)

In the case of plane-wave boundary conditions, the n constraints must be imposed
among the complex parameters p; (j =1,2,..., N). We derive these constraints from the
Lax pair (1.1) of the system. The spatial part of the Lax pair with seed solutions

U; = pjeiej, 9j = ]le‘ — wjt, (j = 1,27 ...7n)7

are given by

3¢ kipiCe® o kapaGe
okipiCe i —ic2 ...
v, —vw, v— |70 A . (2.8)
O—nknpnce_ign 0 T 7%<2
Introduce a new wavefunction ¥y by ¥ = PWV,, where P is a diagonal matrix P =
diag(1,e, ..., e%). Then, ¥, satisfies the matrix equation
%CQ k1p1§ ) e knpn(
o1k ik — 3¢ .- 0
Vo, = (PP~ + PUP )Wy = Ugly, Up=| fplc AU .
TnknpnC 0 s ik, — %CQ
(2.9)
The characteristic equation of Uy reads |Uy — I, =0, i.e.,
%CZ —H klplg T knpnc
o1k iy —3C—p - 0
1 ?P1C 1 Q'C p . _o. (2.10)

OnkinpnC 0 s ik, — %<2 —H



Expanding the above determinant in y yields

i s(ks 5)2
S —n CQZip (2.11)

= opt 5

Let /1 + 1¢* = p and assume (* be real and p be complex. Then

lC _p= CZU’S sps _ CZ 5p32 (212)
' p* +iks '
It follows from the above two relations that
- i(p—p) + ks
Os ksps 2 . N - 71, 213
szz; ( ) (p - lks)(p* + lka') ( )

which yields (2.7) upon putting p = p;.

3. The N-soliton formula with mixed type boundary conditions
3.1. Bilinearization

The bilinearization of the system (1.3) with mixed type boundary conditions (1.7) can
be performed by the following proposition.

Proposition 2. Under the dependent variable transformations

< h ) n—m
uj = e M ?]7 <j =1,2,...m, A= Z 0m+sp§> , (3.1a)
' s=1

Umtj = Pj el(kie—w;t) %, (j=1,2,....,n—m), (3.10)

the multi-component FL system (1.8) can be decoupled into the system of equations

Dif - f*=1) ouhh+1Y omiapi(9:9; — [ 1), (3.2a)

s=1 s=1

Dthf : f* - iiUsDth . h: - irinasptigs : g: + i7§0m+5p§Dwf : fﬁ<

s=1 s=1 s=1
+2) " ookpl(g.95 — f17) =0, (3.20)
s=1

F Pjanf = hjefo — A0 f) = fi(Rjof —hifa), (5 =1,2,...,m), (3.2¢)

161



162

.f* {gjﬁxtf - (.f:c - ikjf)gj,t — }C_/\

J

(3.2d)
where X\ =1+ Y"""" o.kyp?.
3.2. N-soliton solution

Theorem 2. The N-soliton solution of the system of bilinear equations (3.2) is given in
terms of the following determinants.
2j2y, — WPkCik

A
=|D[, D= (dp)icjr<n, dj = , zj=exp <pj.r+ p—t> . (3.3a)
J

pj + Pk
1, ,
hj = _X|D<aj;zt)|> (] = 1727 "'7m)7 (33b)
i . .
g? = “D‘ + X|D(Zj;zt)" (] = 1a2~"'7n - m)7 (330)
A A A
z= (217227 "'7ZN)7 Zy = (_ 21y T R2y _ZN> ) (33d)
b1 P2 bN
a; = (ajlvoéﬂa ...,Ole), (j = 17 27 --~7m>7 (336)
Cjp = 21 010y O . (ik=1,2,...N), (3.3f)

i(p; —pj)+ks
Lt Dot oolhops) g i ety
where py (7 = 1,2,..,N) and ay, (j = 1,2,...,m;k = 1,2,...,N) are arbitrary complex

parameters.

The components from (3.1a) take the form of the bright solitons with zero background
whereas those of (3.1b) represent the dark solitons with plane-wave background. The
properties of the bright soliton solutions of the FL equation have been explored in detail
in [8]. It should be remarked that unlike purely plane-wave boundary conditions, no
constraints are imposed on the parameters p;. Consequently, the analysis of solutions
becomes more easier than that of solutions for plane-wave boundary conditions.

Remark 3.

1) When compared with the soliton solutions with the pure plane-wave boundary condi-
tions, the parameters p; can be chosen arbitrary. Consequently, the explicit form of the
N-soliton solution is available without solving algebraic equations like (2.7).

2) If we put p; =0, (j=1,2,...,n —m), then (3.1a) and (3.3) yield the bright N-soliton
solution of the system (1.3) with the zero boundary conditions u; — 0, |x| — oo [10].
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