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ABSTRACT. Ibaraki virus (IBAV) is an arbovirus that is transmitted by biting midges and causes 
Ibaraki disease in cattle. IBAV induces apoptosis in several mammalian cell lines, and apoptosis 
in turn facilitates IBAV replication. In addition, virus-induced apoptosis may contribute to 
mammalian-specific pathogenicity considering that some arboviruses induce apoptosis in 
mammalian cells but not in insect cells. In this study, we found that when hamster lung cells 
(HmLu-1) are used as a virus host, IBAV causes severe cytopathic effects with little induction of 
apoptosis. Furthermore, pharmacological inhibition of apoptosis did not affect IBAV-induced 
cytotoxicity. These results indicate the existence of an apoptosis-independent pathway in which 
IBAV replicates and exerts cytotoxicity in mammalian cells.
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Orbiviruses (genus Orbivirus in the Reoviridae family) are viruses that can exhibit severe pathogenicity to livestock animals and 
include the epizootic hemorrhagic disease virus (EHDV), bluetongue virus (BTV), and African horse sickness virus (AHSV) [3]. 
Orbiviruses are arboviruses and thus infect both mammalian and insect cells. Different host cell responses depending on the host 
cell species have been reported. BTV, for example, induces apoptosis and severe cytopathic effects (CPE) in mammalian cells but 
not in insect cells [8]. Similarly, viral replication without CPE in EHDV-infected insect cells is also reported [16].

In this study, we investigated a strain of EHDV called Ibaraki virus (IBAV). IBAV is transmitted by biting midges (Culicoides 
species) and causes Ibaraki disease, which is characterized by hemorrhagic lesions in the upper gastrointestinal tract and swallowing 
difficulty in cattle [4, 10]. IBAV exploits the endocytosis pathway to enter the host cell [14], as is shown for BTV [7]. Additionally, 
previous studies have reported that infection with IBAV, and the related EHDV, induces apoptosis in multiple mammalian cell lines 
(ovine kidney cells, calf pulmonary aortal endothelial cells, Vero cells, and bovine carotid artery endothelial cells), which is also the 
case with BTV infections [2, 12, 13]. Moreover, pharmacological inhibition of apoptosis suppressed IBAV replication and cell death, 
suggesting that apoptotic signaling induced by IBAV accelerates IBAV replication and contributes to IBAV-induced cell death [12].

Here, we examined IBAV-induced apoptosis using hamster lung cells (HmLu-1), which are routinely used for studying IBAV, 
since HmLu-1 cells are known to exhibit CPE when infected with this virus. Our aim was to determine whether IBAV induces 
apoptosis in HmLu-1 cells as previously reported in other cell lines, and if this is the case, to determine whether apoptosis 
contributes to IBAV replication and IBAV-induced cell death.

MATERIALS AND METHODS

Cells and viruses
HmLu-1 cells and IBAV (epizootic hemorrhagic disease virus serotype 2, strain Ibaraki) were obtained from the National 

Institute of Animal Health, Japan. HmLu-1 cells were maintained in Dulbecco’s modified Eagle medium (DMEM; Wako Pure 
Chemical Corporation, Osaka, Japan) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/ml), streptomycin 
(100 µg/ml), and L-glutamine (0.29 mg/ml). IBAV was propagated in HmLu-1 cells. Virus titer was determined by plaque assays 
with HmLu-1 cells and results are reported as plaque forming units (pfu).
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Antibodies
The following antibodies and reagents were used in this study, rabbit anti-cleaved caspase-3 (#9661) was purchased from 

Cell Signaling Technology (Danvers, MA, U.S.A.), mouse anti-α-tubulin (T5168) from Sigma-Aldrich (St. Louis, MO, U.S.A.), 
and goat anti-rabbit IgG (H+L)-HRP, goat anti-mouse IgG (H+L)-HRP, and goat anti-mouse IgG-DyLight 488 from Jackson 
ImmunoResearch (West Grove, PA, U.S.A.). Goat anti-rabbit IgG-Alexa 488, goat anti-rabbit IgG-Alexa 568, goat anti-mouse IgG-
Alexa 647 was purchased from Thermo Fisher Scientific (Waltham, MA, U.S.A.), and mouse anti-IBAV antiserum was generated 
in our laboratory by intraperitoneal injection of ddY mice with 50–100 µg purified IBAV particles/mouse along with Freund’s 
complete adjuvant (first injection) or Freund’s incomplete adjuvant (second and third injections). IBAV purification was performed 
as detailed in a previous study [11].

Quantification of IBAV replication in HmLu-1 cells
HmLu-1 cells were plated in 6-well plates and infected with IBAV at a multiplicity of infection (MOI) of 0.01 or 3. Culture 

supernatants (Figs. 1 and 4) and cell fractions (Fig. 1) were harvested at 12, 24, 36 and 48 hr post-infection (hpi) after virus 
infection. In order to obtain the cell fractions, HmLu-1 cells were washed with phosphate buffered saline (PBS), the supernatant 
was removed, the cells were scraped from the bottom of the well, and collected by suspending in 1 ml PBS. The collected cell 
fractions were sonicated for 2 min, centrifuged at 3,000 rpm (800 × g) for 10 min, and the supernatant was used for measuring 
the titer of cell-associated virus. The virus titers in the supernatant and the cell fraction were determined by plaque assays. Briefly, 
HmLu-1 cells were prepared in 6-well plates and incubated with the appropriate dilutions of virus samples in a CO2 incubator at 
37°C for 2 hr. After incubation, the media was removed and DMEM containing 5% FBS and 0.75% agar was overlaid. Plates were 
then incubated for 4 days, after which the cells were fixed and stained with staining solution (0.1% crystal violet in 10% buffered 
formalin and 20% methanol). Plaques were counted and the virus titer in each sample was calculated.

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis
HmLu-1 cells were prepared in 6-well plates and infected with IBAV at an MOI of 0.01 or 3. At 12, 24, 36 and 48 hpi, cells 

were washed with phosphate buffered saline (PBS), lysed with cold lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 
mM EDTA, 1 mM EGTA, 2.5 mM pyrophosphate, 1 mM β-glycerophosphate, 1 mM orthovanadate, 1% Triton X-100, and a 
protease inhibitor cocktail [cOmplete; Sigma-Aldrich]), sonicated for 2 min, and then supernatants were mixed with sample buffer 
and boiled for 5 min. Samples were subjected to SDS-PAGE with 10 or 15% acrylamide gels and transferred to polyvinylidene 
difluoride (PVDF) membranes (Immobilon-P; Merck-Millipore, Burlington, MA, U.S.A.). Membranes were treated with blocking 
buffer (Tris-buffered saline and 0.1% Tween 20 containing 2% skim milk). Proteins of interest were detected with specific primary 
and secondary antibodies by using EzWestLumi plus (Atto, Tokyo, Japan) as the substrate. Images were taken with the LAS 
3000 luminescent imager (Fuji Film, Tokyo, Japan) and proteins were quantified using ImageJ software version 1.52b (National 
Institutes of Health, Bethesda, MD, U.S.A.).

Immunofluorescence
HmLu-1 cells were plated on glass coverslips prepared in 6-well plates and infected with IBAV at an MOI of 0.1. Cells were 

washed with PBS, fixed with 4% paraformaldehyde at 24 or 48 hpi, and then permeabilized with PBS containing 0.1% IGEPAL 
CA-630 (Sigma-Aldrich) for 5 min on ice. After blocking with DMEM containing 10% FBS, cells were incubated with primary 

Fig. 1. Time-dependent replication of IBAV in HmLu-1 cells. HmLu-1 cells were plated in 6-well plates and infected with IBAV at a multiplicity 
of infection (MOI) of 0.01 or 3. The virus titers in the culture supernatants and cell fractions were determined by the plaque assay. For the plaque 
assay, HmLu-1 cells were prepared in 6-well plates and incubated with appropriate dilutions of virus samples for 2 hr, followed by overlaying 
with DMEM containing 5% FBS and 0.75% agar and incubation for 4 days. After incubation, the cells were fixed and stained with staining 
solution. Plaques were counted and the virus titer in each sample was calculated.
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antibodies (mouse anti-IBAV and rabbit anti-cleaved caspase-3) for 1 hr at room temperature, washed with PBS, and then 
incubated with secondary antibodies (anti-mouse-IgG-DyLight 488 and anti-rabbit-IgG-Alexa 568) for 1 hr at room temperature. 
Coverslips were then mounted onto glass slides with ProLong Gold antifade mountant with DAPI (Thermo Fisher Scientific). 
Fluorescent signals were observed using a fluorescence microscope (IX53; Olympus, Tokyo, Japan) equipped with UPlan FL N 
60x/1.25 NA objective lens (Olympus).

Flow cytometry and TUNEL staining
HmLu-1 cells were plated in 6-well plates at a density of 5 × 104 cells/well. After 18 hr, cells were infected with IBAV at an 

MOI of 0.1 and incubated in a CO2 incubator for 24 or 48 hr. Positive control cells were prepared by treating cells with 1 µM 
staurosporine (Wako Pure Chemical) for 4 hr. Cells were washed with PBS, treated with 500 µl/well trypsin-EDTA (Wako Pure 
Chemical), and resuspended in DMEM containing 10% FBS. Cells were fixed with 4% paraformaldehyde, and then permeabilized 
with PBS containing 0.1% Triton X-100 (Wako Pure Chemical) for 5 min at room temperature. After blocking with 0.2% gelatin in 
PBS for at least 30 min at room temperature, cells were either subjected to immunofluorescence or TdT-mediated dUTP nick end 
labeling (TUNEL) staining. For immunofluorescence, cells were incubated with primary antibodies (mouse anti-IBAV and rabbit 
anti-cleaved caspase-3) for 1 hr at room temperature, washed with PBS, and then incubated with secondary antibodies (anti-mouse-
IgG-Alexa 488 and anti-rabbit IgG-Alexa 647) for 1 hr at room temperature. For TUNEL staining, cells were incubated with the 
TUNEL staining solution of MEBSTAIN Apoptosis TUNEL Kit Direct (MBL, Nagoya, Japan) at 37°C for 1 hr, according to the 
manufacturer’s manual. Flow cytometric analysis was performed with BD Accuri C6 flow cytometer (BD Biosciences, Franklin 
Lakes, NJ, U.S.A.). At least 20,000 cells were counted for each sample, and the obtained data were analyzed with FlowJo software 
(ver. 10.5.3, FlowJo, Ashland, OR, U.S.A.).

Quantification of cytotoxicity of Z-VAD-FMK
Cytotoxicity of Z-VAD-FMK (3188-v; Peptide Institute Inc., Osaka, Japan) in HmLu-1 cells was examined by the MTT assay 

using the Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) following manufacturer’s instructions. In brief, HmLu-1 cells plated 
in 96-well plates were treated with DMEM containing 10% FBS and Z-VAD-FMK. After incubating for 48 hr, the Cell Counting 
Kit reagent was added to each well and incubated at 37°C. After 1 hr, the absorbance at 450 nm was measured with an iMark 
Microplate Absorbance Reader (Bio-Rad, Hercules, CA, U.S.A.).

Effect of Z-VAD-FMK on IBAV-induced apoptosis
HmLu-1 cells plated in 6-well plates were infected with IBAV at an MOI of 0.01 for 2 hr. After washing with PBS, cells were 

further incubated with DMEM containing 10% FBS and Z-VAD-FMK. At 48 hr after virus infection, cells were lysed with cold 
lysis buffer and subjected to western blot analysis as described in “SDS-PAGE and western blot analysis”.

Quantification of IBAV replication in Z-VAD-FMK-treated HmLu-1 cells
HmLu-1 cells plated in 6-well plates were infected with IBAV at an MOI of 0.01 for 2 hr at 37°C. After washing with PBS, cells 

were incubated with DMEM containing 10% FBS and Z-VAD-FMK. After incubating for 48 hr in a CO2 incubator, the culture 
supernatants were collected and subjected to a plaque assay.

Effect of Z-VAD-FMK on IBAV-induced cytotoxicity
HmLu-1 cells plated in 24-well plates were infected with IBAV at an MOI of 0.1, 1, or 10 for 2 hr at 37°C. After washing with 

PBS, cells were incubated with DMEM containing 10% FBS and Z-VAD-FMK. After incubating for 24 or 48 hr, cells were washed 
with PBS and then DMEM containing 10% FBS and the Cell Counting Kit reagent was added to each well. After incubating for 
1 hr in a CO2 incubator, 100 µl/sample of the culture medium was transferred to a 96-well plate and the absorbance at 450 nm was 
measured with the iMark microplate reader.

Statistical analysis
To analyze the statistical significance of each group against the mock treated group, the statistical software R was used to run 

one-way ANOVA and t-tests. P values of <0.05 were considered statistically significant.

RESULTS

To determine the experimental conditions for investigating the effect of apoptosis on IBAV replication, we first tested time-
dependent replication of IBAV in HmLu-1 cells (Fig. 1). HmLu-1 cells were infected with IBAV at an MOI of 0.01 or 3. Culture 
supernatants and cell fractions (containing cell-associated virus) were collected at 12, 24, 36, and 48 hpi, and virus titers in 
supernatants or cell fractions were determined by plaque assays. Virus titers of supernatants were similar to those of cell fractions 
(Fig. 1, circles vs. squares). When IBAV was infected at MOI=0.01, the virus titer continued to increase up to 48 hpi. On the other 
hand, when infected at MOI=3, the virus titer increased quickly and the replication rate slowed down after 24 hpi (Fig. 1).

We next examined the cleavage of caspase-3, a hallmark event of apoptosis [5], in IBAV-infected HmLu-1 cells. We infected 
HmLu-1 cells with IBAV at MOI=0.01 or 3 and harvested cell lysates at 12, 24, 36, and 48 hpi. When infected at MOI=0.01 
(Fig. 2A), the detection of both IBAV capsid protein VP5 and cleaved caspase-3 began at 48 hpi. On the other hand, when cells 
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were infected at MOI=3 (Fig. 2B), the IBAV capsid protein 
VP5 was detected at as early as 24 hpi, consistent with the 
finding that virus titers rapidly increased at 24 hpi at MOI=3 
(Fig. 1). Interestingly, even with active virus replication at 
24 hpi, cleaved caspase-3 was not detected at this time point. 
The detection of cleaved caspase-3 started later at 36 hpi and 
the amount of cleaved caspase-3 continued to increase up to 
at least 48 hpi (Fig. 1).

To examine the timing and penetrance of caspase-3 
cleavage in relationship with IBAV replication, we 
performed immunofluorescence and counted individual 
cells (Fig. 3). We infected HmLu-1 cells with IBAV at 
MOI=0.1, fixed cells at 24 hpi and 48 hpi, and stained cells 
with anti-IBAV and anti-cleaved caspase-3 antibodies. 
Here, we employed MOI=0.1 as it was a suitable MOI 
for observing the increase in IBAV-infected cells during 
the tested time window (24–48 hpi). At 24 hpi, a small 
population of cells were positive for IBAV and no cells with 
cleaved caspase-3 were found. Although many cells became 
IBAV-positive at 48 hpi, only a small fraction was clearly 
positive for cleaved caspase-3 (Fig. 3A). In order to quantify 
immunofluorescence, we employed flow cytometric analysis. 
Consistent with microscopic observation (Fig. 3A), induction 
of IBAV viral protein expression (Fig. 3B, left columns) 
and cleaved caspase-3 (Fig. 3B, middle columns) were not 
discernible at 24 hpi of IBAV infection, but were detected in 
a small population of cells at 48 hpi. Furthermore, TUNEL 
staining, which is widely used as a readout for apoptosis, 
detected a small population of apoptotic cells at 48 hpi 
(Fig. 3B right columns). The apoptosis-inducing reagent 
staurosporine was used as a positive control. Treatment 
of cells with 1 µM staurosporine for 4 hr induced more 
apoptotic cells with higher intensities of cleaved caspase-3 
and TUNEL staining than IBAV-infected cells at 48 hpi.

A previous study showed that pharmacological inhibition 
of caspases with the pan-caspase inhibitor Q-VD-OPH 
decreased IBAV replication in ovine kidney cells [12], 
suggesting that IBAV benefits from apoptosis signaling. We 
thus attempted to examine the effect of pharmacological inhibition of apoptosis with the pan-caspase inhibitor Z-VAD-FMK. It 
has been reported that Z-VAD-FMK inhibits multiple caspases—similar to Q-VD-OPH [1]—and effectively inhibits virus-induced 
apoptosis in the case of BTV [9]. We first confirmed that no cytotoxicity was observed with 50 and 100 µM Z-VAD-FMK for at 
least 48 hr (Fig. 4A). We also confirmed that 100 µM Z-VAD-FMK effectively inhibited the IBAV-induced cleavage of caspase-3 
at 48 hpi (Fig. 4B). We then examined if the inhibition of apoptotic signaling alters replication efficiency of IBAV. In the same 
experimental conditions as Fig. 4B (MOI=0.01 and 100 µM Z-VAD FMK at 48 hpi), however, Z-VAD-FMK did not affect IBAV 
replication (Fig. 4C).

Finally, we examined whether IBAV-induced apoptosis contributes to the cytotoxicity of IBAV infection. To this end, HmLu-1 
cells were infected with IBAV at an MOI of 0.1, 1, or 10 and then total cell metabolic activity (as a readout of cell viability) was 
measured with an MTT assay. As shown in Fig. 5, apoptosis inhibition by 100 µM Z-VAD-FMK did not affect total cell metabolic 
activity.

DISCUSSION

Previous studies have shown that IBAV [12], EHDV [13] and the related BTV [2] induce apoptosis in mammalian host cells. 
In the case of BTV, apoptosis induction does not require active viral replication as ultraviolet (UV)-irradiated BTV particles can 
induce apoptosis [8]. Moreover, extracellularly applied viral outer capsid proteins VP2 and VP5 were sufficient to induce apoptosis, 
while inhibitors of endosomal acidification, which prevent virus uncoating, completely suppressed BTV-induced apoptosis, 
suggesting that virus uncoating triggers apoptosis induction [8]. Likewise, mammalian and avian reoviruses induce apoptosis 
without requiring virus replication [6, 15]. On the other hand, UV-irradiation of IBAV and EHDV significantly decreased their 
apoptosis-inducing ability [12, 13]. Therefore, EHDV, including IBAV, may utilize a mechanism of apoptosis induction that is 
different from BTV and reoviruses. It has been shown that pharmacological inhibition of caspases decreased IBAV replication [12]. 

Fig. 2. Induction of apoptosis by IBAV infection. HmLu-1 cells were 
either untreated (control) or infected with IBAV at an MOI of (A) 
0.01 or (B) 3. Cell lysates were harvested at the indicated time points 
after infection and subjected to western blot analysis with anti-IBAV, 
anti-cleaved caspase-3, and anti-α-tubulin antibodies. Asterisks indi-
cate non-specific signals. hpi, hr post-infection.
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Thus, it was suggested that IBAV induces apoptosis signaling and then exploits the induced apoptosis to facilitate viral replication. 
This study, however, demonstrated that (i) apoptosis signaling becomes activated during late stages of IBAV replication (Fig. 2), 
(ii) apoptosis signaling is activated in only a small subset IBAV-infected cells, thus most IBAV-infected cells remain negative for 
apoptosis signaling after infection (Fig. 3), and (iii) IBAV replication efficiency was independent of apoptotic caspase activation 
(Fig. 4). Our findings also suggested that apoptosis does not contribute to IBAV-induced cytotoxicity in HmLu-1 cells (Fig. 5). The 
discrepancy between the study by Shai et al. [12] and our study may result from the different cell lines used. Nevertheless, our 
study indicates that, depending on the host cell, IBAV may choose an apoptosis-independent pathway of replication. The effect of 
apoptosis on virus replication and host cell death has not been assessed in the study on EHDV, conducted by Sharma et al. [13]. It 
remains possible that the phenomenon observed in this study (i.e. apoptosis-independent IBAV replication and cytotoxicity) occurs 
also in other situations, including the experimental condition employed by Sharma et al.

Fig. 3. Single cell analysis of IBAV-positive and apoptotic cells. (A) HmLu-1 cells were infected with IBAV at an MOI of 0.1, fixed at 24 or 
48 hr post-infection, and stained with anti-IBAV and anti-cleaved caspase-3 antibodies. Arrows indicate cleaved caspase-3-positive cells. The 
results shown are representative of two independent experiments. Scale bar=10 µm. (B) Immunofluorescence with anti-IBAV (left columns) and 
anti-cleaved caspase-3 (middle columns) as well as TUNEL staining (right columns) were quantified by flow cytometric analysis. The results 
shown are representative of three independent experiments. hpi, hr post-infection.
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Fig. 4. Effect of Z-VAD-FMK on IBAV replication in HmLu-1 cells. (A) Cytotoxicity of Z-VAD-FMK was examined by the MTT assay. HmLu-1 
cells were incubated with DMSO (control) or Z-VAD-FMK for 48 hr and then cell metabolic activity was measured with an MTT reagent. Values 
represent the means of three independent experiments. Error bars indicate standard deviations. n.s., not statistically significant. (B) HmLu-1 cells 
were infected with IBAV at an MOI of 0.01 for 2 hr and then the medium was replaced with growth medium (DMEM supplemented with 10% 
FBS) containing 0.4% DMSO (control) or 100 µM Z-VAD-FMK. After incubating for 48 hr, cell lysates were harvested and subjected to western 
blot analysis with anti-cleaved caspase-3, anti-IBAV, and anti-α-tubulin antibodies. (C) HmLu-1 cells were infected with IBAV at an MOI of 0.01 
for 2 hr and then the medium was replaced with growth medium containing 0.4% DMSO (control) or 100 µM Z-VAD-FMK. After incubating 
for 48 hr, the culture supernatants were collected and subjected to plaque assays. Values represent the means of three independent experiments. 
Error bars indicate standard deviations. n.s., not statistically significant.

Fig. 5. Effect of Z-VAD-FMK on cell viability of IBAV-infected HmLu-1 cells. HmLu-1 cells were infected with IBAV at an MOI of 0.1, 1, or 10 
for 2 hr and then the medium was replaced with growth medium containing 0.4% DMSO (control) or 100 µM Z-VAD-FMK. After incubating 
for 24 or 48 hr, cell metabolic activity was measured with an MTT reagent. Values represent the means of three independent experiments. Error 
bars indicate standard deviations. n.s., not statistically significant. hpi, hr post-infection.
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IBAV infection in cattle is mediated by biting midges. Similar to other arboviruses, orbiviruses do not exhibit serious 
pathogenicity in their arthropod vectors. Consistent with this host-specific pathogenicity, BTV causes apoptosis in cultured 
mammalian cells but not in cultured insect cells [8]. Our previous study also showed that IBAV replication occurs with a robust 
CPE in HmLu-1 cells but without CPE in mosquito (Aedes albopictus) C6/36 cells [16]. In the case of HmLu-1, IBAV-induced 
CPE appears independent of apoptosis (Fig. 5). Therefore, the mammalian cell-specific pathogenicity of IBAV and insect 
cell-specific cytotoxicity-free replication may not be explained solely by the presence or absence of apoptosis induction. Our 
previous studies indicated that IBAV protein NS3 is specifically glycosylated in mammalian cells but not in insect cells and that 
glycosylation increases toxicity of NS3 expressed in mammalian cells [16, 17]. In addition to the mammalian-specific glycosylation 
of NS3, further investigation is required to clarify the mechanism of IBAV replication without inducing cytotoxicity in insect cells, 
as insect cells may possess a mechanism that avoids both apoptosis-dependent and -independent CPE.
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