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Statistical mechanical evaluation of a spread-spectrum watermarking model with image restoration
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In cases in which an original image is blind, a decoding method where both the image and the messages
can be estimated simultaneously is desirable. We propose a spread spectrum watermarking model with image
restoration based on Bayes estimation. We therefore need to assume some prior probabilities. The probability for
estimating the messages is given by the uniform distribution, and the ones for the image are given by the infinite-
range model and two-dimensional (2D) Ising model. Any attacks from unauthorized users can be represented by
channel models. We can obtain the estimated messages and image by maximizing the posterior probability. We
analyzed the performance of the proposed method by the replica method in the case of the infinite-range model.
We first calculated the theoretical values of the bit error rate from obtained saddle-point equations and then
verified them by computer simulations. For this purpose, we assumed that the image is binary and is generated
from a given prior probability. We also assume that attacks can be represented by the Gaussian channel. The
computer simulation retults agreed with the theoretical values. In the case of prior probability given by the
2D Ising model, in which each pixel is statically connected with four-neighbors, we evaluated the decoding
performance by computer simulations, since the replica theory could not be applied. Results using the 2D Ising
model showed that the proposed method with image restoration is as effective as the infinite-range model for
decoding messages. We compared the performances in a case in which the image was blind and one in which
it was informed. The difference between these cases was small as long as the embedding and attack rates were
small. This demonstrates that the proposed method with simultaneous estimation is effective as a watermarking
decoder.
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I. INTRODUCTION

Digital watermarking is attracting attention for its potential
application against the misuse of digital content. The basic
idea of digital watermarking is that some hidden messages
or watermarks such as a copyright or user ID are invisibly
embedded in digital cover content. For image watermarking,
we need to pay attention to both the hidden messages and the
images themselves. Either watermarks are simply embedded
by adding them to the cover content [1,2], or the cover
content is transformed by discrete cosine transform [3] or
wavelet transform [4] and the watermarks are embedded in the
transform domain. For the watermarks themselves, random
binary bit or Gaussian sequences are usually used for the
embedding [1–3]. The messages may be encoded [5]. The
spectrum spreading method is an efficient, robust method. In
this paper, we consider a decoding algorithm for the spectrum
spreading method.

The basic spectrum spreading technique is also used in
code division nultiple access (CDMA) [6], where multiple
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users can transmit their information at the same time and
within the same cell. Multiuser interference needs to be
considered for the CDMA multiuser demodulator problem.
Recently Bayes optimum solutions have been proposed on
statistical mechanics [7–10]. In spread spectrum digital wa-
termarking [1–3], watermarks are generated by spreading
the messages. Stego images, which are marked images, are
generated by embedding these watermarks in the original
images. Attacks to or misuses of the stego images can be
represented by channel models. We must estimate the hidden
messages from tampered images while reducing multiwater-
marks interference.

In an informed case—that is, a case in which the original
image is known to the decoder—we can determine the dif-
ference between the original and the tampered images. Using
a framework of the Bayes estimation [7–9], we can estimate
these messages from the received messages by maximizing
the posterior probability [11]. In contrast, in the blind case—
that is, a case in which the original image is unknown—
we need to estimate the original images from the tampered
images. Watermarks are treated as noises against the image,
and therefore, image estimation need to be applied to such a
case. Assuming the prior probability of images, we introduce
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FIG. 1. Sample of natural and parity images, (a) original image, (b) parity of uncompressed image, and (c) parity of JPEG image. The
parity images are generated from parity bits.

Bayes image estimation [9,12–15] to the blind watermarking
model. In order to estimate original images, we must assume
the model used to generate the images. Natural images are
usually represented as 8 bits per pixel. Using the least signif-
icant bit (LSB) or parity of the natural images, binary images
can easily be generated. Embedding the watermarks into the
binary images is now common [16]. In this paper, we use
binary images.

Performance of the blind digital watermarking model has
not yet been sufficiently evaluated. We therefore evaluate
the average performance of this model. In particular, in the
blind case, we propose a method in which both messages
and the original image can be estimated at the same time.
In order to evaluate the proposed method, we derive saddle-
point equations by the replica method and then calculate the
theoretical bit error rate. For the theoretical evaluation using
the replica method, we assume the infinite-range model as
prior probability of images. Moreover, we evaluate the case
of the 2D Ising model as a prior probability by computer
simulations.

Now we discuss the feasibility of representing original
images by the infinite-range model and 2D Ising model.
Watermarking methods such as the wet paper code [16] and
matrix embedding [17] methods assume that content consists
of binary data. Specifically, the original images to be em-
bedded are generated by calculating LSB or parity bits. We
refer to a binary image consisting of parity bits as a parity
image. Figure 1 shows the parity images generated from a
natural image, where Fig. 1(a) is the original natural image
and Fig. 1(b) shows the parity image from the uncompressed
natural image of Fig. 1(a). The parity image in Fig. 1(c) is
generated after JPEG compression of Fig. 1(a). The black and
white pixels represent the parity bits 0 and 1, respectively.
Figuratively speaking, from these images, we can find that
part of the parity images [Figs. 1(b) and 1(c)] can be seen as
an image generated from the infinite-range model and other
part with some clusters can be seen as one from the 2D Ising
model. Since we can evaluate our method in theory, it is
reasonable to introduce some image generation models.

The rest of this paper is organized as follows. Section II
gives an overview of our watermarking model. We explain that
both messages and images can be estimated by maximizing

the posterior probability. Section III describes the saddle-point
equations derived by the replica method in order to evaluate
our method. Section IV shows the results obtained by theory
and computer simulations. We conclude the paper in Sec. V.

II. DIGITAL WATERMARKING MODEL

We describe a basic watermarking model in an informed
case and an image restoration model before proposing our
blind watermarking model.

A. Informed case

When a decoder has been informed of an original im-
age, the informed spread spectrum watermarking model
can correspond to the CDMA model. K-bit messages s =
(s1, s2, . . . , sK )� are embedded in an original image in layers,
where si = ±1. We assume the prior probability of messages
is a uniform distribution given by

P(s) = 1

2K
. (1)

Each message si is spread by a specific spreading code ξi =
(ξ 1

i , ξ 2
i , . . . , ξN

i )�, and watermarks are obtained by summing
the K spread messages. The length of the spread codes—that
is, the chip rate—is equal to the size of the image, N . Each
element of spreading codes ξ

μ
i takes ±1 with probability

P
(
ξ

μ
i = ±1

) = 1

2
. (2)

Here (ξμ
i )2 = 1. The μth watermark wμ is represented by

wμ = 1√
K

K∑
i=1

ξ
μ
i si , μ = 1, 2, . . . , N. (3)

The stego image or marked image X is created by adding the
watermark w to the original image f ; that is, Xμ = fμ + wμ.
We ignore any embedding errors, because they are almost
always small enough to be negligent.

Here assume we have received a tampered stego image that
is attacked by an illegal user. We can consider this attack the
deterioration process of an image. Attacks can be represented
as noise in the communication channel [5,18,19]. We assume
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FIG. 2. Images generated by infinite-range model (256 × 256 pixels) with smooth parameters (a) α0 = 1.0, (b) α0 = 1.5, and (c) α0 = 2.0.

the channel is represented by the additive white Gaussian
noise channel. Therefore, the conditional probability of the
tampered image r given messages s is given by

P(r|s) =
N∏

μ=1

P(rμ|s) ∝ exp

⎡⎣− 1

2σ 2
0

N∑
μ=1

(rμ − wμ)2

⎤⎦, (4)

where noise obeys the Gaussian distribution N (0, σ 2
0 ).

What we want to know is how many messages the decoder
can retrieve from the tampered image. We therefore need to
estimate messages s and then calculate the bit error rate. In
order to estimate the messages, the posterior probability of
messages s given the tampered image r should be computed.
Since the true parameter σ 2

0 is unknown, we set a parameter
as σ 2. From (1) and Bayes theorem, the posterior probability
is given by

P(s|r) = P(r|s)P(s)∑
s P(r|s)P(s)

(5)

= 1

Z
exp

⎡⎣− 1

2σ 2

N∑
μ=1

(rμ − wμ)2

⎤⎦, (6)

Z = Tr
s

exp

⎡⎣− 1

2σ 2

N∑
μ=1

(rμ − wμ)2

⎤⎦, (7)

where Z is a normalization factor called a partition function.
The watermark wμ is a function of the messages s. Tr

s
stands

for the summation over s.
For a maximum a posteriori (MAP) estimation, the esti-

mated messages ŝ are given by

ŝ = arg max
x

P(x|r), (8)

where x = (x1, x2, . . . , xK )� are variables that represent mes-
sages. For a maximum posterior marginal (MPM) estimation,
the estimated messages ŝ are given by

ŝi = arg max
xi

∑
x\xi

P(x|r), (9)

where summation
∑

x\xi
is a summation over x excepting xi.

With that, we can obtain a Bayes optimum estimation.

B. Image restoration model

It is difficult to formulate natural images. In the image
restoration method based on Bayes estimation, the original
images are assumed to be generated from some probability
distribution [12,13,15]. In this paper, we assume that the
original images consist of N pixels and that the pixels are
binary [12,13,15]. Moreover, we consider the infinite-range
model [9] and the 2D Ising model as image generating models.
The prior probability of the infinite-range model is given by

P( f ) ∝ exp

[
α0

N

∑
μ<ν

fμ fν

]
, (10)

where parameter α0 represents the smoothness of an image
and the summation

∑
μ<ν runs over all pairs of different

indexes μ, ν. Figure 2 shows some images generated by the
infinite range model with α0 = 1.0, 1.5, and 2.0. Although
sites in the infinite-range model are not intrinsically lined
up, we arrange these sites on the two-dimensional lattice like
256 × 256 pixel images. In the case of (a), the image looks
like high-frequency snow noise, while with the larger α0 in
(c), smooth images appear.

For a while, leaving the watermarking scheme aside, we
concentrate exclusively on image restoration from a tampered
image. In fact, the embedding process of the watermarks can
be considered a Gaussian channel. Therefore, we assume the
deterioration process from the original image to the tampered
image is a Gaussian channel. In this case, the probability of
the tampered image r given the original image f is given by

P(r| f ) =
N∏

μ=1

P(rμ| f ) ∝ exp

⎡⎣− 1

2σ 2
0

N∑
μ=1

(rμ − fμ)2

⎤⎦. (11)

For the infinite-range model, from Bayes theorem, the image
maximizing the posterior probability,

P( f |r) = 1

Z
exp

⎡⎣− 1

2σ 2

N∑
μ=1

(rμ − fμ)2 + α

N

∑
μ<ν

fμ fν

⎤⎦, (12)

Z = Tr
f

P(r| f )P( f ), (13)

can be chosen as the estimation image. Since the true param-
eters σ 2

0 , α0 are unknown, parameters σ 2 and α are used.
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C. Blind case

When the original image is unknown or blind at the de-
coder, both the messages and the image should be estimated at
the same time. This method requires the posterior probability
of messages s and image f given the tampered image r. Since
the probability of the tampered image r is given by

P(r|s, f ) ∝ exp

⎡⎣− 1

2σ 2
0

N∑
μ=1

(rμ − wμ − fμ)2

⎤⎦, (14)

and the prior probabilities are given by (1) and (10), the
posterior probability can be given by

P(s, f |r) = P(r|s, f )P(s)P( f )∑
s, f P(r|s, f )P(s)P( f )

(15)

= 1

Z
exp

⎡⎣− 1

2σ 2

N∑
μ=1

(rμ−wμ− fμ)2+ α

N

∑
μ<ν

fμ fν

⎤⎦,
(16)

where

Z = Tr
s, f

P(r|s, f )P( f ). (17)

Constant P(s) is reducible. Since the true parameters σ 2
0 and

α0 are unknown, parameters σ 2 and α are used. Now, we
rewrite the posterior probability in a different form using
the Hamiltonian H (s, f ) as P(s, f |r) = exp[−H (s, f )/σ 2]/Z .
We can then obtain the Hamiltonian,

H (s, f ) = 1

2β

K∑
i=1

K∑
j=1

Ji jsis j − 1√
β

K∑
i=1

hisi −
N∑

μ=1

rμ fμ

+ 1√
K

N∑
μ=1

K∑
i=1

fμξ
μ
i si − ασ 2

N

∑
μ<ν

fμ fν, (18)

where β stands for embedding rate β = K/N and

Ji j = 1

N

N∑
μ=1

ξ
μ
i ξ

μ
j , hi = 1√

N

N∑
μ=1

ξ
μ
i rμ. (19)

From MAP and MPM estimations, the estimated messages ŝ
and estimated image f̂ are given by

MAP : (̂s, f̂ ) = arg max
(x,g)

P(x, g|r), (20)

MPM : Ŝi = arg max
Xi

∑
X\Xi

P(X |r), (21)

where x = (x1, x2, . . . , xK )� and g = (g1, g2, . . . , gN )� stand
for variables of messages and image, respectively. For
MPM estimation, S = (s1, . . . , sK , f1, . . . , fN )� stand for
the true values of original messages and image. Ŝi

represents each element of the estimated messages ŝ
and image f̂ , that is, Ŝi ∈ {̂s1, . . . , ŝK , f̂1, . . . , f̂N }. X =
(x1, x2, . . . , xK , g1, g2, . . . , gN )� represents the correspond-
ing variables of messages and image, and Xi is ith element in
X corresponding to Ŝi. The MPM estimation for the CDMA
model can be seen in Ref. [9].

III. THEORETICAL EVALUATION

A. Bit error rate

The accuracy for estimated messages can be measured by
bit error rate (BER), as

BERm = 1 − dm

2
, (22)

where dm represents the overlap between the original message
si and the estimated message ŝi and is defined as

dm = 1

K

K∑
i=1

sîsi. (23)

Image quality is usually measured by peak signal-to-noise
ratio (PSNR). However, since we deal with binary images, the
image quality can also be measured by BER as

BERR = 1 − dR

2
, (24)

where the overlap, dR, between the original image fμ and the
estimated image f̂μ is defined as

dR = 1

N

N∑
μ=1

fμ f̂μ. (25)

Because mean squared error MSE = 4 BERR, PSNR can be
calculated from BERR.

Using the BER, we evaluate the performance of our pro-
posed method, which estimates both messages and image at
the same time. We want to know the average performance
rather than specific messages and image. Therefore, we av-
erage the BER over all possible messages s, images f , and
spread codes ξ

μ
i . We assume random diffusion by spread

codes and a large system limit. Under this assumptions, we
can derive saddle-point equations of overlaps m and R from
the posterior probability and can then theoretically evaluate
the performance.

B. Replica method

In order to determine the average performance, Helmholtz
free energy F is averaged over messages, the pixel value of
images, and spread codes. That is, [F ] = −T [log Z], where
[·] denotes a configurational average defined by

[x] =
∫ N∏

μ=1

drμ Tr
s, f

〈P(r|s, f )P(s)P( f )x〉ξ , (26)

and 〈·〉ξ denotes an average over ξ
μ
i . By using the replica

method, we can obtain this averaged free energy [F ] from the
relation

[log Z] = lim
n→0

[Zn] − 1

n
. (27)

In other words, [log Z] can be calculated from n replicas of
the original system using the configurational average of the
product of the partition functions, Zn. We therefore start to
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calculate from

[Zn] =
∫ N∏

μ=1

drμ〈Tr
s, f

P(r|s, f )P(s)P( f )Zn〉ξ (28)

=
∫ N∏

μ=1

drμ Tr
s,xa

Tr
f ,ga

〈(
2πσ 2

0

)− N
2 exp

⎡⎣− 1

2σ 2
0

N∑
μ=1

(
rμ − 1√

K

K∑
i=1

ξ
μ
i si − fμ

)2

− 1

2σ 2

n∑
a=1

N∑
μ=1

(
rμ − 1√

K

K∑
i=1

ξ
μ
i xa

i − ga
μ

)2

+α0

N

∑
μ<ν

fμ fν + α

N

n∑
a=1

∑
μ<ν

ga
μga

ν

]〉
ξ

, (29)

where a is the replica index.
According to the replica analysis of the CDMA model [7,9], we first need to carry out the terms of the messages. Let us

average over the spread codes ξ
μ
i . By introducing the following notations to (29):

v
μ
0 = 1√

K

K∑
i=1

ξ
μ
i si , vμ

a = 1√
K

K∑
i=1

ξ
μ
i xa

i , (30)

we obtain

[Zn] =
∫

dv
μ
0

∏
a

dvμ
a eN (g1+g2 ), (31)

eNg1 = Tr
s,x

∏
μ

〈
δ

(
v

μ
0 − 1√

K

K∑
i=1

ξ
μ
i si

)∏
a

δ

(
vμ

a − 1√
K

K∑
i=1

ξ
μ
i xa

i

)〉
ξ

, (32)

eNg2 = Tr
f ,g

∏
μ

∫
drμ√
2πσ0

exp

[
− 1

2σ 2
0

(
rμ − v

μ
0 − fμ

)2 − 1

2σ 2

∑
a

(
rμ − vμ

a − ga
μ

)2 + α0

N

∑
μ<ν

fμ fν + α

N

n∑
a=1

∑
μ<ν

ga
μga

ν

]
. (33)

In the term eNg1 , using the integral representation of delta function δ(·), we can carry out the average over the spread codes ξ
μ
i

and then introduce order parameters to the terms of the messages si, xa
i , given by

qab = 1

K

K∑
i=1

xa
i xb

i , ma = 1

K

K∑
i=1

six
a
i . (34)

The term eNg1 can be represented as

eNg1 = Tr
s,x

{∏
a<b

∫
dqabδ

(
Kqab −

K∑
i=1

xa
i xb

i

)∏
a

∫
dmaδ

(
Kma −

K∑
i=1

six
a
i

)}

×
∏
μ

∫
d v̂

μ
0

2π

∏
a

d v̂μ
a

2π
exp

[
îvμ

0 v
μ
0 + i

∑
a

v̂μ
a vμ

a − 1

2

(̂
v

μ
0

)2 − 1

2

∑
a

(̂
vμ

a

)2 −
∑
a<b

qab̂v
μ
a v̂

μ

b −
∑

a

mâv
μ
0 v̂μ

a

]
(35)

=
∫ ∏

a<b

idqabdq̂ab

2π

∏
a

idmadm̂a

2π
exp

(
−K

∑
a<b

q̂abqab − K
∑

a

m̂ama

)

×
∏
μ

∫
d v̂

μ
0

2π

∏
a

d v̂μ
a

2π
exp

[
îvμ

0 v
μ
0 + i

∑
a

v̂μ
a vμ

a − 1

2

∑
a

(̂
vμ

a

)2 −
∑
a<b

qab̂v
μ
a v̂

μ

b −
∑

a

mâv
μ
0 v̂μ

a − 1

2

(̂
v

μ
0

)2]

× Tr
s,x

K∏
k=1

exp

(∑
a<b

q̂abxa
k xb

k +
∑

a

m̂askxa
k

)
. (36)

From integrating [Zn] into the terms of rμ, v
μ
0 , and v̂

μ
0 , we can obtain the term (A5). (See Appendix A for more details on

this derivation.) Now, we assume symmetry between replicas for the order parameters of messages; that is, qab = q, q̂ab = q̂,
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ma = m, and m̂a = m̂. Under this assumption, we obtain

[Zn] =
∫

idqdq̂

2π

idmdm̂

2π
eN (G1+G2+G3 ), (37)

G1 = −1

2
n(n − 1)βq̂q − nβm̂m, (38)

G2 = −nβq̂

2
+ nβ

∫
Dz log 2 cosh(z

√
q̂ + m̂), (39)

eNG3 = Tr
f ,g

∏
μ

∫
dv

μ
0 d v̂

μ
0

2π

∏
a

dvμ
a d v̂μ

a

2π

drμ√
2πσ0

exp

[
îvμ

0 v
μ
0 + i

∑
a

v̂μ
a vμ

a − 1

2

∑
a

(̂
vμ

a

)2 − 1

2

(̂
v

μ
0

)2 − q
∑
a<b

v̂âvb

− m
∑

a

v̂0̂va − 1

2σ 2
0

(
rμ − v

μ
0 − fμ

)2 − 1

2σ 2

∑
a

(
rμ − vμ

a − ga
μ

)2 + α0

N

∑
μ<ν

fμ fν + α

N

n∑
a=1

∑
μ<ν

ga
μga

ν

]
, (40)

where Dz = dz/
√

2πe−z2/2. By integrating over vμ
a , v̂μ

a , the term eNG3 is given by

eNG3 = Tr
f ,g

∏
μ

σ n(σ 2 + 1 − q)−
n
2

⎡⎣1 + n
(
2m − q − σ 2

0 − 1
)

2(σ 2 + 1 − q)
+ n

(
σ 2

0 + 1
)

2σ 2
+ ϒ

(∑
a

ga
μ

)2
⎤⎦

× exp

⎡⎣
 + �
∑
a<b

ga
μgb

μ + � fμ
∑

a

ga
μ + α0

2N

⎛⎝ N∑
μ=1

fμ

⎞⎠2

+ α

2N

∑
a

⎛⎝ N∑
μ=1

ga
μ

⎞⎠2⎤⎦. (41)

(See Appendix B for more details on this derivation.) This term represents contribution from the image.
Next, for term eNG3 , we introduce various order parameters of the images, given by

r0 = 1

N

N∑
μ=1

fμ, ra = 1

N

N∑
μ=1

ga
μ, (42)

Ra = 1

N

N∑
μ=1

fμga
μ, Qab = 1

N

N∑
μ=1

ga
μgb

μ. (43)

Using these order parameters, we can rewrite it as

eNG3 =
∫

dr0

∏
a

dra

∏
a

dRa

∏
a<b

dQabeN (G4+G5+G6+G7 ), (44)

where

eNG4 = Tr
f

Tr
g

exp

⎡⎣−̂r0

⎛⎝Nr0 −
N∑

μ=1

fμ

⎞⎠−
∑

a

r̂a

⎛⎝Nra −
N∑

μ=1

ga
μ

⎞⎠
−
∑

a

R̂a

⎛⎝NRa −
N∑

μ=1

fμga
μ

⎞⎠−
∑
a<b

Q̂ab

⎛⎝NQab −
N∑

μ=1

ga
μgb

μ

⎞⎠⎤⎦, (45)

eNG5 = [σ n(σ 2 + 1 − q)−
n
2 ]N , (46)

eNG6 = exp N

[
n
(
2m − q − σ 2

0 − 1
)

2(σ 2 + 1 − q)
+ n

(
σ 2

0 + 1
)

2σ 2
+ ϒ

(
2
∑
a<b

Qab + n

)]
, (47)

eNG7 = exp N

[

 + �

∑
a<b

Qab + �
∑

a

Ra + α0

2
r2

0 + α

2

∑
a

r2
a

]
. (48)

The variables ϒ,
,�, and � are given by (B5)–(B8). We assume the replica symmetry for these order parameters; that is,
ra = r, r̂a = r̂, Ra = R, R̂a = R̂, Qab = Q, and Q̂ab = Q̂. They lead to

eNG3 =
∫

idr0dr̂0

2π

∫
idrdr̂

2π

∫
idRdR̂

2π

∫
idQdQ̂

2π
eN (G4+G5+G6+G7 ), (49)
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where

G4 = −r0̂r0 − nr̂r − nRR̂ − n(n − 1)

2
QQ̂ − n

2
Q̂

+ log

[
2 cosh (̂r0) + n Tr

f
exp (̂r0 f )

∫
Ds log 2 cosh

(
s
√

Q̂ + r̂ + R̂ f

)]
, (50)

G5 = n log σ − n

2

σ 2
0 + 1

σ 2
− n

2
log(σ 2 + 1 − q), (51)

G6 = n
(
2m − q − σ 2

0 − 1
)

2(σ 2 + 1 − q)
+ n

(
σ 2

0 + 1
)

2σ 2

+ n

[
−2m − q − σ 2

0 − 1

2(σ 2 + 1 − q)2
+
(
σ 2

0 + 1
)(

1 − nm
σ 2

)
σ 2(σ 2 + 1 − q)

+ σ 2
0 + 1

2σ 4

]
(1 − Q + nQ), (52)

G7 = 
 + n(n − 1)

2
�Q + n�R + α0

2
r2

0 + nα

2
r2. (53)

Thus, we obtain

[Zn] =
∫

idqdq̂

2π

idmdm̂

2π

idr0dr̂0

2π

idrdr̂

2π

idRdR̂

2π

idQdQ̂

2π
eN (G1+G2+G4+G5+G6+G7 ). (54)

In the large-system limit N → ∞, the integral can be evaluated by the saddle-point method. From (27), the free energy F is
given in the limit n → 0 as

F = 1

2
βq̂q − βm̂m − βq̂

2
+ β

∫
Dz log 2 cosh(z

√
q̂ + m̂) + log σ − 1

2
log(σ 2 + 1 − q)

+2m − q − σ 2
0 − 1

2(σ 2 + 1 − q)
+ α

2
r2 − r̂r − RR̂ − 1

2
(1 − Q)Q̂ − (1 − Q)

2m − q − σ 2
0 − 1

2(σ 2 + 1 − q)2

− 1 − R

σ 2 + 1 − q
+

Tr
f

exp (̂r0 f )
∫

Ds log 2 cosh(s
√

Q̂ + r̂ + R̂ f )

2 cosh (̂r0)
. (55)

Since there are n-independent constant terms in F , we define them as

F0 = −r0̂r0 + α0

2
r2

0 + log 2 cosh(̂r0). (56)

Extremization of the free energy yields the saddle-point equations as

m =
∫

Dz tanh(z
√

q̂ + m̂), (57)

m̂ = 1

β(σ 2 + 1 − q)
− 1 − Q

β(σ 2 + 1 − q)2
, (58)

q =
∫

Dz tanh2(z
√

q̂ + m̂), (59)

q̂ = q − 2m + σ 2
0 + 2(1 − R) + Q

β(σ 2 + 1 − q)2
− 2(1 − Q)

q − 2m + σ 2
0 + 1

β(σ 2 + 1 − q)3
, (60)

r = 1

2 cosh(̂r0)
Tr
f

êr0 f
∫

Dz tanh(αr + z
√

Q̂ + R̂ f ), (61)

R = 1

2 cosh(̂r0)
Tr
f

f êr0 f
∫

Dz tanh(αr + z
√

Q̂ + R̂ f ), (62)

Q = 1

2 cosh(̂r0)
Tr
f

êr0 f
∫

Dz tanh2(αr + z
√

Q̂ + R̂ f ), (63)

R̂ = 1

σ 2 + 1 − q
, Q̂ = q − 2m + σ 2

0 + 1

(σ 2 + 1 − q)2
, (64)

r0 = tanh(̂r0), r̂0 = α0r0. (65)
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In these equations, we can find two sets of equations for both
the CDMA model [7–9] and the image restoration model [9].
These two equations depend on each other.

IV. COMPUTER SIMULATIONS

A. Overlaps and BER

Let us derive the overlaps dm and dR. The overlaps are
averaged over all realization of the spreading codes and
noises [8,9]. Therefore, the overlaps are given by

dm = lim
n→0

lim
K→∞

[
1

K

K∑
i=1

sisgn(〈̂si〉σ )

]
, (66)

dR = lim
n→0

lim
N→∞

⎡⎣ 1

N

N∑
μ=1

fμsgn(〈 f̂μ〉σ )

⎤⎦, (67)

where 〈·〉σ denotes the average over the posterior distribution
and [·] denotes the average over the spreading codes, noises,
messages and images [8]. We have

dm =
∫ ∞

−∞
Dz sgn(z

√
q̂ + m̂) (68)

= erf

(
m̂√
2q̂

)
, (69)

dR = 1

2 cosh(̂r0)
Tr
f

f êr0 f
∫ ∞

−∞
Dzsgn(αr + z

√
Q̂ + R̂ f ) (70)

= 1

2 cosh(̂r0)

⎡⎣êr0 erf

⎛⎝αr + R̂√
2Q̂

⎞⎠− e−̂r0 erf

⎛⎝αr − R̂√
2Q̂

⎞⎠⎤⎦,

(71)

where erf (x) is the error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt . (72)

From the overlaps, the BERs can be given by

BERm = 1

2

[
1 − erf

(
m̂√
2q̂

)]
, (73)

BERR = 1

2

⎧⎨⎩1 − 1

2 cosh(̂r0)

⎡⎣êr0 erf

⎛⎝αr + R̂√
2Q̂

⎞⎠
−e−̂r0 erf

⎛⎝αr − R̂√
2Q̂

⎞⎠⎤⎦⎫⎬⎭. (74)

B. Verification of saddle-point equations

We verify the obtained saddle-point equations by computer
simulations. First, we consider the infinite-range model for the
image restoration model. Figure 2 shows the sample images
generated that satisfy the prior probability (10), where α0 =
1.0, 1.5, and 2.0. In the case of (b) α0 = 1.5, the average
value of the pixels is r0 = 0.859 from (65). The size of sample

β

β

β

α

(a)

β β

β

α

(b)

FIG. 3. (a) Bit error rate BERm for messages and (b) BERR for
image. The smooth parameter is α = 1.5. The embedding rates are
β = 0.125, 0.5, and 1.0.

images in Fig. 2 is 256 × 256 pixels. Since the length of the
spread codes is N = 1024, we use smaller original images of
32 × 32 pixels for the computer simulations. The message
lengths are K = 128, 512, and 1024. Figure 3 shows the
BER as a function of the channel noise. The parameters in
the decoder, α and σ 2, are given by true values α = α0 and
σ 2 = σ 2

0 . The abscissa axis represents Eb/N0 given by

Eb

N0
= 10 log10

(
1

2σ 2

)
(dB), (75)

where σ 2 is the variance of the Gaussian channel. The axis
of ordinate represents the BERs for both messages BERm

and images BERR. BERm is averaged over 200 trials in
the computer simulations. The average BERm is shown with
error bars. BERR is calculated on whole image and is shown
with points. The initial values of the estimated messages and
estimated image are set by the true values, and then we obtain
one of the best solutions. The theoretical values obtained
by the saddle-point equations are plotted by a solid line for
embedding rate β = K/N = 0.125 (K = 128), a dashed line
for β = 0.5 (K = 512), and a double-dashed line for β =
1.0 (K = 1024). The computer simulations results agreed
with those derived theoretically. In Fig. 3, the BERm for the
messages worsened according to the embedding rate β, while
the BERR for the images were slightly influenced by β under
the fixed smooth parameter α.
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β

α
α

α

(a)

β

α
α

α

(b)

FIG. 4. (a) Bit error rate BERm for messages and (b) BERR for
image. The smooth parameters are α = 1.0, 1.5, 3.0. The embedding
rate is β = 0.5.

Next, we evaluate the bit error rate for the smooth pa-
rameters α = 1.0, 1.5, and 3.0 under the fixed embedding
rate β. Figure 4 shows the BERs for the embedding rate
β = 0.5. Because of the fixed embedding rate, the BERm for
the messages were slightly influenced by the parameter α,
while the BERR for the images became better according to
α. In other words, smoother images can be easily restored.

C. Advantages of image restoration

The key concept underlying the proposed method is that
it can estimate both the messages and image at the same
time in the decoder. Here, we compare the performance of
the blind decoder with that of the informed decoder. Cases
in which the original image is known or informed to the
decoder correspond to the CDMA model, and only messages
are estimated.

Figure 5 shows the bit error rate BERm for messages in the
blind and informed decoders. The embedding rates are β =
0.125, 0.5, and 1.0. The BERs in the blind decoder are larger
than those in the informed decoder because images are also
estimated. However, in cases in which the embedding rate
β is small enough, or in which there is not much noise
in the communication channel, there is not much difference
between the blind and informed decoders, i.e., blind decoder
can successfully carry out image estimation.

β
β

β

FIG. 5. BERm in the cases of blind and informed images.

D. Two-dimensional Ising model

In addition to the infinite-range model, we also consider
the 2D Ising model for image restoration, in which each pixel
is statically connected with four-neighbors. This model is
natural for the image restoration. In this model, there are some
clusters in generated images because the pixels interact with
their nearest neighbors. These cluster patterns can be seen in
the parity of JPEG images. In this section, we treat the 2D
Ising model as an image generating model; that is, the prior
probability is given by

P( f ) ∝ exp

⎡⎣α0

∑
〈μ,ν〉

fμ fν

⎤⎦, (76)

where 〈μ, ν〉 denotes pairs of nearest neighbor sites. Figure 6
shows the generated images for parameters α0 = 0.4, 1.5, and
10 in the 2D Ising model. In this manner, once the generating
models have been changed, the generated images are much
different. Since it is difficult to construct a generating model of
natural images, it is necessary to consider various generating
models in which as many characteristics of natural images are
applied as possible.

The posterior probability of the original image f given the
tampered image r is given by

P( f |r) = 1

Z
exp

⎡⎣− 1

2σ 2

N∑
μ=1

(rμ − fμ)2 + α
∑
〈μ,ν〉

fμ fν

⎤⎦.

(77)

Although the replica method can be applied to a certain 2D
Ising model with diluted random connections by using a mean
field approximation [20], the exact treatment of the 2D Ising
model is technically difficult and the replica method does
not yield the accurate assessment. We therefore evaluate its
performance by computer simulations. Since we can see the
continuous structure in Fig. 6, the image size in the 2D Ising
model is 256 × 256 pixels unlike ones of the infinite-range
model. The images are divided into 256 blocks, whose size is
256 pixels per a block. So, the spread code length is N = 256.
Figure 7 shows the bit error rates BERm and BERR for the 2D
Ising model. The parameters α and σ 2 are set to the true value
α = α0 and σ 2 = σ 2

0 . The BERs are averaged over all blocks.
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FIG. 6. Images generated by 2D-Ising model (256 × 256 pixels) with the smooth parameters (a) α0 = 0.4, (b) α0 = 1.5, and (c) α0 = 10.0.

BERR for the images are slightly influenced by the embedding
rate β under the fixed parameter α.

Next, we evaluate the performance under the fixed em-
bedding rate β = 0.25. Figure 8 shows BERs for the smooth
parameters α0 = 0.4, 1.5, and 10.0. BERm for messages are
slightly influenced by α. BERR for images in cases of α0 > 1
are smaller than those of α = 0.4. For large α0 = 10, phase
transition may occur.

Figure 9 shows the bit error rate BERm for messages in
both blind and informed decoders. The embedding rates were

α

β
β

β

(a)

α

β

β
β

(b)

FIG. 7. (a) Bit error rates BERm for messages and (b) BERR for
image in 2D Ising model. The smooth parameter is α = α0 = 1.5.
The embedding rates are β = 0.125, 0.5, 1.0.

β = 0.125, 0.5, and 1.0. Curved lines denote the theoretical
values for the informed decoder. The blind decoder had just as
good a performance as the informed decoder. That is, the blind
decoder could successfully restore the image and estimate the
messages.

V. CONCLUSION

We proposed an estimation method that can estimate mes-
sages and an image at the same time when using a blind

β

α=0.4
α=1.5
α=10

(a)

β

α=0.4

α=1.5

α=10

(b)

FIG. 8. (a) Bit error rate BERm for messages and (b) BERR for
image in 2D Ising model. The smooth parameters are α0 = 0.4, 1.5,
and 10.0. The embedding rate is β = 0.25.
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α=1.5

β=0.125 β=0.5

β=1.0

2D Ising -5

 -3

 -4

10

10

10

 -2
10

 -1
10

FIG. 9. BERm in blind and informed cases. The smooth parame-
ter is α = 1.5. The embedding rates are β = 0.125, 0.5, 1.0.

decoder. When this method is used with Bayes estimation,
prior probabilities for both the messages and the images
are required. In this paper, we assumed that the prior prob-
ability for messages had a uniform distribution and that
those for images were the infinite-range model and 2D Ising
model.

For the infinite-range model, we derived the saddle-point
equations by the replica method in order to evaluate the
average performance. Since there are two terms—the mes-
sages term and the image term—we implemented a two-
step approach: First, we introduced order parameters for

the messages and assumed replica symmetry for them, and
second, we introduced order parameters for the image and
assumed replica symmetry for them. The obtained saddle-
point equations consist of two indivisible parts: the equations
of the CDMA model and those of the image restoration
model. We verified the saddle-point equations by computer
simulations. The theoretical results agreed with those of the
simulations.

Next, we evaluated the performance of the 2D Ising model
by computer simulations. When the smooth parameter α0 was
fixed, there was little change in the BER for images, and the
BER for messages depended on the embedding rate β. In
contrast, when the embedding rate β was fixed, there was little
change in the BER for messages, and the BER for images
depended on the smooth parameter. However, there was a
lower bound in the 2D Ising model.

We also evaluated the performance differences between
blind and informed decoders. Results showed that the dif-
ference was very small when the embedding or attack rates
were small, since the image restoration could still be carried
out well. This demonstrates the effectiveness of the proposed
method.
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APPENDIX A: INTEGRAL OF [Zn] WITH RESPECT TO rμ, v
μ
0 , v̂

μ
0

From (36), we obtain

[
Zn
] =

∫ ∏
a<b

idqabdq̂ab

2π

∏
a

idmadm̂a

2π
eN (G1+G2+G3 ), (A1)

where

eG1 = exp

(
−β
∑
a<b

q̂abqab − β
∑

a

m̂ama

)
, (A2)

eNG2 = Tr
s,x

K∏
k=1

exp

(∑
a<b

q̂abxa
k xb

k +
∑

a

m̂askxa
k

)
, (A3)

eNG3 = Tr
f ,g

∏
μ

∫
dv

μ
0 d v̂

μ
0

2π

∏
a

dvμ
a d v̂μ

a

2π

drμ√
2πσ0

exp

[
îvμ

0 v
μ
0 + i

∑
a

v̂μ
a vμ

a − 1

2

∑
a

(̂
vμ

a

)2 − 1

2

(̂
v

μ
0

)2
−
∑
a<b

qab̂vâvb −
∑

a

mâv0̂va − 1

2σ 2
0

(
rμ − v

μ
0 − fμ

)2 − 1

2σ 2

∑
a

(
rμ − vμ

a − ga
μ

)2
+α0

N

∑
μ<ν

fμ fν + α

N

n∑
a=1

∑
μ<ν

ga
μga

ν

]
, (A4)
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Now, we integrate eNG3 by rμ, v
μ
0 , v̂

μ
0 :

eNG3 = Tr
f ,g

∏
μ

√
σ 2

σ 2 + n
(
σ 2

0 + 1
) ∫ ∏

a

dvμ
a d v̂μ

a

2π

∫
Dtμ exp

(
− 1

2σ 2

∑
a

(
vμ

a

)2 + i
∑

a

v̂μ
a vμ

a − 1

2

∑
a

(̂
vμ

a

)2
+
{

tμ

√
σ 2

0 + 1

σ 2[σ 2 + n
(
σ 2

0 + 1
)
]

+ 1

σ 2 + n
(
σ 2

0 + 1
)(−i

∑
a

mâv
μ
a + fμ + σ 2

0 + 1

σ 2

∑
a

ga
μ

)}∑
a

vμ
a

− 1

σ 2

∑
a

ga
μvμ

a + n

2[σ 2 + n
(
σ 2

0 + 1
)
]

(∑
a

mâv
μ
a

)2

+ in

σ 2 + n
(
σ 2

0 + 1
) fμ

∑
a

mâv
μ
a

+ 1

σ 2 + n
(
σ 2

0 + 1
)(−i

∑
a

mâv
μ
a + fμ

)∑
a

ga
μ + σ 2

0 + 1

2σ 2
[
σ 2 + n

(
σ 2

0 + 1
)](∑

a

ga
μ

)2

−
∑
a<b

qab̂v
μ
a v̂

μ

b + α0

N

∑
μ<ν

fμ fν + α

N

n∑
a=1

∑
μ<ν

ga
μga

ν

)
. (A5)

Under the assumption of the replica symmetry, we obtain

eNG3 = Tr
f ,g

∏
μ

√
σ 2

σ 2 + n
(
σ 2

0 + 1
) ∫ ∏

a

dvμ
a d v̂μ

a

2π

∫
Dtμ exp

(
− 1

2σ 2

∑
a

(
vμ

a

)2 + i
∑

a

v̂μ
a vμ

a − 1

2

∑
a

(̂
vμ

a

)2
+
{

tμ

√
σ 2

0 + 1

σ 2
[
σ 2 + n

(
σ 2

0 + 1
)] + 1

σ 2 + n
(
σ 2

0 + 1
)(−im

∑
a

v̂μ
a + fμ + σ 2

0 + 1

σ 2

∑
a

ga
μ

)}∑
a

vμ
a

− 1

σ 2

∑
a

ga
μvμ

a + nm2

2
[
σ 2 + n

(
σ 2

0 + 1
)](∑

a

v̂μ
a

)2

+ inm

σ 2 + n
(
σ 2

0 + 1
) fμ

∑
a

v̂μ
a

+ 1

σ 2 + n
(
σ 2

0 + 1
)(−im

∑
a

v̂μ
a + fμ

)∑
a

ga
μ + σ 2

0 + 1

2σ 2
[
σ 2 + n

(
σ 2

0 + 1
)](∑

a

ga
μ

)2

− q

2

⎡⎣(∑
a

v̂μ
a

)2

−
∑

a

(̂
vμ

a

)2⎤⎦+ α0

2N

⎛⎝ N∑
μ=1

fμ

⎞⎠2

− α0

2
+ α

2N

n∑
a=1

⎛⎝ N∑
μ=1

ga
μ

⎞⎠2

− α

2

⎞⎠. (A6)

APPENDIX B: INTEGRAL OF eNG3 WITH RESPECT TO vμ
a , v̂μ

a

Under the assumption of the replica symmetry, we integrate by vμ
a , and eliminate the terms at the limit n → 0. We obtain

eNG3 = Tr
f ,g

∏
μ

√
σ 2

σ 2 + n
(
σ 2

0 + 1
) ∫ ∏

a

dvμ
a d v̂μ

a

2π

∫
Dtμ exp

(
− 1

2σ 2

∑
a

(
vμ

a

)2 + i
∑

a

v̂μ
a vμ

a

+
{

tμ

√
σ 2

0 + 1

σ 2
[
σ 2 + n

(
σ 2

0 + 1
)] + 1

σ 2 + n
(
σ 2

0 + 1
)(−im

∑
a

v̂μ
a + fμ + σ 2

0 + 1

σ 2

∑
a

ga
μ

)}∑
a

vμ
a

− 1

σ 2

∑
a

ga
μvμ

a − 1

2
(1 − q)

∑
a

(̂
vμ

a

)2 +
{

nm2

2
[
σ 2 + n

(
σ 2

0 + 1
)] − q

2

}(∑
a

v̂μ
a

)2

+ im

σ 2 + n
(
σ 2

0 + 1
)(n fμ −

∑
a

ga
μ

)∑
a

v̂μ
a + 1

σ 2 + n
(
σ 2

0 + 1
) fμ

∑
a

ga
μ

+ σ 2
0 + 1

2σ 2
[
σ 2 + n

(
σ 2

0 + 1
)](∑

a

ga
μ

)2

+ α0

2N

⎛⎝ N∑
μ=1

fμ

⎞⎠2

+ α

2N

n∑
a=1

⎛⎝ N∑
μ=1

ga
μ

⎞⎠2⎞⎠, (B1)
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= Tr
f ,g

∏
μ

σ n
∫ ∏

a

d v̂μ
a√

2π

∫
Dtμ exp

⎡⎣−1

2
(σ 2 + 1 − q)
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Using Hubbard-Stratonovich transformation,
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we integrate by v̂μ
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