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Abstract

Healthcare has drawn wide public concern in modern society. Sleep spending one
third of the life is indispensable to maintain healthy functions and improve the
quality of life. Monitoring and analyzing overnight breathing sound signal and
heart sound signal will be connected with the early detection of lifestyle diseases
and the prevention of severe cardiovascular diseases. More and more people are
suffered from sleep-related disorders, not only in the elderly but also in young
adults. The sleep-related disorders will affect the sleep quality seriously. In par-
ticular, apnea syndrome will increase the risk of cardiovascular disease compli-
cations like heart failure. They will threaten people’s health and life. Therefore,
monitor and analyze breathing sound and heart sound during night sleep play an
important role on healthcare at home.

In clinic, polysomnography (PSG) is the golden standard to evaluate the sleep
states. Apnea-hypopnea index (AHI) is used to diagnose obstructive sleep apnea
(OSA) which is a typical sleep-related disorder. At present AHI only can be pro-
vided by PSG detection. However, PSG should be tested in hospital because of
the complex and professional operation. It is not suitable for daily monitoring at
home.

This research focuses on the ventilation of oxygen and carbon dioxide by sleep
respiration and monitoring of the sleep states with the breathing sound signal. The
breathing data is acquired portably by a smart phone and a wireless earphone. The
waveform segmentation method of breathing cycle and phase is proposed with
high accuracy. Based on the segmented breathing cycles, the identification algo-
rithm of apnea and hypopnea is developed by the time duration of each cycle to
detect AHI. Moreover the identification method of normal and abnormal breathing
is proposed based on the Mel frequency spectrum analysis which is used widely in
speech recognition. Finally, the proposed analysis methods are applied for heart
sound analysis. The usefulness of the proposed methods is verified by abnormal
heart sound analysis.

This thesis is composed of six chapters.
In chapter 1, the aim and significance, the current studying situation, research

key points, nodus and studying methods of sleep state and heart state monitoring
have been described. The outline of this thesis is introduced as well.
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There are regular breathing, irregular breathing, snore, apnea during the whole
night sleep. To guarantee the veracity of the sleep breathing signal analysis, the
complex sleep breathing waveforms should be segmented correctly at the begin-
ning. Since the overnight breathing sound data is quite large, a fast and effec-
tive segmentation method is the basis of this research. In chapter 2, the wave-
form segmentation method based on the moment waveform extraction is pro-
posed. The time characteristic waveform (TCW) and characteristic moment wave-
form (CMW) are extracted regarding the breathing signal as the periodic signal.
Then the breathing cycles and inspiration/expiration can be segmented success-
fully based on the local extremums of CMW and TCW. A set of testers including
young students and a patient suffered from OSA is used to validate the efficiency
of the proposed method. The average successful rate of breathing cycle segmen-
tation can reach to 98.4% compared with the results of manually counting.

The chapter 3 introduces the identification of apnea and hypopnea based on
the segmentation algorithm proposed in chapter 2. Then the detection method of
AHI which can diagnose the severity of OSA is proposed. Apnea is defined by
breathing pause lasting more than 10 seconds explicitly. But the hypopnea has not
clear definition, estimated by ventilation reducing less than 50% or breathing cycle
lasting more than 6 seconds. In this chapter, AHI can be detected by computing
the times of apnea and hypopnea events from the segmented waveforms. And
the threshold values used to identify hypopnea is examined by comparing with
the monitoring results of blood oxygen saturation. Although the number of test
cases is small, the detected AHI value is close to the diagnostic result of PSG. The
proposed AHI detection can be said to be useful.

In chapter 4, Mel frequency spectrum is introduced from speech signal pro-
cessing to detect the snore and other abnormal breathing states. Mel frequency
spectrum converts the linear frequency spectrum to Mel frequency simulating the
acoustic character of human ear. It has high resolution in low frequency part and
rough resolution in the high frequency part. For each frame in time domain, the
Mel scale label is extracted to represent the maximum value of energy in Mel
frequency domain. Then the present times of each Mel scale label are computed
to display the frequency energy distribution. The normal breathing component,
abnormal breathing component and snoring component can be identified by the
fixed Mel scale label set. The whole night monitoring results of sleep breathing
sound signal are applied to validate the efficiency of the proposed algorithm. In
addition, the ratio of normal breathing and abnormal breathing is proposed as a
new index to evaluate sleep quality.

In chapter 5, the proposed breathing waveform segmentation method and Mel
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frequency spectrum analysis method are applied to identify normal and abnor-
mal heart sound. Heart sound signal is recorded by a portable acquisition system
including stethoscope, auscultation cloth and a smart phone or an IC-recorder.
The segmentation method proposed in chapter 2 is applied to segment the cardiac
cycles and systole/diastole with adjusted parameters. The efficiency of the seg-
mentation algorithm described in chapter 2 is confirmed again by 99% successful
rate for normal heart sound data and 95% for abnormal cases. Then Mel-scale
spectrum is calculated for the systolic and diastolic murmurs intervals to identify
the abnormal heart sound from a data set including normal case and congenital
heart disease case. Mel frequency spectrum analysis method introduced in chap-
ter 4 can be used for heart sound analysis compared with the clinical diagnostic
results. The application will be expanded to overnight heart state monitoring for
early detection of heart failure and other heart diseases in the future.

The conclusion is drawn and the future work is discussed in chapter 6.
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Chapter 1

Introduction

1.1 Background

Healthcare related issues become the hot spots of society around the world. Sleep
is indispensable to support human’s health as it spends one third of the life. It
is one of the most important factors for human’s health condition is sleep. Poor
sleep quality will affect peoples’ daily life seriously. There are some diseases
related with the poor sleep quality and threatens peoples’ lives, such as insomnia,
insomnia depression and sleep related breathing disorders. Specially, the sleep
related breathing disorders are easy to make people feel tired, which will affect the
normal life [1], yields adverse cardiovascular outcomes, even lead to death [2].

Obstructive sleep apnea (OSA) and central sleep apnea (CSA) are the typical
sleep related breathing disorders. CSA is caused by the brain’s area controlling
breathing functioned incorrectly. The upper airway is open. As shown in Fig.1.1,
the airway is blocked while breathing for OSA case. The soft palate is long and
flabby, the tongue is bigger and not very toned. They lead to the obstruction of
the airway and generate the OSA. The ventilation will be changed by the obstruc-
tion of airway. There are snoring, breathing pause and other labored breathing
recognized by the sleeping person and the person around.

OSA will lead to the complications of chronic disease, such as hypertension,
coronary heart disease and other cardiovascular diseases. More than a half of
OSA patients have complications which lead to a worse healthy condition [3].



Figure 1.1 Obstructive sleep apnea

OSA will also increase the risk of several diseases, such as diabetes, cerebral
stroke and Alzheimer’s disease [4]. Moreover, OSA will lead to the increasing
occurrence of traffic accidents because of the fatigue driving due to the drowsiness
and inattention caused by OSA [5]. And the probability of occurrence for OSA
patients is 2 7 times of normal people, increasing with the severity of OSA [6].

OSA will occur for different age groups and the morbidity is increasing in
recent twenty years [7]. More than 20% of adults are suffered from OSA with
different level. OSA morbidity of male is higher than that of female. Over 6% of
Children, mainly 2-5 years old, have OSA which will affect their growth greatly

[8].

But there is poor awareness of OSA for general population. Less than 25%
of OSA sufferers know that they suffer from OSA [52]. According to some in-
vestigations, more than a half of respondents think OSA will not affect their life
and is not necessary to take treatment. After recognized the harmfulness of OSA,
only 21.95% of respondents have taken the test and treatment. The expensive cost
takes about 40% of reasons for respondents to refuse the test and treatment [10].

In clinic, the polysomnography (PSG) is the golden standard for detecting the
sleep state. PSG can acquire a series of monitoring indices with lots of sensors.
It’s the only way to provide the Apnea Hypopnea Index (AHI) exactly to diag-
nose OSA. But PSG is not only expensive-cost but also complicated for common
patients [11]. Moreover, because the operation of PSG is uncomfortable for the
testers while sleeping, the results of PSG will be influenced by low-quantity sleep.
It is not suitable for daily monitoring at home to prevent the OSA and follow the
process after accepting the treatment. Hence a smart monitoring of OSA for home
healthcare is required.



The smart wearable is a new trend of the smart monitoring system [12-14].
The main function of the smart wearable system is to acquire the human vital signs
portably in real-time. There are wearable Electrocardiograph (ECG), electroen-
cephalograph (EEG), blood pressure, pulse, respiration, sleep, motion monitoring
and so on [15-18] for healthcare monitoring. They can satisfy the basic conditions
of better monitoring of real-time, long-term, dynamic physiological and patholog-
ical processes. The monitoring based on smart wearable could be expedient for
the management of chronic illnesses. And it can provide convenience for special
populations, such as the aged, pregnant women and children [19,20].

Obstruction will lead to the decreasing ventilation while inspiration and expi-
ration. The changes of ventilation can be reflected by breathing sound signal, such
as snoring, apnea, hypopnea and so on. AHI is defined by the number of apnea
and hypopnea events appearing in one hour during whole night sleep. An apnea
lasting more than 10 seconds will lead to lower oxygen supply to the brain [21].
Usually, the ventilation of hypopnea will reduce to less than 50% of ventilation
while normal breathing or cause the value of oxygen levels declining by more than
4%. They are very important to detect AHI value for OSA monitoring.

Various respiratory signals have been recorded by the smart wearable for sleep
breathing state monitoring, including the tracheal signals from throat [22] and
suprasternal notch [23], the breathing sound signals from the nose and mouth
[24,25] like shown in Fig.1.2. The mask would affect the normal sleep and the
breathing sound data mixed noise during the breathing pause at 1.5 minutes.

15
Time (minutes)

Figure 1.2 Acquisition system shown in reference [25].

In previous study, researcher worked hard on breathing frequency and feature
extraction of different breathing states. Researchers extracted respiratory rate(RR)
as the key indicator for monitoring sleep apnea [26], using Hilbert transform [27],
wavelet transform [22], genetic algorithm [23], the short-time Fourier transform,
Shannon entropy and autocorrelation [24]. The selection of the threshold value
for envelope extraction will change accompanied with the speed of breathing for



different individuals. So the adaption of the threshold values (the time scale pa-
rameters) will affect the accuracy of sleep RR detection.

Researches also focused on the snoring detection [28-31] to evaluate the level
of OSA, respiratory phase analysis [32,33] for apnea detection and other param-
eter extraction of breathing sound signal [25, 34].

Based on the results of previous studies and my experiments, it is found that
breathing sound segmentation and breathing state identification are two problems
in sleep breathing state monitoring. One problem is how to reduce the computa-
tional complexity of the analysis algorithms for the long-time data, that is the real
time capability. Another one is how to guarantee the accuracy of the detection re-
sults. Most of researches always focused on a short period of the breathing signal
and the accuracy of the analysis results is not sufficient for the healthcare. In my
study, a sleep monitoring system by breathing sound signal for OSA detection at
home will be proposed.

My study keeps the ventilation of oxygen and carbon dioxide while sleep in
mind. Considering the conditions of the sleep breathing state monitoring, a smart
wearable for acquisition of breathing sound signal from the nose and mouth is
applied in our study shown in chapter 2. A wireless microphone can record the
breathing sound signal by being fixed near the nose with a cosmetic tape. Then the
data can be transferred to a smartphone for storage via bluetooth. This wearable is
hardly affected by the sleep position which can make tester sleep well. Finally the
data will be transmitted to a computer and analyzed by software for detect OSA.
The analysis system will be introduced in chapter 2 to 4.

Abnormal ventilation while sleep breathing will cause the less support of
blood oxygen which will improve the high risk of cardiovascular diseases, such
as heart infarction, cerebral infarction, stroke and so on. So the heart monitoring
while sleep is necessary and helpful to prevent the heart diseases and evaluate
heart function state for daily healthcare.

In clinical, the common means of heart monitoring are ECG, color ultrasonic
cardiogram and auscultation [35-37]. ECG is a popular method to check up on
the wrong with cardiorespiratory function over decades. The ECG can observe
the heart function by heart rate and show the situation about ventricle and atria
to detect arrhythmia, ventricular atrial hypertrophy and so on. The accuracy of
ECG detection usually depends on the larger number of electrode slice. Although
ECG can be embedded in the smart wearables monitoring system, its examine re-
sult is not comprehensive on the structural integrity and function of heart valves



compared with phonocardiogram [36]. Color ultrasonic cardiogram uses the ultra-
sonic echo to show the details of the defect of heart and the blood flow distribution
can be displayed directly and noninvasively. But the accuracy of the huge instru-
ment relates with the development of machine and is rely on the operation of the
doctors [37].

Auscultation is the traditional means to diagnosis heart disease. Doctors de-
termine the heart disease by hearing the heart murmurs of heart signal by stetho-
scope [38]. The accuracy of auscultation is lower which is easy to be affected by
the surrounding noise and the posture of the subjects. Most important of all, it
needs lots of practices and experiences, even for doctors [39]. Considering the
need of daily monitoring and healthcare at home, the auscultation by heart sound
signal become a common useful way in the early stage.

Researchers have processed heart sound signal from the denoising [40], heart
feature extraction [41—43] and classification by machine learning [44,45]. Param-
eters is also vital for heart state monitoring by reflecting the condition of heart
function, abnormality of heart structure and so on.

Compared with breathing sound signal, heart sound signal has similar features
in time domain. The two basic physiological signals are quasi-periodic signals.
A cardiac cycle is made up of systole and diastole. One breathing cycle can be
divided into inspiration and expiration. So the proposed methods for breathing
sound analysis can be applied to analyze heart sound signal to monitor the abnor-
mal heart states.

The sleep breathing sound signal and heart sound signal are the subjects for
healthcare in my research. The study will be helpful to monitor the breathing

state and heart state during sleep. And the sleep monitoring system will be sup-
plemented and improved in the further for healthcare at home.

1.2 Overview

The research on ”Parameter extraction and analysis of cardiorespiratory sound for
sleep and heart state monitoring” is divided into 6 chapters in this dissertation.

Chapter 1 introduces the background and overview of this research.



Chapter 2 describes the sleep breathing waveform segmentation method. The
proposed method is based on the moment waveform. The time characteristic
waveform (TCW) is extracted firstly. Then the characteristic moment waveform
(CMW) is transformed from the TCW. Moreover, the enhance processing method
of amplitude contrast diminution is proposed to improve the segmentation accu-
racy. The breathing cycle is segmented by the local maximum value of CMW and
TCW. Respiratory phases of each breathing cycle are also segmented robustly for
further research.

Chapter 3 introduces the breathing state identification in time domain. Based
on the sleep breathing waveform segmentation, the abnormal breathing states are
defined and identified. The apnea and hypopnea can be identified by the time
duration of breathing cycle. Then the AHI has been detected based on the iden-
tification results. The pause time of apnea can be detected as a useful index to
monitor OSA severity. The efficiency of the sleep breathing state identification
has been validated compared with the monitoring results of blood oxygen level.
All night sleep data for OSA case and two young testers are used to detect AHI
value for daily monitoring.

Chapter 4 introduces the identification of sleep breathing states in frequency
domain. Mel frequency spectrum analysis method is applied to find the relation-
ship of frequency energy distribution and different sleep breathing states. The Mel
scale label is extracted and to identify the normal/abnormal breathing and snoring
states by the present times. The proportion of normal/abnormal sleep states dur-
ing the whole sleep is proposed as an important index to reflect the condition of
ventilation. It will be meaningful to analyze OSA and evaluate the sleep state.

Chapter 5 introduces the heart state monitoring. The proposed segmentation
method in chapter 2 and Mel frequency spectrum analysis method in chapter 4 are
applied to detect the abnormal heart states. The proposed segmentation method
is effective to segment the cardiac cycles and extract the intervals of heart mur-
murs. Mel frequency spectrum analysis is useful to identify the heart murmurs of
a congenital heart disease.

Conclusion and future work have been drawn in Chapter 6.



Chapter 2

Sleep breathing sound waveform
segmentation

2.1 Acquisition system of the sleep breathing sound
signal

With the development of the smart wearable, more researchers have interests
in sleep breathing state analysis by acoustic signals.The acoustic signals mainly
come from two aspects, breathing sound signal of nose and mouth, tracheal sig-
nals from throat and the suprasternal notch.

In our study, the sleep breathing sound signal is collected by a portable and
wearable acquisition device from nose and mouth. It includes a smart phone with
android system and a wireless microphone for high sleep quality. The purpose of
our research is to develop a cheap and easy use sleeping monitoring system for
home use, so that the commercial wireless headset (such as PTM 165) will be one
better choice for our research. Compared with the acquisition positions inferred,
the microphone is fixed near the nose by a kind of makeup tape to acquire a stable
breath signal during whole night sleeping. The environment of date acquisition is
shown in Fig.2.1. The original sample frequency is 44.1 kHz.

The test system for OSA detection is shown in Fig.2.2. The sleep breathing
data recored by the wireless headset is transmitted to a smart phone by bluetooth
and saved. Then the data is transmitted to a computer by USB or WIFI. The data



Smart phone

Microphone

Figure 2.1 Sleep respiratory signal acquisition system

will be analyzed by software. Here the sample frequency is 11025Hz by down-
sampling.

Computer (soltware)

Wireless headset

Data store and transmission
Figure 2.2 Test system for OSA detection

The real sleep breathing sound signal recorded by our system is shown in
Fig.2.3. (a) is one-night sleep breathing sound data. It lasts about 5 hours and
the intensity of breathing changes greatly. (b) is a part of stable normal breath-
ing sound data from the fifth hour and (c) i1s a part of complex breathing sound
data from the third hour. There are some obvious breathing pauses shown in (c),
they are related with the obstruction of airway. So we can detect the abnormal
breathing state for OSA by recorded breathing sound signal.

Five young students (Twenties) and a OSA patient (Fifties) are selected as
testers. Utilizing the acquisition system of sleeping breathing sound signal, about
374-minute length data is recorded and the breathing cycles are counted manually
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Figure 2.3 The sleep breathing sound data recorded by the test system

with the guidance of the pro-doctor for the reference. The information of the
experimental data is listed in Table 1 and the OSA case is No.6.

Table 2.1 Experimental data.

Case No. 1 2 3 4 5 6 | Total
Test Time (min) 57 | 62 85 50 | 60 | 60 | 374
Test Cycle Number | 890 | 891 | 1177 | 702 | 678 | 663 | 5001

2.2 Sleep breathing sound signal and its segmenta-
tion

In my study, we want to detect AHI value for OSA monitor by identify the events
of apnea and hypopnea. So the segmentation of breathing cycle is the basic of fur-
ther analysis. It can not only provide the monitoring parameters, including sleep

respiratory rate and breathing phases, but also be useful for analyzing breathing
intensity, breathing vibration in details.

For breathing cycle segmentation, the envelop extraction with a threshold is
a common measure. Hilbert transform and Shannon entropy are usually used for
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waveform extraction [22, 46, 47]. According to the features of the biomedical
signals, single degree of freedom model(SDOF) [47], homomorphic filter [48]
and other means are also applied for extracting waveform.

0 10 20 30 40 50 60

Figure 2.4 Breathing sound signal segmentation via envelop extraction and threshold
value (case 1)

There are three parts of sleep breathing sound signal selected from one tester.
The SDOF model envelop is extracted as an example to segment the breathing
sound signal with a threshold value. In the case shown in Fig.2.4, the intensity of
inspiration and expiration are similar of each breathing cycle. The threshold value
of Shannon envelope is set as 0.05 and for SDOF model envelope is 0.1. With the
help of threshold value, 13 breathing cycles can be segmented successfully.

As shown in Fig.2.5, the intensity of inspiration is much stronger than that of
expiration, the threshold value should be adjusted to 0.2. The red cycle represents
a breathing cycle with an abnormal inspiration which leads the segmented mistake
by two kinds of envelope extraction.

For the case 3, the intensity and period of each breathing cycle around hypop-
nea are unstable shown in Fig.2.6. Hence the threshold value can not be selected
easily and the breathing cycles can not be segmented successfully.
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igure 2.5 Breathing sound signal segmentation via envelop extraction and
value (case 2)

As shown in above cases, there are lager vibration of breathing intensity and
respiratory rate during whole night sleep breathing monitoring. It is very difficult
to segment the breathing cycles correctly only based on common envelop extrac-
tion with a suitable threshold value. To accomplish sleep state monitoring, a sleep
breathing segmentation method with high accuracy and adaptation is necessary.
The computation speed should also be considered for such a long-time monitor-
ing.
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Figure 2.6 Breathing sound signal segmentation via envelop extraction and threshold
value (case 3)

2.3 Sleep breathing cycle segmentation via moment
waveform algorithm

2.3.1 Theory of the moment waveform algorithm

Waveform extraction is always applied at the beginning of the signal processing in
time domain. The waveform should keep the useful information of sleep breath-
ing sound signal as much as possible and make the impaction of noise as less as
possible. In this thesis, time characteristic waveform (TCW) is extracted first with
multi-scale adjustment. And then the characteristic moment waveform (CMW) is
proposed for sleep breathing sound segmentation based on TCW.

The precondition is assuming the noise part of the sleep breathing sound signal
as a signal with zero-mean and unit variance. Suppose the sleep breathing sound
signal is r(¢), the random noise signal is n(t), and the real output signal is y(¢) =
r(t) + n(t). TCW of sleep breathing sound signal, denoted by c(¢, ¢), defined as the
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variance of the output y(¢) can be gotten by

1+0 1+0
c(t,6) = f (1) = 3(1)*dt = f y(r)’dr — 26%(t) (2.1)
=0 t—0
1 t+0
V(1) = % ft: , y(1)dT. 2.2)

Then the CMW is calculated by the thought of image shape identification in
image processing with another time scale /, which is represented by I(¢, 6, [). It is
calculated according to Eq.2.3.

1+
1(t,6,]) = f (t — 1)’c(t, 6)dr, (2.3)
t—I

And the normalization presentation is presented as

A Zl (1 = t)%c(r,6)dr
ft 0 c(t,0)dr

-0

n(t,o,1) =

2.4)

where ¢ and [ are neighborhood of time ¢, which is called width time scale.

2.3.2 Advantage of the moment waveform algorithm

It is easy to find that the calculated amount will increase with larger time scale 6
and /. The integral waveforms are applied to compute the TCW and CMW. The
calculations of TCW and CMW are independent with the time scale parameters.
And the calculated amount is small by fast algorithm, just using additions and
multiplications [49].

For a discrete signal with length N, the computations of TCW and CMW only
need 8N and 15N additions and multiplications respectively. The proposed mo-
ment waveform method had been compared with the wavelet method which is
the one of the most popular method in signal segmentation. According to the ex-
perimental results, the computational complexity of discrete wavelet transform is
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206 N, and that of the proposed method is 23N. And the segmentation success
rate of the discrete wavelet transform method is 72% to 93% and that of the pro-
posed method is 100% [49]. And the operation time for analyzing one-hour sleep
breathing sound data via MATLAB software is less than 24 seconds. It has great
potential in developing real time health monitoring system.

According to our experimental statistic, a normal sleep breathing cycle is
about 3 to 5 seconds and the time inspiration/expiration phase duration with a
range of (0.3, 1) seconds. So the scale [ is usually set to (1.5, 3), about half of
sleep breathing cycle. The time scale ¢ is set as 0.1, about 1/10 of the phase
duration.

2.3.3 Sleep breathing cycle segmentation method based on TCW
and CMW

After choosing the suitable time scales, TCW and CMW are extracted according
to Egs.2.1 to 2.4 and the sleep RR index can be detected as following steps.

Step 1. Calculate the local minimum point sequence of CMW;

Step 2. Calculate the local minimum point sequence of TCW by a computation
window with central point as the local minimum point of CMW shown in the
middle plants of Fig.2.7;

Step 3. Find local maximum point sequence of CMW,

Step 4. Adjust the cycle segment points of CMW by the help of the local
minimum point sequence of TCW. The segment points shown in the bottom of
Fig.2.7;

Step 5. Combine the breathing pause mistaken as a separated cycle by a thresh-
old value. If the average amplitude of the cycle is smaller than the average ampli-
tude of one-hour data, it will be combined with the shorter adjacent cycle.

Step 6. Compute the time duration of each breathing cycle by cycle segmented
points. Respiratory rate value can be acquired by counting the number of the cycle
segment point per minute as well .
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Figure 2.7 Results of breath cycle segmentation of an apnea case

An apnea case are taken for examples to show the efficiency of the cycle seg-
mentation. The breathing cycles are segmented correctly based on the TCW and
CMW displayed by the gray dashed line as shown from Fig.2.7. The CMW shows
the breathing period clearly which is essential to segment the cycles accurately.
The proposed method shows outstanding stability and accuracy for the complex
breathing sound signal analysis.

The segmentation results of case 1 to 3 are shown in Fig.2.8 to 2.10. Whatever
for the normal stable breathing or the abnormal breathing, the breathing cycles
can be segmented correctly.

The accuracy of the segmentation is represented by successful rate defined by
Eq.2.5.

N, Detection

Successful rate(%) = ——— (2.5)

Reference

where Npeieciion 18 the correctly segmented number by proposed method, Nge ference
is the number counted manually as the reference value.
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Figure 2.8 Results of breath cycle segmentation of case 1

Table 2.2 Segmentation results of respiratory cycle segmentation

Case No. | Correctly segmented | Successful Rate (%)
Cycle Number
1 849 95.39
2 851 95.51
3 1156 98.22
4 683 97.29
5 667 98.38
6 617 93.06
Total 4823 96.44

For the Table2.2, the accuracy of the proposed segmentation method can reach

to 98%. It shows the efficiency compared with common measures.
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Figure 2.9 Results of breath cycle segmentation of case 2

2.3.4 Preprocessing for amplitude contrast diminution

In fact, the intensity of sleep breathing sound signal will change greatly and impact
the efficiency of the proposed sleep breathing waveform segmentation. The weak
breathing sound will be covered by the heavy breathing and surrounding noise
as shown in Fig2.11. Therefore, the amplitude contrast of different breathing
cycle should be decreased at first. The enhanced preprocessing method is first
introduced in detail as follows.

The entropy of the original signal H(¥) is defined by

H(1) = E[y(®)] = =§y(®) - Iny(1) (2.6)
&=-10(0>0)
§=00(n)=0) 2.7
&=1(n<0)

Then decrease the volume and intensity difference by cutting off the strong
intensity part, the output signal is
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Figure 2.10 Results of breath cycle segmentation of case 3

Heu(t) = a-H(t) £ b - av (|H(®)|>av)
{ Heu(t) = c- HQ@®) (|H(1)|<av) (2.8)

where av is the mean value of the H(¢), a and b are weaken factors and c is
the enhancement factor. According to the experimental results by try and error,
a is selected as 0.4, b is 0.6 when H(¢) is positive, and -0.6 when H(¢) is nega-
tive, ¢ is set as 1.5 to enhance the amplitude of weak breathing cycle. The final
preprocessed signal is given by

yenhance(t) = cht(t) : (1 - l) +1- cht(t)zo’ (29)

where [ set as 0.85 experimentally is the limiting amplitude factor.

A section of sleeping breathing sound signal with large intensity variation is
shown in Fig.2.12(a). Compared with the cycles in the both end, the amplitude of
three breathing cycles in the middle is too small to be detected. And after a series
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Figure 2.11 Sleep breathing sound signal waveforms with changing intensity and noise

of processing shown in Fig.2.12(b, ¢), it is clear found that the amplitude contrast
of each breathing cycle has been shrunk as shown in Fig.2.12(d). It will improve
the accuracy of breathing cycle segmentation.

Through the enhanced processing, the intensity difference between strong and
weak breathing sound signals becomes smaller. The cycle segmentation results
after the enhanced processing are displayed in Fig.2.13. As shown in Fig.2.11,
the noise from mouth movement affects the cycle segmentation, i.e. a wrong
cycle is segmented between the second and third breathing cycles. After enhanced
processing. As shown in Fig.2.13, the moment waveform become smoother and
has more obvious periodicity. The four breathing cycles are segmented correctly.

Through a series of processing introduced above, the intensity difference be-
tween strong and weak respiratory signals becomes small and its efficiency is
validated. The results of breathing cycle segmentation before and after applying
the enhanced preprocessing method are summarized in Table 2.2.

Without preprocessing, the scale parameter [ are selected as 2, 2.5, 3,seconds
for test cases. While applying the enhanced preprocessing method, the scale pa-
rameters (6, ) is set as (0.1, 2.5) for all cases.
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Figure 2.12 Sleep breathing sound signal waveforms, original signal waveform (a) and

the procedure of the preprocessing (b) to (d).

Table 2.3 Respiratory cycle segmentation with the enhanced preprocessing method

Without preprocessing | With preprocessing

Case | Cycle Successful Cycle | Successful

No. | Number Rate (%) Number | Rate (%)
1 849 95.39 872 97.98
2 851 95.51 865 97.08
3 1156 98.22 1172 99.58
4 683 97.29 694 98.86
5 667 98.38 672 99.12
6 617 93.06 646 97.44
Total | 4823 96.44 4921 98.40

From Table 2.3, it can be found that the method without preprocessing can

detect the breathing cycle with at least 93.06% of successful rate. And the av-
erage successful rate is improved to 98.40% by the same predicted time scale
parameters for different cases when applying the enhanced preprocessing method.
Especially, the successful rate of OSA case can reach to 97.44%, which satisfies
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Figure 2.13 The cycle segmentation results after the enhanced processing

the experimental requirement of sleep breathing sound segmentation in this stage.
Therefore, the use of the proposed enhanced preprocessing method shows more
adaptability and veracity.

2.4 Inspiration and expiration segmentation

Monitoring the sleep breathing involves the detection of respiratory phases. A
breathing cycle is constructed by four phases: inhalation, inspiratory pause, exha-
lation and expiratory pause [5S0]. The breathing cycle is defined here as starting
with the onset of inspiration at the moment when air inflow starts. When the
airflow stops, the inspiratory phase ends. Then the inspiratory pause begins and
lasts until air begins to flow out from the lungs. Next, the expiratory phase starts.
The expiratory phase is followed by the expiratory pause, which lasts until the
end of the breathing cycle [51]. Researchers have done the analysis of respira-
tory sounds in the time or frequency domain or time-frequency domain to detect
the breath phases. Fast Fourier Transform (FFT)-based summation method was
proposed and sufficient evidence regarding the use of spectral changes for de-
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tecting breath phases is provided [52]. The averaged normalized power spectral
density was used to develop a fuzzy model for the detection of breath phases with
accuracy of 98% [53]. An adaptive Neuro-Fuzzy inference model based on nor-
malized average power spectral density was proposed with small root mean square
error [54].

In our study, the procedure of inspiration and expiration segmentation based
on moment waveform is shown as following steps.

Step 1. Processing of amplitude contrast diminution.
Step 2. Extraction of TCW and CMW.

Step 3. Calculate the local minimum point sequence of TCW as the segmented
points from inspiration to expiration, the position saved as the Cjigq.(i). i is the
number of the segmented points of the inspiration and expiration phases .

Step 4. Calculate the local maximum point sequence of CMW as the seg-
mented points from expiration to inspiration,the position saved as the Cgoungary(J)-
Jj 1s the number of points of the cycle boundary.

Finally, segmentation of inspiration and expiration are shown in Fig.2.14. The
time durations of inspiration and expiration are represented in Fig.2.14.

-« >
[nspiration

Time(s)
Figure 2.14 Inspiration and expiration segmentation

Segmentation results of case 1 to 3 are shown in Figs.2.15,2.16 and 2.17. Al-
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though there are some deviation, most of breathing cycles can be separated into
inspiration and expiration.

Time(s)
Figure 2.15 Inspiration and expiration segmentation for case 1

The sleep breathing sound data from six cases are applied to segment the in-
spiration and expiration by the proposed method. The results are shown in Table
2.4.

Table 2.4 Detection results of respiratory phases segmentation

Case | Total Breathing | Successful segmented inspiration | Successful
No. | Cycle Number and expiration Number Rate (%)
1 890 860 96.63
2 891 855 95.96
3 1177 1160 98.56
4 702 685 97.58
5 678 663 97.79
6 663 641 96.68

As the results listed in Table 2.4, the successful rate of the proposed detection
method can reach to 98.56%. For OSA case, 96.68% of breathing cycles can be
segmented into inspiration and expiration correctly. The proposed method can
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Figure 2.16 Inspiration and expiration segmentation for case 2

Figure 2.17 Inspiration and expiration segmentation for case 3
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been validated to be effective for detection of respiratory phases, and it is the base
of the continuous study.

2.5 Conclusion

Breathing cycle segmentation is the base of the further analysis for sleep state
monitoring. In considering of the complexity of the breathing states during one
night, a breathing waveform segmentation method is proposed in this chapter.
Firstly,the enhanced preprocessing is applied to reduce the amplitude contrast
diminution. Then the waveforms of TCW and CMW are extracted. With find-
ing the local extreme points, the breathing cycle and inspiration/expiration can
be segmented successfully. Moreover, the time duration of segmented breathing
cycles can be acquired for continuous study.

The proposed sleep breathing waveform segmentation method has high accu-
racy, the average successful rate is 98.4% for breathing cycle segmentation and
96.68% for inspiration and expiration segmentation. At the same time, the pa-
rameter selection of the proposed method has high adaption for different testers
as well as one tester in different monitoring time. It is a very useful automatic
segmentation. And the high computation speed of the proposed method is helpful
for whole night monitoring.



Chapter 3

Breathing state identification in
time-domain and AHI detection

3.1 Sleep breathing state monitoring with breathing
cycles

Sleep breathing sound signal is generated by the movement of air through the
respiratory system, nose and mouth. It is always affected by tester’s healthy con-
dition, mental state, sleeping environment and so on. Breathing-related sleep dis-
orders are characterized by abnormalities of respiratory pattern or the quantity of
ventilation during sleep [53]. It is considered as chronic illnesses which needs
long-term treatment and management. Obstructive sleep apnea (OSA) is a kind
of major breathing-related sleep disorders. OSA is described by full or partial
occlusion of the upper airway during sleep which can produce decreased oxyhe-
moglobin desaturations and sleep fragmentation [51,54].

The Apnea-Hypopnea Index (AHI) is described by the number of apnea and
hypopnea events per hour to assess OSA severity. It is an key indicator for OSA
monitoring. An apnea is commonly defined by a minimum of 10s interval pause
of breath. The hypopnea is overly shallow breathing or an abnormally low respi-
ratory rate, lower than 9 times/min [55]. Usually, the ventilation of hypopnea will
reduce to less than 50%of ventilation while normal breathing or cause the value
of oxygen levels declining by more than 4%. The value of AHI can eluate the
severity of OSA. AHI of 5-15 indicates mild, 15-30 indicates moderate and over

26
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30 indicates severe OSA [56].

In our previous study shown in Fig.3.1, the breathing cycle time can be de-
tected by the first peak of the frequency spectrum of 10-second breathing sound
signal. It is useful for the stable sleep breathing state.

f = 0.30491[Hz)

Fragusncy [Hz]
Figure 3.1 sleep breathing state monitoring

Whatever apnea and hypopnea, the blood oxygen level will decline by decreas-
ing ventilation. Here the monitoring result of blood oxygen level is displayed and
compared with the monitoring results of breathing cycles. The blood oxygen level
(Sp0O2) is tested by a tabletop Pulse Oximeter shown in Fig.3.2.

Here one hour monitoring is shown by breathing cycle time and oxygen satu-
ration(SpO2). In Fig.3.3. (a) is the breathing cycle time calculated by frequency
spectrum. (b) is the results based on sleep breathing waveform segmentation in-
troduced in chapter 2. The data of SpO2 is shown in the plot(c). According to the
report of SpO2, the median value is 94%. Hence, the data lower than 90% mean
abnormal breathing ventilation.

It is easy to find that the sleep breathing waveform segmentation can get the
exacter time duration of each breathing cycle from Fig.3.3. From 300s to 900s,
there are several apnea and hypopnea based on the results shown in Fig.3.3(b).
The SpO2 data also display the abnormal state. Fig.3.3(b) can not show the apnea
and hypopnea part clearly. From 2700s, the breathing state become stable, (a) and
(b) show the similar monitoring results.
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Figure 3.2 Blood oxygen level tested by a tabletop Pulse Oximeter
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Figure 3.3 sleep breathing state monitoring
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The efficiency of the proposed segmentation method is validated again by
above case. Based on the segmentation results, the abnormal breathing state will
be described in detail.

3.2 Definition of normal and abnormal breathing pat-
terns

Abnormal breathing section can be reflected by changing respiratory rate, respi-
ratory phase, respiratory intensity and so on. According to the definition of apnea
and hypopnea in clinic, the normal and abnormal breathing patterns are defined in
this section. Based on the segmentation results of chapter 2, the breathing patterns
are described by the time durations of breathing cycles and expiration.

Tie(s)
Figure 3.4 Examples of normal breathing pattern.(Pattern No.1)

Two examples of pattern No.1 is shown in Fig.3.4. The signal in the fist plot
has similar intensity for both inspiration and expiration. The expiration of the
signal in the second plot has much stronger intensity compared with inspiration.
Although there is the intensity difference between the inspiration and expiration,
the breathing period of two examples is stable. Moreover, the amplitudes of each
cycle is similar.

The breathing signal with stable respiratory rate, respiratory intensity and clear
respiratory phase belongs to pattern No.1, i.e. the normal breathing pattern.
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Figure 3.5 An example of hypopnea pattern.(Pattern No.2)

Fig.3.5 shows the pattern 2, hypopnea pattern. In the first plot, there is a obvi-
ous hypopnea cycle with breathing pause near 10 seconds. As shown in the bottom
plot, there are eight breathing cycles which belongs to abnormal breathing while
the respiratory rate is lower than 9 times/s according to the reference. The respi-
ratory rate and intensity changes greatly. Based on the inspiration and expiration
segmentation results, the abnormal expiratory pauses can be found. The expirta-
tory pause of some breathing cycles lasts much longer than the stable breathing
(pattern No.1).

A stable normal breathing cycles will last about 5s for the normal breathing
pattern shown in Fig.3.4.

Commonly, the inspiration and expiration last 1 ~ 1.5s, the inspiration pause
lasts about 0.2s. If the stable breathing cycle last about 5s, the expiration pause
will last about 36 ~ 56% of one cycle time. The expiratory pause of pattern No.2
can reach to about 8s which is more than two times of expiratory pause while
breathing normally. Hence the pattern No.2 can be defined by the expiratory pause
which is more than two times of normal expiratory pause and less than 10 seconds,
that is hypopnea. The hypopnea could be estimated by the threshold of more than
1.2 times of the normal breathing cycle.

In addition, respiratory rate less than 9 times/min means hypopnea, so the
average time duration of hypopnea event will be 6.66 seconds.

Pattern 3 is apnea pattern as shown in Fig.3.6. Apnea pattern is defined by
more than 10-second breathing pause. So the apnea will last 10 seconds plus the



31

time duration of a stable breathing cycle at least.

Figure 3.6 An example of apnea pattern.(Pattern No.3)

3.3 AHI detection for sleep state monitoring

3.3.1 Apnea detection based on breathing cycle segmentation

The time duration of breathing cycle can be calculated by the breathing cycle
segmentation method. The changing trend of breathing cycles during one night for
the OSA case is shown in the bottom plot of Fig3.7. The x axis is the monitoring
time, about 5 hours. The y axis is the time duration of each segmented breathing

cycle. The time duration values of each segmented breathing cycle is denoted by
dd(i).

In the top, the waveform of original breathing data is displayed. Y-axis is the
amplitude of breathing. It shows the huge vibration of intensity during the whole
night.

It can be found that the normal and stable breathing cycle last about 5 seconds.
The longest apnea is more than 30 seconds. As refereed above, threshold value of
apnea identification is set as dd.p. + 10. In this case, the threshold value is used
as 15s to monitor the apnea. Eight apnea cycles have been identified in the third
hour denoted by as A; .

The changing trend of sleep respiratory rate counted by segmented cycles per
minute is shown in Fig.3.8. The RRj, is 12 times/min by observing. While
the RR is less than 10 times/min, that means there is a breathing pause lasting
more than 10s. Based on the the threshold value, 7 abnormal values are detected.
Respiratory rate represents the average value in one minute. Because the exact
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Figure 3.7 Time duration values of each segmented breath cycle during whole night

breathing cycle duration is required for AHI detection, using respiratory rate can
not detect all of the apnea cycles.

0 50 100 150 200 250 300
Time(minute)

Figure 3.8 Monitoring of Sleep respiratory rate during whole night

Here the monitoring result of SpO2 is displayed in the first plot of Fig.3.9.
It is used to compare with the monitoring results of our proposed identification
method shown in the second plot. According to the report of SpO2 detection, the
median value of SpO2 during whole night monitoring is 94 %. So the threshold
value reflecting abnormal breathing is set as 90%, reducing more than 4% of the
normal state.
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Figure 3.9 AHI detection compared with the SpO2 monitoring

Fig.3.10 displays the details of the comparison while the SpO2 changes greatly
and drops down to less than 90%. From 7500 to 8200s, there are eight apnea
events detected as shown in Fig.3.10. The value of SpO2 decreases in the same
time. The SpO2 decreases to less than 80% of normal state showing the severe
oxygen deficiency. The monitoring result of the proposed method is accord with
the results of SpO2.

From 2500 to 3000 seconds, there are lots of larger values detected by the
proposed method. The value of SpO2 decreases less than 85% around 3100s.

Around 13300s and 14700s, there are lots of larger values detected by the
proposed method and the values of SpO2 are below the threshold value in the
same time.

The obstruction of airway generates apnea and hypopnea events, leading to
the less support of oxygen. The phenomenon can be reflected by the decreased
value of SpO2. The efficiency of the proposed identification of apnea has been
validated. It has potential to identify the hypopnea events by the time duration of
breathing cycles.
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Figure 3.10 Details of AHI detection compared with the SpO2 monitoring

3.3.2 Hypopnea detection based on breathing cycle time

As the definition of hypopnea, the time duration of hypopnea cycle will last more
than 1.2 times of stable breathing cycle time. For the OSA case, three threshold
values are set as 6s, 6.5s and 7s respectively.

The hypopnea detection results during the whole night are shown from Fig.3.11.
Thv is the threshold value. The beginning and ending of the sleep belonging to
the wakefulness state would not be necessary to analyze.

Fig.3.12 displays parts of hypopnea events identified by Thv=7s. The ex-
piration pause of hypopnea can reach to about 9 seconds. They are the typical
hypopnea events.

According to the detection results while threshold value set as 6s, some de-
tected parts are shown from Figs.3.13 and 3.14. Although there is not obvious
long expiration pause compared with typical hypopnea, the detected parts shows
unstable periodicity and changing breathing intensity. Moreover the noise caused
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Figure 3.11 Hypopnea detection of OSA case during the first night

Fie 3.12 Hypopnea events detected by Thv=T7s
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by mouth movement can be found which affects the breathing frequency. The
breathing cycles with length near the boundary of the hypopnea definition should
be payed much more attention. It will be very important for OSA analysis.

Figure 3.13 Hypopnea events detected by Thv=6s

Amplitude

I'ime(s)

\mplitude

[ime(s)

Amplitude

lime(s)

Figure 3.14 Hypopnea events detected by Thv=6s

The detection results by different threshold value can be found in Table3.1.



37

AHI is the number of apnea and hypopnea in one hour. In that night, the AHI
is 13.6 times/hour while Thv=6s, 6.6 times/hour while Thv=6.5s, 4.4 times/hour
while Thv=7s.

Table 3.1 AHI detection result of OSA case for one night monitoring

Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=T7s)
1 0 28 14 8 28 14 8
2 0 13 3 0 13 3 0
3 8 11 5 5 19 13 13
4 0 6 1 6 1
5 0 2 1 0 2 1 0
Total 8 60 25 14 68 33 22

Checking up the detected cycles, we can find that the typical hypopnea cycles
can be identified correctly while Thv=7s. When Thv=6s, the critical states can be
detected and should be discussed deeply in the future.

3.3.3 Time duration extraction of breathing pause for apnea

As the results shown in Fig.3.15, since each segmented part contains a breathing
signal, the breathing pause can be located by the maximum of the local extremum
points in the apnea cycle marked by the blue circle in the CMW. The details are
shown in following steps.

Step 1. Detect the apnea cycle.

Step 2. Find the maximum point in the interval of CMW for the apnea cycle,
denoted by S ,uuse-

Step 3. Calculate the time duration between the S .. and the boundary points
of this apnea cycle, written as Ty, r, and T

Step 4. Compare the values of 7., and T';4,,. The longer one is the breathing
pause time of the apnea.

As introduced in above steps, the time duration of breathing pause for each
apnea can be computed by the segment points of apnea shown in the figure. In a
simple way, the apnea pause time can be calculated by dd(i) — ddpe-
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Figure 3.15 Extraction of time duration index for apnea

Figs.3.16,3.17 show the pause time calculation results at apnea event points
Al to A8 of Fig.3.7. The pause time durations of Al to A8 are 15.33s, 13.2s,
16.8s, 24.32s, 12.1s, 22.67s, 22.7s and 17.8s respectively.

Long breathing pause lasting will lead to less oxygen support to heart and
brain. It will cause increasing risk of heart infarction, cerebral infarction, stroke
and so on. The breathing pause time of apnea will have potential to evaluate the
obstruction level of airway to monitor OSA deeply.

3.3.4 More validation for AHI detection

Another three all night data from the OSA case and two night data from two young
testers are applied to validate the AHI detection method based on time duration of
breathing cycles.
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Figure 3.16 Sleep breathing sound signal waveforms with apnea events, A1-A6



Figure 3.17 Sleep breathing sound signal waveforms with apnea events, A7-A8
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Firstly, three all night monitoring results of OSA case are shown in Fig.3.18to
3.23. The threshold value of apnea detection is set as 15 seconds. In the same

way, three threshold values are set as 6s, 6.5s and 7s for hypopnea detection.

Table 3.2 AHI detection result of OSA case for the second night monitoring

Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=7s)
1 6 17 8 5 23 14 11
2 1 17 9 5 18 10 6
3 3 13 10 6 16 13 9
4 0 13 7 4 13 7 4
5 1 17 7 4 18 8 4
Total 11 77 41 24 88 52 35

The average value of AHI is 17.6 times/hour while Thv=6s, 10.4 times/hour
while Thv=6.5s, 7 times/hour while Thv=7s.

According to the AHI detection in Tab.3.2, there are 11 apnea events. The
apnea events monitored by threshold value are displayed orderly in Figs.3.20,
3.19. In each plot, X-axis is the time, Y-axis is the amplitude. The time durations
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Figure 3.18 AHI monitoring for OSA during the second night
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Figure 3.19 Apnea events for OSA during the second night (part 1)
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Figure 3.20 Apnea events for OSA during the second night (part 2)
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of breathing pause for each apnea are calculated and shown in these figures. The
longest breathing pause lasts near half a minute appearing in the first hour of sleep.

The monitoring result of SpO2 is shown in the bottom ofFig.3.18. The median
value of SpO2 is 93%, so the value less than 89% represents the apnea and hy-
popnea. Compared with the SpO2, the location of the hypopnea and apnea events
detected by the proposed method is reliable.

Amplitude

Time(s)

Time(s)

Time(s)

x10

Figure 3.21 AHI monitoring for OSA during the third night

According to the Tab.3.3, the average value of AHI is 11.8 times/hour while
Thv=6s, 7.0 times/hour while Thv=6.5s, 4.8 times/hour while Thv=7s.

The apnea events are shown in Fig.3.22. There are three apnea events detected
in the sixth hour of sleep. The longest breathing pause of apnea lasts about 15s.

The monitoring result of SpO2 is shown in the bottom ofFig.3.21. The median
value of SpO2 is 94%, so the value less than 90% represents the apnea and hypop-
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Figure 3.22 Apnea events for OSA during the third night

Table 3.3 AHI detection result of OSA case for the third night monitoring
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Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=T7s)

1 0 5 2 2 5 2 2

2 0 11 2 0 11 2 0

3 0 13 11 7 13 11 7

4 0 13 11 7 12 11 7

5 0 3 2 2 3 2 2

6 3 23 11 8 25 14 11
Total 3 68 39 26 71 42 29
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nea. The detection results of hypopnea and apnea matches with the monitoring of

Sp0O2

Amplitude

80

Time(s)

0.36

0.72

108

Time(s)

1.44

Figure 3.23 AHI monitoring for OSA during the fourth night

Table 3.4 AHI detection result of OSA case for the fourth night monitoring

Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=T7s)

1 3 15 7 4 18 10 7

2 0 20 11 5 20 11 5

3 0 22 11 9 22 11 9

4 0 14 12 9 14 12 9

5 0 14 12 9 14 12 9

6 5 9 3 2 14 8 7
Total 8 94 56 38 102 64 46

According to the Tab.3.4, the average value of AHI is 17 times/hour while
Thv=6s, 10.7 times/hour while Thv=6.5s, 7.7 times/hour while Thv=7s.




Figure 3.24 Apnea events for OSA during the fourth night
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The apnea events detected are shown in Figs.3.24. There are eight apea events

during the whole night. The longest time duration of breathing pause is more than
25s.

The monitoring result of SpO2 is shown in the bottom of Fig.3.23. The median
value of SpO2 is 94%, so the threshold value is set as 90% to represent the apnea

and hypopnea. The detection results of hypopnea and apnea is accord with the
monitoring of SpO2.

In the same way, the time duration values dd(i) of each breathing cycle for
a young test A is shown in Fig.3.25. The stable breathing cycle lasts about 4
seconds. So the threshold value of apnea detection is set as 14 seconds. Three
threshold values are also set as 6s, 6.5s and 7s for hypopnea detection.

Time(s)

T
‘;:BOL

x10*

1.44
Time(s)

|
0.36 0.72 1.08 1.44 1.8 2.16 2.52,
Time(s)

Figure 3.25 AHI monitoring for a young tester A

According to the Tab.3.5, the average value of AHI is 2.5 times/hour while

Thv=6s, 1.9 times/hour while Thv=6.5s, 1.5 times/hour while Thv=7s. The tester
A can be identified as normal case.

The apnea events detected are shown in Figs.3.26. There are five apnea events

during the whole night. The longest time duration of breathing pause is more than
20s.
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Figure 3.26 Apnea events detected for a young tester A
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Table 3.5 AHI detection result of the young tester A during whole night monitoring

Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=7s)
1 0 0 0 0 0 0 0
2 2 1 0 0 3 2 2
3 0 2 2 2 2 2 2
4 0 4 2 0 4 2 0
5 0 1 1 1 1 1 1
6 1 1 1 1 2 2 2
7 1 2 1 1 3 2 2
8 1 4 3 2 5 3 3
Total 5 15 10 7 20 15 12

-

| 0 0.36 0.72 1.08 1.44 1.8

Time(s) %10

Time(s) x10*

Figure 3.27 AHI monitoring for a young tester B
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For another young tester B, the time duration values of each breathing cycle
is shown in Fig.3.27. The stable breathing cycle lasts about 5 seconds. So the
threshold value of apnea detection is set as 15 seconds. Three threshold values are
set as 6s, 6.5s and 7s for hypopnea detection.

According to the Tab.3.5, the average value of AHI is 35.5 times/hour while
Thv=6s, 19.2 times/hour while Thv=6.5s, 11.2 times/hour while Thv=7s. The
longest breathing pause reaches to 48s. The tester A can be identified as moderate
or severe OSA.

Table 3.6 AHI detection result of the young tester B during whole night monitoring

Hour | Apnea | Hypopnea | Hypopnea | Hypopnea AHI AHI AHI
No. (Thv=6s) | (Thv=6.5s) | (Thv=7s) | (Thv=6s) | (Thv=6.5s) | (Thv=T7s)

1 0 33 26 10 33 26 10

2 1 20 4 1 21 5 2

3 6 34 16 9 40 22 15

4 2 53 26 14 55 28 16

5 9 33 17 13 42 26 22

6 1 21 7 1 22 8 2
Total 19 194 96 48 213 115 67

Tester B is a 21-year old student. Although he is young, there are many apnea
and hypopnea events during sleep. It will affect the health condition if it continues
during a long time. Hence, the sleep monitoring is necessary for daily healthcare
not only for the aging but also for common adults.

3.4 Conclusion

AHI is the key indicator to diagnose and evaluate OSA. To acquire the AHI,
the apnea and hypopnea are defined by the time duration of breathing cycle and
breathing phase. According to the definition, the time duration of each breath-
ing cycle can provide exact results for apnea identification. For identification of
hypopnea, the results are depend on the threshold value. And the pause time of
apnea can also be calculated based on TCW and CMW. It has potential to evaluate
the condition of apnea will be studied deeply in future.

The sleep breathing monitoring for OSA case during four nights and two
young testers during one night separately are applied to validate the efficiency
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Figure 3.28 Apnea events of tester B (part 1)
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Figure 3.29 Apnea events of tester B (part 2)
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of the proposed detection method. Compared with the monitoring results of blood
oxygen saturation, the efficiency of the proposed detection method can be vali-
dated. The detected AHI value can be provided as a useful reference for individual
healthcare and OSA monitoring.



Chapter 4

Breathing state identification by Mel
cepstrum analysis

4.1 Abnormal breathing states related to OSA

With the help of time-domain parameter, the apnea can be detected correctly. For
parts of hypopnea events, snore as shown in Fig.4.1 and other abnormal breathing
signals as shown in Fig.4.2 which are meaningful for OSA monitoring can not be
identified in time domain. The blue boxes show the breathing with noise caused
by movement of nose and mouth. The orange boxes show the labored breathing.

Time (secs) me (secs)

Figure 4.1 Frequency analysis of normal breathing and snoring
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As shown in Fig.4.1, breathing frequency is stable for both of two parts of
signals. Actually, the left is normal breathing and the right one is snoring. They
have different frequency energy distribution as shown in the frequency spectrum
by short-time Fourier transform. So we will discuss the different breathing states
in frequency domain.

Amplitude

0 10 20 30 40 50 60
Time(s’

\mplitude

Figure 4.2 Abnormal complex breathing states

4.2 Parameter extraction method based on Mel fre-
quency spectrum analysis

4.2.1 Introduction of Mel frequency spectrum

Psychophysical studies have shown that human perception of the frequency con-
tent of sounds does not follow a linear scale and the Mel scale cepstral analysis is
very similar to perceptual linear predictive analysis of sound [57].

Mel frequency cepstrum coeflicients (MFCCs) are derived from the short time
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spectrum of a signal and widely used both for speech and speaker recognition [58].
It is simulating perceptive identify of the human ear to frequency components of
the sounds [59]. Speech signal is recognized by the critical frequency band of
human ears. To realize the speech reorganization, the frequency is transformed
by the Mel-scale, and a triangle filter bank is applied to segment the Mel fre-
quency domain into several bands. MFCCs have already been applied to extract
features of respiratory sound in combination with learning machines to recognize
the wheeze for respiratory disorders [60, 61].

The procedure of the conventional MFCC algorithm is illustrated by following
steps:

Step 1: Framing and windowing. Firstly, framing has been done with frame
shift which is the interaction part between frames, and the length of frame shift
is about 1/2 1/3 of a frame usually. Framing can keep smooth and continuous
between frames. And then assign a window to each individual frame to reduce the
leakage of spectral energy [62].

Step 2: Translated the signal of each frame into frequency domain by FFT.
Compute the energy spectrum.

Step 3: Filter the energy signal by Mel-scale filter bank. Mel-scale comes
from Eq.4.2 which used to transform the real frequency to Mel frequency.

1000 * In(1 + =L5)

1000
ll’l(l + =00

Mel(f) = 4.1)
where f is the real frequency and Mel(f) is the Mel-scale frequency. 1000 is a key
parameter to determine the relationship of f and Mel(f), which is almost linear
below 1kHz and nonlinear over 1kHz. 700 is a parameter which can affect the
change trend of relationship between f and Mel(f).

For frequencies under 1000 Hz, the Mel scale can be approximated with a lin-
ear scale, MFCC can represent the low frequency region more accurately than the
high frequency region and it can capture formants which lie in the low frequency
range [63].

The filter bank methods are grouped into two sections, i.e. MFCC contours
and subband spectral centroids. The choice of MFCC contours number and filters
number used to compute the coefficients is a compromise between information
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measured by entropy with consistency of the estimation measured as standard
deviation. The number of MFCC should be larger than six and the number of
contours used in the literature ranges from 12 to 36 coeflicients and 12 is selected
commonly [64]. The Mel filter bank composed of 20 triangle band-pass filters is
used to extract 12 MFCC coefficients.

The Mel filter bank distributes uniformly in Mel scale and non-uniform in
original spectrum, simulating the critical frequency bands of the human ear. The
center of each triangle window is the starting of the next one, shown in Fig.4.3.

H, (k)

O sms@ G & S04 J(6) J(m
Figure 4.3 The triangle filter in real frequency domain

Step 4: Apply the logarithm to the output of the Mel filter bank.

The logarithm is used to compress the components above 1000Hz. And it
can translate the multiplicative components into the additive ones and reduce the
computation complexity.

In fact, logarithm can provide the frequency energy distribution on one time-
point in the form of addition. It will very important for defining the breathing

pattern.

Step 5: Discrete cosine transform is used to transform the signal into the time
domain and the 12 coefficients comes like Eq.4.2.

K
1
MFCC; =) X+ cos(i - (k - 5 %),i =0.1,...N (4.2)
k=1

where N is the dimension of MFCC, k is the number of filters in filter bank.
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4.2.2 Parameter extraction based on Mel frequency spectrum
analysis algorithm

The focus is the relationship of the frequency energy distribution in time domain,
hence the processing results after logarithm should be paid attention. So the Mel
frequency spectrum analysis algorithm is proposed for parameter extraction as
shown in Fig.4.4. Compared with the classical MFCC algorithm, the FFT is re-
placed by power spectrum density and the discrete cosine transform is deleted.

@ x(t)

‘ Window screening ‘

Auto-regression power spectrum density

L

‘ Mel scale filter bank ‘

L

‘ Mel-scale features ‘

Figure 4.4 The flow chart of the modified MFCC features

The essence of MFCC algorithm is a serious of transforms in the frequency do-
main. Hence in the beginning of the proposed method, the breathing sound signal
is translated from the time domain to frequency domain. In classical MFCC algo-
rithm, the FFT is applied and its waveform has lots of burrs. The burrs will cause
the mistakes in continuous steps, so a smoother frequency envelope is necessary.
Because the energy spectrum is computed in the classical MFCC algorithm before
applying filter bank, the power spectrum density is considered to take the place of
FFT.

The power spectrum density estimation is an important part of the modern
signal processing and reflect the energy distribution of the frequency component
of the signal [65]. Autoregressive method is the most frequently used parametric
method because the estimation of AR parameters can be done easily by solving
linear equation. Here Yule-Walker’s method is used to make the power spectrum
density instead of the energy of the FFT result. The order of an autoregressive
prediction model for the signal is set as 32.

And the frequency bands of each Mel filter in filterbank are listed in Table4.1.
It is easy to find that more details will be discussed in the lower frequencies and
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the trend of energy will also be displayed in higher frequencies.

Table 4.1 Frequency bands decided by Mel filterbank

Filter Number | Frequency Band (Hz) | Filter Number | Frequency Band (Hz)
1 0~161.8 11 1279.7 ~ 1737.3
2 76.7 ~ 256.2 12 1496.6 ~ 2004.3
3 161.8 ~ 361 13 1737.3 ~ 2300.6
4 256 ~ 477.2 14 2004.3 ~ 2629.4
5 361 ~ 606.2 15 2300.6 ~ 2994.1
6 477.2 ~749.3 16 2629.4 ~ 3398.9
7 606.2 ~ 908.1 17 2994.1 ~ 3847.9
8 749.3 ~ 1084.3 18 3398.9 ~ 4346.2
9 908.1 ~ 1279.7 19 3847.9 ~ 4899.1
10 1084.3 ~ 1496.6 20 4346.2 ~ 5512.5

A normal breathing cycle is taken for an example shown in the top of Fig.4.5.
20 Mel scale parameters are extracted by the above steps. The length of frame
affect the efficiency of Mel scale features greatly. Here the frame is set as about
100ms according to the reference and experiments. The length of frame is set as
1024 points for the fast computation while the sampling frequency is 11025Hz.
Fig.4.5 displays the set of Mel scale features.

Mel filter No.

Mel filter No.

Mel filter No.

Mel filter No

Mel filter No

Lime(s)

Melfilter No.2

Mel filter No.6

Mel filter No.10

Mel filter No.14

Mel filter No.18

Mel filter No.3

Mel filter No.7

Mel filter No.

Mel filter No.15

Mel filter No.

=50
0 50 100

Frame number

Mel filter No..

Mel filter No.8

Mel filter No.12

Mel filter No.16

Mel filter No.2:

Figure 4.5 The Mel scale features while the length of frame is 1024 points
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To stand out the frequency energy distribution of each frame, the Mel scale
label L; has been determined by the maximum value of the Mel-scale features in
each frame. It means the main frequency energy in time. Take the above breathing
cycle for the example, the Mel scale label is detected and shown in the right plot
of Fig.4.6. The present times of each Mel scale label can be counted and shown
by bar char in the left of Fig.4.6.

5 0 a 0 6
Count of number Frame number

Figure 4.6 The Mel frequency spectrum analysis of a stable breathing cycle

4.3 Sleep breathing state detection by Mel frequency
spectrum analysis

The Mel scale labels can be extracted by Mel frequency spectrum analysis for
each breathing cycle in last section. The counting number of each Mel scale label
during one night monitoring is shown in Fig.4.7 and 4.8. X-axis is the monitoring
time, one point means one segmented breathing cycle, marked by the beginning
time. Y-axis is the counting number of each Mel scale label for each breathing
cycle. It shows the energy distribution in the fixed frequency range during the all
night monitoring.

Checking up the original breathing sound data, it is found that the No.2 Mel
scale label represents the snore components. No.4 to No.7 Mel scale labels repre-
sent the normal breathing components. The abnormal breathing components are
marked by No.15 to 17 Mel scale labels.
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Monitoring time (s)

Figure 4.7 Monitoring results of each Mel scale features (1-10)

The threshold values for FM and FH are set by 40% of total present times of
Mel scale labels. As the inspiration and expiration last about 2.5 seconds in one

breathing cycle, the total present times is about 50, that is the number of shift
frames. And the threshold value for FM and FH is 20 times.
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Momnitoring time (s)

Figure 4.8 Monitoring results of each Mel scale features (11-20)

The threshold value for FL is set by 20% of total present times of Mel scale
labels, 10 times.

According to the above analysis, three Mel scale label sets are proposed in this
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Figure 4.9 Identification results by Mel scales

case marked with FL, FM, FH. The Total counting numbers of each Mel scale set
are shown in Fig.4.9. The threshold value is set by mean value of each waveform
shown as red line in each plot. The snore component of each breathing cycle is
identified by the counting number of each Mel scale set larger than the threshold
value. It is the same way for identification of normal breathing component and
abnormal breathing component. The identification rules are set as following.

If the cycle has large value in F'M and small value in F'H at the same time, the
cycle identified as normal breathing.

If the cycle has large value in FH and small value in F'M at the same time, the
cycle identified as abnormal breathing.

If the cycle has large values in FM and FH at the same time, the cycle identi-
fied as abnormal breathing.

If the cycle has small values in FM and FH at the same time, it is identified
as normal breathing.

The identification results by Mel scale labels are shown in Fig.4.10. Fig.4.10(a)
shows the identification of normal/abnormal sleep state. The abnormal sleep
breathing cycle is denoted by ’1°, the normal sleep breathing is *0’. It is easy
to compute the time duration of normal and abnormal breathing during whole
night. For this case, the normal breathing lasts 2.8 hours, the abnormal breathing
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lasts 2.2 hours. In this evening, the normal sleep state takes 56% of sleep.

Fig.4.10(b) shows the identification of snore. The breathing cycle with snore
is marked with *1°. The snore lasts 1.8 hours.

Monitoring time (s)

Figure 4.10 Monitoring results by Mel scale label sets for OSA case

To validate the efficiency of the monitoring results, five sections, a to e marked
in Fig.4.10(a), are selected and checked by FFT as a reference. Section (a) belongs
to normal breathing, (b) is normal snore, (c) to (d) are abnormal breathing with
snore.

From the original breathing waveforms shown in figure 4.11 and 4.12, the two
sections are normal stable breathing. There are large energy in middle frequency
range, 500-1000Hz. And the large frequency energy distributes below S00Hz is
the feature of snore in section (b).

The sections (c) to (e) include apnea, hypopnea and noise according to the
original waveforms. According to the FFT results, there are larger energy below
500Hz and in the high frequency range. These three sections all belong to the
state of abnormal breathing with snore.

The results of checking match with monitoring results by Mel scale label sets.
The efficiency and adaption of Mel frequency spectrum analysis will be validation



Figure 4.11 Breathing signal of section (a)

Figure 4.12 Breathing signal of section (b)
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Figure 4.13 Breathing signal of section (c)
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Breathing s

Figure 4.14 Breathing signal of section (c)



Figure 4.15 Breathing signal of section (d)

Frequency(Hz)

Figure 4.16 Breathing signal of section (d)
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Figure 4.17 Breathing signal of section (e)

Figure 4.18 Breathing signal of section (e)
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by other several cases.

4.4 More monitoring results based on Mel frequency
spectrum analysis

For the second night of OSA case, the monitoring results of each Mel scale fea-
tures are shown in Figs.4.19 and 4.20. Fig.4.19 displays No.l to 10 Mel scale
labels and Fig.4.20 displays No.11 to 20 Mel scale labels.

According to Fig.4.19 and Fig.4.20, FL includes No.2 Mel scale label, FM
includes No.4 ~ 7 Mel scale labels, No.15 ~ 20 Mel scale labels belong to FH.
The threshold values for FL, FM, FH are set as same as the first night.

The monitoring results in the second evening is shown in Fig.4.22. Based on
the identification of normal/abnormal sleep state shown in Fig.4.22(a), the normal
breathing states lasts 2.33 hours and abnormal breathing lasts 3 hours. The normal
sleep state takes 44% of sleep.

The snore lasts 2 hours according to the identification results shown in Fig.4.22(b).

For the third night of OSA case, the monitoring results of each Mel scale
features are shown in Fig.4.23 and 4.24.

According to Fig.4.23 and Fig.4.24, FL includes No.2 Mel scale label, FM
includes No.4 ~ 7 Mel scale labels, No.15 ~ 20 Mel scale labels belong to FH.
The threshold values for identification in each Mel scale label set are set as above.

The monitoring results in the third evening is shown in Fig.4.26. Based on the
identification of abnormal sleep state shown in Fig.4.26(a), the normal breathing
states lasts 2.1 hours and abnormal breathing lasts 4 hours. The normal sleep state
takes 34.7% of sleep.

The snore is identified as shown in Fig.4.26(b). In this evening, snore lasts 3.2
hours.

For the fourth night of OSA case, the monitoring results of each Mel scale
features are shown in Figs.4.27 and 4.28.
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Figure 4.19 Monitoring results of each Mel scale features for OSA case in the second
evening (1-10)
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Figure 4.20 Monitoring results of each Mel scale features for OSA case in the second
evening (11-20)
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Monitoring time (s)

Monitoring time (s)

Figure 4.21 Identification results by Mel scales for the second night of OSA case

Monitoring time s)
Figure 4.22 Monitoring results for OSA case in the second evening
According to Fig.4.27 and Fig.4.28, F L includes No.2 Mel scale label, F M in-

cludes No.4 ~ 7 Mel scales, No.15 ~ 18 Mel scales belong to F'H. The threshold
values for identification in each Mel scale label set are set as 10, 20, 20 times.
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Figure 4.23 Monitoring results of each Mel scale label for OSA case in the third evening
(1-10)
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Figure 4.24 Monitoring results of each Mel scale label for OSA case in the third evening
(11-20)
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Figure 4.26 Monitoring results for OSA case in the third evening

The monitoring results in the fourth evening is shown in Fig.4.30. Based on
the identification of abnormal sleep state shown in Fig.4.30(a), the normal breath-
ing states lasts 3.2 hours and abnormal breathing lasts 2.7 hours. The normal sleep
state takes 54.4% of sleep.
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Figure 4.27 Monitoring results of each Mel scale features for OSA case in the fourth
evening (1-10)
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Figure 4.28 Monitoring results of each Mel scale features for OSA case in the fourth
evening (11-20)
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Figure 4.30 Monitoring results for OSA case in the fourth evening

Based on the identification result shown in Fig.4.30(b), the snore lasts 2.1
hours during the sleep overnight.

Based on the identification results of the OSA tester during 4 nights, the mon-
itoring of sleep state is shown in Figs.4.31 and 4.32. The bar chart of Fig.4.31
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Figure 4.31 Monitoring of sleep state for the OSA tester (1)
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Figure 4.32 Monitoring of sleep state for the OSA tester (2)
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shows the real time of sleep and normal sleep state. The X-axis is the monitoring
time, Y-axis is the number of monitoring night. The bar chart of Fig.4.32 displays
the ratio of the normal sleep state during the whole night sleep. From Figs.4.31
and 4.32, it is easy to found the proportion of normal sleep state and abnormal
sleep state during sleep overnight. The normal sleep state takes 43.7 ~ 56% of
sleep overnight. The apnea, hypopnea and other unstable breathing lead to the
large proportion of abnormal sleep state for OSA case.

For the young tester A, the monitoring results of each Mel scale features are
shown in Fig.4.33 and 4.33.

According to Figs.4.33 and 4.34, FL includes No.l Mel scale, FM includes
No.3 ~ 6 Mel scales, No.15 ~ 17 Mel scales belong to F'H. The stable breathing
cycle lasts about 4 seconds, the inspiration and expiration lasts about 2 seconds.
Hence the threshold values for FL, FM, FH are set as 8, 16, 16 times.

According to Fig.4.35, the abnormal sleep state and snore state are monitored
as shown in Fig.4.36.

Based on the identification of normal/abnormal sleep state shown in Fig.4.36(a),
the normal breathing state lasts 6 hours and abnormal breathing lasts 1.7 hours.
The normal sleep state takes 77.9% of sleep.

There is few snore according to the identification results shown in Fig.4.36(b).

For the young tester B, the monitoring results of each Mel scale features are
shown in Figs.4.37 and 4.38.

According to Figs.4.37 and 4.38, FL includes No.1 ~ 2 Mel scale labels,
FM includes No.4 ~ 7 Mel scale labels, No.13 ~ 17 Mel scale labels belong to
FH. The threshold values are set as the OSA case as the breathing cycle lasts the
similar time with OSA case.

Based on the identification of abnormal sleep state shown in Fig.4.40(a), the
normal breathing states lasts 1.9 hours and abnormal breathing lasts 4.1 hours.
The normal sleep state takes 31.7% of sleep. The proportions of normal and ab-
normal sleep states is close to the detection results of OSA case. As introduced in
chapter 3, the AHI detected for tester B more than 30 times/hour. It is necessary
to take the PSG examination as early as possible for tester B.

There is one-hour snore according to the identification result shown in Fig.4.40(b).
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Figure 4.33 Monitoring results of each Mel scale features for the young tester A (1-10)
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Figure 4.34 Monitoring results of each Mel scale features for the young tester A (11-20)
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Figure 4.35 Identification results by Mel scales for the young tester A
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Figure 4.36 Monitoring results for the young tester A
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Figure 4.37 Monitoring results of each Mel scale features for the young tester B (1-10)
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Figure 4.38 Monitoring results of each Mel scale features for the young tester B (11-20)



86

Monitoring time (s) x10°

Figure 4.39 Identification results by Mel scales for the young tester B

Monitoring time (s) x10

Figure 4.40 Monitoring results for the young tester B
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4.5 Conclusion

Mel frequency spectrum is introduced from speech signal processing to identify
snore and other abnormal sleep states from the sleep breathing sound signal. The
core of the Mel analysis method is reflecting the relationship between the time
and the frequency energy simulating the acoustic character of human ear. For
each frame in time domain, the Mel scale label is extracted by finding the max-
imum value of frequency energy in each Mel scale. The present times of each
Mel scale label is computed to show the frequency energy distribution. Then the
normal breathing, abnormal breathing and snore energy can be identified based on
the selected Mel scale label set. The normal breathing energy can be commonly
marked by No.4 ~ 7 Mel scale labels, FM. The abnormal breathing energy can be
commonly marked by No.15 ~ 17 Mel scale labels, FH. The snore energy can be
commonly marked by No.1 ~ 2 Mel scale labels, FL. With the suitable threshold
values, the abnormal sleep and snore states can be identified successfully.

The monitoring results of three testers are applied to validate the efficiency
of the proposed Mel frequency spectrum analysis. The proportion of the normal
breathing state during sleep has been proposed as a new index to evaluate the
condition of ventilation. It will be helpful for OSA monitoring and individual
healthcare management.

For different individual, the frequency distributions have some changes. Long
time monitoring and big data analysis are necessary in the future work.



Chapter 5

Application on heart state
monitoring

5.1 Heart sound and heart murmurs

Cardiovascular disease has became one of the main reasons threatening the health
and causing the death of human being, according to the report of cardiovascular in
China 2016 [66]. During the sleep monitoring, heart state monitoring is important
to prevent the heart infarction, cerebral infarction, stroke and so on.

Heart is a hollow muscle that pumps blood throughout the blood vessels by
repeated, rhythmic contractions. Heart sound is generated by the mechanical vi-
bration of the heart. Heart sound signal can be considered as periodical signal
and a cardiac cycle is a period. The cardiac cycle is divided into systole and di-
astole and mainly contains two main heart sounds, i.e. the first heart sound (S1)
which the beginning of the systole and the second heart sound (S2) which is the
beginning of the diastole [67,68].

The heart sound can reflect the condition of the heart working with rich in-
formation. When the heart structure or the opening and closing of the valves are
not normal, the heart murmurs will be generated by the turbulence of the blood
flow and can be detected by stethoscope too. Heart murmurs existing during the
heartbeat is the key sign to diagnose the heart disease.
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Congenital heart disease (CHD) is one of the typical cardiovascular diseases,
which is a congenital defect in the heart structure before birth. And mortality
resulted from CHD increases in recent years.

In China, ventricular septal defect (VSD) is 30.4% ~ 59.69%, atrial septal
defect (ASD) is 18% ~ 39.8%, patent ductus arteriosus (PDA) is 5% ~ 14.9%,
tetralogy of fallot (TOF) is 3.8%, they are typical CHDs. It is a killer for the
babies and destroys the stable of the family.

Some single CHDs can be healed up naturally during one year after birth, like
the healing probability of the signal VSD is about 20.5 ~ 52.9%. However, if
the defects exist for a long time, it will affect the growth of the children and may
become much more serious even cause pathological changes.

The defects and abnormalities of heart structure will cause the low oxygena-
tion blood mixed with the rich oxygenation blood and destroy the balance of the
pressure of the right and left heart. It can generate heart murmurs which are useful
to diagnose the heart diseases. The heart murmurs divide into two types mainly,
systolic murmurs and diastolic murmurs.

In this chapter, heart murmurs as an abnormal heart state is analyzed deeply
for sleep monitoring based on the segmentation and analysis algorithms proposed
for sleep monitoring with good performance.

5.2 Wearable acquisition system

The wearable acquisition of our test system for heart state monitoring include a
auscultation vest, stethoscopes and recorders. The auscultation vest can fix the
stethoscopes at the four auscultation sites exactly. The heart sound data acquired
by the stethoscope is saved by the IC-recorder or smart phone as shown in Fig.5.1.
The wearable system can collect heart sound signal fast with high SNR. The anal-
ysis will be completed on the computer. The sampling frequency of original heart
sound signal is down sampled from 44.1kHz to 2000Hz.

Fig.5.2 displays a normal heart sound signal including the main components,
the first heart sound (S1) and the second heart sound (S2). And the systole and
diastole are divided by the heart pumping blood and convergent-divergent. The
third heart sound (S3) always appear in the early diastole and the fourth heart
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Figure 5.1 Test system of heart sound signal

sound (S4) appear in the late diastole usually. Sometimes the S3 can be found in
the healthy person and S4 is a sign of abnormal heart commonly.

-

Figure 5.2 The normal heart sound signals

Fig.5.3 shows a part of abnormal heart sound, the murmurs appearing in sys-

tole can be distinguished from the normal heart sound signal with eyes obviously.
It will be critical for heart monitoring.
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Figure 5.3 Heart sound signal of VSD case with systolic murmurs

5.3 Preprocessing of clinical heart sound signal

At the beginning of analysis, denoising is necessary to stand out the main heart
sounds and murmurs for envelope extraction in the next part. The low-pass filter,
band-pass filter are commonly applied to reduce the noise by setting a frequency
band manually. The denoising methods based on wavelet is widely used as well.
In this section, a denoising algorithm based on frequency slice wavelet transform
(FSWT) and histogram curve is applied to reduce the surrounding noise and . The
details are summarized as follows.

FSWT is defined as a new kind of time-frequency representation (TFR) of a
signal [69]. FSWT has better properties than classical wavelet transform, such
as symmetry, controllability, easy-to-design, dynamic scale, filter, and the recon-
struction independency etc. So FSWT is more flexible to fit ever-changing signals
than the classical methods.

In previous research, we have known that the main energy of S1 and S2 mainly
distributes in 20 ~ 80 Hz and energy of heart murmurs is in high frequency band.
The ambient noises are usually presented in extensive frequency bands randomly
and in low energy state on TFR plane. Base on the assumption that each of time-
frequency components of PCG are connected at local area on its TFR image, the
FSWT can be applied.

For any f(f) € L*(R), the Fourier Transform of a window function p(f) exists,
and the FSWT is simplified as

1 +eo A - .
Witw.o) = o [ Fwp e 5.1)

where scale o can be a function of w and ¢ or a constant not equaling 0. * means
the conjugate operator. w and ¢ represent the observed frequency and time, and u
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is the assessed frequency. p(w) is frequency slice function.

While satistfying the condition of p(0) = 1, the heart sound signal f(¢) can be
reconstructed by

1 +00 +00 ‘
f@) = > f f Wi(t, w,0)e“ " Vdrdw (5.2)

The damping speed of histogram curve can represent the noisy level of the
surrounding. The surrounding is noisier, the damping speed of histogram curve
descends more slowly. Noise reduction could be done by adjusting damping speed
of histogram curve to modify the time-frequency image computed by FSWT, de-
tail of the algorithm is expressed as below.

(rIWf(r,w,(r)\

Wiew(t,w,0) = We(t,w,0)(1 —e™ 7 ) (5.3)

where M is the max value of the W,(t,w, o), and @ named a adjustment pa-
rameter is a constant larger than 0. The signal after denoising can be acquired by
bringing W,,,,(t, w, 0") = into the reconstruction function.

A heart sound data from a 9-year girl who is not suffered from CHD is applied
to show the efficiency of the denoising method. It is easy to see that the noise ap-
pear around 1.0 second including speak noise, movement noise and strong breath
sound.

The planes noted by (a) display the original signal and its time-frequency
image. (b)(c)(d) show the time-frequency image after denoising and the recon-
structed signal while a equals 0.2, 2 and 20.

The denoising energy ratio, the energy before denoising divides the original
signal energy, is used to show the efficiency.

While @ = 0.2,2,20, the denoising energy ratio are 24.84%, 15.84% and
1.16%. As the time-frequency image shown in Fig.5.4 and Fig.5.5 , the smaller «
is , the more noise components can be reduced. When a = 20, the reconstructed
signal still mixes with lots of noise, and when @ = 0.2, part of useful information
has been removed according to test results by ear. Hence, the « is set as 2 to keep
the S1, S2 and heart murmurs up for continuous study.
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Figure 5.4 The denoising results with different adjusting parameter « (1).

5.4 Application on heart sound segmentation and
heart murmur duration extraction

For CHD patients, researchers presented a character frequency band named as
Arash-bands [70] to extract the heart sound energy, and then combined with the
neural network to identify the normal heart sound and CHD heart sound [71]. The
short time power spectrum and regression parameter were applied to extract the
heart sound envelope and locate the S1, S2 and the cardiac cycle [72]. Further-
more, the average of the largest envelope of the later heart diastole is proposed to
diagnose the PDA murmurs [73].

Researchers begin to focus on the extraction of heart murmurs to analyze heart
diseases. The singular spectrum analysis is applied to segment the heart murmurs
from the heart sound signal [74,75]. The heart murmurs also can be located and
extracted based on envelop extraction and segmentation [76]. So the duration of
heart murmurs should be segmented and extracted firstly.
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Figure 5.5 The denoising results with different adjusting parameter « (2).

5.4.1 Heart sound segmentation based on moment waveform
extraction

The signal waveform segmentation based on moment waveform extraction is an
effective method for sleep breathing sound signal. Breathing sound and heart
sound are quasi-periodic signals. And a cardiac cycle which is made up of systole
and diastole is similar to one breathing cycle including inspiration and expiration.
So the proposed segmentation method is applied to segment the heart sound signal.

According to the functions introduced in chapter 2, TCW and CMW extraction
have been done. For heart sound, the 6 = 0.05 and [/ = T/2 by experiments and
try. T is the time duration of a cardiac cycle, it can be detected by finding the
peak of the Fourier transform of TCW envelope. Then the local extrame points
are computed to segment the systole and diastole.

A clinical data set including normal heart sound data and VSD data is applied
in my research. The information of experimental data is listed in Tab.5.1.

Fig.5.6 show the segmentation result of heart sound waveforms based on mo-
ment waveform analysis. The first plot is the waveform of heart sound signal after
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Table 5.1 The information of experimental data

Data type | Case number | Year | Datalength(s) | Number of cycles
Normal 40 4 ~28 198 201
VSD 17 3~17 170 235

denoising. TCW and its local extramum points can be found in the middle plot.
CMW and its local extramum points can be found in the last plot. As shown in
the first plot. The solid line shows the segmentation of cardiac cycles and the dot
line shows the segmentation of S1 and S2.

Fig.5.7 to Fig.5.9 display another 3 segmentation results. The normal heart
sound waveform in Fig.5.7 and the VSD heart sound waveform in Fig.5.8 can be
segmented correctly. But for the VSD case shown in Fig.5.9, two cycles can not
be segmented successfully.

Time(s)

2 f ]

0 1 ! L ! ! 1 ! ! !
0 1 2 3 4 5

5
Time(s)

Figure 5.6 Segmentation of heart sound waveform (case 1)

The Segmentation results for clinical heart data set can be found in Table 5.2.
It is easy to found that the successful rate of VSD case is lower than that of normal
case. For the continues study, the cycles segmented correctly are applied for the
following experiments.
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Figure 5.7 Segmentation of heart sound waveform (case 2)
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Figure 5.8 Segmentation of heart sound waveform (case 3)
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Figure 5.9 Segmentation of heart sound waveform (case 4)

Table 5.2 Segmentation results for clinical heart sound signals

Group | Total cardiac cycles | Segmented cycles | Successful rate
Normal 201 200 99.5%
VSD 235 225 95.74%

5.4.2 Heart murmur duration extraction

Based on the segmentation results, the time duration of heart murmurs can be
extracted for further analysis. The sketch map of duration extraction for systolic
murmur (SM) and diastolic murmur (DM) is shown in Fig.5.10. In Fig.5.10, the
green x represents the center of DM, the local maximum points of the CMW. The
red x is the center of SM, the local minimum points of the TCW between the
two adjacent green stars. On the basis of statistic data of experiments, the time
durations of SM and DM last 7/6 and T/3 respectively. The heart murmurs can
be extracted with the detection of centers.

For the heart sound signal whose strong murmurs cover the S1 and S2, the seg-
mentation of murmurs based on the location of S1, S2 via envelope and threshold
is difficult. So the TCW and CMW which have good performance in previous
research is used to extract the heart murmurs.

Fig.5.11 shows the SM and DM duration extraction based on TCW and CMW
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Figure 5.10 Sketch map of SM and DM durations extraction.

for a VSD case. Fig.5.12 displays the signal of DM duration in the middle plot
and the signal of SM duration in the bottom plot. There is sysotlic murmurs for
VSD case. Fig.5.13 shows the SM and DM duration extraction for a normal case.
Using the proposed method, heart murmurs can be also extracted from the filtered
heart sound signal successfully.

5.5 Identification of heart murmurs by Mel frequency
spectrum analysis

Features extraction of heart murmurs is the key point. In time domain, time du-
rations of heart murmurs are extracted by setting a threshold value on the en-
velop [77], the energy of murmur are used to discuss the patten of heart dis-
eases [78]. In frequency domain, the peak value and frequency bands are extracted
based on Fourier spectrum or power spectral density [79], frequency energy index
are proposed via wavelet packet composition [80].
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Figure 5.11 SM and DM durations extraction of a VSD case.

Figure 5.12 SM and DM durations extraction of a VSD case.
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Figure 5.13 SM and DM durations extraction of a normal case.

In our previous study, the MFCC algorithm is applied to analyze the sleep
breathing sound signal. To acquire the useful information more directly, a mod-
ified MFCC method is proposed and the Mel-scale features are extracted. Part
of Mel-scale features are selected to classify the healthy cases and the case who
suffered from sleep-related breathing disorders. The experimental results show
the efficiency of the selected feature set. Hence it is introduced to heart state
monitoring via heart sound signals as a necessary part of sleep monitoring.

The Mel-scale features of heart sound are extracted as following steps.

Step 1: Heart sound framing and windowing. The heart sound is screened
by a hamming window, which can minimize the spectral distortion by tapering
the signal to zero at the beginning and end of each frame, about 32ms with about
15ms overlapping. For convenience of the computation, the length of window will
be the power of 2 and it is set to 64 points with 32 points overlapping.

Step 2: Calculate the power spectral density (PSD) of the signal in each frame.
Here Yule-Walker’s method is used to make the power spectrum density instead
of the energy of the FFT result.

Step 3: Filter the PSD signal by the Mel-scale filter bank. The Mel filter bank
is composed of 20 triangle band-pass filters.

Step 4: Apply the logarithm to the output of the Mel-scale filter bank and the
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Mel-scale features are extracted.
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Figure 5.15 Mel frequency spectrum analysis for a cycle of abnormal heart sound signal.

Fig.5.14 is a normal heart sound cycle with clear S1 and S2. Fig.5.15 1is a
heart sound cycle with systolic murmurs. Fig.5.16 and 5.17 show the frequency
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Figure 5.16 Frequency distribution analysis by each Mel scale for normal case in SM
duration
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Figure 5.17 Frequency distribution analysis by Mel scales for normal case in DM dura-
tion
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Figure 5.18 Frequency distribution analysis by Mel scales for a VSD data in SM duration
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Figure 5.19 Frequency distribution analysis by Mel scales for a VSD data in DM duration
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distribution by No.1-10 Mel scales for a normal case in SM and DM duration
respectively. In both SM and DM duration, there are larger value in No.1 and 2
Mel scales.

Fig.5.18and 5.19 show the frequency distribution by No.1-10 Mel scales for a
VSD case in SM and DM duration respectively. In SM duration, there are larger
values of No.1-8 Mel scales. In DM duration, there are larger values of No.1-6
Mel scales.

For the results shown in the above figures, normal heart sound components are
mainly marked by the first two Mel scale labels. The murmurs, abnormal heart
sound components, have larger value from No.3 to No.8 Mel scale labels.

We focus on VSD case in this stage and the Mel-scale features from third to
tenth are selected to identify the heart murmurs of VSD cases in SM and DM
duration.

Among the data set, 21 normal case (103 cycles) and 11 VSD cases(156) is
selected as training data to build the identify model. The features in SM and

DM of each data is extracted and the ranges of Mel scale features are shown in
Figs.5.20 and 5.21.

The mean value and the standard deviation of each Mel-scale features are com-
puted to determine the range of the parameters. The red lines is VSD identification
range and the blue lines shows the boundaries of the normal identify zone.

The identification model of normal and VSD cases in SM is displayed in the
left, the model in DM is shown in the right.

In order to validate the efficiency of identify modes built above, the rest data
including 19 normal cases(95 cycles) and 5 VSD cases (69 cycles) are used as test
data. More than five features of one test data distribute in normal zone is identified
as normal case, and it is the same way for VSD case. The identify results can be
summarized in Table 5.3.

Table 5.3 The identify results by Mel-scale features

Experiment data | Identify results in SM | Identify results in DM
Classification Normal VSD Normal VSD
Normal 95 0 80 15
VSD 0 69 0 69
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Figure 5.21 VSD identification in DM duration
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According to the results shown in Table5.3, the normal and VSD cases can
be identified in SM with 100% of the accuracy. The identify accuracy is 90.85%
in DM. Besides, because true positive (TP) is 69, false negative(FN) is 0, false
positive (FP) is 15 and true negative (TN) is 80 in DM, the sensitivity calculated by
TP/(TP+FN)equals 100% and the specificity of two groups gotten by TN/(F P+
TN)is 84.21%.

5.6 Conclusion

Heart sound can not only reflect the condition of heart function but also the abnor-
mal of heart structure. Hence heart monitoring is a indispensable part of health-
care, especially for sleep monitoring.

The heart murmurs analysis method based on moment waveform extraction
and MFCC algorithm is introduced for abnormal heart state monitoring. The pro-
cessing method based on FSWT and histogram curve can improve the signal to
noise ratio of recorded signal. The durations of heart murmurs is extracted based
on TCW and CMW. Mel-scale features are extracted from each murmur duration
to build identification model of congenital heart disease. The clinical heart sound
data set is applied to test the model’s availability. In the duration of systolic mur-
murs, ventricular septal defect (VSD) can be identified successfully. The sensitiv-
ity and specificity are 100% and 84.21% for normal and VSD cases identification
in duration of diastolic murmurs.

The proposed analysis method of heart sound signal can identify the abnormal
heart murmurs which is meaningful to monitor the heart state during sleep.



Chapter 6

Conclusion

6.1 Summary and Contribution

Healthcare become a social hot issue with the development of aging population,
the threat of chronic disease and the increased cost of healthcare. Sleep spending
one third of the life is indispensable to support humans’ health. The sleep-related
disorders affect the sleep quality seriously, increase the complications risk of car-
diovascular disease including apnea syndrome, heart failure and so on. Therefore,
monitoring and analysis for breathing sound and heart sound during the whole
night sleep play a very important role on healthcare.

PSG is the golden standard to evaluate the sleep states and diagnose the sleep
respiratory disorders, especially for diagnosing obstructive sleep apnea (OSA). At
present only polysomnography (PSG) can provide exact apnea-hypopnea index
(AHI) for estimating the severity of OSA. However, PSG should be tested in hos-
pital and is not suitable for daily monitoring at home. So the smart monitoring
system which is low-cost and portable is indispensable for daily healthcare.

Compared with PSG, sleep breathing sound signal can be acquired portably.
The portable acquisition composed of a smart phone and an earphone is utilized
to record, save and analyze the sleep breathing sound signal. It can collect the
breathing sound signal during whole night with little influence of sleep quality.
Using breathing sound signals, the abnormal breathing state caused by sleep-
related breathing disorders can be detected effectively. In this thesis, a research on
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parameter extraction and analysis of cardiorespiratory sound for sleep and heart
state monitoring is introduced.

In order to guarantee the veracity of the sleep breathing signal analysis, the
sleep breathing sound signal should be segmented into cycles first. There are
stable and unstable breathing, snore, apnea during the whole night sleep. The seg-
mentation is difficult via common measure because the breathing state changes
greatly during the whole night. In my study, a sleep breathing waveform seg-
mentation based on the moment waveform analysis is proposed to segment the
breathing cycles and respiratory phases. To reduce the affection of breathing in-
tensity, a preprocessing for decreasing the amplitude contrast has been applied.
Then the time characteristic waveform (TCW) and characteristic moment wave-
form (CMW) is extracted with suitable time-scale parameters. Lastly, the breath-
ing cycles and inspiration/expiration can be segmented successfully by the local
extreme points of TCW and CMW. The efficiency of the proposed segmentation
method is validated by a set of testers including normal students and a patient
suffered from obstructive sleep apnea (OSA) with the manually counting as ref-
erence. With the help of proposed preprocessing method, the successful rate of
breathing cycle segmentation can reach to 98.4%. For the OSA case, 97.44% of
breathing cycle can be segmented correctly. The successful rate of respiratory
phase segmentation is more than 95.96%.

Abnormal breathing patterns are important for sleep state monitoring and sleep
breathing database. Especially for obstructive sleep apena analysis, the abnormal
breathing signal including apnea and hypopnea should be identified to detect the
AHI value during the night. Apnea can be defined by breathing pause lasting more
than 10 seconds. But the hypopnea estimated by ventilation is less than 50% or
breathing cycle lasting more than 6 seconds has not clear definition. The normal
breathing pattern, apnea pattern and hypopnea pattern are defined by the time du-
ration of breathing cycles. Apnea can be detected with a threshold value setting as
ddqpe + 10s exactly. Hypopnea is detected by setting a set of threshold values of
the breathing cycle time according to the clinical definition. The detected apnea
parts are displayed to validate the efficiency of time-domain parameters. More-
over, the pause time of each apnea is calculated to evaluate the level of obstruction.
Then the AHI can be estimated by the number of apnea and hypopnea. Four-night
data from the OSA tester and two-night data from two young students are moni-
tored and the AHI values are estimated. The identification results of apnea can be
confirmed, but the identification of hypopea is related with the threshold values.
The AHI value is detected to provide a useful reference to monitor OSA patients
and manage the sleep health for common people.
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Mel frequency spectrum is introduced from speech signal processing to mon-
itor the abnormal breathing states which cannot be detected in time domain, such
as snore, unstable periodic breathing and so on. The Mel frequency spectrum
can show the relationship between the time and the frequency energy simulating
the acoustic character of human ear. For each frame in time domain, the Mel
scale label is extracted by finding the Mel scale with the maximum value of fre-
quency energy. Then the present times of Mel scale label are counted to show
the frequency energy distribution clearly. The normal breathing energy, abnor-
mal breathing energy and snoring energy can be identified by the fixed Mel scale
label set. Based on the whole night monitoring results, the snore energy can be
represented by No.1 ~ 2 Mel scale labels, the normal breathing energy is com-
monly represented by No.4 ~ 7 Mel scale labels, the abnormal breathing energy
are mainly represented by No.15 ~ 17 Mel scale labels. With suitable thresh-
old values, the normal/abnormal breathing states and snore state can be identified.
The time duration of each breathing state can be computed. The proportion of
normal/abnormal states has been proposed to reflect the condition of breathing
ventilation. It has potential to prevent the cardiovascular diseases as a new evalu-
ation index.

At last, the proposed breathing waveform segmentation method and Mel fre-
quency spectrum analysis method are applied for abnormal heart sound signal
detection in chapter 5. The original heart sound data can be recorded and saved
by a portable acquisition system. The processing method based on FSWT and
histogram curve are used to improve the signal to noise ratio of the original signal
in the beginning. The proposed segmentation method based on moment wave-
form analysis is applied to heart sound signal with adjusted parameters. The ef-
ficiency of the proposed segmentation method is confirmed again by segmenting
the cardiac cycle and systole/diastole successfully. Moreover the intervals of heart
murmurs have been extracted correctly and fast. Mel-scale features are extracted
from each murmur intervals. According to the Mel frequency spectrum analy-
sis, No.3 ~ 10 Mel scale features are selected to identify the heart murmurs of
ventricular septal defect (VSD). The clinical children’s data is applied to test the
usefulness of the feature set. In the duration of systolic murmurs, VSD can be
identified successfully. The sensitivity and specificity are 100% and 90.85% for
normal and VSD cases identification in the duration of diastolic murmurs.
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6.2 Future work

In the future, the detection of hypopnea will be improved to get the exacter AHI
index for monitoring OSA. With more clinic data, the data base of breathing state
patterns will be completed. The identification parameters will be modified and
selected for effective sleep monitoring. More useful parameters will be proposed
to reflect the condition of breathing ventilation while sleep. It will helpful to
prevent Alzheimer’s disease and other related diseases.

The monitoring of heart states in time and frequency domain will be studied
deeply to prevent cardiovascular disease, such as heart infarction, stroke and so
on. The cases with heart diseases and sleep respiratory disorders at the same time
will be concerned. The application will be expanded to all night monitoring for
abnormal breathing states and heart states.

In addition, the proposed analysis methods in this research will be introduced
for other physiology signals. It will improve the function of our monitoring system
for healthcare.
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