
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019
19

PAPER Special Section on Enriched Multimedia—Making Multimedia More Convenient and Safer—

Image Watermarking Technique Using Embedder and Extractor
Neural Networks

Ippei HAMAMOTO†, Nonmember and Masaki KAWAMURA†a), Senior Member

SUMMARY An autoencoder has the potential ability to compress and
decompress information. In this work, we consider the process of generat-
ing a stego-image from an original image and watermarks as compression,
and the process of recovering the original image and watermarks from the
stego-image as decompression. We propose embedder and extractor neural
networks based on the autoencoder. The embedder network learns map-
ping from the DCT coefficients of the original image and a watermark to
those of the stego-image. The extractor network learns mapping from the
DCT coefficients of the stego-image to the watermark. Once the proposed
neural network has been trained, the network can embed and extract the wa-
termark into unlearned test images. We investigated the relation between
the number of neurons and network performance by computer simulations
and found that the trained neural network could provide high-quality stego-
images and watermarks with few errors. We also evaluated the robustness
against JPEG compression and found that, when suitable parameters were
used, the watermarks were extracted with an average BER lower than 0.01
and image quality over 35 dB when the quality factor Q was over 50. We
also investigated how to represent the watermarks in the stego-image by
our neural network. There are two possibilities: distributed representation
and sparse representation. From the results of investigation into the output
of the stego layer (3rd layer), we found that the distributed representation
emerged at an early learning step and then sparse representation came out
at a later step.
key words: digital watermarking, neural network, autoencoder, distributed
representation, sparse representation

1. Introduction

Digital watermarking methods are commonly used for pro-
tecting digital content such as images, videos, and audio
data. In order to maintain the quality of the content, water-
marks need to be embedded in a way that is nearly impercep-
tible, and one of the best ways to do this is by considering
human visual and auditory characteristics. A secret message
to be embedded is usually encoded by error-correcting or
spread spectrum techniques. The encoded message is called
a watermark, and an image in which the watermark is em-
beded is called a stego-image. It needs to be possible for the
watermark to be extracted from the stego-image, even if the
image is attacked illegally or modified legally. Therefore, a
robust watermarking method should be developed.

Most watermarking methods are complex techniques
composed of embedding and extraction processes. The em-
bedding process can be further broken down into three tech-

Manuscript received March 26, 2018.
Manuscript revised August 8, 2018.
Manuscript publicized October 19, 2018.
†The authors are with Graduate School of Sciences and Tech-

nology for Innovation, Yamaguchi University, Yamaguchi-shi,
753–8512 Japan.

a) E-mail: m.kawamura@m.ieice.org
DOI: 10.1587/transinf.2018MUP0006

niques: (1) selection of watermarking domain, (2) redun-
dant representation of watermarks, and (3) embedding. For
robust watermarking, suitable combinations of these tech-
niques are selected in order to extract watermarks from at-
tacked images correctly.

The most popular watermarking domain is the fre-
quency domain, e.g., the discrete cosine transform (DCT)
and discrete wavelet transform (DWT) domains [1]–[7].
Since JPEG and JPEG2000 compression respectively use
the DCT and DWT, it is reasonable to embed the watermarks
into the DCT and DWT domains. For example, the lower
frequencies of the DCT domain have robustness against
the JPEG compression. Another domain is the feature do-
main, e.g., the scale-invariant feature transform (SIFT) do-
main [8]–[10]. In methods using the feature domain, robust
feature points are extracted and selected. These points have
robustness against both clipping and geometric transform
such as scaling and rotation of the image.

Even if a robust domain is selected, watermarks might
be damaged by attacks involving compression, geometric
transform, or clipping. Therefore, in order to decode mes-
sages correctly from damaged watermarks, the messages to
be embedded are encoded by the error-correcting or spread
spectrum techniques. The criteria for robustness of water-
marks and image quality are defined by the committee of
Information Hiding and its Criteria for Evaluation (IHC),
IEICE [11].

In spread spectrum watermarking [1], [2], [12], [13], a
message is spread by a spread code, and the spread message
is then embedded as a watermark. Error-correcting codes,
e.g., Bose-Chaudhuri-Hocquenghem (BCH) [14], [15] and
low-density parity-check (LDPC) [16]–[18] codes, are also
used to ensure robustness of the messages. In general, there
is a trade-off relation between image quality and the bit er-
ror of the message. This relation can be controlled by the
code length of the watermark (codeword). Since the LDPC
code has a very high error correcting capability, a short wa-
termark can be generated. This is desirable because shorter
watermarks are better for the quality of the stego-image. Re-
cently, a watermarking method using LDPC code [18] was
able to meet the requirements of the IHC ver. 4.

The embedding technique is used for embedding a wa-
termark into values of the transform domain of a host image.
In order to keep the quality of the stego-image, degradation
of the image should be kept to a minimum while embedding
the watermark. In this work, we focus on the embedding
technique. There are two types of embedding technique:

Copyright c⃝ 2019 The Institute of Electronics, Information and Communication Engineers

20
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

blind and non-blind. While the blind type does not require
any information about the original image while extracting
and decoding from the stego-image, the non-blind one does
require the original image. Therefore, the non-blind one
may be impractical for commercial use.

Several embedding techniques have already been pro-
posed. The literature [19] serves as a useful reference. Ad-
ditive embedding has been used in many conventional meth-
ods due to its simplicity [4], [7], including most of the
spread-spectrum watermarking methods [1]–[3], [12], [16].
The stego-image is generated by adding the watermark to
the host image, so this technique is the non-blind type.

The least significant bit (LSB) modification is one of
the simplest blind embedding techniques. It embeds the wa-
termark by using it as a replacement for the LSB of a pixel
value, a DCT coefficient, or a DWT coefficient in the host
image [5], [20]. Since the LSB has little information, the
degradation of the stego-image is small. However, the wa-
termarks are fragile due to the compression. Another em-
bedding technique is the patchwork algorithm [21], [22]. In
this technique, the DCT coefficients are grouped according
to watermarks, and a watermark is embedded into the corre-
sponding coefficient by additive embedding.

The wet paper code [23], [24] and matrix embedding
algorithms [25] use a system of linear equations to embed
watermarks: specifically, the watermarks are scattered in bi-
nary data generated from the stego-image. Since the embed-
ding matrix or parity check matrix are shared, they are blind
types. However, the watermarks are fragile as a result of the
compression when converting into binary.

Quantization index modulation (QIM) [6], [9], [10],
[13], [17], [18], [26] is a blind embedding technique that
is robust against compression. Specifically, since this tech-
nique quantizes coefficients of the host image according to
a watermark, it has robustness against JPEG compression.
Therefore, there have been many proposals for using it to
meet the IHC requirements [11].

Recently, embedding techniques using layered neural
networks have been proposed. In this technique, neural net-
works are applied to adjust the embedding strength [27]–
[29]. The trained neural networks are used for determining
the suitable strength, not for embedding watermarks. On
the other hand, correlations among the coefficients of host
images are learned by neural networks [30]–[32]. In this ap-
proach, since the neural networks can predict the value of
a coefficient, watermarks can be embedded by additive em-
bedding. That is, the value of the stego-image becomes the
sum of the value of the host image and one bit of a water-
mark. While decoding, the watermark can be estimate by
the difference of output value of the same neural network.
Since the neural networks store side information about an
original host image, these methods are non-blind types. In a
similar manner, probabilistic neural networks [33]–[35] also
store the relation between a stego-image and a watermark.
Each image needs the respective probabilistic neural net-
work to extract the watermark.

We propose a novel embedding technique using a lay-

ered neural network. In our view, the embedding process
can be considered as a mapping from both a host image
and watermarks to a stego-image. At the same time, the
extraction process can be considered as a mapping from the
stego-image to the watermarks. These mapping can be rep-
resented by a layered neural network. An autoencoder [36]
is an hourglass-shaped neural network. It can map from high
dimensional input to the lower dimensional output of an in-
termediate layer and then map from the lower output to the
original input. The front side of the network can be an en-
coder and the back side of the network can be a decoder. By
training a layered neural network as both encoder and de-
coder, the proposed method can achieve blind embedding.

The proposed neural network consists of both encoder
and decoder neural networks. Lower-frequency coefficients
in the DCT domain of an original image are given to the
encoder neural network as teacher inputs. The decoder neu-
ral network receives the output of the encoder as inputs and
learns a watermark as teacher output. After training the net-
works, the encoder can output the DCT coefficients of stego-
images and the decoder can output the watermark from the
stego-images.

In summary, the existing methods store the side infor-
mation about original images in neural networks and then
use this information to extract the watermarks. A dedicated
network is required for each image. Strictly speaking, they
are not blind types. In contrast, the proposed method needs
only one neural network to embed and extract watermarks,
and no original images are required while extracting.

A unique feature of our proposal is how and with what
the proposed network is trained. The outputs of the encoder
are slightly different from the original DCT coefficients due
to watermarks. There are two possibilities to represent the
watermarks in DCT coefficients. One is distributed repre-
sentation, where a one-bit watermark is widely represented
in all coefficients. In this case, the distributed representation
can be robust against attacks. The other is sparse represen-
tation, where a one-bit watermark is sparsely represented in
a few coefficients. In this case, a high-quality image can be
generated by the sparse representation. These representa-
tions might be changed by training.

In Sect. 2 of this paper, we briefly discuss related work
using a neural network. Section 3 presents our encoder and
decoder neural networks. Computer simulations in Sect. 4
demonstrate that our encoder and decoder can learn water-
marks and generate high-quality stego-images. In Sect. 5,
we clarify which representations are learned in the neural
network. We conclude in Sect. 6 with a brief summary.

2. Watermarking Method Using Neural Network

Hwang et al. [30] proposed a method that embeds water-
marks into DCT coefficients by using a layered neural net-
work. Since the neural network learns the correlation be-
tween the DCT coefficients of an original image, this is
considered one of the blind type methods; that is, the wa-
termarks can be extracted from a stego-image by using the

HAMAMOTO and KAWAMURA: IMAGE WATERMARKING TECHNIQUE USING EMBEDDER AND EXTRACTOR NEURAL NETWORKS
21

Fig. 1 Indexes in a DCT block.

trained neural network. However, this method is not fully
blind due to its use of side information. Since the network
can learn only one original image, it stores the information
related to the original image as side information.

2.1 Embedding Domain

In Hwang et al.’s method [30], several 8× 8 pixel blocks are
selected from an original image with allowing overlap. The
selected blocks are transformed by DCT, and then AC ele-
ments are indexed from 1 to 63 in zigzag order, as shown in
Fig. 1. The DC elements are indexed as 0. Let the i-th DCT
coefficient of the µ-th block be Cµi , i = 0, 1, · · · , 63. This
method embeds one-bit of a watermark in the coefficient Cµ12

for each block. The coefficient C̃µ12 of the stego-image is
given by the output of the trained neural network.

2.2 Structure of Neural Network

The method of Hwang et al. uses a fully connected neural
network that consists of three layers: input, hidden, and out-
put layers, as shown in Fig. 2. There are nine neurons in the
input layer, four neurons in the hidden one, and one neuron
in the output one. The activation function for each neuron is
a sigmoid function:

σ (x) =
1

1 + e−x
. (1)

The DCT coefficients Cµi in the µ-th block are normalized to

cµi = N0

(
Cµi

)
, (2)

where N0 (x) is the normalization function defined as

N0 (x) =
x + 1000

2000
. (3)

The nine normalized coefficients cµi , i = 1, 2, · · · , 9, are fed
into the neural network, which is then trained so as to output
the 12th coefficient cµ12.

2.3 Embedding and Extracting Processes

First, we explain the embedding process. Let the output
for the µ-th block be yµ when the nine coefficients cµin =(
cµ1, c

µ
2, . . . , c

µ
9

)⊤
are fed into the trained neural network. A

Fig. 2 Structure of the neural network in the method of Hwang et al.

watermark ωµ ∈ {0, 1} is embedded into the 12th DCT coef-
ficient Cµ12. The coefficient of the stego-image, C̃µ12, is given
by

C̃µ12 =

{
N−1

0 (yµ) − δ, ωµ = 0
N−1

0 (yµ) + δ, ωµ = 1
, (4)

where δ is an embedding strength and N−1
0 (·) is an inverse

function of (3), given by

N−1
0 (x) = 2000x − 1000. (5)

Next, we explain the extracting process. The normal-
ized coefficients cµin are obtained in the same way as above.
The output yµ can be obtained by feeding to the coefficients
cµin, and also the 12th coefficient of the stego-image is c̃µ12.
Therefore, extracted watermark ω̂µ is given by

ω̂µ =

{
0, c̃µ12 < yµ

1, c̃µ12 > yµ
. (6)

2.4 Point at Issue

The neural network is trained by an original image, which
means it cannot embed and extract watermarks into other
images. That is, the network is image-dependent, and it
stores the information related to the original image as side
information. Therefore, this method is an incomplete blind
type embedding technique.

3. Proposed Method

The autoencoder [36] has the potential ability to both com-
press and decompress information. We focus here on this
ability. We consider the process of generating a stego-image
from an original image and a watermark as compression,
and the process of recovering the original image and the wa-
termark from the stego-image as decompression.

In this section, we explain our proposed neural net-
work in detail. Our network can embed watermarks into
unlearned images; that is, it is blind type. We also explore
how to represent the watermarks in a stego-image by our
neural network.

3.1 Structure of Proposed Neural Network

The proposed neural network has five fully connected lay-
ers, as shown in Fig. 3. The 1st layer is an input layer, the

22
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

Fig. 3 Structure of the proposed neural network.

3rd one is a hidden layer called a stego layer, and the 5th one
is an output layer. The network from the 1st to 3rd layers is
called an embedder network, and the network from the 3rd
to 5th layers is called an extractor network. The 2nd and
4th layers are hidden layers for the embedder and extractor
networks, respectively. Let the number of neurons in l-th
layer be ml. We define m1 = 15,m3 = 14, and m5 = 1, since
14 DCT coefficients of an original image and one-bit water-
mark are fed, 14 coefficients of a stego-image are output in
the stego layer, and a one-bit watermark is output in the out-
put layer. Note that the dimensions of the output layer are
different from those of the autoencoder. Since the autoen-
coder learns identity mapping, the dimensions of the output
layer are the same as those of the input layer. In the pro-
posed network, since we do not use the original coefficients
in the output layer, only one dimension exists.

The numbers m2 and m4 are selected in accordance
with learning performance. The activation function for the
1st, 3rd, and 5th layers is an identity function, and the func-
tion for the 2nd and 4th layers is the rectified linear unit
(ReLU) [37] defined by

ReLU (x) = max (0, x) . (7)

Let the output of the j-th neuron in the l-th layer be V l
j, j =

1, 2, . . . ,ml. The output of the i-th neuron in the (l + 1)-th
layer is given by

V l+1
i = f l+1

 ml∑
j=1

wl
i jV

l
j − θli

 , (8)

where f l+1 (·) is the activation function in the (l+1)-th layer,
wl

i j is a connection from the j-th neuron in the l-th layer to

the i-th neuron in the (l + 1)-th layer, and θlj is a threshold.
Now, let the outputs in the stego layer (l = 3) and output
layer (l = 5) be

y =
(
V3

1 ,V
3
2 . . . ,V

3
m3

)⊤
, (9)

z = V5
1 . (10)

3.2 Preprocessing

The luminance of an original image, which is W × H pixel

Fig. 4 Embedding procedure in encoder network.

size, is divided into 8 × 8-pixel blocks without overlapping.
Therefore, the number of blocks is M =

⌊
W
8

⌋
×

⌊
H
8

⌋
. The

AC elements of the DCT coefficients of each 8 × 8-pixel
block are indexed from 1 to 63 in zigzag order. Let the i-
th coefficient in the µ-th block be Cµi . The fourteen lower-

frequency coefficients Cµin =
(
Cµ1 ,C

µ
2 , . . . ,C

µ
14

)⊤
are selected

as an embedding domain. The coefficients are normalized
by

cµin = N
(
Cµin

)
, (11)

where N (·) is the normalization function defined as

N (x) =
1

Cmax
x (12)

and Cmax is the maximum value of the AC elements for any
image, i.e., Cmax = 1020. The DCT coefficient Cµin can also
be obtained from the normalized coefficient cµin by the in-
verse function,

Cµin = N−1
(
cµin

)
, (13)

where N−1 (·) is defined by

N−1 (x) = Cmaxx. (14)

3.3 Embedder and Extractor Networks

Here, we explain the proposed embedder and extractor net-
works. As shown in Fig. 4, watermarks can be embedded
into the DCT coefficients in an original image, Cµin, by re-
placing coefficients in a stego-image with the output of the
embedder network, N−1 (y). Moreover, as shown in Fig. 5,
the watermark ωµ can be extracted by feeding the coeffi-
cients c̃µin of the stego-image into the extractor network.

3.3.1 Embedder Network

In the embedder network, a one-bit watermark is embedded
into one 8 × 8-pixel block. As shown in Fig. 4, the origi-
nal image is divided into blocks, and then these blocks are

HAMAMOTO and KAWAMURA: IMAGE WATERMARKING TECHNIQUE USING EMBEDDER AND EXTRACTOR NEURAL NETWORKS
23

Fig. 5 Extraction procedure in extractor network.

transformed to DCT domain. The DCT coefficients in the
µ-th block are normalized by (12). From the normalized
coefficient cµin and one-bit watermark ωµ ∈ {−1,+1}, input
vector xµ is defined as

xµ =
((

cµin
)⊤
, ωµ

)⊤
. (15)

The input vector xµ is fed into the embedder network, that
is, V1

i = xµi . Note that the dimension of the input vector is
fifteen. The embedder network outputs the coefficient yµ,
whose dimension is fourteen. The DCT coefficient C̃

µ

in of
the stego-image can be obtained from yµ by inverse function
(14). Then, the luminance values can be given by inverse
DCT (IDCT). By connecting all of the blocks, the whole
stego-image can be obtained.

3.3.2 Extractor Network

In the extractor network, a one-bit watermark is extracted
from each 8 × 8-pixel block by using the trained neural net-
work. As shown in Fig. 5, the normalized coefficient in the
µ-th block c̃µin is fed into the extractor network, i.e., the stego
layer. The extracted watermark can be obtained as the out-
put zµ in the output layer, that is,

ω̂µ = sgn (zµ) , (16)

where sgn (z) is the signum function defined by

sgn (z) =

{
+1, z ≥ 0
−1, z < 0

. (17)

3.4 Training the Neural Network

In our method, the normalized coefficients cµin and one-bit
watermark ωµ ∈ {−1,+1} are fed into the input layer. The
encoder of the proposed neural network is trained so as to
output the normalized coefficient cµin in the stego layer, and
the extractor is trained so as to output the watermark ωµ in
the output layer.

3.4.1 Input and Teacher Data

The original images can be classified into training and test

images. A training image is used for training the neural net-
work. The DCT coefficients from M blocks in the train-
ing image are normalized by (11). The training dataset can
be generated from the normalized coefficients cm

in and M-bit
watermarks ωm ∈ {−1,+1}, m = 1, 2, . . . ,M. The input
dataset can be defined by

X = {ξp | p = 1, 2, · · · , 2M} . (18)

For 1 ≤ p ≤ M, ξp is the input data corresponding to the
watermark ω = +1, i.e.,

ξp =
((

cp
in

)⊤
, +1

)⊤
, (19)

and for M < p ≤ 2M, it is the input data corresponding to
the watermark ω = −1, i.e.,

ξp =
((

cp−M
in

)⊤
, −1

)⊤
. (20)

The encoder network outputs the normalized DCT co-
efficients of a stego-image as shown in Fig. 4. Therefore, it
is trained so as to output the normalized coefficients cp

in =(
cp

1 , c
p
2 , · · · , c

p
14

)⊤
. The teacher data for the stego layer, t p

s , is
given by

t p
s =

{
cp

in, p = 1, 2, · · · ,M
cp−M

in , p = M + 1,M + 2, · · · , 2M
. (21)

The output layer has to output watermark ωp. There-
fore, the teacher data for the output layer, tp

ω, is given by

tp
ω =

{
+1, p = 1, 2, · · · ,M
−1, p = M + 1,M + 2, · · · , 2M

. (22)

3.4.2 Error Function

Now, we define the learning error for p-th dataset (ξp, t p
s , t

p
ω)

as R
(
W; ξp, t p

s , t
p
ω

)
, where W represents all connections and

thresholds in the neural network. Moreover, we define the
error function for the whole dataset as

E (W) =
1

2M

2M∑
p=1

R
(
W; ξp, t p

s , t
p
ω

)
. (23)

The optimal connection W can be obtained by back-
propagation [38]. The error R

(
W; ξp, t p

s , t
p
ω

)
consists of

mean square error (MSE) for the stego layer, Rs, and MSE
for the output layer, Rω. That is, the error R

(
W; ξp, t p

s , t
p
ω

)
is

defined by

R
(
W; ξp, t p

s , t
p
ω

)
= (1 − γ) Rs + γRω, (24)

where

Rs =
1

m3
∥yp − t p

s ∥
2
, (25)

Rω =
(
zp − tp

ω

)2
, (26)

and 0 ≤ γ ≤ 1 is the weight parameter. The value of γ

24
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

needs to be fixed by learning performance. ∥ · ∥ denotes 2-
norm. (25) and (26) indicate the degree of deterioration of
the image and that of the watermarks, respectively. That is,
the proposed method optimizes both the image quality and
the bit error rate.

4. Computer Simulations

Let us define the number of neurons in the embedder and ex-
tractor networks, m2 and m4, and the weight parameter γ in
(24). We will fix these parameters by computer simulations.

4.1 Experimental Conditions

4.1.1 Training and Test Images

There are six IHC standard images defined by the IHC com-
mittee [11], as shown in Fig. 6. We select one of these im-
ages as a training image and use the others as test images.
The width and height of each image are W = 4608 and
H = 3456, respectively.

Since our method uses 8 × 8-pixel blocks to embed the
watermark, an image is divided into M =

⌊
4608

8

⌋
×

⌊
3456

8

⌋
=

248, 832 blocks. Therefore, M = 248, 832-bit watermarks
can be embedded into an image. In terms of image quality,
it is unnecessary to embed into the whole image. Since all
blocks are used to train the neural network, the watermarks
are embedded into all blocks to evaluate the performance.
The watermarks ωµ ∈ {−1,+1} are generated at random.

Fig. 6 IHC standard images.

4.1.2 Parameters of Neural Network

The proposed neural network was implemented by
Chainer [39]. The initial value of the connection wl

i j was

given by the normal distribution of N
(
0, 1

ml

)
, and the ini-

tial value of the threshold θlj was zero. The neural network
is trained by an adaptive moment estimation (Adam) opti-
mizer [40]. The learning rate of Adam is 0.0001. The mini-
batch size was 100. Values for other parameters were the
defaults used in [40]. According to 3.4.1, 2M training data
were generated from a training image. The computer simu-
lations were executed 10 times by changing the initial val-
ues of wl

i j. The performance was evaluated after 1000-epoch
training.

4.1.3 Performance Evaluation

The performance of watermarking methods is evaluated by
both bit error rate (BER) and peak signal-to-noise ratio
(PSNR). The correctness of a watermark is evaluated by the
BER, which is defined as

BER =
1
2

1 − 1
M

∣∣∣∣∣∣∣∣
M∑
µ=1

ωµω̂µ

∣∣∣∣∣∣∣∣
 , (27)

where ωµ ∈ {−1,+1} and ω̂µ ∈ {−1,+1} are the original and
extracted watermarks, respectively. The image quality for a
stego-image is evaluated by PSNR, which is defined as

PSNR = 10 log10

(
2552

MSE

)
[dB], (28)

where MSE is mean squared error defined by

MSE =
1

WH

W∑
i=1

H∑
j=1

(
IS
i j − IO

i j

)2
, (29)

where IO and IS are the original and stego-images, respec-
tively.

4.2 Number of Neurons, m2, in Embedder

Let us fix the number of neurons, m2, in the embedder net-
work by computer simulations. In this case, the number of
neurons in the extractor was m4 = 64 and the weight param-
eter in (24) was γ = 0.5. The average BERs and PSNRs for
m2 ∈ {16, 24, 32, 64, 128, 256, 512} are shown in Fig. 7. The
abscissa axis represents epoch, which means one iteration
over all of the training data. The ordinate axes represent (a)
BER and (b) PSNR.

On the whole, at 100 epoch, both BERs and PSNRs
were smallest, that is, errors in a watermark were the small-
est but image quality was the worst. After 1000-epoch train-
ing, PSNRs were gradually increased, while BERs were
slightly increased. That is, errors were larger and the im-
age quality was better than those at initial epoch. Table 1

HAMAMOTO and KAWAMURA: IMAGE WATERMARKING TECHNIQUE USING EMBEDDER AND EXTRACTOR NEURAL NETWORKS
25

Fig. 7 BER and PSNR for m2.

Table 1 BERs and PSNRs at 1000 epoch for m2.

m2 16 24 32 64 128 256 512

BER 0.00124 0.000903 0.000735 0.000570 0.000613 0.000479 0.000675
PSNR 37.2 40.6 41.0 41.3 41.3 41.2 41.7

Fig. 8 BER and PSNR for m4 and γ.

lists the BERs and PSNRs at 1000 epoch. There are three
groups for m2. In the case of small m2 ∈ {16, 24, 32}, BERs
were not good due to high BER, and also image quality was
not good. Therefore, the number of neurons, m2 ≤ 32, was
not enough for embedding watermarks. In the case of mid-
dle m2 ∈ {64, 128, 256}, BERs were converged to almost
0.0005 at 1000 epoch, and also PSNRs were converged to
almost 41 dB. These numbers were sufficient for embed-
ding. In the case of large m2 = 512, BER was converged
to almost 0.0005 at 1000 epoch, the same as in the middle
case. Moreover, PSNR reached over 41 dB. In summary, at
least m2 ≥ 64 neurons were required for the embedder net-
work. Note that although the embedder with a large number
of neurons could achieve high image quality, it required both
a large training dataset and long computational time.

4.3 Number of Neurons, m4, in Extractor and Weight
Parameter γ

Next, let us fix the number of neurons, m4, in the extrac-
tor network and the weight parameter γ by computer sim-
ulations. The number m2 in the embedder network was
m2 = 64. The average BERs and PSNRs for m4 ∈ {7, 12, 64}
and γ ∈ {0.1, 0.5, 0.9} are shown in Fig. 8. The abscissa axis
represents epoch. The ordinate axes represent (a) BER and
(b) PSNR.

When the weight parameter γ was close to 1, BERs
and PSNRs were smaller than others at 1000 epoch. That is,
watermarks had robustness but the image had low quality.
In the case within the same γ, as the number of neurons m4

was larger, BERs were larger and image quality was higher.

26
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

Table 2 BERs and PSNRs at 1000 epoch for m4 and γ.

m4 = 7 m4 = 12 m4 = 64
γ = 0.1 γ = 0.5 γ = 0.9 γ = 0.1 γ = 0.5 γ = 0.9 γ = 0.1 γ = 0.5 γ = 0.9

BER 0.00135 0.000466 0.000162 0.00129 0.000507 0.000155 0.00133 0.000570 0.000246
PSNR 42.6 40.5 37.8 42.6 40.6 38.1 42.7 41.3 39.4

Fig. 9 Quality factor vs. BER.

Fig. 10 Quality factor vs. PSNR.

Table 2 lists the BERs and PSNRs at 1000 epoch.

4.4 Robustness against JPEG Compression

From the findings in 4.2 and 4.3, we know that the embed-
der network needs at least m2 = 64 neurons. The BER and
image quality can be controlled by both the number of neu-
rons, m4, and the weight parameter γ. In this section, robust-
ness against JPEG compression is evaluated in two mod-
els: a low-error oriented model (LE model) and an image-
quality oriented model (IQ model). The former considers
the lower BER and its parameters of the network given as
m2 = 64,m4 = 7, and γ = 0.9. The latter considers image-
quality and its parameters given as m2 = 64,m4 = 64, and
γ = 0.1.

From six IHC standard images (Fig. 6), one image

was used for training and the others for testing. After
1000-epoch learning with the training image, we could ob-
tain stego-images by the trained embedder network. The
stego-images were compressed with the quality factor Q ∈
{10, 20, . . . , 100}. After that, watermarks were extracted
from the compressed stego-images. The average BERs of
the compressed images are shown in Fig. 9. The abscissa
axis represents the quality factor Q, and the ordinate axis
represents BER. PSNRs of the stego-images are shown in
Fig. 10. The abscissa axis represents the quality factor Q,
and the ordinate axis represents PSNR. In these figures,
the line labeled ’test average’ represents the average BER
of the test images. The results for the LE and IQ mod-
els are shown in (a) and (b), respectively. Note that PSNR
was measured using compressed stego-images in reference
to uncompressed original images.

HAMAMOTO and KAWAMURA: IMAGE WATERMARKING TECHNIQUE USING EMBEDDER AND EXTRACTOR NEURAL NETWORKS
27

As shown in Fig. 9(a) and Fig. 10(a), the LE model
could extract the watermarks with an average BER lower
than 0.01 and could achieve at least 35 dB when Q ≥ 50.
Since all blocks were used to train the neural network, the
watermarks were embedded into all blocks. These results
show the worst cases for image quality, so it might seem
that the quality is not good. From (b), the IQ model could
achieve at least 40 dB when Q ≥ 85.

Next, we checked the dependency on training images.
Figure 11 shows the average BERs for the case where image
2 is used for training and the others are for testing. The
conditions are the same as in Fig. 9(a). These results have
the same tendency. We found that the BERs depended not
on the training image but rather on the host images.

As described above, image quality can be improved by
using fewer blocks. Moreover, bear in mind that watermarks
are not encoded by any error-correcting codes. If an error-
correcting code could be introduced, the BER could be im-
proved. In this paper, we showed the performance without
any error-correcting codes because we were investigating
the ability of the neural network itself.

4.5 Secrecy of Watermark Extraction

Next, let us discuss the secrecy of watermark extraction. If
the detailed procedure was open to the public, stego-images
would be easily attacked, so in general, the details are hid-
den. Since the proposed method can generate a generic neu-
ral network, it is necessary to check its secrecy. We define
three secrecy levels for our method:

Level 1 All parameters, i.e., initial values of connections
wl

i j, model parameters m2,m4, γ, and training im-
ages, are concealed.

Fig. 11 Quality factor vs. BER for low-error oriented model.

Table 3 Conditions and BERs.
Level 1 Level 2 Level 3

Network Embedder Extractor Embedder Extractor Embedder Extractor
Training image image 1 , image 2 image 1 , image 2 image 1 = image 1

Model IQ model , LE model IQ model = IQ model IQ model = IQ model
Average BER 0.355 0.216 0.107

Level 2 The model parameters m2,m4, and γ are public, but
the initial values of wl

i j and training images are con-
cealed.

Level 3 The model parameters m2,m4, γ, and training im-
ages are public, but the initial values of wl

i j are con-
cealed.

We evaluated the secrecy for these levels. The embedder
network was trained over 1000 epochs by the IQ model us-
ing image 1 for the training image. The stego-image is gen-
erated from image 2 by using the embedder network.

In the case of level 1, the attacker trained a neural net-
work by using different parameters, that is, the network was
trained using the LE model and image 2 as a training im-
age. Since there are two optimal models, the attacker might
select the IQ model by chance. This case corresponds to
level 2. In the case of level 3, the attacker could train by
using the IQ model and image 1 as a training image, as with
the embedder network, except for the initial values of the
connections. Table 3 lists the average BER for these levels,
which were 0.355, 0.216, and 0.107 for levels 1, 2, and 3.

We can assume level 1 for practical purposes. Even if
the attacker could use the same model by chance, the av-
erage BER was 0.216, which is much larger than the BER
of 0.00133 shown in Table 2. Therefore, the attacker is not
able to extract the complete watermark.

5. Distributed or Sparse Representation

We also investigated how to represent the watermarks in the
stego-image by our neural network. There are two possibil-
ities to represent the watermarks in DCT coefficients: dis-
tributed representation and sparse representation. In the for-
mer case, a one-bit watermark can be widely represented
over all coefficients. In the latter case, the watermark can be
sparsely represented in a few coefficients. We investigated
the output of the stego layer.

5.1 Indicator

Using both the LE model and the IQ model, we
investigated the output of the stego layer at T ∈
{100, 1000, 10000} epoch. We defined the difference vector

dµ =
(
dµ1 , d

µ
2 , · · · , d

µ
14

)⊤
as

dµ = C̃
µ

in − Cµin, (30)

where Cµin and C̃
µ

in were the DCT coefficients of the original
and stego-images, respectively. In addition, we defined the
element-wise variance vi as

28
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

Fig. 12 Index i of DCT coefficients vs. variance vi for LE model.

Fig. 13 Index i of DCT coefficients vs. variance vi for IQ model.

Table 4 BERs and PSNRs for LE model and IQ model.

Low-error oriented model Image-quality oriented model
Epoch T = 100 T = 1000 T = 10000 T = 100 T = 1000 T = 10000

BER 0.000040 0.000076 0.000772 0.000478 0.001330 0.065791
PSNR 34.0 37.8 42.5 41.0 42.6 43.3

vi =
1
M

M∑
µ=1

∥∥∥dµi − d̄i

∥∥∥2
, i = 1, 2, · · · , 14, (31)

where d̄i is the average of dµi , i.e.,

d̄i =
1
M

M∑
µ=1

dµi . (32)

If the values of the DCT coefficients were changed by em-
bedding, the variance vi would be large.

5.2 Analysis of Watermark Representation

Figures 12 and 13 show the variance vi for the LE model
and the IQ model, respectively. The abscissa axis represents
index i of the DCT coefficients, and the ordinate axis repre-
sents the variance vi. In both figures, (a) shows the variance
at T = 100 epoch. Since many coefficients were modified
by embedding, a watermark was widely represented in them.
In both figures, (c) shows the variance at T = 10000 epoch.
Since only a few coefficients were modified, the watermark

was sparsely represented in them.
Table 4 lists the BERs and PSNRs for the LE model

and IQ model. While the BERs were initially small and then
gradually became large at 10,000 epoch, the image qual-
ity gradually became better. We found that the distributed
representation could achieve robust watermarks and that the
sparse representation could achieve a high-quality image. If
the lowest BER rather than high image quality is required,
training the network should be stopped at an early epoch.

6. Conclusion

We proposed embedder and extractor neural networks based
on an autoencoder [36]. Once the proposed neural network
is trained by using a training image, the network can embed
and extract a watermark into any image. Therefore, the pro-
posed neural network is a blind type embedding technique.
We investigated the relation between number of neurons
m2,m4 and BER and PSNR by computer simulations. Due
to the trade-off between BER and image quality, we intro-
duced two models: a low-error oriented model (LE model)

HAMAMOTO and KAWAMURA: IMAGE WATERMARKING TECHNIQUE USING EMBEDDER AND EXTRACTOR NEURAL NETWORKS
29

and an image-quality oriented model (IQ model). The LE
model is robust against compression, and the IQ model can
achieve a high-quality image. By specifying the parameters
m2,m4, and γ, the proposed neural network can control the
quality of stego-images and bit error rate.

We also investigated the watermark representation in
the stego-images and found that the distributed representa-
tion emerged at an early learning step and then sparse rep-
resentation came out at a later learning step. This is because
the error function (24) requires both a smaller difference be-
tween coefficients of the original image and those of the
stego-image and a smaller difference between watermarks
and the output of the network. It is possible to acquire both
distributed and sparse representations by different learning
steps.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber JP16K00156. The computer simulations were carried
out on PC clusters at Yamaguchi University.

References

[1] I.J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for images, audio and video,” IEEE Int.
Conf. Image Process., vol.3, pp.243–246, 1996.

[2] I.J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE Trans. Image Pro-
cess., vol.6, no.12, pp.1673–1687, Dec. 1997.

[3] J. Fridrich, “Combining low-frequency and spread-spectrum water-
marking,” Proc. SPIE, vol.3456, 1998.

[4] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, “A DCT-domain
system for robust image watermarking,” Signal Processing, vol.66,
no.3, pp.357–372, May 1998.

[5] S.D. Lin and C.F. Chen, “A robust DCT-based watermarking for
copyright protection,” IEEE Trans. Consum. Electron., vol.46, no.3,
pp.415–421, Aug. 2000.

[6] D. Kundur and D. Hatzinakos, “Digital watermarking using mul-
tiresolution wavelet decomposition,” Proc. IEEE Int. Conf. Acous-
tics, Speech Signal Process., 1998.

[7] M. Kuribayashi and H. Tanaka, “A new digital watermarking scheme
applying locally the Wavelet transform,” IEICE Trans. Fundamen-
tals, vol.E84-A, no.10, pp.2500–2507, Oct. 2001.

[8] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, Nov. 2004.

[9] L. Verstrepen, T. Meesters, T. Dams, A. Dooms, and D. Bardyn,
“Circular spatial improved watermark embedding using a new global
SIFT synchronization scheme,” 16th Int. Conf. Digital Signal Pro-
cessing, pp.1–8, 2009.

[10] M. Kawamura and K. Uchida, “SIFT feature-based watermarking
method aimed at achieving IHC ver.5,” Advances in Intelligent In-
formation Hiding and Multimedia Signal Processing, Computational
Intelligence and Complexity, Springer, vol.81, pp.381–389, 2017.

[11] Information hiding and its criteria for evaluation, IEICE,
http://www.ieice.org/iss/emm/ihc/en/ (accessed at Feb. 26, 2018).

[12] N. Teranishi and M. Kawamura, “Asynchronous stochastic decoder
for spread spectrum digital watermarking,” Proc. Seventh Interna-
tional Conference on Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP 2011), 2011.

[13] T. Yamamoto and M. Kawamura, “Method of spread spectrum wa-
termarking using quantization index modulation for cropped im-
ages,” IEICE Trans. Inf. & Syst., vol.E98-D, no.7, pp.1306–1315,

July 2015.
[14] V. Darmstaedter, J.F. Delaigle, J.J. Quisquater, and B. Macq, “Low

cost spatial watermarking,” Computers & Graphics, vol.22, no.4,
pp.417–424, Aug. 1998.

[15] H.C. Huanga and W.C. Fang, “Metadata-based image watermarking
for copyright protection,” Simulation Modelling Practice and The-
ory, vol.18, no.4, pp.436–445, April 2010.

[16] A. Bastug and B. Sankur, “Improving the payload of watermark-
ing channels via LDPC coding,” IEEE Signal Process. Lett., vol.11,
no.2, pp.90–92, Feb. 2004.

[17] N. Hirata and M. Kawamura, “Digital watermarking method using
LDPC code for clipped image,” Proc. 1st international workshop
on Information hiding and its criteria for evaluation (IWIHC ’14),
pp.25–30, 2014.

[18] N. Hirata, T. Nozaki, and M. Kawamura, “Image Watermarking
Method Satisfying IHC by Using PEG LDPC Code,” IEICE Trans.
Inf. & Syst., vol.E100-D, no.1, pp.13-23, Jan. 2017.

[19] F. Hartung and M. Kutter, “Multimedia watermarking techniques,”
Proc. IEEE, vol.87, no.7, pp.1079–1107, July 1999.

[20] R.G. van Schyndel, A.Z. Tirkel, and C.F. Osborne, “A digital water-
mark,” Proc. IEEE Int. Conf. Image Process. (ICIP-94), 1994.

[21] H. Kii, J. Onishi, and S. Ozawa, “The digital watermarking method
by using both patchwork and DCT,” IEEE Int. Conf. Multimedia
Computing Systems, vol.1, pp.895–899, 1999.

[22] I.K. Yeo and H.J. Kim, “Generalized patchwork algorithm for image
watermarking,” Multimedia Systems, vol.9, no.3, pp.261–265, Sept.
2003.

[23] J. Fridrich, M. Goljan, P. Lisoněk, and D. Soukal, “Writing on wet
paper,” IEEE Trans. Signal Process., vol.53, no.10, pp.3923–3935,
Oct. 2005.

[24] J. Fridrich, M. Goljan, and D. Soukal, “Wet paper codes with im-
proved embedding efficiency,” IEEE Trans. Information Security
and Forensics, vol.1, no.1, pp.102–110, March 2006.

[25] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,”
IEEE Trans. Inf. Forensics Security, vol.1, no.3, pp.390–395, Sept.
2006.

[26] B. Chen and G.W. Wornell, “Quantization Index Modulation: A
Class of Provably Good Methods for Digital Watermarking and
Information Embedding,” IEEE Trans. Inf. Theory, vol.47, no.4,
pp.1423–1443, May 2001.

[27] L. Mao, Y.Y. Fan, H.Q. Wang, and G.Y. Lv, “Fractal and neural net-
works based watermark identification,” Multimedia Tools and Ap-
plications, vol.52, no.1, pp.201–219, March 2011.

[28] M. Vafaei, H. Mahdavi-Nasab, and H. Pourghassem, “A new robust
blind watermarking method based on neural networks in wavelet
transform domain,” World Applied Sciences Journal, vol.22, no.11,
pp.1572–1580, 2013.

[29] B. Jagadeesh, P.R. Kumar, and P.C. Reddy, “Robust digital image
watermarking based on fuzzy inference system and back propaga-
tion neural networks using DCT,” Soft Computing, vol.20, no.9,
pp.3679–3686, Sept. 2016.

[30] M.S. Hwang, C.C. Chang, and K.F. Hwang, “Digital watermarking
of images using neural networks,” J. Electronic Imaging, vol.9, no.4,
pp.548–555, Oct. 2000.

[31] L.Y. Hsu and H.T. Hu, “Blind image watermarking via exploitation
of inter-block prediction and visibility threshold in DCT domain,” J.
Visual Communication and Image Representation, vol.32, pp.130–
143, Oct. 2015.

[32] J. Zhang, N.C. Wang, and F. Xiong, “A novel watermarking for im-
ages using neural networks,” Proc. Int. Conf. Machine Learning and
Cybernetics, vol.3, pp.1405–1408, 2002.

[33] X.B. Wen, H. Zhang, X. Xu, and J.J. Quan, “A new watermarking
approach based on probabilistic neural network in wavelet domain,”
Soft Computing, vol.13, no.4, pp.355–360, Feb. 2009.

[34] A.N. Yahya, H.A. Jalab, A. Wahid, and R.M. Noor, “Robust wa-
termarking algorithm for digital images using discrete wavelet and
probabilistic neural network,” J. King Saud University-Computer

http://dx.doi.org/10.1109/icip.1996.560429
http://dx.doi.org/10.1109/icip.1996.560429
http://dx.doi.org/10.1109/icip.1996.560429
http://dx.doi.org/10.1109/83.650120
http://dx.doi.org/10.1109/83.650120
http://dx.doi.org/10.1109/83.650120
http://dx.doi.org/10.1117/12.330355
http://dx.doi.org/10.1117/12.330355
http://dx.doi.org/10.1016/s0165-1684(98)00015-2
http://dx.doi.org/10.1016/s0165-1684(98)00015-2
http://dx.doi.org/10.1016/s0165-1684(98)00015-2
http://dx.doi.org/10.1109/30.883387
http://dx.doi.org/10.1109/30.883387
http://dx.doi.org/10.1109/30.883387
http://dx.doi.org/10.1109/icassp.1998.678149
http://dx.doi.org/10.1109/icassp.1998.678149
http://dx.doi.org/10.1109/icassp.1998.678149
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1109/icdsp.2009.5201048
http://dx.doi.org/10.1109/icdsp.2009.5201048
http://dx.doi.org/10.1109/icdsp.2009.5201048
http://dx.doi.org/10.1109/icdsp.2009.5201048
http://dx.doi.org/10.1007/978-3-319-63856-0_46
http://dx.doi.org/10.1007/978-3-319-63856-0_46
http://dx.doi.org/10.1007/978-3-319-63856-0_46
http://dx.doi.org/10.1007/978-3-319-63856-0_46
http://dx.doi.org/10.1109/iihmsp.2011.41
http://dx.doi.org/10.1109/iihmsp.2011.41
http://dx.doi.org/10.1109/iihmsp.2011.41
http://dx.doi.org/10.1109/iihmsp.2011.41
http://dx.doi.org/10.1587/transinf.2014edp7390
http://dx.doi.org/10.1587/transinf.2014edp7390
http://dx.doi.org/10.1587/transinf.2014edp7390
http://dx.doi.org/10.1587/transinf.2014edp7390
http://dx.doi.org/10.1016/s0097-8493(98)00031-4
http://dx.doi.org/10.1016/s0097-8493(98)00031-4
http://dx.doi.org/10.1016/s0097-8493(98)00031-4
http://dx.doi.org/10.1016/j.simpat.2009.09.004
http://dx.doi.org/10.1016/j.simpat.2009.09.004
http://dx.doi.org/10.1016/j.simpat.2009.09.004
http://dx.doi.org/10.1109/lsp.2003.819350
http://dx.doi.org/10.1109/lsp.2003.819350
http://dx.doi.org/10.1109/lsp.2003.819350
http://dx.doi.org/10.1145/2598908.2598913
http://dx.doi.org/10.1145/2598908.2598913
http://dx.doi.org/10.1145/2598908.2598913
http://dx.doi.org/10.1145/2598908.2598913
http://dx.doi.org/10.1587/transinf.2016mup0003
http://dx.doi.org/10.1587/transinf.2016mup0003
http://dx.doi.org/10.1587/transinf.2016mup0003
http://dx.doi.org/10.1109/5.771066
http://dx.doi.org/10.1109/5.771066
http://dx.doi.org/10.1109/icip.1994.413536
http://dx.doi.org/10.1109/icip.1994.413536
http://dx.doi.org/10.1109/mmcs.1999.779321
http://dx.doi.org/10.1109/mmcs.1999.779321
http://dx.doi.org/10.1109/mmcs.1999.779321
http://dx.doi.org/10.1007/s00530-003-0097-0
http://dx.doi.org/10.1007/s00530-003-0097-0
http://dx.doi.org/10.1007/s00530-003-0097-0
http://dx.doi.org/10.1109/tsp.2005.855393
http://dx.doi.org/10.1109/tsp.2005.855393
http://dx.doi.org/10.1109/tsp.2005.855393
http://dx.doi.org/10.1109/tifs.2005.863487
http://dx.doi.org/10.1109/tifs.2005.863487
http://dx.doi.org/10.1109/tifs.2005.863487
http://dx.doi.org/10.1109/tifs.2006.879281
http://dx.doi.org/10.1109/tifs.2006.879281
http://dx.doi.org/10.1109/tifs.2006.879281
http://dx.doi.org/10.1109/18.923725
http://dx.doi.org/10.1109/18.923725
http://dx.doi.org/10.1109/18.923725
http://dx.doi.org/10.1109/18.923725
http://dx.doi.org/10.1007/s11042-010-0467-5
http://dx.doi.org/10.1007/s11042-010-0467-5
http://dx.doi.org/10.1007/s11042-010-0467-5
http://dx.doi.org/10.5829/idosi.wasj.2013.22.11.2828
http://dx.doi.org/10.5829/idosi.wasj.2013.22.11.2828
http://dx.doi.org/10.5829/idosi.wasj.2013.22.11.2828
http://dx.doi.org/10.5829/idosi.wasj.2013.22.11.2828
http://dx.doi.org/10.1007/s00500-015-1729-y
http://dx.doi.org/10.1007/s00500-015-1729-y
http://dx.doi.org/10.1007/s00500-015-1729-y
http://dx.doi.org/10.1007/s00500-015-1729-y
http://dx.doi.org/10.1117/1.1289357
http://dx.doi.org/10.1117/1.1289357
http://dx.doi.org/10.1117/1.1289357
http://dx.doi.org/10.1016/j.jvcir.2015.07.017
http://dx.doi.org/10.1016/j.jvcir.2015.07.017
http://dx.doi.org/10.1016/j.jvcir.2015.07.017
http://dx.doi.org/10.1016/j.jvcir.2015.07.017
http://dx.doi.org/10.1109/icmlc.2002.1167437
http://dx.doi.org/10.1109/icmlc.2002.1167437
http://dx.doi.org/10.1109/icmlc.2002.1167437
http://dx.doi.org/10.1007/s00500-008-0331-y
http://dx.doi.org/10.1007/s00500-008-0331-y
http://dx.doi.org/10.1007/s00500-008-0331-y
http://dx.doi.org/10.1016/j.jksuci.2015.02.002
http://dx.doi.org/10.1016/j.jksuci.2015.02.002
http://dx.doi.org/10.1016/j.jksuci.2015.02.002

30
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

and Information Sciences, vol.27, no.4, pp.393–401, Oct. 2015.
[35] G. Kulkarni and S. Kuri, “Robust digital image watermarking us-

ing DWT, DCT and probabilistic neural network,” 2017 Int. Conf.
Electrical, Electronics, Communication, Computer, and Optimiza-
tion Techniques, pp.1–5, 2017.

[36] G. Cottrell, P. Munro, and D. Zipper, “Image Compression by Back-
propagation: an example of extensional programming,” Advances in
Cognitive Science, vol.3, pp.208–240, 1988.

[37] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” Proc. 27th Int. Conf. Mach. Learn., pp.807–
814, 2015.

[38] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol.323, no.6,
pp.386–408, Oct. 1986.

[39] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” Proc. work-
shop on machine learning systems in the twenty-ninth annual con-
ference on neural information processing systems, vol.5, 2015.

[40] D.P. Kingma and J.L. Ba, “Adam: A method for stochastic optimiza-
tion,” Proc. 3rd Int. Conf. Learning Representations, 2015.

Ippei Hamamoto received a B.S. degree
from Yamaguchi University in 2017. Currently
he is a master’s degree student at Yamaguchi
University’s Graduate School of Sciences and
Technology for Innovation. His research inter-
ests include neural networks and digital water-
marking.

Masaki Kawamura received B.E., M.E.,
and Ph.D. degrees from the University of
Tsukuba in 1994, 1996, and 1999. He joined
Yamaguchi University as a research associate
in 1999. Currently he is an associate profes-
sor there. His research interests include asso-
ciative memory models and information hiding.
He is a senior member of IEICE and a member
of JNNS, JPS, and IEEE.

http://dx.doi.org/10.1016/j.jksuci.2015.02.002
http://dx.doi.org/10.1016/j.jksuci.2015.02.002
http://dx.doi.org/10.1109/iceeccot.2017.8284571
http://dx.doi.org/10.1109/iceeccot.2017.8284571
http://dx.doi.org/10.1109/iceeccot.2017.8284571
http://dx.doi.org/10.1109/iceeccot.2017.8284571
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0

