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Abstract 

Phase diagrams for modulated phases are constructed based on a competing interactive 

ISING model. Commensurate phases with the wave number q=0, 1/6, 1/3 and 1/2 are 

stable at zero temperature, if the model Hamiltonian is treated classically. On the other 

hand, the regions of incommensurate wave number as well as high-order commensurate 

ones extend down to 0 K, if the quantum statistical mechanics is employed. Based on 

the calculated phase diagram, phase transitions of K2SeO4, Rb2MoO4, Rb2SeO4, and 

Cs2WO4 are discussed. 
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Introduction 

  Forty years ago, an incommensurate phase in K2SeO4 was discovered by the neutron 

scattering experiment. The disordered (paraelectric) structure transforms to the 

incommensurate one with the modulation wave number q=1/3-d. Further decreasing 

temperature, q locks-in 1/3, and the commensurate (ferroelectric) phase is stabilized 

down to low temperature [1]. Since then many isomorphous crystals were found to 

perform similar incommensurate-commensurate (lock-in) transitions. 

  Ising spin models with competing interactions were employed to describe the many 

kind of modulated structures. The ANNNI model [2, 3], the EXAFII model [4], the 

ERLI model [5], and others can demonstrate many modulated structures and the lock-in 

transition in A2BX4-type crystals. 

  All these models ensure that the incommensurate phase transforms to the 

commensurate one at low temperature; the ground state of the Ising system disfavors the 

incommensurate state thermodynamically. In nature, some A2BX4-type crystals do not 

perform the lock-in transition down to zero temperature [6-8]. 

  Recently, we took into account the quantum effect on the free energy of modulated 

structures [9]. The quantum Ising model denominated QITNI was applied to the 

monoclinic A2BX4-type crystals to explain the incommensurate phase which is stable 

down to 0 K. It was demonstrated that quantum uncertainty makes commensurate 

phases rather unstable against the incommensurate state. So the crystal may retain the 

incommensurate phase down to 0 K, if interaction parameters are set properly. 

  In the case of the monoclinic system, it is shown that the neighboring interaction is 

ferroic for first and third neighbors, but antiferroic for second neighbors. If we apply the 

QITNI model to the modulated structures in the orthorhombic system, it seems that the 
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neighboring interactions are antiferroic for first and second neighbors, but weakly 

ferroic for third neighbors. Such situation is investigated in this paper, and the transition 

sequences of some A2BX4-type crystals are explained referring to the model.  

 

Model and Formulation 

  The model Hamiltonian for one-dimensional modulated structures is written as,  
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where a lattice variable jx  is a representative of a displacement pattern of atoms on 

the j-th lattice layer, belonging to a space-group representation relevant to the phase 

transition. The self-potential )(xV  is an even function as shown in Fig. 1, ensuring the 

disordered phase at high temperature. It may be quadratic or double Morse type function, 

however, our formalism does not matter the concrete functional form. The interaction 

lJ  beyond the second neighbor one is necessary to realize the modulation structures 

with long period. 

  In order to analyze the system described by Eq. (1), we adopt the mean field 

approximation, and write the single particle Hamiltonian as  
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where the mean field is the following: 
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The brackets mean a statistical expectation value calculated by the following; 

 ( )[ ] ( )[ ]TkHTkHOO BMFBMF /expTr/expTr --= .   (4) 

  The effect of anharmonicity of the self-potential is taken into account from the 
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quantum mechanical behavior of a particle; 
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If the potential has deep double minima as shown in Fig. 1, then we may take only two 

energy levels e0 and e1 into account, and can obtain analytical expressions easily. The 

quantum effect emerges if the parameter 

 ( ) B011 /- kT eeº        (6) 

is not vanishing; i.e. the energy gap between the ground and excited level is finite. The 

magnitude of the order parameter is scaled as 
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It should also be understood that lJ  is dimensionless hereafter; 

ll JkxJ ®B
2

0 . 

Using such scaled quantities, the free energy is given by [9] 
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where the quantum mean field Lj is related to the classical mean field hj ; 
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Since the order parameter jx  is scaled, it takes 1±  at 0 K, only if the system is 

classical (i.e. 01 =T ). Otherwise, 1<jx . 

  The free energy can be minimized with respect to the amplitudes of the order 

parameter expressed by Fourier components with the reduced wave number q; 

 ( )))(12(2cos tpx --=å jnqAn
n

j  .    (9) 
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Generally, we can choose t integer, but half integer in cases of ,8/1,4/1=q  [5]. 

Numerical calculations were performed to minimize F iteratively, except for q=0, 1/2 

and 1/4, for which the single amplitude A1 is obtainable analytically.  For an 

incommensurate phase, the sum in the last term of Eq. (2) is replaced by integration, as 

given in the previous report [9]. 

 

Phase Diagrams 

In our previous paper explaining the monoclinic A2BX4 systems, we investigated the 

phase diagram for the interaction parameters in the range of J1>0, J2<0, and J3>0 [9]. 

Here we are concerning the orthorhombic A2BX4 systems. The phase diagram for 

K2SeO4 and the similar crystals, which have the commensurate phase with q=1/3 if 

exists, can be reproduced for the effective interlayer interactions; 

 0and,05.1,1,2 3210 ³<<--== JJJJ .    (10) 

Therefore, interaction parameters, temperature, and free energy are all scaled by |J1|. We 

consider the commensurate phases which can be represented with up to 4 Fourier 

components in Eq. (9) as listed in Table 1. The number of Fourier Components is called 

rank. Other commensurate structure whose rank is higher than 4 are treated as the 

incommensurate state. The disordered phase 0=jx  is stable  

( ) ( ){ }10101 )(2/)(2ln TqJTqJTT -+> ,    (11) 

where qlJJqJ l
l
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+=  is the Fourier transform of the inter-layer 

interactions, and q0 gives the maximum of J(q) for the given Jl’s. 

If the third neighbor interaction J3 is absent, which is the original ANNNI model, 

then only q=1/2 and 1/4 phases occupy finite regions at 0 K. As demonstrated in the 
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EXAFII model, J3 makes the q=1/3 phase stable at 0 K in the range of 32 312 JJ <+ . 

To calculate concretely, we set J3=0.1, hereafter. Figure 2 shows the phase diagram of 

the weak quantum case: T1=2.5. The disordered phase transforms into a modulated state 

with the wave number q, if 025.02 >J . At low temperature, the commensurate phases 

with q=3/8, 5/14, 3/10 and 2/7 become stable in addition to q=1/2, 1/3, and 1/4 phases. 

The incommensurate state is depicted as gray domains. 

The phase diagram for T1=5 is shown in Fig. 3. The incommensurate state reaches 

down to 0 K, as demonstrated previously in other parameter set of J1=1, J2~-1, and J3~1 

[9]. 

Further increasing T1, the phase transition disappears in a range of J2 that satisfies 

1)(2 TqJ < , as shown in Fig.4, where T1=7.15. The commensurate phase of q=1/8 does 

not appear at all, but domains of commensurate phases of q=5/14, 2/5, and 3/7 are so 

narrow that they are omitted in Fig. 4. 

 

Discussions 

  Our free energy Eq, (7) is equivalent to the ANNNI model and the EXAFII model so 

far as T1=0 in Eq. (8). However, the order parameter x does not saturate unity at 0 K 

when T1>0. This is a quantum effect that favors high rank of commensurate and 

incommensurate states. If T1 is large enough, the disordered phase spreads down to 0 K, 

which is a well-known phenomenon as quantum paraelectricity [12, 13]. 

  Among orthorhombic A2BX4-type crystals, K2SeO4 is a typical ferroelectric 

compound; the paraelectric (disordered) phase transforms to incommensurate phase 

with d-= 3/1q , which is followed by the ferroelectric (commensurate) phase of 

3/1=q   [1]. Since there exist many type of transitions in A2BX4-type crystals, we 
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discuss only oxide components hereafter. The phase sequence of K2SeO4 can be 

represented by broken arrow in Fig. 3 (the right side arrow). 

  On the other hand, Rb2MoO4 transforms into the incommensurate phase from the 

paraelectric phase, however, it never transforms to commensurate phase of 3/1=q   

[10]. Therefore, the transition sequence can be represented by the left side arrow in Fig. 

3. Another type is Rb2SeO4 and Cs2WO4 which remain paraelectric phase down to 0 K 

[6, 11]. Such crystals may be represented by an arrow in Fig. 4. Here we fix J0=2, 

however, J0 may change with J2, then the incommensurate state 1||5.0 2 << J  can be 

wiped. 

  In real A2BX4-type crystals, it has been recognized that the coupling between the 

order parameter and polarization (or stress) generate an additional lock-in energy to 

stabilize the commensurate phase of 3/1=q  or other commensurate phase [1]. Since 

our model does not consider such lock-in energy explicitly, it may sound crude to apply 

our model Hamiltonian to real A2BX4-type crystals. It should be noted that the 

microscopic mechanism to stabilize a commensurate state is reflected in the dispersion 

relation w(q) of the normal coordinate x(q), and can be taken into account as we want, if 

we consider a suitable set of Jl more than third neighbors. However, such complication 

is out of our present scope. The essential character that quantum effect weakens ordered 

phases and that the incommensurate phase may persist down to 0 K will not fail. 
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Table 1. The wave number q and the modulation pattern at T=0. The number of Fourier 

components is called rank. 

 
Rank Wave Number q Modulation Pattern at T=0 

1 
1/2 ­¯  

1/4 ­­¯¯  

2 
1/3 ­¯¯  

3/8 ­¯­¯¯­¯­  

3 
2/5 ­¯­¯­  

3/10 ­¯­­¯¯­¯¯­  

4 

2/7 ­¯¯­­¯¯  

3/7 ­¯­¯­¯­  

5/14 ­­¯­­¯­¯¯­¯¯­¯  
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Figure captions 

Fig. 1 Schematic picture of a self-potential V(x) and the quantum energy levels. The 

energy gap e1-e0=kBT1 is the quantum parameter. 

 

Fig. 2 Phase diagram for T1=2.5. The fractional number indicates the modulation wave 

number q. The incommensurate q is shown by filled regions. The commensurate phases 

with q=3/8, 5/14, 3/10 and 2/7 reach down to 0 K. 

 

Fig. 3 Phase diagram for T1=5. The incommensurate state reaches down to 0 K. 

 

Fig. 4 Phase diagram for T1=7.15. The disordered phase reaches down to 0 K around 

|J2|=0.2~0.3. Commensurate phases q=5/14, 2/5, and 3/7 are omitted, because their 

regions are so narrow. 

 

---------------------------------------------------------------- 

 

Fig.1 Schematic picture of a self-potential V(x) and the quantum energy levels. The 
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energy gap e1-e0=kBT1 is the quantum parameter. 

 
Fig. 2 Phase diagram for T1=2.5. The fractional number indicates the modulation wave 

number q. The incommensurate state is shown by filled domain. The commensurate 

phases with q=3/8, 5/14, 3/10 and 2/7 reach down to 0 K. 

 

 
Fig. 3 Phase diagram for T1=5. The incommensurate state reaches down to 0 K. 
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Fig. 4 Phase diagram for T1=7.15. The disordered phase reaches down to 0 K around 

|J2|=0.2~0.3. Commensurate phases q=5/14, 2/5, and 3/7 are omitted, because their 

domains are so narrow. 
 


